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Based on the theory of macroscopic quantum electrodynamics, we generalize the expression of the
Casimir force for nonreciprocal media. The essential ingredient of this result is the Green’s tensor between
two nonreciprocal semi-infinite slabs, including a reflexion matrix with four coefficients that mixes optical
polarizations. This Green’s tensor does not obey Lorentz’s reciprocity and thus violates time-reversal symmetry.
The general result for the Casimir force is analyzed in the retarded and nonretarded limits, concentrating on the
influences arising from reflections with or without change of polarization. In a second step, we apply our general
result to a photonic topological insulator whose nonreciprocity stems from an anisotropic permittivity tensor,
namely InSb. We show that there is a regime for the distance between the slabs where the magnitude of the
Casimir force is tunable by an external magnetic field. Furthermore, the strength of this tuning depends on the
orientation of the magnetic field with respect to the slab surfaces.

DOI: 10.1103/PhysRevA.96.062505

I. INTRODUCTION

The Casimir force in its original meaning is an attractive
force between two parallel, uncharged, and conducting plates
in vacuum. In quantum field theory this effect can be traced
back to vacuum fluctuations of the electromagnetic field.
Thus, Casimir [1] originally computed the force between two
perfectly conducting plates based on vacuum field fluctuations.
This force scales as 1/z4, where z is the distance between the
plates. Here, we explore how the Casimir force is modified
for nonreciprocal medium and if, in the case of topological
insulators, it can be tuned by a magnetic field. This work is
stimulated by recent progress of the experiments aimed at the
study of the quantum Hall effect, topological insulators, and
nonreciprocal materials in general [2]. The unusual optical
properties of nonreciprocal materials have, to the best of our
knowledge, not been taken into account in previous treatments
of dispersion interactions. Yet, they may change the sign and/or
the scaling of the Casimir force. The theory derived here
provides a general framework for the analysis of the Casimir
force in a variety of experimentally relevant setups.

We compute the Casimir force as the ground-state expec-
tation value of the Lorentz force between two bodies charac-
terized by the charge density and the current density [3]. The
electric field and the charge density are mutually correlated
since a fluctuating charge density induces fluctuating electric
fields and vice versa. This process intertwining the fluctuating
charge density and the electric field is responsible for the
occurrence of a nonvanishing net force between two bodies,
namely the Casimir force. The same applies to the current
density and the magnetic field. The Lifshitz approach [4]
considers two dielectric half spaces, which show randomly
fluctuating polarizations. It is noteworthy that the ground-state
expectation values of the electric field, the magnetic field, the
charge density, and the current density vanish. In the absence of
correlations, the expectation value of the Lorentz force would
vanish and there would be no net force.

We apply the theory of macroscopic quantum electrody-
namics (QED), which incorporates the influence of material
properties by a permittivity and a permeability [3,5,6] to
compute the Casimir force. The Green’s tensor represents
the propagator between the fluctuating noise currents and the
quantized electric and magnetic fields. Using this theory, the
Casimir force for magnetodielectric bodies has been computed
in Ref. [7]. The theoretical extension of macroscopic (QED)
for arbitrary nonlocal and nonreciprocal linear media was
carried out in Refs. [8,9]. In the case of nonreciprocal media,
the electric and magnetic fields are coupled in a way that
violates time-reversal symmetry [9]. In QED this means that
the electric field fluctuations and their source, namely noise
currents, are not interchangeable. Thus, the Green’s tensor
violates Lorentz’s reciprocity principle [10,11].

We consider two semi-infinitely extended plates with a
separation of length L and the respective Green’s tensor
contains four contributions from an even and an odd number
of reflections for outgoing waves to the right and the left
direction [12,13]. This result for the Green’s tensor is extended
to nonreciprocal materials. After deriving a general expression
for the Casimir force in nonreciprocal media, we apply the
result to a photonic topological insulator. Whereas the axion
topological insulator, cf. Refs. [2,14–16], couples electric
and magnetic fields by a quantized axion coupling, which
is usually much smaller than the electric and magnetic
properties of the material, the photonic topological insulator
[17] shows an anisotropic permittivity, which is responsible
for the nonreciprocity of the material. According to Ref. [9],
a dielectric material is reciprocal if the permittivity is a
symmetric tensor. This is not typically given in case of the
anisotropic permittivity of a photonic topological insulator
which hence violates Lorentz’s reciprocity principle. To cal-
culate the Casimir force, we compute the reflection coefficients
for the material with a general approach for biaxial, anisotropic
magnetodielectrics [18]. We also analyze the dependence of a
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static magnetic field on the Casimir force. In this context, the
influence of the surface phonon and surface plasmon polaritons
on the heat transfer has been studied for aluminum in Ref. [19]
and for InSb in Ref. [20].

This paper is structured as follows: The basic principles
and expressions of macroscopic QED for nonreciprocal media
are outlined in Sec. II. Due to the violation of Lorentz’s
reciprocity principle, new definitions for the real and imaginary
parts of the Green’s tensor are introduced and a generalized
Helmholtz equation containing a conductivity tensor is pre-
sented. Section III generalizes the concept of Casimir force
based on the Lorentz force for nonreciprocal media, where
Lorentz’s reciprocity does not hold anymore. Section IV is
dedicated to the derivation of the Green’s tensor for two
semi-infinite and nonreciprocal half-spaces. The final result is
given in terms of reflection matrices comprising four types of
reflection coefficients with equal and alternating polarization.
Afterwards, the Green’s tensor is used to compute the Casimir
force for this geometry. Section V explains the anisotropic
structure of the permittivity of the photonic topological
insulator and outlines the material properties of the permittivity
for InSb. Moreover, it provides the reflection coefficients for
the photonic topological insulator. Finally, Sec. VI shows
analytical results for the Casimir force in the nonretarded limit
and analyzes the retarded limit for a medium with anisotropic
permittivity. In the second part the dependence of the Casimir
force on the magnetic field is studied. The impact of the
diagonal and off-diagonal elements of the reflection matrix on
the force as well as the change of sign of the field is discussed.
It is pointed out how the external magnetic field changes the
main contributions of the Casimir force from surface phonon
and surface plasmon polaritons to hyperbolic modes.

II. MACROSCOPIC QED FOR NONRECIPROCAL MEDIA

The theory of macroscopic QED, cf. Refs. [3,21], incor-
porates material properties in terms of the macroscopic
permittivity and permeability. This theory is consistent with the
classical theory of macroscopic electrodynamics and satisfies
Maxwell’s equations, the fluctuation-dissipation theorem and
free-space quantum electrodynamics. In contrast to the case of
a reciprocal material, time-reversal symmetry is not preserved
in nonreciprocal media. To account for this, the mathematical
framework has to be adjusted [9].

Lorentz’s reciprocity principle for tensors, e.g., the Green’s
tensor G, does not allow for the violation of time-reversal
symmetry, which can be expressed as

GT(r′,r,ω) �= G(r,r′,ω). (1)

Physically, this means that in a nonreciprocal material a source
at r′ does not create the same field at r that a source at r would
create at r′. A consequence of the breaking of this essential
principle is the new definition of real and imaginary parts of a
tensor,

�[G(r,r′,ω)] = 1

2
[G(r,r′,ω) + G∗T(r′,r,ω)],

(2)

�[G(r,r′,ω)] = 1

2i
[G(r,r′,ω) − G∗T(r′,r,ω)].

In the following, the expressions for Ohm’s law, the Helmholtz
equations, and the electric and magnetic field terms have to
be redefined to account for the peculiarities of nonreciprocal
materials.

Ohm’s law describes the linear response of matter in an
external electromagnetic field and reads in frequency space

ĵin(r,ω) =
∫

d3r ′Q(r,r′,ω) · Ê(r′,ω) + ĵN(r,ω). (3)

This term is a convolution of the conductivity tensor Q(r,r′,ω)
and the quantized electric field Ê(r′,ω). ĵin represents the
internal current density and ĵN(r,ω) is the noise current density.
Broken reciprocity now states that QT(r′,r,ω) �= Q(r,r′,ω).
By making use of Ohm’s law (3), the continuity relation in the
frequency domain combining the noise charge density ρ̂in and
the noise current density ĵin, iωρ̂in(r,ω) = −→∇ · ĵin(r,ω), and
Maxwell’s equations in the frequency domain,

−→∇ · Ê(r,ω) = ρ̂in(r,ω)

ε0
,

−→∇ · B̂(r,ω) = 0,
(4)−→∇ × Ê(r,ω) − iωB̂(r,ω) = 0,

−→∇ × B̂(r,ω) + iω

c2
Ê(r,ω) = μ0 ĵin(r,ω),

we find the inhomogeneous Helmholtz equation for the electric
field,[−→∇ × −→∇ × −ω2

c2

]
Ê(r,ω)

− iμ0ω

∫
d3r ′Q(r,r′,ω) · Ê(r′,ω) = iμ0ωĵN(r,ω).(5)

The formal solution to this inhomogeneous differential equa-
tion,

Ê(r,ω) = iμ0ω

∫
d3r ′G(r,r′,ω) · ĵN(r′,ω), (6)

combines the Green’s tensor with the properties stated in
Eqs. (1) and (2). The Green’s tensor fulfills the relation
G(r,r′,ω) → 0 for |r − r′| → ∞ and the Schwarz reflection
principle,

G∗(r,r′,ω) = G(r,r′, − ω∗) ∀ r,r′,ω. (7)

The respective equation for the magnetic field reads according
to Eq. (4)

B̂(r,ω) = μ0
−→∇ ×

∫
d3r ′G(r,r′,ω) · ĵN(r′,ω). (8)

The conductivity tensor Q from Eq. (3) and the Green’s tensor
from Eq. (6) are related by

μ0ω

∫
d3s

∫
d3s ′G(r,s,ω) · �[Q(s,s′,ω)] · G∗T (r′,s′,ω)

= �[G(r,r′,ω)], (9)

where the definitions of the real and imaginary parts (2) are
applied. The noise current ĵN from Ohm’s law (3) and the
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expression of the electric field (6) is defined as

ĵN(r,ω) =
√

h̄ω

π

∫
d3r ′R(r,r′,ω) · f̂(r′,ω), (10)

with the connection between the conductivity matrix Q and
the R-tensor given by∫

d3r ′R(r,r′,ω) · R∗T (r′′,r′,ω) = �[Q(r,r′′,ω)]. (11)

The definition in Eq. (11) ensures that the fluctuation-
dissipation theorem is obeyed. The noise current ĵN (10)
contains the creation and annihilation operators f̂† and f̂, which
satisfy the commutation relation,

[f̂(r,ω),f̂†(r′,ω′)] = δ(r − r′)δ(ω − ω′). (12)

The ground-state expectation value of the creation and annihi-
lation operators is given by

〈f̂(r,ω)f̂†(r′,ω′)〉 = δ(r − r′)δ(ω − ω′). (13)

Equation (13) will be used to derive an expression for the
Casimir force for nonreciprocal material in Sec. III. Afterwards
we apply this general formula to the specific geometry of
two semi-infinite slabs and derive the corresponding Green’s
tensor as solution of the Helmholtz equation (5) with Eq. (6)
in Sec. IV.

III. CASIMIR FORCE FOR NONRECIPROCAL MEDIA

Based on the results from Sec. II the Casimir force can
be derived by using the Lorentz force acting on the internal
charge ρ̂in and current densities ĵin of a body,

F̂ =
∫

V

d3r(ρ̂inÊ + ĵin × B̂). (14)

By using Maxwell’s equations (4), these quantities can be
expressed in terms of the electric and magnetic fields Ê (6)
and B̂ (8), where the frequency components of the electric field
Ê(r,ω) and the total field Ê(r) are connected by the expression

Ê(r) =
∫ ∞

0
dω[Ê(r,ω) + Ê†(r,ω)]. (15)

A similar expression also holds for the magnetic field compo-
nents B̂(r,ω). The Casimir force is the ground-state expecta-
tion value of the Lorentz force [3]. We apply the relation for
vectors such as the electric and magnetic fields, exemplified
for the electric field as

−→∇ E2 = 2(E · −→∇ )E + 2E × (
−→∇ × E)

and note that the time-derivative of the ground-state average of
the term Ê(r) × B̂(r) vanishes. Thus, we obtain an expression
for the Casimir force

F =
∫

∂V

dA · 〈ε0Ê(r)Ê(r′) + 1

μ0
B̂(r)B̂(r′)

− 1

2

[
ε0Ê(r) · Ê(r′) − 1

μ0
B̂(r) · B̂(r′)

]
1〉r′→r, (16)

where 1 represents the unit matrix. The transition r′ → r is
necessary because we must not include self-forces. Equation
(16) holds both for reciprocal and nonreciprocal material and
serves as a starting point for the following calculations.

We compute the expectation values of the electric and
magnetic field components by making use of Eqs. (6), (8),
(9), (10), (11) and use the results for the expectation values of
the creation and annihilation operators (13),

〈Ê(r)Ê(r′)〉 =
∫ ∞

0
dω

h̄μ0ω
2

π
� [G(r,r′,ω)],

〈B̂(r)B̂(r′)〉 = −
∫ ∞

0
dω

h̄μ0

π

−→∇ × � [G(r,r′,ω)] × ←−∇ ′.

(17)

The frequency integrals over the Green’s tensor expressions
can be evaluated further in the complex plane. By using the
Schwarz reflection principle (7) and neglecting the values of
the Green’s tensor for large frequencies, lim|ω|→∞ ω2

c2 G = 0,
the expression for the Casimir force (16) at the frequency
ω = iξ yields

F = − h̄

2π

∫ ∞

0
dξ

∫
∂V

dA ·
{

ξ 2

c2
G(1)(r,r′,iξ

)
+ ξ 2

c2
G(1)T(r′,r,iξ ) + −→∇ × G(1)(r,r′,iξ

) × ←−∇ ′

+−→∇ × G(1)T(r′,r,iξ ) × ←−∇ ′ − Tr

[
ξ 2

c2
G(1)(r,r′,iξ )

+−→∇ × G(1)(r,r′,iξ ) × ←−∇ ′
]
1
}

r′→r
. (18)

This is the first main result of this paper because Eq. (18)
generalizes the expression for the Casimir force to nonrecip-
rocal media and holds for arbitrary geometrical properties. It
differs from the respective result for reciprocal material by the
presence of the transposed Green’s tensor. In case of reciprocal
material, Lorentz’s reciprocity (1) holds and there is no need
for using the transposed version of the Green’s tensor.

In Sec. IV, the Green’s tensor for the specific geometry of
two semi-infinite plates, which are isotropic on the surface,
is derived. Afterwards, Eq. (18) is applied to this specific
geometry.

IV. GREEN’S TENSOR AND CASIMIR FORCE
FOR TWO PLANAR SURFACES

Having derived the general equations for the extension of
the Casimir force to nonreciprocal materials, the scattering part
of the Green’s tensor for a setup consisting of two infinitely
extended slabs separated by a distance L is analyzed in this
Section. The scattering part of the Green’s tensor G(1) of one
planar surface is the integral over k‖ and contains the sum over
the polarizations σ of the incoming plane waves,

ak±σ = eσ±ei(k‖·r±k⊥z), (19)

and the respective sum over the polarizations σ ′ of the outgoing
wave,

ck±σ ′ = i

8π2k⊥ eσ ′±e−i(k‖·r′±k⊥z′). (20)

Here we split the total wave vector k into its parallel component
k‖, consisting of its x (kx) and y components (ky), and its z

component k⊥. The unit vectors of perpendicular polarization
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FIG. 1. Sketch of the two semi-infinite half spaces with their
boundaries at z = 0 and z = L. The left half space is denoted by a
minus sign and the right one by a plus sign. Moreover, the vectors
dA− and dA+ are orthogonal to the interfaces. The source point is
located at r′ and the field point at r. There are three reflections in
total. The outgoing wave goes in the left direction and the incoming
one goes to the right.

es± and parallel polarization ep± are expressed in terms of
the part of the wave vector parallel to the interface (ek‖) and
perpendicular to it (ez),

es± = ek‖ × ez = 1

k‖

⎛
⎝ ky

−kx

0

⎞
⎠,

ep± = 1

k
(k‖ez ∓ k⊥ek‖) = 1

k

⎛
⎜⎝

∓ k⊥
k‖ kx

∓ k⊥
k‖ ky

k‖

⎞
⎟⎠. (21)

The indices ± in the unit vectors in Eq. (21) refer to the
directions of incoming and outgoing waves. In principle we
can distinguish between four different possibilities which
contribute to the final expression of the Green’s tensor: odd
or even number of reflections and an outgoing wave going
to the left or right. A reflection coefficient r±

σ,σ ′ is added
for each reflection at the left and the right boundary, where
the polarizability can be switched. The index +(−) refers
to a reflection at the right (left) boundary. All combinations
contribute to the final expression of the Green’s tensor.

The sketch in Fig. 1 shows three reflections, which appear in
the Green’s tensor beginning at the right. The Green’s tensor is
computed in the gap between the two semi-infinite plates with

the boundaries at z = 0 and z = L and contains the unit vectors
eσ+eσ ′−. The source of the wave is located at position r′ and
the field point is situated at r, respectively. When the outgoing
wave starts at the source at z′ and ends at 0, the direction
of the wave vector k⊥ is negative leading to a contribution
of eik⊥z′

. A reflection with possible change of polarizability
takes place at the left boundary. The subsequent path from
0 to L in the positive direction gives eik⊥L and so does the
following negative path from L to 0 after another reflection at
the right boundary again. After the third reflection on the left
side the final part from 0 to z is positive again giving rise to the
factor eik⊥z.

The following expression contains the terms for one and
three reflections,

eik⊥(z+z′)r−
σ,σ ′ +

∑
σ1,σ2

r−
σ,σ1

r+
σ1,σ2

r−
σ2,σ ′e

2ik⊥Leik⊥(z+z′) + · · ·
(22)

By introducing the reflection matrices for the right boundary
R+ and the left boundary R−,

R+ =
(

r+
s,s r+

s,p
r+

p,s r+
p,p

)
; R− =

(
r−

s,s r−
s,p

r−
p,s r−

p,p

)
. (23)

Equation (22) for an infinite number of reflections can be
rewritten as

eik⊥(z+z′)

[
R− ·

∞∑
n=0

(R+ · R−e2ik⊥L)n
]

σ,σ ′

. (24)

Analogous to the geometric sum for scalars, we define the
infinite Neumann series under the assumption |r±

σ,σ ′ | � 1 as

(D+)−1 =
∞∑

n=0

(R+ · R−e2ik⊥L)n

= [1 − R+ · R−e2ik⊥L]−1,

(D−)−1 =
∞∑

n=0

(R− · R+e2ik⊥L)n

= [1 − R− · R+e2ik⊥L]−1. (25)

After carrying out the same steps for the three other combina-
tions, the Green’s tensor eventually reads

G(1)(r,r ′,ω) = i

8π2

∫
d2k‖ 1

k⊥ eik‖·(r−r ′)
[
eik⊥(z+z′)(es+, ep+) · R− · (D+)−1 ·

(
es−
ep−

)

+ e2ik⊥Le−ik⊥(z+z′)(es−, ep−) · R+ · (D−)−1 ·
(

es+
ep+

)

+ e2ik⊥Leik⊥(z−z′)(es+, ep+) · R− · (D+)−1 · R+ ·
(

es+
ep+

)

+ e2ik⊥Le−ik⊥(z−z′)(es−, ep−) · R+ · (D−)−1 · R− ·
(

es−
ep−

)]
. (26)

The scattering Green’s tensor for a multilayer system for recip-
rocal media was derived in Ref. [13]. Equation (26) is the most
general expression of the scattering part of the Green’s tensor

for the setup shown in Fig. 1. The first two terms in Eq. (26)
represent the contributions from an odd number of reflections
containing one reflection coefficient apart from the infinite

062505-4



CASIMIR-LIFSHITZ FORCE FOR NONRECIPROCAL . . . PHYSICAL REVIEW A 96, 062505 (2017)

series. The last two terms are the contributions stemming
from an even number of reflections showing two reflection
coefficients apart from the series expression. Equation (26)
contains several sums over polarizations allowing for a change
of polarization at each boundary. The unit vectors show the
direction of the outgoing and incoming waves.

To express the Green’s tensor (26) in Cartesian coordinates,
the two-dimensional integral over the parallel component of
the wave vector is transformed to∫

d2k‖ =
∫ ∞

0
dk‖k‖

∫ 2π

0
dφ. (27)

If the reflection coefficients show a specific symmetry, depend
only on the absolute value of the parallel component of the
wave vector rσ,σ ′ = rσ,σ ′(k‖) and are independent of the angle
φ, then the angular contribution can be evaluated using the
relations∫ 2π

0
dφes±es± =

∫ 2π

0
dφes±es∓ = π [exex + eyey],

∫ 2π

0
dφep±ep± = π

k2
[(k⊥)2(exex + eyey) + 2(k‖)2ezez],∫ 2π

0
dφep±ep∓ = π

k2
[−(k⊥)2(exex + eyey) + 2(k‖)2ezez],∫ 2π

0
dφes±ep± = πk⊥

k
[∓exey ± eyex],

∫ 2π

0
dφes±ep∓ = πk⊥

k
[±exey ∓ eyex]. (28)

In Sec. V, the Casimir force is applied to a photonic topological
insulator with a magnetic field pointing in the z direction, for
which Eq. (28) and rσ,σ ′ = rσ,σ ′(k‖) hold. For a magnetic field

in the xy plane, this expression would not hold anymore and
one would need to use the more general expression in Eq. (26).

From these relations, it is apparent that the final expression
of the Green’s tensor shows diagonal contributions and a xy

component. There are no off-diagonal contributions involving
the z component, which is essential for the calculation of the
Casimir force for the setup in Fig. 1.

Equation (18) is evaluated for the case of two semi-infinite
planes by inserting the expression for the Green’s tensor (26).
In contrast to the respective result for reciprocal material [3]
this expression includes the transposed Green’s tensor. This
is a consequence of the specific definition of the real and
imaginary parts for nonreciprocal media (2). Since only the
diagonal elements of the Greens tensor are nonzero due to
the geometry consisting of two nonreciprocal planar infinite
surfaces separated by vacuum, the expression of the Casimir
force (18) does not differ in form from the respective reciprocal
one. The nonreciprocity of the Casimir force arises from the
specific expressions for the diagonal elements of the Green’s
tensor, containing the reflection matrices (23).

To compute the contribution of the Casimir force (18)
stemming from the magnetic field (8), one has to apply the
operators

−→∇ and
←−∇ to the unit vectors (21) from the left and

the right, respectively, with
−→∇ × → ik± and ×←−∇ → −ik±.

The unit vectors are related as the following:

ik± × es± = ξ

c
ep±, ik± × ep± = −ξ

c
es±. (29)

After the substitution k⊥ = iκ⊥ we finally obtain

−→∇ × G(1)(r,r ′,iξ ) × ←−∇ ′ = ξ 2

8π2c2

∫
d2k‖ 1

κ⊥ eik‖·(r−r ′)
[
e−κ⊥(z+z′)(ep+, −es+) · R− · (D+)−1 ·

(
ep−

−es−

)

+ e−2κ⊥Leκ⊥(z+z′)(ep−, −es−) · R+ · (D−)−1 ·
(

ep+
−es+

)

+ e−2κ⊥Le−κ⊥(z−z′)(ep+, −es+) · R− · (D+)−1 · R+ ·
(

ep+
−es+

)

+ e−2κ⊥Leκ⊥(z−z′)(ep−, −es−) · R+ · (D−)−1 · R− ·
(

ep−
−es−

)]
. (30)

The Casimir force for the setup in Fig. 1 is the force on the
right plate situated at z = L. Due to our geometry the surface
vector of the right plane points ourwards dA = −dAez. Since
the surface has infinite extensions in the x and y directions,
the total Casimir force F diverges. Thus, we restrict ourselves
to the calculation of the surface force density f, which is
equivalent to the Casimir pressure. Due to this geometry, the
resulting term of the Casimir force only contains contributions
in the z direction. Since the z contributions of the Green’s
tensor (26) do not show any mixing terms with the x or y

components (28), the zz component of the Casimir force is the
only relevant one.

Since the term of the Casimir force (18) shows the trace over
the Green’s tensor, one has to use the xx and yy components of
the Green’s tensor (26) beside its zz component. After making
use of the relation ξ 2 = (κ⊥)2 − (k‖)2, the Casimir force per
unit area eventually reads

f = − h̄

4π2

∫ ∞

0
dξ

∫ ∞

0
dk‖k‖κ⊥e−2κ⊥L

× Tr[R− · (D+)−1 · R+ + R+ · (D−)−1 · R−]ez. (31)

Since f always points in the z direction, it is convenient to
work with the scalar Casimir force f defined by f = f ez. It
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contains only terms that have their origins in an even number
of reflections at the boundaries. Besides, the polarizations of
the outgoing and incoming wave are the same, which does not
necessarily mean that there is no polarization change between
the first and the last reflection at the boundaries.

Carrying out both sums over polarizations, one can find a
more explicit form of Eq. (31),

f = − h̄

2π2

∫ ∞

0
dξ

∫ ∞

0
dk‖k‖κ⊥

× e−2κ⊥L a − 2e−2κ⊥Lb

1 − e−2κ⊥L a + e−4κ⊥L b
ez, (32)

with

a = r−
s,sr

+
s,s + r−

p,pr
+
p,p + r−

p,sr
+
s,p + r−

s,pr
+
p,s,

(33)
b = (r+

s,pr
+
p,s + r+

s,sr
+
p,p)(r−

s,pr
−
p,s + r−

s,sr
−
p,p).

In the following, this general expression of the Casimir force
for nonreciprocal material (31) or (32) is evaluated for the
case of the photonic topological insulator InSb. Besides, it
can also be used to reproduce the well-known results for the
Casimir force for two perfectly conducting reciprocal mirrors
with reflection coefficients r±

s,s = −1, r±
p,p = +1 and r±

p,s =
r±

s,p = 0 and two perfectly reflecting nonreciprocal mirrors
with r±

s,p = r±
p,s = −1 and r±

s,s = r±
p,p = 0. In both cases, we

obtain the final result,

f = − π2h̄c

240 L4
ez. (34)

The Casimir force between one perfectly conducting and one
perfectly permeable plate with the reflection coefficients r−

s,s =
r−

p,p = −1, r−
p,p = r−

s,s = 1, and r±
s,p = r±

p,s = 0 reads

f = 7π2h̄c

1920 L4
ez (35)

and is repulsive, cf. Ref. [22]. The sign of the Casimir force
thus depends on the material used. The Casimir force for a
perfect electromagnetic conductor (PEMC) is computed in
Ref. [23] and the two cases described above can be seen as
limitting cases for PEMC-angles of 0 and π/2, respectively.

The central result (31) can be applied to all kinds of
nonreciprocal materials as long as their reflection coefficients
are independent of the angle φ. Both axion topological
insulators, cf. Refs. [2,24], and photonic topological insulators
with perpendicular bias fulfill this property. The Casimir
force between axion topological insulators with frequency-
dependent permittivity and permeability and frequency-
independent axion coupling was studied in Ref. [14], leading
to the prediction of repulsive Casimir forces. A later treatment
with a more involved material model [16] incorporates a
frequency dependent axion coupling.

Similar to the topological insulators, the Casimir force
between two parallel planar Chern-Simons layers with a
vacuum gap in between is studied in Refs. [25,26]. The
boundary conditions for the electromagnetic fields are derived
in Ref. [26] leading to reflection and transmission coefficients
which mix the polarizability. The resulting Casimir force can
be switched from attractive to repulsive.

In Sec. VI, Eq. (31) is applied to a photonic topological
insulator (PTI), whose material model is outlined in Sec. V.

V. THEORETICAL MODEL OF THE PHOTONIC
TOPOLOGICAL INSULATOR

A photonic topological insulator (PTI) shows a mixing of
polarizations, cf. Eq. (23), which stems from the PTI’s
anisotropic permittivity ε, cf. Sec. V A. A specific material
model for the permittivity is based on InSb and is explained in
Sec. V B. Afterwards, the reflection coefficients (23) needed
for the calculation of the Casimir force are derived in Sec. V C.

A. Antisymmetric Permittivity

The mixing of polarizations stems from the PTI’s
anisotropic permittivity ε, which has the form of a nonsym-
metric tensor,

ε =
⎛
⎝ εxx εxy 0

−εxy εxx 0
0 0 εzz

⎞
⎠. (36)

We assume a constant unit permeability μ = 1. Furthermore,
all magnetoelectric cross susceptibilities are zero (ζ = ξ = 0).
The permittivity tensor (36) of such materials is antisymmetric
and thus violates Lorentz’s reciprocity principle (1) and
consequently time-reversal symmetry.

This model is studied in the Voigt configuration, where the
surface is perpendicular to the bias magnetic field B [17]. The
normal vector of the interface is parallel to the z axis. In this
particular case we find that the system is symmetric in the xy

plane because its ε tensor (36) is rotationally invariant around
the z axis for an arbitrary angle φ,

RT · ε · R = ε, with R =
⎛
⎝ cos (φ) sin (φ) 0

− sin (φ) cos (φ) 0
0 0 1

⎞
⎠.

(37)

A particular challenge is the fact that in a PTI neither
solely perpendicularly (s) nor solely parallelly (p) polarized
waves are solutions of Maxwell’s equations. Thus, a more
general approach is needed to find the electric field in the
PTI. Mathematically this procedure is similar to the one for
biaxial, anisotropic magnetodielectics [18] and is presented in
Sec. V C.

B. Material model for the Permittivity based on InSb

We compute the Casimir force of the PTI for a specific
material model, which is based on n-doped InSb with an
external static magnetic field pointing in z direction, B = Bez.
As was already mentioned in Sec. IV, the magnetic field
pointing in the z direction is an essential condition for using
Eq. (31). This material has been investigated in Ref. [27], and
more recently with a higher doping in Ref. [28]. It has been
used to study the near-field heat transfer by various authors,
cf. Refs. [20,29,30]. The entries of the permittivity tensor (36)
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for this specific model read

εxx = εinf

{
ω2

p(ω + iγ )

ω
[
ω2

c − (ω + iγ )2
] + ω2

L − ω2
T

−i�ω + ω2
T − ω2

+ 1

}
,

εzz = εinf

{
− ω2

p

ω(ω + iγ )
+ ω2

L − ω2
T

−i�ω − ω2 + ω2
T

+ 1

}
, (38)

εxy = iεinfωcω
2
p

ω
[
ω2

c − (ω + iγ )2
] .

The plasma and cyclotron frequencies are given by

ωp =
√

nq2
e

εinfm�ε0
, ωc = Bqe

m�
, (39)

where qe is the electron charge and m� its reduced mass. �

represents the phonon damping constant and γ is the free
carrier damping constant. Throughout this paper we will
use the following values for the material constants which
have been measured in Ref. [27]: ωL = 3.62 × 1013 rad/s,
ωT = 3.39 × 1013 rad/s, � = 5.65 × 1011 rad/s, γ = 3.39 ×
1012 rad/s, n = 1.07 × 1017 cm−3, m� = 0.022 me, where me

is the electron mass. Additionally, Ref. [27] used εinf = 15.7,
but since we are integrating over all frequencies equally we
have to set εinf = 1 to ensure convergence. Physically this
means we are neglecting certain resonances of ε(ω) and only
take contributions from the ones at ωT and ωc into account.
Since we are interested in the influence of the off-diagonal
elements of ε on the Casimir force this seems to be a
reasonable simplification, because the other resonances are
not contributing to εxy .

Note that the cyclotron frequency ωc is proportional to the
external magnetic field, so by changing its direction from +ez

to −ez one can change the sign of ωc. This results in a sign
change of the offdiagonal elements of ε as one can see in
Eq. (38) and this is equivalent to applying the time reversal
operator.

The permittivity model for InSb (38) with Eq. (39) is
closely related to the one for a single-component magnetic
plasma biased with an external static magnetic field B = Bzez,
which is examined in Refs. [17,31]. By setting the damping
constants γ and � equal to zero and if ωL = ωT, Eq. (38)
reduces to the model of the magnetic plasma. One could
consider different parameter ranges with this material, e.g.,
for ωp. This model often applies to gas plasmas, because
phonon contributions are ignored, but it is considered to be
the simplistic model of a free-carrier material subject to a
bias field.

C. Reflection coefficients

We consider a single interface, where the half space z < 0
is vacuum and the half space z > 0 is a PTI. In Ref. [18] the
field in the vacuum is described by general amplitudes e, where
the indices i and r refer to the incoming and reflected waves
and the indices s and p specify the polarization. We define a
s-polarized wave by E ‖ ey and a p-polarized one by B ‖ ey .
Using Maxwell’s equations in cgs-units,

−→∇ × E = −1

c

∂

∂t
H,

−→∇ × H = 1

c

∂

∂t
(ε · E), (40)

and setting ε = 1 in the vacuum the equations for a general
incoming wave with k = (kx,0,k⊥

i )T read

Ei =
[
es,iey + ep,i

c

ω
(k⊥

i ex − kxez)
]
ei(kxx+k⊥

i z−ωt),

Hi =
[
ep,iey − es,i

c

ω
(k⊥

i ex − kxez)
]
ei(kxx+k⊥

i z−ωt),

Er =
[
es,rey − ep,r

c

ω
(k⊥

i ex + kxez)
]
ei(kxx−k⊥

i z−ωt),

Hr =
[
ep,rey + es,r

c

ω
(k⊥

i ex + kxez)
]
ei(kxx−k⊥

i z−ωt). (41)

Since our setup is xy symmetric we assumed without loss of
generality k‖ = kxex and we have used k⊥

i = −k⊥
r .

Due to the structure of the ε-tensor the s- and p-polarized
contributions cannot be separated from each other any longer.
Thus in a more general approach plane waves are assumed

E =
⎛
⎝ex(z)

ey(z)
ez(z)

⎞
⎠ei(kxx−ωt), H =

⎛
⎝hx(z)

hy(z)
hz(z)

⎞
⎠ei(kxx−ωt). (42)

kx is conserved across the interface. The z components of
Maxwell’s equations (40) read

hz = c

ω
kxey, ez = − c

ωεzz

kxhy, (43)

and can be inserted into the x,y contributions. For these
components we introduce the vector u with u1 = ex , u2 = ey ,
u3 = hx , and u4 = hy . By assuming the ansatz uj = uj (0)eik⊥z

for the single components with k⊥ as the z contribution of the
wave vector in the PTI one obtains again from Eq. (40),

L · u = − c

ω
k⊥u, (44)

with

L =

⎛
⎜⎜⎝

0 0 0 −1 + c2

ω2εzz
(kx)2

0 0 1 0
−εxy εxx − c2

ω2 (kx)2 0 0
−εxx −εxy 0 0

⎞
⎟⎟⎠. (45)

To find nontrivial solutions one has to solve the equation
det(L + ωk⊥

c
1) = 0 leading to the dispersion relations,

k⊥(m) = ±ω

c

1√
2

√
A + B ±

√
(A − B)2 + 4C, (46)

with

A = εxx

[
1 − c2

ω2εzz

(kx)2

]
,

B = εxx − c2

ω2
(kx)2, (47)

C = −
[

1 − c2

ω2εzz

(kx)2

]
ε2
xy,

for the four mathematical solutions m = 1,2,3,4, correspond-
ing to the four possible combinations of signs in Eq. (46).
Since solutions with Re(k⊥(m)) < 0 would result in waves
propagating in negative z direction we can neglect these
solutions for the transmitted wave propagating in the positive z

direction. Let k⊥(1) and k⊥(2) be the two solutions with positive
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real parts and neglect the other two ones and we finally arrive
at the expression for the transmitted components of E and H
parallel to the surface,(

Et

Ht

)
= ei(kxx−ωt)

∑
m=1,2

u(m)(0)eik⊥(m)z. (48)

According to the continuity relations, the parallel components
of the electric and magnetic fields E and H, i.e., the x,y com-
ponents, at the interface between vacuum and the topological
insulator are continuous. Since this set of four equations is
under-determined we start by expressing ey , hx , and hy in
terms of ex using Eq. (45),

α(m) ≡ e(m)
y (0)

e
(m)
x (0)

= L23L31

c2(k⊥(m))2

ω2 − L23L32

,

β(m) ≡ h(m)
x (0)

e
(m)
x (0)

= − ω

ck⊥(m)
L31 − ω

ck⊥(m)
L32α

(m), (49)

γ (m) ≡ h(m)
y (0)

e
(m)
x (0)

= − ω

ck⊥(m)
L41 − ω

ck⊥(m)
L31α

(m).

These equations are inserted into the boundary conditions and
one obtains⎛
⎜⎜⎜⎝

−1 0 α(1) α(2)

ck⊥
i

ω
0 −β(1) −β(2)

0 ck⊥
i

ω
1 1

0 −1 γ (1) γ (2)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
≡M

·

⎛
⎜⎜⎜⎝

es,r

ep,r

e(1)
x

e(2)
x

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

es,i

ck⊥
i

ω
es,i

ck⊥
i

ω
ep,i

ep,i

⎞
⎟⎟⎟⎟⎠. (50)

We now assume the incoming wave separately for s- (ep,i = 0,
es,i �= 0) or p-polarization (es,i = 0, ep,i �= 0) and solve for the
reflected amplitudes to finally obtain the reflection coefficients
by help of Kramers rule,

rs,s = es,r

es,i
= det(M1)

det(M)
,

rp,s = ep,r

es,i
= det(M2)

det(M)
,

(51)

rs,p = es,r

ep,i

= det(M3)

det(M)
,

rs,s = ep,r

ep,i

= det(M4)

det(M)
,

with the matrices

M1 =

⎛
⎜⎜⎜⎝

1 0 α(1) α(2)

ck⊥
i

ω
0 −β(1) −β(2)

0 ck⊥
i

ω
1 1

0 −1 γ (1) γ (2)

⎞
⎟⎟⎟⎠,

M2 =

⎛
⎜⎜⎝

−1 1 α(1) α(2)

ck⊥
i

ω

ck⊥
i

ω
−β(1) −β(2)

0 0 1 1
0 0 γ (1) γ (2)

⎞
⎟⎟⎠,

M3 =

⎛
⎜⎜⎝

0 0 α(1) α(2)

0 0 −β(1) −β(2)

ck⊥
i

ω

ck⊥
i

ω
1 1

1 −1 γ (1) γ (2)

⎞
⎟⎟⎠,

M4 =

⎛
⎜⎜⎜⎝

−1 0 α(1) α(2)

ck⊥
i

ω
0 −β(1) −β(2)

0 ck⊥
i

ω
1 1

0 1 γ (1) γ (2)

⎞
⎟⎟⎟⎠. (52)

Since det(M2) = det(M3), the off-diagonal reflection co-
efficients are equal, rs,p = rp,s. According to Ref. [32], a
medium obeys Lorentz’s reciprocity, which is called Onsager
reciprocity in Ref. [32], if and only if rσ,σ (−k‖,) = rσ,σ (k‖)
and rσ,σ̄ (−k‖,) = −rσ̄ ,σ (k‖) with σ = s, p and σ̄ = p, s, re-
spectively. This condition is not fulfilled since we instead have
rs,p = rp,s.

Moreover, by changing the sign of εxy , which is equivalent
to applying the time-reversal operator, we obtain: rσ,σ̄ →
−rσ,σ̄ and rσ,σ → rσ,σ . By setting εxy = 0 we find that the
reflection coefficients simplify to the case of a uniaxial out
of plane metamaterial [18], where rp,s = rs,p = 0 and the
nonreciprocity vanishes. By assuming the model described
by Eq. (38) for InSb we can change the sign of rσ,σ̄ simply
by changing the sign of the magnetic field and moreover, by
switching the magnetic field on and off we can switch between
a reciprocal and a nonreciprocal case.

Furthermore, we consider the case where we exchange
the positions of the TI and the vacuum which is equivalent
to changing the z coordinate to −z. We still consider the
incoming wave to propagate in the vacuum but this time in
the −z direction before it is reflected by the TI. So in this case
we have to exchange k⊥ → −k⊥ and k⊥(m) → −k⊥(m), which
causes rσ,σ̄ → −rσ,σ̄ and rσ,σ → rσ,σ . This is exactly the same
result as the one we obtained by exchanging B → −B. This
can be understood by analyzing a rotation by angle π around
an arbitrary axis in the x-y plane of our whole system. This
rotation should leave the reflection coefficients invariant and
is carried out by exchanging k⊥ → −k⊥, k⊥(m) → −k⊥(m),
and B → −B. We conclude that the parameter governing the
reflection coefficients is the projection of the magnetic field
onto the outward normal vector of the TI surface, cf. Fig. 1.

VI. RESULTS

In Sec. VI A we first find general characteristics of the
Casimir force between two infinite PTI half spaces separated
by vacuum with a general permittivity tensor (36) and a
permeability of μ = 1. Second, in Sec. VI B we calculate and
analyze the Casimir force for the InSb model (38).

A. Analytical results in the retarded and nonretarded limits

In this subsection the near field (nonretarded) and the
far field (retarded) limits are analyzed. In the retarded limit
we assume that ωresL/c � 1 and find that the term e−2ξL/c

restricts the frequency dependence: 0 � ξ � c/(2L) � ωres.
ωres stands for the smallest relevant plasma or resonance
frequency associated with the medium. So we can approximate
ε(iξ ) � ε(0). We insert different static values for εij (iξ = 0)
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FIG. 2. Numerically calculated Casimir force density for differ-
ent static values of εii as a function of εxy at a fixed gap distance of
L = 10 mm. The dashed lines correspond to εxx = 3 and εzz → ∞,
the solid lines to εxx = εzz = 3 and the dotted ones to εxx = εzz = 1.
Lines with (without) circles correspond to the case with B+ = B−

(B+ = −B−) in each case.

into Eq. (31) and calculate the Casimir force density at
a fixed distance L = 10 mm. We obtain for the reflection
coefficients rs,p = rp,s → 0 and rs,s = −rp,p → −1 if εxx →
±∞ or εxy → ±∞ and for iξ → 0. Thus, the material behaves
like a perfect conductor in the retarded limit and its Casimir
force is given by Eq. (34). Especially for materials with a
frequency dependence of εxy or εxx similar to the Drude model
we find this divergence at iξ = 0.

Figure 2 shows the Casimir force for several static values
of the permittivity tensor with εxx , εxy �= ±∞ for iξ = 0.
We further distinguish between the two cases ε+

xy = ±ε−
xy ,

where ε+
xy , ε−

xy are the xy entry of the permittivity tensor in
the left and right half space, respectively. We can see that we
only find repulsive Casimir forces if |εxy | � 5, ε+

xy = −ε−
xy and

εxx = εzz
∼= 1 in the retarded limit. The reason is that εxy does

not only contribute to rσ,σ̄ but also to rσ,σ . Especially for higher
values of εxy it contributes more to rσ,σ than to rσ,σ̄ , which
results in an attractive Casimir force density. Nevertheless,
there is a strong dependence of fret on the relative sign and
magnitude of ε±

xy(0). So the Casimir force of a PTI in the
retarded limit fret can be tuned by changing the external
magnetic field if εxx , εxy �= ±∞ for iξ = 0.

In the nonretarded limit one cannot neglect the frequency
dependence of the permittivity. Instead one can assume that
k‖ � ω/c. In this case one obtains the simplified disper-

sion relations k⊥
i

∼= ik‖, k⊥(1) ∼= i

√
εxx (iξ )
εzz(iξ )k

‖ and k⊥(2) ∼= ik‖.

Taking only the highest-order terms in k‖ into account one
finds rs,s ∝ 1/(k‖)2 ∼= 0 and rs,p,rp,s ∝ 1/k‖ ∼= 0. This is in
accordance with the reciprocal case in which one finds rs,s

∼= 0
in the nonretarded limit as well. So the only remaining term is
rp,p and its expression to highest order in k‖ is given by

rp,p =
√

εxx(iξ )εzz(iξ ) − 1√
εxx(iξ )εzz(iξ ) + 1

. (53)

The Casimir force in the nonretarded limit fnret reduces to a
much simpler expression,

fnret = − h̄

8π2L3

∫ ∞

0
dξ Li3

[(√
εxx(iξ )εzz(iξ ) − 1√
εxx(iξ )εzz(iξ ) + 1

)2
]
.

(54)

Interestingly, this short-distance approximation is independent
of εxy and closely related to the case of an isotropic material
where now the geometric mean

√
εxxεzz appears in place of the

isotropic permittivity. Similar results have first been found for
the Casimir-Polder interaction between an atom and a uniaxial
material, which is isotropic on the interface plane and where
the optic axis coincides with the anisotropic direction [33–35].

Since applying the time-reversal operator only changes the
sign of εxy , the solution in the nonretarded limit is unaffected
by changing the direction of the external magnetic field B±.
This does not mean, that fnret does not change as well by
tuning the external magnetic field, because εii can still depend
on, e.g., B2 as in the model of InSb. Furthermore, we find
that fnret is proportional to 1/L3 for short distances as in the
reciprocal case.

B. B-dependence of the Casimir force

After exploring the general characteristics of the Casimir
force between two semi-infinite half spaces of the PTI
separated by a layer of vacuum with thickness L, we analyze
the force for the material model of InSb (38). We especially
want to concentrate on how the force depends on the bias
magnetic fields applied to the right B+ and left B− half spaces
where B± is always perpendicular to the interfaces between
PTI and the vacuum. Furthermore, let us note that we found in
Sec. V C that the sign of rσ,σ̄ depends on the projection of the
applied magnetic fields onto the outward normal vector of the
surfaces. So we define the projected external magnetic field
of the left (−) and the right (+) interface as B± = B± · dA±.
Here dA± is the normal vector of the right and left half space
with dA+ = −ez and dA− = ez, cf. Fig. 1. That means that
with this definition the signs of r+

σ,σ̄ and r−
σ,σ̄ are the same for

B+ = B− and they are opposite for B+ = −B−. So we will
further differentiate between B+ = ±B− because we expected
different results for the Casimir force in the two cases after the
previous discussion.

The problem of realizing magnetic fields with opposite
directions in the two half-spaces in an experiment has been
described in Ref. [36]. One can cover the PTI with a thin
ferromagnetic layer on which the influence on the Casimir
force is negligible. Another way is to dope the PTI with
magnetic impurities [37], although the material response
tensor would need to be modified. Figure 3 shows the
numerical results for the Casimir force as a function of the gap
distance L for the two cases B = 0 T and B+ = −B− = 20 T.
It can be seen that the influence of the bias magnetic field
is small on this logarithmic scale. Nevertheless we find here
that the influence vanishes for large values of L because the
two graphs overlap in that region but they split at interme-
diate distances and stay separated even in the nonretarded
limit.
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FIG. 3. The Casimir force density f has been calculated using
Eq. (31) for the InSb model (38) as a function of the gap distance L in
the main plot without applied magnetic field (solid line) and for the
case B− = −B+ = 20 T (dashed line). Additionally, f was plotted
only considering contributions from reflections with foff (solid line)
or without fdiag (dashed line) change of polarization in the inset for
the case B− = −B+ = 20 T. Since foff < 0, the negative value −foff

was plotted.

Furthermore, we analyze which one of the reflection
coefficients is responsible for the main contribution of the
Casimir force density. The contributions of the off-diagonal
(diagonal) terms foff (fdiag) are depicted in Fig. 3, which
has been calculated by setting rs,s = rp,p = 0 (rs,p = rp,s = 0).
Therefore, only reflections where the polarization does change
(does not change) are considered. As expected for the case of
B+ = −B−, foff is purely repulsive, whereas fdiag is attractive.
But since |fdiag| > |foff| the total Casimir force is attractive
and mainly dominated by contributions from rs,s, rp,p. At
intermediate distances the influence of rs,p = rp,s is probably
not negligible because the yellow and green graphs are getting
close to each other at around 10−5 m. So at this point we
expect to find differences for B+ = ±B− because for the
case B+ = B−, foff would have the same absolute value but a
different sign as for B+ = −B− as explained at the beginning
of this section.

To analyze the B-dependence in greater detail, Fig. 4 shows
the relation f (B = 0)/f (B) as a function of the gap distance.
As expected we find a constant value of 1 in the retarded limit
and f (B = 0)/f (B) �= 1 at intermediate distances and in the
nonretarded limit. Here the fraction f (B = 0)/f (B) increases
if B increases. Interestingly, there is a peak at around 10−5 m
where we find a reduction of the Casimir force by a factor
of up to 2.3 for B = 20 T. The height of that peak depends
additionally on whether the two magnetic fields are pointing in
the same direction or not. So at intermediate distances we can
see clearly the effect of nonreciprocity. Now the question arises
if that peak is only caused by rs,p and rp,s. From the dotted
and dashed lines in Fig. 4 one can see a sensitive region at
around L = 10−5 m, even if rs,p = rp,s = 0 and it is enhanced
or reduced depending on sgn(B+) = −sgn(B−) (solid lines) or
sgn(B+) = sgn(B−) (dashed lines), respectively, if rs,p, rp,s �=
0 again.

In particular, the case sgn(B+) = −sgn(B−) can be at-
tributed to a repulsive Casimir force component (the force

10−8 10−6 10−4 10−2
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

FIG. 4. Numerically calculated ratio between the Casimir force
density with and without external magnetic field f (B = 0)/f (B) as
a function of the gap distance L and for different magnetic fields
B = 1 T (triangles), 5 T (diamonds), 10 T (squares), 20 T (bullets).
Furthermore, we distinguished between the cases with B+ = B−

(dashed lines) and B+ = −B− (solid lines). For B = 20 T we also
plotted the numerical result in case of rs,p, rp,s = 0 (dashed and dotted
line) and so here the only nonvanishing contributions arise from rs,s,
rp,p.

being reduced), while sgn(B+) = sgn(B−) corresponds to
an attractive force. There is an analogy to the attractive
Casimir force between two perfectly conducting or two
perfectly permeable plates and the repulsive Casimir force
between one perfectly conducting and one perfectly permeable
plate, cf. Sec. IV. Reference [22] connects this behavior
to the attractive Van-der-Waals force between two purely
electrically polarizable particles or two purely magnetically
polarizable particles and the repulsive force between one
purely electrically polarizable and one purely magnetically
polarizable particle. This can be extended to the attractive
Casimir-Polder force of an electrically polarizable particle to a
perfectly conducting wall and the repulsion of the magnetically
polarizable particle from the wall [22]. Moreover, there is
a similar feature in the Casimir-Polder potential between a
circularly polarized atom and an axion topological insulator,
where the axion contribution stemming from a coupling
between the electric and the magnetic field decreases the effect
of the ordinary Casimir-Polder potential [38].

In the nonretarded limit f is reduced by a constant factor
depending on the strength of the magnetic field only. That
can be understood analytically by noting that fnret does not
depend on εxy and thus is invariant under a sign change
of one of the magnetic fields. Using Eq. (54) we can plot
f̃nret = fnret(B = 0)/fnret(B) as a function of the magnetic
field, which is shown in Fig. 5 for a gap distance of L = 10−9

m. f̃nret increases with increasing bias magnetic field until it
saturates at around 40 T where the reduction factor has almost
reached 2.

To understand the shifting of f in the nonretarded limit
for an increasing magnetic field we can analyze the Casimir
force as a function of k‖ and ω in the nonretarded limit. The
result is very similar to the one obtained for the near field heat
transfer discussed in Ref. [20]. The Casimir force density does
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FIG. 5. The Casimir force in the nonretarded limit approximation
fnret has been evaluated numerically for a fixed gap distance of L =
1 nm as a function of the magnetic field B = B±. Afterwards the
ratio f̃nret = fnret(B = 0)/fnret(B) has been computed and plotted. As
one can see here this reduction factor f̃nret increases with increasing
magnetic field until it saturates at around B ∼= 40 T at f̃nret

∼= 2.

not depend on εxy for kx � ω/c, cf. Eq. (54), and the only
nonvanishing reflection coefficient is rp,p. So one finds the
following relation between kx and ω in the nonretarded limit
for surface phonon (SPhPs) and surface plasmon polaritons
(SPPs), cf. Ref. [20],

kx = 1

L
ln

(√
εxx(ω)εzz(ω) − 1√
εxx(ω)εzz(ω) + 1

)
, (55)

if Re(εxx), Re(εzz) < 0. This equation can also be found by
setting the denominator of the multiple reflections in the
nonretarded limit 1 − r+

p,pr
−
p,pe

2κ⊥L equal to zero.
Furthermore, the general dispersion relations simplify to

k⊥
1 =

√
εxx

ω2

c2
− (kx)2,

(56)

k⊥
2 =

√
εxx

ω2

c2
− εxx

εzz

(kx)2,

where the second equation can also be brought to the form

ω2

c2
= (k⊥

2 )2

εxx

+ (kx)2

εzz

. (57)

This describes hyperbolic modes for Re(εxx)Re(εzz) < 0,
where one can further distinguish between hyperbolic modes
with Re(εxx) > 0 and Re(εzz) < 0 (HMI) and modes with
Re(εxx) < 0 and Re(εzz) > 0 (HMII). Interestingly, these
modes are therefore propagating within the material and
evanescent in the vacuum and therefore frustrated internal
reflections.

Figure 6 shows f (ω,k‖) for different values of B. At B = 0
the main contribution of the Casimir force is due to SPPs and
SPhPs. By increasing the magnetic field this contribution gets
less intense and is shifted to lower kx values. Furthermore, the
region Re(εxx), Re(εzz) < 0, where these modes are allowed,
becomes smaller until it vanishes completely at around
B = 16 T.

On the other hand, there are increasing contributions from
hyperbolic modes with stronger magnetic fields, which can be
found at a broad range of ω and kx values equally and which
are restricted to Re(εxx)Re(εzz) < 0. In summary, we found
that the Casimir force is dominated by SPPs and SPhPs for
small magnetic fields in the nonretarded limit, whereas the
main contributions stem from hyperbolic modes for bigger
values of B. So the decrease of f is due to the fact that the
contributions of hyperbolic modes at high fields are smaller
than the ones of SPPs and SPhPs at small magnetic fields.

To see all the effects described in this section one needs
large magnetic fields up to 20 T. In the following we investigate
if the necessary value of the magnetic field is smaller if we
used different values for the parameters [especially n and m�

and so ωp in our material model, cf. Eq. (38)]. Therefore, we
plot the Casimir force at a fixed distance L = 10 nm in the
nonretarded limit for different magnetic fields as a function of
ωp. The result is shown in Fig. 7. It can be seen that there are
mainly two limits for the Casimir force which are independent
of B. One is reached at high values of ωp. In this case ωp � ωc

and there is no difference whether there is a magnetic field or
not. Whereas in the other limit for small values of ωp and so
for ωc � ωp the Casimir force has reached a minimal value,
which is different from f (B = 0). It depends on the value of
ωp, where the transition from one limit to the other happens.

FIG. 6. The Casimir force density in the nonretarded limit approximation is plotted as a function of ω and kx for different magnetic fields
B = B± and with L = 10 nm, similar to Ref. [20]. Additionally, the dispersion relations for surface cavity modes are plotted with black
solid lines in the ω-k‖ plane. Furthermore, one can find different regions I, II, III, in each figure separated by black dotted lines. In region
I we have Re(εxx),Re(εzz) < 0, and so this is the region with surface phonon and surface plasmon polaritons. In regions II and III there is
Re(εxx)Re(εzz) < 0 and we can find the hyperbolic modes HMI (II) and HMII (III), respectively.
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FIG. 7. Casimir force density in the nonretarded limit fnret for a
fixed gap distance L = 1 nm as a function of the plasma frequency
ωp for different fixed values of B± = 0 T (solid line), 1 T (dashed
line), 5 T (dotted line), and 20 T (dashed and dotted line).

The dotted vertical line shows the value of ωp, which we used
in all of our calculations so far. For smaller values of ωp a
weaker magnetic field would influence the Casimir force in
the same way.

C. Casimir repulsion for a model inspired by Iron Garnet

The second model inspired by iron garnet, was introduced
in Ref. [39] and examined in Ref. [17]. The respective elements
of the permittivity tensor (36) read

εxx = 1 − ω0ωe

ω2 − ω2
0

,

εzz = 1, (58)

εxy = −εyx = ωωe

ω2 − ω2
0

.

In this model, |ω0| is the resonance frequency and ωe is
the resonance strength. According to Ref. [39], the condition
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FIG. 8. The different contributions from reflection with (−foff)
(solid line) or without (fdiag) (dashed line) a change of polarization at
the interface are plotted separately for the parameters ωe = ±7.7 ×
1012 2π/s and ω0 = ±1.3 × 1010 2π/s and additionally ω0ωe < 0 in
both half spaces. Since foff < 0 we plotted −foff. There is a region
where |foff| > |fdiag| (see inset) and so that is where we expect to find
a total repulsive Casimir force, cf. Fig. 9.
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FIG. 9. The Casimir force density of a PTI for the model similar
to iron garnet as a function of the gap distance. We used in both
half spaces ωe = ±7.7 × 1012 2π/s and ω0 = ±1.3 × 10m2 2π/s and
different values for m2 = 10 (dashed), 11 (dotted), and 12 (solid).
Additionally, we distinguished between the two cases where first
ω0, ωe > 0 in both half spaces (without circles) and second ω0, ωe < 0
in only one of the half spaces and ω0, ωe > 0 in the other one (with
circles).

ωeω0 > 0 has to be fulfilled. One finds from Eq. (58) that by
changing the sign of ωe and ω0 one can achieve εxy → −εxy ,
whereas the diagonal elements εii do not change their signs.

So far there is no experimental evidence for a real material
with such a permittivity. The exact B-field dependence of ε

is unknown. Nevertheless, we consider it as an alternative
hypothetical model which can be compared to the one of InSb
and which shows a different aspect concerning the Casimir
force.

Similar to Sec. VI B, we calculate the Casimir force
numerically by using the permittivity values similar to iron
garnet (58) and insert them into Eq. (31). First we have a look
at the different contributions only from reflections with (foff) or
without (fdiag) change of polarizations, for the case where ω0,
ωe < 0 in both of the half spaces. The result is shown in Fig. 8.
We find that in the retarded and nonretarded limit |foff| < fdiag

for InSb, whereas the reflections with a change of polarization
dominate at intermediate distances. So we expect the force to
be repulsive in that region. This assumption is confirmed in
Fig. 9. So there is a region at around 2 × 10−7 m < L < 10−4

m, where we can switch between a repulsive and an attractive
force simply by changing the sign of ω0 and ωe in one of the
half spaces.

VII. CONCLUSION

We have derived a general expression for the Casimir
force density between two nonreciprocal semi-infinite half
spaces. This derivation is based on an extension of the theory
of macroscopic quantum electrodynamics for nonreciprocal
material.

This general expression is applied to a photonic topological
insulator with a permittivity tensor with off-diagonal elements.
First we have derived the reflection coefficients and inves-
tigated the Casimir force based on the general expression
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of the permittivity tensor. The reflection coefficients with a
polarization flip at the interface change signs by switching
from a positive to a negative magnetic field in only one of
the half spaces. Whereas the material behaves like a perfect
conductor in the retarded limit if εxx → ±∞ or εxy → ±∞
for iξ → 0, the reflection coefficient for parallel polarization
dominates in the nonretarded limit and we give an analytical
result for the Casimir force.

We then applied the Casimir force formalism to the material
model of InSb. We found a dependence of the Casimir force
on the magnitude of the magnetic field at small distances.
The polarization changing reflection coefficients were shown
to be responsible for a repulsive force only if the signs of
the magnetic fields in the two half spaces differ, whereas the
other components cause an attractive force regardless of the
sign. Nevertheless, this model never allows for a repulsive
net force. Only a reduction of the magnitude of the Casimir
force can be observed if an external magnetic field is applied.
This can be explained by studying the force in the nonretarded
limit. In this case the Casimir force is dominated by surface
phonon and surface plasmon polaritons at small magnetic
fields, whereas they are outperformed by hyperbolic modes
at larger magnetic fields. The ratio between the Casimir force

without applied field and the force with magnetic field shows
a maximum at a critical distance of L = 10−5 m where the
Casimir force for the InSb model is reduced by a factor of
about 2 at 10 T. Additionally in this regime of intermediate
distances the magnitude of the Casimir force strongly depends
on the relative sign of the magnetic fields in the two half spaces.

Finally, the Casimir force was studied for a model inspired
by iron garnet. In this case the impact of the polarization
changing reflection coefficients is stronger than the terms
which do not change the polarization at intermediate distances.
This makes it possible to achieve repulsive Casimir forces.
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