
HAL Id: hal-01664515
https://hal.science/hal-01664515

Submitted on 14 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Holistic Framework for Conducting Scientific
Evaluations of OpenStack

Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Adrien Lebre,
Matthieu Simonin

To cite this version:
Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Adrien Lebre, Matthieu Simonin. To-
ward a Holistic Framework for Conducting Scientific Evaluations of OpenStack. The 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), May 2017, Madrid,
Spain. pp.544-548, �10.1109/CCGRID.2017.87�. �hal-01664515�

https://hal.science/hal-01664515
https://hal.archives-ouvertes.fr


Toward a Holistic Framework for Conducting
Scientific Evaluations of OpenStack

Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Adrien Lebre
Inria, Mines Nantes, LINA

Nantes, France
Email: firstname.lastname@inria.fr

Matthieu Simonin
Inria, IRISA

Rennes, France
Email: firstname.lastname@inria.fr

Abstract—By massively adopting OpenStack for operat-
ing small to large private and public clouds, the industry
has made it one of the largest running software project,
overgrowing the Linux kernel. However, with success comes
increased complexity; facing technical and scientific chal-
lenges, developers are in great difficulty when testing the
impact of individual changes on the performance of such
a large codebase, which will likely slow down the evolution
of OpenStack. Thus, we claim it is now time for the
scientific community to join the effort and get involved
in the development of OpenStack, like it has been once
done for Linux.

In this spirit, we developed Enos, an integrated frame-
work that relies on container technologies for deploying
and evaluating OpenStack on any testbed. Enos allows
researchers to easily express different configurations, en-
abling fine-grained investigations of OpenStack services.
Enos collects performance metrics at runtime and stores
them for post-mortem analysis and sharing. The relevance
of the Enos approach to reproducible research is illus-
trated by evaluating different OpenStack scenarios on the
Grid’5000 testbed.

I. INTRODUCTION

Although the adoption of Cloud Computing has been
largely favored by public offers (Amazon EC2 and
Microsoft Azure, to name a few), numerous private and
public institutions have been contributing to the devel-
opment of open-source projects in charge of delivering
Cloud Computing management systems [1]–[3]. In addi-
tion to breaking vendor lock-in, these operating systems
of Cloud Computing platforms enable administrators to
deploy and operate private cloud offers, avoiding issues
such as data-jurisdiction disputes, latency constraints,
etc.

After more than six years of intensive effort, the
OpenStack software suite has become the de facto open-
source solution to operate, supervise and use a Cloud
Computing infrastructure [3]. Despite its dynamism that
makes whole ecosystem incredibly hard to keep up
with, OpenStack has been adopted in a large variety of
areas such as public administrations, e-commerce and
science1. Its undeniable success and spread urges the

1See http://superuser.openstack.org/ for further information

scientific community to get involved and contribute to
the OpenStack software in the same way it has been once
done for the Linux ecosystem. A major involvement of
our community would enable OpenStack to better cope
with ongoing changes in Cloud Computing, such as Fog
and Edge Computing and IoT applications.

To help developers and researchers identify major
weaknesses of a complex system such as OpenStack and
to facilitate the evaluation of proposed improvements,
we designed Enos.2 Leveraging container technologies
and “off-the-shelf” benchmarks, Enos is the first holistic
framework for evaluating OpenStack in a flexible and
reproducible way. Its Experimentation-as-Code vision
allows to automate every step of the experimentation
workflow, from the configuration to the results gather-
ing and analysis. In addition, because each service is
isolated in a single container, Enos is able to express and
deploy complex scenarios, and to evaluate each service
individually.

Moreover, Enos has been designed around pluggable
mechanisms that allow researchers and developers to
evaluate OpenStack on various infrastructures (testbed
platforms, public and private clouds, all-in-one Virtual
Machines), and execute any benchmarking suite in ad-
dition to Rally [4] and Shaker [5] that are supported by
default.

Finally, Enos comes with visualization tools that pro-
vide multiple synthetic views of the gathered metrics
suitable for explanatory and exploratory experiments.

In this paper, we give a first overview of the Enos sys-
tem. The structure of the article is as follows. Section II
presents the different technologies we used to build the
Enos framework. The framework itself is discussed in
Section III. To illustrate the possibility offered by our
framework, we discuss a first series of experiments that
have been conducted thanks to Enos in Section IV. Fi-
nally Section V concludes and discusses future research
and development actions.

2Experimental eNvironment for OpenStack

http://superuser.openstack.org/


II. BACKGROUND

OpenStack [3] is an open-source project that aims
to develop a complete Cloud Computing software stack
though the three expected capabilities of IaaS platforms:
Compute (run by Nova), Network (Neutron) and Stor-
age (Cinder, Glance and Swift). Services are organized
following the Shared Nothing principle. This enables
a weak coupling between services, allowing a large
number of deployment possibilities.

To limit the effort in terms of development, Enos
has been built on top of different technologies that are
presented in the following.

A. Kolla and Ansible

Due to the richness and complexity of the OpenStack
ecosystem, making the deployment of OpenStack easy
has always been an important topic. Among all the
deployment solutions that are available, we chose to use
Kolla [6]. Kolla provides production ready containers
and deployment tools for operating OpenStack infras-
tructures. In Kolla, each OpenStack service is encap-
sulated with its dependencies in a dedicated container.
Container images can be built on demand, stored and
used during the deployment. Kolla features many default
behaviors, allowing quick prototyping, but they are fully
customizable: vanilla or modified versions of OpenStack
can be installed, deployment topologies can be adapted
to the user’s needs and configuration of all the services
can be changed. To perform remote actions such as
deploying software components, Kolla uses the Ansible
deployment engine [7]. Ansible gathers hosts on groups
of machines on which specific tasks are applied. This
group mechanism in play is very flexible and thus allows
alternative deployment topologies to be specified.

B. Rally and Shaker

Measuring the performance of a cloud infrastructure in
a rigorous and comparable way is an important challenge
for our community. Enos comes with two open source
benchmarks by default: Rally and Shaker.

1) Rally: Rally is the official control-plane bench-
mark suite for OpenStack; it injects API requests to
running services. Extensive benchmarks are allowed by
two concepts : the Runner (e.g., the number of times a
request is performed or how many parallel threads are
used to perform the requests), the Context (e.g., how
many users and tenants must be used for the injection)

2) Shaker: Shaker is a framework for data plane test-
ing of OpenStack. It currently targets synthetic bench-
marks execution (for instance iperf3 [8], flent [9]) on top
of instances. Shaker supports the definition and the de-
ployment of different instances and network topologies.
The possible scenarios include extensive evaluation of
network capabilities of an OpenStack cloud.

C. cAdvisor, Collecd and other analysis tools

Analysis of OpenStack is mostly based on metrics
generated during the experiments and relies on three
components: metrics agents, a metrics collector and
a metrics visualization service. Those components are
loosely coupled, allowing for alternatives to be plugged
in when necessary. In the current implementation, met-
ric agents are cAdvisor [10] and collectd [11]. They
are responsible for sending metrics from hosts to the
collector. Metrics can be enabled or disabled at will
through the metrics agents configuration files. The Met-
rics collector relies on the InfluxDB timeseries optimized
database [12]. Finally, the visualization is delivered by
Grafana [13], a dashboard composer.

III. ENOS

Evaluating the OpenStack software suite can be di-
vided into four logical phases. The first phase consists
in getting raw resources; the second one deploys and ini-
tializes the selected version of OpenStack over these re-
sources; the third invokes the benchmarks to be executed;
finally, the fourth analyzes results of the evaluation. To
help in tackling all these phases, we developed Enos3, a
holistic approach for the evaluation of OpenStack. After
presenting the resource description language that has
been designed to configure Enos, this section describes
how each phase has been implemented. In particular,
how Enos can address performance evaluations for any
infrastructure by abstracting fundamental principles of
each phase.

A. Enos Description Language for Flexible Topologies

The description of the resources to acquire as well
as the mapping of the different services on top of those
resources is made with a YAML resource description lan-
guage. This language offers a very flexible mechanism
that lets Enos end-users specify and evaluate OpenStack
performance over a large set of topologies. However,
OpenStack is made of numerous services and writing
this description is tedious. For this reason, Enos reuses
Kolla service groups to gather many OpenStack services
under the same logical name, which drastically reduces
the description size. For instance, the small description
in Figure 1(a) describes a simple deployment topology.
This description says: “provide one resource for hosting
network services and two others for hosting compute
services”.

In the context of Enos, a resource is anything running
a Docker daemon and that Enos can SSH to. This
could be a bare-metal machine, a virtual machine, or
a container resource according to the testbed used for
conducting the experiments.

3Enos: https://github.com/BeyondTheClouds/enos

https://github.com/BeyondTheClouds/enos


resources:
network: 1
compute: 2

(a) General description

resources:
paravance:
network: 1

econome:
compute: 2

(b) Extended version for
Grid’5000

Figure 1. Enos Resources Description Examples

Moreover, we emphasize that the language is resource
provider dependent in order to handle infrastructure
specificities. For instance, on Grid’5000 [14], the lan-
guage has been extended to specify the name of physical
clusters where resources should be acquired, as depicted
in Figure 1(b). In this description, the paravance clus-
ter (located in Rennes) will provide resources for the
network services and the econome cluster (located in
Nantes) will provide resources for the compute nodes.

Isolating a service on a dedicated resource is as simple
as adding its name to the description. For instance,
adding rabbitmq: 1 at the end of the description on
Figure 1(a) tells Enos to acquire a dedicated resource
for the AMQP bus. Henceforth, the bus will no longer
be part of the network resource but deployed on a
separate resource at the deployment phase. Obviously,
it is possible to do the same for the database, nova-api,
glance, neutron-server. . .

Scaling a service simply requires to increase the num-
ber of resources allocated to this service into the descrip-
tion. For instance, increasing the value of rabbitmq: 1
to rabbitmq: 3 tells Enos to acquire three dedicated
resources for the AMQP bus. Henceforth, the deploy-
ment phase will deploy a cluster composed of three
RabbitMQ.

These two characteristics of the language allow a very
flexible mechanism to both isolate and scale services.

B. Enos Workflow

The following describes the four steps that are
achieved by Enos.

1) Getting Resources Phase: Calling enos up
launches the first phase that acquires the resources
necessary for the deployment of OpenStack. To get these
resources, Enos relies on the aforementioned description
and the notion of provider. A provider implements how
to get resources on a specific infrastructure and thus
makes this job abstract to Enos. With such mechanism,
an operator can easily evaluate OpenStack over any kind
of infrastructure by implementing the related provider.
A provider can also be given by the support team
of an infrastructure, independently of any particular

OpenStack evaluation project. In other words for each
testbed, an extended version of the Enos DSL and a
provider should be available. Currently, Enos supports
two kinds of infrastructure; the first one gets bare-metal
resources from the Grid’5000 testbed [14]; the second
one uses a VM based on Vagrant [15]. We emphasize
that additional drivers for any other system can be easily
implemented in less than 500 lines of Python code.

The output of the first phase is a list of addresses
which reference resources, together with the name of the
OpenStack services to deploy over each resource. This
way, Enos will be able to initiate a SSH connection to
these resources during the next phase and deploy the
requested OpenStack services.

2) Deploying and Initializing OpenStack Phase: Call-
ing enos init deploys and initializes OpenStack with
Kolla. Concretely, Enos uses the list of resources and
services provided by the previous phase and writes them
into a file called the inventory file. Kolla then uses this
file to deploy, in a containerized manner, OpenStack
services on the correct resources.

The Kolla tool runs each OpenStack service in an
isolated container which presents a huge advantage for
collecting metrics such as CPU, memory, and network
utilization. Indeed, in addition to isolation, container
technologies offer fine-grained resource management
and monitoring capabilities [16]. This means it is possi-
ble to collect the current resource usage and performance
information, whatever the container runs, through a
standard API, and hence offers to Enos a generic metrics
collection mechanism that stands for every OpenStack
service. Under the hood, Enos relies on cAdvisor (II-C)
to implement this generic collection mechanism.

3) Running Performance Evaluation Phase: Calling
enos bench injects workloads to stress the platform. By
default, Enos comes with Rally and Shaker frameworks.
However, the Enos abstractions allow end-users to plug
any custom benchmarks like for instance the recent
SPEC Cloud Benchmark [17].

A workload in Enos is composed of scenarios that
will be run in sequence. Each scenario description is
specific to the underlying benchmarking tool but Enos
will know how to run it. In the case of Shaker or
Rally parameterized scenarios are possible adding more
flexibility to the execution.

4) Analysing the Evaluation Phase: Calling
enos backup generates all components needed for
the analyses of the performance evaluation.

Metrics gathering is twofold. First, Enos collects gen-
eral metrics (CPU/memory usage, network utilization,
opened sockets . . . ). Second, it is able to store specific
statistics offered by the benchmarking suite used. The
former relies on a set of agents whose role is to send
metrics to a collector. The latter is specific to the



Nb. of compute nodes 100 200 500 1,000

Nova Conductor 1.22 2.00 3.68 7.00
HAProxy 0.11 0.18 0.33 0.49
RabbitMQ 0.98 1.65 3.11 5.00
MariaDB 0.03 0.06 0.13 0.21

Table I
AVERAGE CPU USAGE OF OPENSTACK SERVICES WHILE VARYING

THE NUMBER OF COMPUTE NODES (IN NUMBER OF CORES).

Nb. of compute nodes 100 200 500 1,000

Nova Conductor 2.47 2.47 2.45 2.47
HAProxy 6.27 6.32 7.04 8.71
RabbitMQ 1,628 2,580 5202 11,520
MariaDB 502 546 570 594

Table II
MAXIMUM RAM USAGE OF OPENSTACK SERVICES WHILE

VARYING THE NUMBER OF COMPUTE NODES IN MEGABYTES.

benchmarking suite that is executed and occurs during
the backup phase. Similarly to the previous section,
integrating custom benchmarking tools may require ex-
tending Enos to retrieve the relevant reports.

Enos allows general metrics to be observed in real-
time during the experiment. Preconfigured dashboards
are indeed accessible through a Web interface. Enos’s
backup gathers a larger source of information since they
include configuration files, logs of OpenStack services,
all the collected metrics and all the reports generated
by the benchmarking suite used. Enos can then build
a virtual machine image embedding all these data and
tools to allow post-mortem exploration.

IV. EXPERIMENTS

To illustrate how operators and developers can use
Enos to identify limiting services through the explo-
ration of general metrics, we conducted a first series of
evaluations to study how OpenStack behaves when the
number of compute nodes scales up to 1,000. Experi-
ments have been executed on the paravance cluster of
the Grid’5000 [14] testbed.

We deploy an OpenStack cloud multiple times with
Enos and vary the number of compute nodes from 100
to 1,000 between two deployments. The OpenStack code
was based on the Mitaka release. The “fake driver”
was chosen as virtualisation driver at the compute level
to increase the density of compute nodes on a single
physical machine. We achieve to deploy 1,000 nova-
compute “fake driver” on 20 physical machines. Two
other physical machines were used to host Control
and Neutron groups respectively. The fake driver is an
in-memory hypervisor that performs mostly the same
routine tasks to maintain the state of its local –fake–
instances except for neutron-server. The latter service is
thus out of the scope of the current evaluation.

Nb. of compute nodes 100 200 500 1,000

RabbitMQ 1.5 2.93 6.89 13.5
MariaDB 79 85 120 170

Table III
MAXIMUM NUMBER OF SIMULTANEOUS OPEN CONNECTIONS FOR

OPENSTACK SERVICES WHILE VARYING THE NUMBER OF COMPUTE
NODES (THOUSANDS).

Metrics are collected for one hour without performing
any request on the deployed system. Enos enables us
to inspect these metrics per service. Table I and II
present respectively the CPU and RAM consumption
of representative services during this idle period. The
observed CPU consumption is very small, except for
the Nova Conductor service that interfaces all Nova
services with the MariaDB database. This information
is valuable for the OpenStack community as it clearly
shows that there is room for improvement to reduce
the consumption of the nova-conductor service (for
1,000 nodes, the current code requires the equivalent of
7 cores while the compute nodes are idle). For the RAM
consumption, an important increase is observed for Rab-
bitMQ that is heavily used for communications between
services like nova-conductor and nova-compute. Ta-
ble III presents the maximum number of connections
for RabbitMQ and MariaDB. It clearly shows that the
increased RAM usage is linked to network usage: the
number of open connections on the RabbitMQ container
grows indeed at the same rate as memory usage. More-
over, the number of connections opened by RabbitMQ
can be explained by the fact that, even in idle state,
OpenStack is maintaining several permanent connections
with each Nova and Neutron agents. This leads to the
conclusion that RabbitMQ will be hard to scale beyond
this limit without reviewing the communication patterns
in use. To further explain this increase in resource usage,
we export from Enos the number of database queries
performed each second by MariaDB. The number of
SELECT queries performed each second for the one-
hour period is plotted in Figure 2. We observe that the
average number of queries increases linearly with the
number of nodes. More importantly, from the figure,
we observe periodic spikes. These spikes are due to
periodic tasks run by Nova services and Neutron agents.
They are indeed reporting periodically their states in the
database. UPDATE queries follow the same pattern but
are not plotted here. Note that the reporting interval is
configurable and may be decreased in the configuration
file at the cost of decreasing the consistency of the state
stored in the database.

This evaluation demonstrates how OpenStack can be
studied with Enos as a black-box and how complex
mechanisms involving multiple services can be explored.



0 500 1,000 1,500 2,000 2,500 3,000 3,500
Time (seconds)

0

100

200

300

400

500

600

S
E
LE

C
T
 q

u
e
ri

e
s

100
200
500
1,000

Figure 2. Number of SQL queries per second executed by MariaDB
while varying the number of compute nodes. Horizontal lines show
the average for each series.

V. CONCLUSION

With a community that gathers more than 5,000
people twice a year at the single location, the Open-
Stack software suite has become the de facto open-
source solution to operate, supervise and use Cloud
Computing infrastructures. While it has been mainly
supported by key companies such as IBM, RedHat and
more recently Google, we claim that distributed com-
puting scientists should now join the effort to help the
OpenStack consortium address the numerous technical
and scientific challenges related to its scalability and
reliability. Similarly to what our scientific community
has been doing for Linux, the OpenStack software suite
should benefit from scientific guidance. However, diving
into OpenStack and understanding its intricate internal
mechanisms is a tedious and sometimes too expensive
task for researchers.

To allow academics, and more generally the Open-
Stack consortium to identify issues, propose counter-
measures, and validate code improvements, we presented
in this paper the Enos framework. Thanks to container
technologies and the use of “off-the-shelf” benchmarks,
Enos is the first holistic approach for evaluating Open-
Stack in a controlled and reproducible way. We illus-
trated the relevance of Enos by analyzing how Open-
Stack behaves at different scales. This experiment helps
in identifying services which will become bottlenecks
(e.g., RabbitMQ, nova-conductor) with a large number
of compute nodes.

We emphasize this work enabled us to exchange with
the OpenStack Foundation and take part in different
discussions/working groups. As an example, we are
using Enos to conduct several experiments in the context
of the OpenStack performance working group [18]. First,
we are evaluating different message bus solutions that
can replace the current RabbitMQ solution that does not
scale well. Second, we are performing several experi-
ments to identify network requirements in the case of
WAN infrastructures. Conducting these experiments is a

major concern for telcos that target the deployment of
Fog and Edge Computing infrastructures.

As mid-term actions, we plan to extend Enos with the
new OpenStack Profiler tool. This will help researchers
investigating in details performance issues by analyzing
the execution traces of any OpenStack functionality.

Finally, we would like to highlight that OpenStack
is only one example of such large software projects
that can benefit from the involvement of our scientific
community. The approach pursued by Enos can be easily
extended to other complex software stacks. The only
requirement is to get containerized versions of said
software. This trend is expected to grow, looking for
instance at the Docker Hub repository [19].

ACKNOWLEDGMENTS

Most of the materials presented in this article are
available on the Discovery initiative website. Supported
by the Inria Project Lab program, Discovery is an Open-
Science Initiative aiming at implementing a fully decen-
tralized IaaS manager: http://beyondtheclouds.github.io.
Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other
organizations.

REFERENCES

[1] CloudStack, http://cloudstack.apache.org.
[2] OpenNebula, http://www.opennebula.org.
[3] OpenStack, http://www.openstack.org.
[4] Rally, https://wiki.openstack.org/wiki/Rally.
[5] Shaker, https://github.com/openstack/shaker.
[6] Kolla, https://wiki.openstack.org/wiki/Kolla.
[7] Ansible, https://www.ansible.com.
[8] iPerf, https://iperf.fr/.
[9] Flent, https://flent.org/.

[10] cAdvisor, https://github.com/google/cadvisor.
[11] collectd, https://collectd.org/.
[12] InfluxDB, https://www.influxdata.com.
[13] Grafana, http://grafana.org/.
[14] D. Balouek et al., “Adding Virtualization Capabil-

ities to the Grid’5000 Testbed,” in CCSS, 2013.
[15] Vagrant, https://www.vagrantup.com/.
[16] M. G. Xavier et al., “Performance evaluation

of container-based virtualization for high perfor-
mance computing environments,” in PDP, 2013.

[17] SPEC CloudTM IaaS 2016, https://www.spec.org/
cloud_iaas2016/.

[18] OpenStack Performance Documentation, http : / /
docs.openstack.org/developer/performance-docs/.

[19] Docker Hub, https://hub.docker.com/explore/.

http://beyondtheclouds.github.io
http://cloudstack.apache.org
http://www.opennebula.org
http://www.openstack.org
https://wiki.openstack.org/wiki/Rally
https://github.com/openstack/shaker
https://wiki.openstack.org/wiki/Kolla
https://www.ansible.com
https://iperf.fr/
https://flent.org/
https://github.com/google/cadvisor
https://collectd.org/
https://www.influxdata.com
http://grafana.org/
https://www.vagrantup.com/
https://www.spec.org/cloud_iaas2016/
https://www.spec.org/cloud_iaas2016/
http://docs.openstack.org/developer/performance-docs/
http://docs.openstack.org/developer/performance-docs/
https://hub.docker.com/explore/

	Introduction
	Background
	Kolla and Ansible
	Rally and Shaker
	Rally
	Shaker

	cAdvisor, Collecd and other analysis tools

	Enos
	Enos Description Language for Flexible Topologies
	Enos Workflow
	Getting Resources Phase
	Deploying and Initializing OpenStack Phase
	Running Performance Evaluation Phase
	Analysing the Evaluation Phase


	Experiments
	Conclusion

