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ABSTRACT

We describe a new challenge aimed at discovering subword
and word units from raw speech. This challenge is the fol-
lowup to the Zero Resource Speech Challenge 2015. It aims
at constructing systems that generalize across languages and
adapt to new speakers. The design features and evaluation
metrics of the challenge are presented and the results of sev-
enteen models are discussed.

Index Terms— zero resource speech technology, sub-
word modeling, acoustic unit discovery, unsupervised term
discovery

1. INTRODUCTION

Traditional speech technology relies on linguistic expertise
and textual information to build acoustic and language mod-
els. Recent work has begun to mitigate the need for expert
knowledge, having succeeded at training supervised systems
using textual transcripts only [1, 2]. But for the majority of
the world’s languages, even textual transcripts are sparse or
non-existent, and for many languages, the lack of standard or-
thography would reduce the utility of such transcripts greatly.
This is why there is increasing interest in a radically differ-
ent approach, the so-called zero resource setting [3, 4]. The
aim is to construct speech systems without any textual or lin-
guistic resource. The fact that young children become fluent
communicators in their native language(s) before they learn
to read and write, and with minimal or no expert supervision,
demonstrates that such a system is possible.

Systems constructed with zero expert resources have at
least three kinds of applications. They can form the basis
for speech services for the perhaps billions of speakers of
languages without readily available linguistic or textual re-
sources in sufficient quantities. They can also help field lin-
guists document endangered languages, by providing tools to
semi-automatically analyze and annotate audio recordings us-
ing automatically discovered linguistic units (phonemes, lex-
icon, grammar) [5]. In this case, a realistic scenario is to
process raw speech and its translation in a well-resourced lan-
guage [6, 7, 8]. Finally, to the extent that they mimic language

development, these models can be used to evaluate scientific
claims about development, and act as quantitative tools for
psychologists and clinicians interested in the impact of soci-
olinguistic variations in input on subsequent normal or abnor-
mal language and cognitive development [9].

As the previous Zero Resource Speech Challenge [10,
11], the 2017 installment consists of two different sub-
challenges. Participants can submit systems that do either
subword modelling (track one) or spoken term discovery
(track two). Subword modelling means constructing a rep-
resentation of speech sounds; we say “subword” instead of
“phoneme” or “sound” because the criterion for success does
not demand any particular temporal window size. The re-
quirement is to have a representation of the speech signal that
is robust to talker variation, and makes the distinctions nec-
essary to distinguish words. Spoken term discovery means
discovering recurring speech fragments in the audio: the sys-
tem must output time-stamps delimiting stretches of speech,
associated with class labels, ideally corresponding to real
words in the language. The systems must be able to do their
task without linguistic resources. The 2017 Zero Resource
Speech Challenge1 has two main innovations compared to
the 2015 iteration: (1) it tests how well systems’ architectures
and hyperparameters generalize to unseen languages (the sys-
tems are developed with three languages and tested on two
‘surprise’ languages); (2) it tests how well the trained sys-
tems’ parameters adapt to unseen talkers (varying the amount
of speech available for each talker).

2. THE CHALLENGE

2.1. Track one: Subword modelling

The goal of subword modelling is to learn representations ap-
propriate to the sounds of the language (phones or phonemes).
As adults, we easily perceive differences between individual
phonemes in our native language, substantially better than in
non-native languages [12]. This so-called perceptual tuning
develops substantially during the first year of life [13, 14].

1http://zerospeech.com/2017



The input to subword modelling is a set of acoustic features
encoding continuous speech. The result is a transformation
that applies to new samples of running speech, yielding a new
representation (continuous or discrete) of that speech. After
training in a particular language from unlabelled speech, the
representation is computed for a test set in the same language
on novel speakers, to be evaluated on phoneme discrimination
based on gold-standard annotations.

2.2. Track two: Spoken term discovery

Intuitively, the goal of spoken term discovery is to find words
in the speech stream—just as the infant learns the words of
its language by listening. The input to candidate systems is a
series of speech features. The output is a set of boundaries de-
limiting the start and end of proposed word tokens discovered
in the speech, and category labels indicating proposed word
types. These boundaries may, but need not, constitute an ex-
haustive parse of the speech. The evaluation we apply is a set
of scores measuring different aspects of the alignment with
the words in the gold-standard transcription. As is customary
in the field of word segmentation, we do not provide a sepa-
rate test set for this track; we rely on the surprise languages
to assess possible hyperparameter overfitting.

2.3. Generalization across languages

This challenge is explicitly set up as a ‘learning to learn’ or
meta-learning problem: participants select the best architec-
tures and tune their hyperparameters on three development
languages on which the evaluation software is provided for a
test set. The higher level test is performed on two new sur-
prise languages for which the evaluation is withheld. Partici-
pants submit the output of their previously optimized systems
for these two corpora, and the organizers perform the evalua-
tion. Each submission (maximum five per team) is automati-
cally evaluated and made public.

2.4. Adaptation to new speakers

The subword modeling task is explicitly set up as a talker
adaptation problem. The training data is constructed from a
skewed distribution of speakers, and the test set consists only
of new speakers appearing in files of various durations (from
1 second to two minutes). This enables us to evaluate models’
ability to generalize and adapt to new speakers on the basis of
limited evidence.

3. DATA SETS

Two groups of data sets are provided as part of the challenge:
the development data and the surprise data. The develop-
ment data consists of corpora from three different languages
(English, French and Mandarin). Each corpus comes with

software that does the evaluation for the two tracks. Chal-
lenge participants are encouraged to use these resources to
tune their hyperparameters using a cross validation approach
to maximize generalizability. Each corpus is split into a train
and a test set; the subword modelling evaluations are run on
the test sets, and the spoken term discovery evaluations on
the training sets. The participants then have to submit their
systems and their output on all the data sets for independent
evaluation (run automatically upon submission). The surprise
data consists of corpora from two new languages, the identity
of which was not revealed to participants. Participants receive
only the speech corpora, with no additional resources. As be-
fore, each contains a training set (which participants can use
to train their systems) and a test set for track one evaluation.

The amount of data in the training part of the development
data sets varies from 2.5 to 45 hours (see Table 1), to ensure
that systems can work both with limited data and with large
data sets. The statistics of the two surprise languages fall be-
tween these two extremes. The distribution of speakers in the
training sets is shaped to reflect what is typically found in
natural language acquisition settings: there is a “family”—a
small number of speakers that make up a large proportion of
the total speech—and a set of “outsiders”—a larger number
of speakers that each appear in smaller proportions. The test
sets consist of many short files, are organized into subsets of
differing length (1s, 10s and 120s).

The English and French corpora were taken from the Lib-
riVox collection of audio books2 and phone force-aligned us-
ing Kaldi [15]. The Mandarin corpus is the one described in
[16], force-aligned using Kaldi. The first surprise language
is German, and was taken from LibriVox and force-aligned
using Kaldi as well. The second surprise language is Wolof,
and is the corpus described in [17].

4. EVALUATION

4.1. Evaluation of subword modelling

Unsupervised subword modeling is a representation learning
problem: the system must find speech features that empha-
size linguistically relevant properties (phoneme structure) and
de-emphasize the linguistically irrelevant ones (speaker iden-
tity, emotion, channel, etc). We use a minimal pair ABX
task [18, 19], which does not require any training, and only
requires a dissimilarity metric between speech tokens. The
ABX task is inspired by match-to-sample tasks used in hu-
man psychophysics and is a simple way to measure discrim-
inability between two sound categories (where the sounds A
and B belong to different categories x and y, respectively, and
the task is to decide whether the sound X belongs to one or
the other). We define the ABX-discriminability of category
x from category y as the probability that A and X are further
apart than B and X when A and X are from category x and B

2http://librivox.org/



Table 1. Corpus statistics
Training Test

Relatives Outsiders Total
#speakers duration/ speaker #speakers duration/ speaker duration #words number of files duration (min)

Development
English 9 165-220min 60 10min 45h 370k 30658 1634
French 10 110-195min 18 10min 24h 220k 23765 1061
Mandarin 4 20-25min 8 10min 2h30 20k 25383 1522
Surprise
S1 – German 10 85-150min 20 10min 25h 213k 15243 687
S2 – Wolof 4 37-42min 10 10min 4h 31k 7201 354

Table 2. Track 1 within and between talker ABX scores for three test files durations, for the development (average) and
surprise languages, for the 14 submitted systems (the mean performance on the surprise set is in square brackets). The three
supervised systems are listed separately. See http://zerospeech.com/2017 for the full table including development
languages.

Avg. Development S1 – German S2 – Wolof
1 s 10 s 2 min 1 s 10 s 2 min 1 s 10 s 2 min

Baseline [18.84] Within 12 12.1 12.1 14.2 13.3 12.9 14.1 14.3 14.1
Between 23.3 23.4 23.3 27.5 27.3 27.1 30 29.5 29.5

Topline [7.19] Within 8 5.4 5.3 8.7 7.1 7.0 6.6 4.6 3.4
Between 9.6 7.2 6.9 12.8 10.5 10.4 7.1 3.6 4.3

H [9.16] Within 8.5 7.6 7.4 6.5 5.6 5.3 10.9 8.8 8.4
Between 10.8 9.3 9.0 11.9 10.0 9.7 13.0 10.0 9.9

P1 [14.96] Within 10.9 8.8 8.7 8.9 6.7 6.4 13.3 11.9 11.8
Between 17.5 15.8 15.7 19.4 16.2 15.9 22.8 23.1 23.1

P2 [14.9] Within 10.8 8.7 8.5 8.8 6.6 6.3 13.1 11.7 11.7
Between 17.5 15.8 15.7 19.2 16.3 16.0 23.3 23.3 23.1

C1 [11.95] Within 10.0 8.4 8.3 7.6 6.22 6.3 11.7 9.9 9.8
Between 14.5 12.8 12.5 15.5 12.9 12.7 17.6 16.9 16.3

C2 [11.24] Within 10.1 8.5 8.4 7.6 6.2 6.1 11.6 9.8 9.6
Between 13.9 11.9 11.7 14.7 11.7 11.6 16.9 14.7 14.4

A1 [12.3] Within 8.8 7.9 7.8 6.9 6.1 6.0 9.9 9.2 9.1
Between 15.2 14.2 14.0 16.9 14.7 14.7 18.8 17.7 17.7

Avg. Development S1 – German S2 – Wolof
1 s 10 s 2 min 1 s 10 s 2 min 1 s 10 s 2 min

A2 [11.95] Within 8.8 7.8 7.7 6.8 6.0 6.0 10.1 9.6 9.6
Between 14.5 13.4 13.3 16.0 14.0 13.9 17.9 16.9 16.6

A3 [11:93] Within 9.5 8.3 8.2 7.3 6.2 6.1 11.1 10.3 10.2
Between 14.5 13.3 13.2 15.5 13.5 13.4 17.6 16.0 16.0

A4 [12.17] Within 9.7 8.5 8.5 7.6 6.4 6.2 11.6 10.9 10.7
Between 14.5 13.3 13.2 15.7 13.7 13.5 17.5 16.1 16.1

Y1 [12.43] Within 10.8 8.4 8.4 8.1 6.0 6.0 12.6 10.0 9.9
Between 15.3 13 12.6 16.2 12.9 12.6 19.5 17.1 16.6

Y2 [12.29] Within 10.7 8.4 8.2 8.2 6.2 6.2 12.7 10.1 9.9
Between 15.1 12.7 12.4 16.4 13.3 13.0 19.2 17.3 16.7

YS [12.32] Within 10.7 8.3 8.1 8.0 6.0 5.9 12.9 10.8 10.6
Between 14.7 12.3 12.1 15.8 12.4 12.3 18.7 17.4 17.0

S1 [8.54] Within 8.7 8.3 7.3 6.3 5.8 5.0 9.0 8.7 7.2
Between 11.4 10.4 9 11.6 9.9 8.7 11.5 10.2 8.6

S2 [6.99] Within 7.1 6.7 6.3 5.2 4.9 4.5 6.9 7.0 6.3
Between 9.0 8.6 7.8 9.3 8.6 7.8 8.3 7.9 7.2

is from category y, according to a dissimilarity funcion d. We
obtain a symmetric discriminability score by taking the aver-
age of the ABX discriminability of x from y and of y from x.
The dissimilarities provided in this challenge are based on dy-
namic time warping, the underlying frame-level dissimilarity
being either the cosine distance or KL-divergence. For most
systems (signal processing, embeddings) the cosine distance
usually gives good results, and for others (posteriorgrams) the
KL divergence is more appropriate. Participants are allowed
to supply their own dissimilarity as long as it was not obtained
through supervised training.

We focus on phone triplet minimal pairs: sequences of
3 phonemes that differ in the central sound (not necessarily
real words, e.g., “beg”–“bag”, “api”–“ati”, etc). Our com-
pound measure sums over all minimal pairs of this type found
in the corpus in a structured manner, that depends on the
task. For the within-speaker task, all of the phone triplets
belong to the same speaker (e.g. A = begT1, B = bagT1,
X = bag′

T1). The scores for a given minimal pair are first
averaged across all of the speakers for which this minimal
pair exists. The resulting scores are then averaged over all
found contexts for a given pair of central phones (e.g. for the
pair /a/-/e/, average the scores for the existing contexts such
as /b g/, /r d/, /f s/, etc.). Finally the scores for every pair of
central phones are averaged and subtracted from 1 to yield the
reported within-talker ABX error rate. For the across-speaker

task, A and B belong to the same speaker, and X to a different
one. A = begT1, B = bagT1, X = bagT2. The scores for a
given minimal pair are first averaged across all of the pairs of
speakers for which this contrast can be made. As above, the
resulting scores are averaged over all contexts over all pairs
of central phones and converted to an error rate.

4.2. Evaluation of spoken term discovery

“Spoken term discovery” is a broad label. We use it to refer
to systems that do one or more of three tasks. Systems that
do matching find fragments that are matched pairwise as be-
ing instances of the same sequence of phonemes, attempting
to find as many as possible. They can be evaluated based on
how similar the matched fragments are, and how much of the
corpus they cover. Systems that do lexicon discovery group
these fragments into sets (rather than just matching pairwise),
with the goal of finding a high-quality lexicon of types. They
can be evaluated based on how well the sets match on the
sequence of phonemes, and how well the sets match the gold-
standard lexicon of word types. Systems that do word seg-
mentation attempt to find fragments that are aligned with the
gold-standard word transcription. By setting out three dif-
ferent types of criteria, the intention is to be open to vari-
ous types of “spoken term discovery” systems, all of which
in some sense “find words.” The result is that we do three

http://zerospeech.com/2017


(non-independent) types of evaluations in track two. All of
these evaluations are done at the level of the phonemes. Us-
ing the aligned phoneme transcription, we convert any discov-
ered fragment of speech into its transcribed string. If the left
or right edge of the fragment contains part of a phoneme, that
phoneme is included in the transcription if it corresponds to
more than more than 30ms or more than 50% of its duration.

4.2.1. Evaluation as matching system

The evaluation of spoken term discovery systems as matching
systems consists of two scores, NED and coverage. NED, is
the average, over all matched pairs, of the Levenshtein dis-
tance between their phonemic transcriptions, divided by the
max of their phonemic length. The second score is the cov-
erage, the fraction of the discoverable part of the corpus that
is covered by all the discovered fragments. The discoverable
part of the corpus is found by computing the union of all of
the intervals corresponding to all of the pairs of ngrams (with
n between 3 and 20). This is almost all of the corpus, except
for unigram and bigram hapaxes.

4.2.2. Evaluation as lexicon discovery system

Six scores are used to evaluate the performance of a spoken
term discovery system in terms of lexicon discovery. The first
three are grouping precision, recall and F-score. These are
defined in terms of Pclus, the set of all pairs of fragments that
are groupes in the same cluster, and Pgoldclus, the set of all
non-overlapping pairs of fragments which are both discovered
by the system (not necessarily in the same cluster) and have
exactly the same gold transcription.

Prec:
∑

t∈types(Pclus)

w(t, Pclus)
|occ(t, Pclus ∩ Pgoldclus)|

|occ(t, Pclus)|
(1)

Rec:
∑

t∈types(Pgoldclus)

w(t, Pgoldclus)
|occ(t, Pclus ∩ Pgoldclus)|

|occ(t, Pgoldclus)|
(2)

Where t ranges over the types of fragments (defined by
the transcription) in a cluster C, and occ(t, C) is the num-
ber of occurrences of that type, w the number of occurrences
divided by the size of the cluster. In other words, Prec is a
weighted measure of cluster purity and Rec, of the inverse of
the cluster’s fragmentation. The other three scores are type
precision, recall, and F-score. Type precision is the prob-
ability that discovered types belong to the gold set of types
(real words), whereas type recall is the probability that gold
types are discovered. We restrict both sets to words between
three and twenty segments long.

4.2.3. Evaluation as word segmentation system

Six scores are used to evaluate the performance of a spoken
term discovery system as a system for word segmentation.

The first three are token precision, recall, and F-score. To-
ken precision is the probability that discovered fragment to-
kens are in the gold set of word fragments, and token recall
the probability that the gold fragments are discovered. Again,
tokens are restricted to be between three and twenty segments
long. Finally, boundary precision, recall, and F-score are
similarly defined with respect to the set of discovered and
gold word boundaries.

5. DESCRIPTION OF SUBMITTED SYSTEMS

We received sixteen systems for track one, and three for track
two. For two track one submissions, the authors declared that
the systems were not intended as submissions, and are thus
not included in the present overview, although the results can
be found on the leaderboard on the Challenge website (www.
zerospeech.com/2017).

5.1. Track 1

The baseline features are the MFCC features provided to par-
ticipants; they are evaluated using the ABX score using the
cosine similarity. The topline system is a supervised HMM-
GMM phone recognition system, with a bigram language
model, trained with a Kaldi recipe [15]. The phone posteriors
are evaluated using the KL divergence.

The submitted systems follow four strategies. The first
strategy consists in performing a bottom-up frame-level clus-
tering, following up on the success of [20] with this simple
strategy. In system [H], from Heck et al. [21], PLP represen-
tations are used, as well as the output of three learned feature
transformations, to be the input to the same frame-level clus-
tering algorithm used in [20] (the parallel Dirichlet process
Gaussian mixture model sampler of [22]). The transforma-
tions (LDA, LDA+MLLT; LDA+MLLT+fMLLR) are aimed
at making the representation talker invariant. The training re-
quires labels, which are obtained from an initial clustering us-
ing the DPGMM algorithm. The submitted system is a com-
bination of the raw posteriorgrams (not smoothed by any lan-
guage model) from the four DPGMMs obtained by clustering
frames in each of the three transformed representations, plus
the raw PLP features. System [P1], from Pellegrini et al.
[23], uses k-means clustering on ZCA-transformed (whitened
using PCA and rotated back to the original axes) MFCC fea-
tures. In system [P2], this is followed by a step of centroid
re-estimation: the centroids are re-estimated based only on
the data points for which the label is the same as that of its
left and right neighbors. The distance from point to all cluster
centroids is the feature vector in both.

A second strategy constructs language-independent em-
beddings by training neural networks in an unsupervised way.
The systems of Chen et al. [24] first cluster frames sepa-
rately on each language, using the same DPGMM algorithm
as [21] and [20]. The cluster labels are then used as tar-

www.zerospeech.com/2017
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Table 3. Track 2 results. Scores are averages over evaluations done on subparts of the corpus: the list of corpus gold utterances
is split in groups of 1000 elements/utterances in order to compute the scores in parallel. Thus, the F -scores presented are not
directly related to the precision and recall scores.

Grouping Type Token Boundary
Words Pairs NED Cov Pr Re F Pr Re F Pr Re F Pr Re F

Avg. Training (English, French, Mandarin)
Baseline 4948 5842 30.0 4.1 48.7 86.6 52.3 5.5 0.3 0.6 4.4 0.2 0.2 34.1 1.5 2.9
Topline 5779 2742085 0.0 100.0 99.9 100.0 100.0 41.3 45.9 43.4 47.8 58.4 52.2 77.9 94.4 84.9

K 24724 3775685 76.0 105.0 6.7 8.3 6.7 4.6 9.0 6.1 6.3 7.1 6.7 41.7 47.6 44.4
G1 51377 465997 71.5 60.5 3.9 67.8 7.4 3.9 6.0 4.4 3.1 2.7 2.9 25.3 31.8 27.8
G2 51354 467369 71.4 60.4 4.0 67.6 7.5 3.9 6.0 4.4 3.1 2.7 2.8 25.2 31.8 27.7

S1 – German
Baseline 2973 3315 30.5 3.0 54.8 94.6 64.9 5.5 0.3 0.6 4.0 0.1 0.2 28.2 1.2 2.3
Topline 7664 2588808 0.0 100.0 100.0 100.0 100.0 28.4 29.5 29.0 42.3 62.7 50.5 70.0 98.3 81.8

K 28675 4258731 66.4 100.0 11.8 5.9 7.9 5.7 11.2 7.5 10.3 14.3 12.0 42.6 56.5 48.6
G1 60648 582009 59.9 71.8 5.7 63.8 10.4 3.2 6.8 4.3 2.4 3.1 2.7 20.6 37.2 26.6
G2 60489 588162 59.9 71.8 5.8 64.0 10.7 3.2 6.8 4.3 2.4 3.1 2.7 20.6 37.2 26.5

S2 – Wolof
Baseline 462 545 33.5 3.2 39.1 72.1 32.8 2.3 0.1 0.2 1.6 0.0 0.1 25.3 1.0 2.0
Topline 2472 602339 0.0 100.0 100.0 100.0 100.0 43.0 47.6 45.2 55.6 65.6 60.2 81.3 93.2 86.9

K 3593 439321 72.2 100.0 4.7 5.4 5.0 4.6 10.0 6.3 4.9 5.2 5.0 42.4 44.3 43.3
G1 5468 37191 56.8 47.8 7.6 43.3 12.8 5.9 8.2 6.9 6.1 4.2 4.9 29.6 29.6 29.6
G2 5460 37273 56.8 47.8 7.7 44.0 13.0 6.0 8.3 7.0 6.1 4.2 4.9 29.7 29.6 29.6

gets for a multitask neural network, where the loss function
is the mean of the five cross-entropy losses. A linear bot-
tleneck layer in the network is the final representation. Sys-
tem [C1] is trained on MFCCs; [C2] transforms the input fea-
tures using unsupervised linear VTLN. The three systems in
Ansari et al. [25] combine two sets of features, also trained
on all five languages. The first set of features is always a
high-dimensional hidden layer from an autoencoder trained
on the MFCC frames. The second set of features is a hidden
layer from a network trained to predict unsupervised frame la-
bels. These labels are obtained by training a Gaussian mixture
model on the speech frames. In system [A1], the cluster la-
bels are used as targets for the DNN trained with the MFCCs
as input. System [A2] instead uses time-smoothed frame la-
bels as decoded by a large Gaussian-mixture-HMM (one state
for each of the initial cluster labels), in which states have a
high self-transition probability. System [A3] does the same
but trains the DNN with the autoencoder features as inputs.
In systems [A1] and [A2], the DNN features are combined
with the autoencoder features in the dissimilarity function for
the ABX task: the dissimilarity is a weighted average between
the cosine DTW distance using the autoencoder features, and
the cosine DTW distance using the other set of features (the
weights are optimized on the development languages and not
reported). An additional system is described in [26], system
[A4], which consists of the DNN features from system [A2].

The third strategy is to use spoken term discovery to im-
prove the acoustic features, following [27, 28]. The system
of Yuan et al. [29] generates bottle-neck features in the same
way as [24], but then applies the STD system of [30] to dis-
cover pairs of matched acoustic motifs, which are then used
to further train the features. Specifically, following [28], a
stacked autoencoder is trained on DTW-aligned frame pairs
from instances of motifs paired by the STD system. System

[Y1] uses pairs obtained by applying the STD system (only)
to the English training data. System [Y2] (not reported in
[24]) obtained pairs from all corpora of all five languages.
System [YS] is a supervised comparison, using transcribed
pairs from the Switchboard corpus rather than STD.

The strategy of Shibata et al. [31] is to use supervised
training on out-of-domain languages. In [S1], the features
are bottleneck features from a neural network acoustic model
trained supervised on Japanese as part of an HMM. In [S2], an
end-to-end convolutional network plus bidirectional LSTM is
trained using corpora from ten languages, and features from a
hidden layer are combined with the bottleneck Japanese fea-
tures. This second scheme can only be considered out of do-
main in a weak sense: new corpora are used, but the ten addi-
tional languages include English, Mandarin, and German.

5.2. Track 2

The baseline of track two was computed using [30], which
does pair-matching using locally sensitive hashing applied
to PLP features and then groups pairs using graph cluster-
ing. The parameters of the STD stayed the same across all
languages, except that the DTW threshhold was increased
for Mandarin (to 0.90, from 0.88) in order to obtain a NED
value similar to that of other languages. The topline was
an exhaustive-parsing word segmentation model based on
the textual transcriptions (a unigram grammar trained in the
adaptor grammar framework: [32]).

System [K], from Kamper et al. [33] uses k-means to
discover recurring acoustic patterns, jointly optimized with
an exhaustive segmentation. The variable-length acoustic
chunks of speech yielded by a segmentation are reduced to
fixed dimension by down-sampling in the time dimension
for clustering by k-means. The systems of Garcı́a-Granada



et al. [34] use a supervised ASR system for Hungarian to
decode the speech. Chunks of (transcribed) speech match
if they have the same transcription. These matches are then
filtered: a representation of the speech is obtained by training
an autoencoder, and only pairs with DTW sufficiently low in
this representational space (below a threshhold) are retained
(system [G1]). In system [G2], pairs are tolerated that have a
one-phone difference in their transcriptions.

6. RESULTS

The results of track one are summarized in Table 2. The clear
winner among the unsupervised models is [H]. While the pa-
per focuses on the role of learned feature transformations—
and demonstrates that they improve the evaluation—these are
unlikely to be solely responsible for the very good perfor-
mance of the system. The baseline system described in the
paper, with no transformations applied, consisting of poste-
riorgrams from a frame-wise DPGMM clustering, still per-
forms extremely well. Although it was not evaluated on the
surprise languages, its average ABX score on the develop-
ment languages (9.7) is still better that of the second-ranked
system [C2] (10.7), from Chen et al. The systems presented
by Heck et al. all have in common monolingual training, di-
rect evaluation of GMM posteriorgrams, and the fact that they
use PLP features as input, rather than MFCCs.

The systems of Chen et al. (as well as Yuan et al.) use
an initial stage of monolingual training, followed by multi-
lingual training. Among the other systems in [24] (not sub-
mitted for final evaluation) are some with fully monolingual
training, which serve to partly evaluate the effect of multilin-
gual training: monolingual training fares better, within lan-
guage. However, as the numerical scores are not presented,
it is not possible to determine whether the use of monolin-
gual training could account for the good scores of Heck et al.
What is clear is that multilingual training still works reason-
ably well—all the remaining systems, except for the lower
performing system [P], use multilingual training, and show
substantial improvements over the baseline. The setting for
these systems corresponds to the situation of an infant raised
in a multilingual environment.

The STD strategy for improving subword features fares
relatively poorly; a limitation of the Yuan et al. systems is
that they use an architecture (autoencoders) that was previ-
ously reported to be suboptimal for improving acoustic fea-
tures [28]. A Siamese network [27] might improve the result.

The results of track two are in Table 3. As in the previous
challenge, the baseline provided by the system of [30] has
a high NED (very good matching), but has a low coverage
(few matches). Given that system [K] demands an exhaus-
tive parse, it is guaranteed to have full coverage, which risks
poorer matches. It is thus notable that system [K] has a NED
on the development languages comparable to the partly super-
vised systems [G1] and [G2]. On the other hand, grouping

by supervised transcription clearly works better than k-means
clustering; while the groups have low precision (many erro-
neously grouped items) for both kinds of systems, [G1]/ [G2]
have much higher grouping recall (more of the true group
members among the items grouped together) than system [K].
The quality of segmentation, in terms of tokens and of bound-
aries, is, on the other hand, much better in system [K], pre-
sumably as a result of increased coverage.

7. CONCLUSION

The results of the 2017 Zero Resource Speech Challenge
build very clearly on the previous challenge. The strate-
gies most successful in the previous challenge for track one,
bottom-up clustering and training based on pairs of match-
ing words discovered using spoken term discovery—are built
upon, and a new strategy, multilingual training, is introduced.
This strategy, although not completely foreseen by the or-
ganizers, would be similar to the situation of a multilingual
infant. This new approach is used in conjunction with addi-
tional tools, including further training using neural networks
and the application of time series models. Interestingly,
simple bottom-up clustering still seems to work best in the
unsupervised case. The fact that supervised labels trained
fully out of domain seem to yield good results in both track
one and track two (on Japanese, in the case of [S1], and
on Hungarian in the case of [G1] and [G2]) indicates that
the approach of having systems with strong prior knowledge
about human speech is still a benchmark to be beaten in
the unsupervised case. (The excellent results of [S2] may
yet be partly attributable to the use of supervised training in
German, which was one of the surprise languages.) Further
work is needed to systematically evaluate the effect of each
of these different manipulations, however, and to directly
compare these new approaches with those from the previous
challenge.

Potential future lines of inquiry building on the new track
two systems might include exploring using these systems to
feed subword modelling, especially in combination with some
of the new subword modelling strategies used here, in light
of the successful use of STD to improve subword models
in the previous challenge, and the reasonable improvement
over baseline shown in this challenge. In the other direction,
the major unsupervised improvements to the speech features
demonstrated in track one suggest strong room for improve-
ment in unsupervised spoken term discovery systems like [K].

The 2017 ZeroSpeech Challenge remains open for sub-
missions exploring these, or any other new strategies for dis-
covering phoneme- and word-like units without access to lin-
guistic resources.
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