N
N

N

HAL

open science

Synchronous programming of device drivers for global
resource control in embedded operating systems

Nicolas Berthier, Florence Maraninchi, Laurent Mounier

» To cite this version:

Nicolas Berthier, Florence Maraninchi, Laurent Mounier. Synchronous programming of device drivers
for global resource control in embedded operating systems. ACM Transactions on Embedded Com-

puting Systems (TECS), 2013, 12 (1s), pp.1 - 26. 10.1145,/2435227.2435235 . hal-01664442

HAL Id: hal-01664442
https://hal.science/hal-01664442

Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01664442
https://hal.archives-ouvertes.fr

Synchronous Programming of Device Drivers for Global Resource
Control in Embedded Operating Systems

NICOLAS BERTHIER, UJF/Verimag
FLORENCE MARANINCHI, Grenoble INP/Verimag
LAURENT MOUNIER, UJF/Verimag

In embedded systems, controlling a shared resource like a bus, or improving a property like power consump-
tion, may be hard to achieve when programming device drivers individually. In this paper, we propose a
global resource control approach, based on a centralized view of the devices’ states. The solution we propose
operates on the hardware/software interface. It involves a simple adaptation of the application level, to
communicate with the hardware via a control layer. The control layer itself is built from a set of simple
automata: the device drivers, whose states correspond to functional or power consumption modes, and a
controller to enforce global properties. All these automata are programmed using a synchronous language,
and compiled into a single piece of C code. We take as example the node of a sensor network. We explain
the approach in details, demonstrate its use and benefits with an event-driven or multithreading operating
system, and draw guidelines for its use in other contexts.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]|: Real-
time and embedded systems; D.1 [Programming Techniques|; D.2.2 [Software Engineering]: Design
Tools and Techniques; D.2.11 [Software Engineering|: Software Architectures; D.4.7 [Operating Sys-
tems]|: Organization and Design

General Terms: Algorithms

Additional Key Words and Phrases: Automated control, power-aware implementation, synchronous
paradigm, wireless sensor networks

ACM Reference Format:

ACM Trans. Embedd. Comput. Syst. V, N, Article A (March 2013), 25 pages.
DOI = 10.1145/2435227.2435235 http://doi.acm.org/10.1145/2435227.2435235

1. INTRODUCTION
1.1. Resource Control in Embedded Systems

In embedded systems, controlling a shared resource, or improving a global property, may be
crucial in some application domains. Consider power consumption in the node of a wireless
sensor network (WSN). Optimizing power consumption has a direct effect on the lifetime
of the system because the battery cannot be recharged. Choosing devices that can be put
in some low consuming mode when nothing happens may offer significant gains in sensor
networks, where traffic is quite low. This is the case for radio controllers or micro-controller
units (MCU). Once the hardware devices have been selected, programming a node in such

This work has been partially supported by the French ANR project ARESA2 (ANR-09-VERS-017).
Verimag is an academic research laboratory affiliated with: the University Joseph Fourier Grenoble (UJF),
the National Center for Scientific Research (CNRS) and Grenoble Polytechnic Institute (Grenoble INP).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and /or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@Qacm.org.

© ACM, 2013. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in ACM Transactions on Embedded
Computing Systems (TECS), {12, 1s, 2013-03-01}

DOI 10.1145/2435227.2435235 http://doi.acm.org/10.1145/2435227.2435235

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:2 Authors' version

a way that the low-consumption modes of the various devices be well exploited is not easy.
The software has a huge impact on the consumption states of the various devices (e.g., the
driver of the radio puts it in low consumption mode), but this low-level software is usually
designed in a local, per device, way. Information on the consumption states of the various
devices is then scattered among several pieces of code (device drivers, protocols, application,
or Operating System — OS), and the decisions are necessarily taken in a local, decentralized
manner.

1.2. Need for Global Control

Consider a simple sensor network application involving two concurrent tasks. The first
one periodically senses the environment using a sensor connected to an Analog-to-Digital
converter, and sometimes stores this information in a flash memory. When the collected data
satisfy a given property, an alarm is sent to a special node of the network. The second task
manages the network by listening to the radio channel, using a radio transceiver device. This
part of the software is responsible for routing the packets received to the desired nodes, and
sending new alarms upon request from the first task. Sensor network hardware platforms
usually provide several devices connected to the MCU using a limited number of buses.
Therefore, the two almost independent tasks are in practice constrained by shared resources
like buses. On the other hand, we may need to reduce the instantaneous power consumption,
for instance by avoiding situations in which the radio and the flash memory devices are
simultaneously in an energy-greedy operating mode. If the control of the radio (resp. the
memory) is implemented in the driver of the radio (resp. the memory), the decisions on the
total power consumption cannot be done, because there is no place in the software where
the global information is available.

In the example application, we may consider two global properties: (i) mutual exclu-
sion of the accesses to shared resources like buses; (ii) reduction of instantaneous power
consumption. With global control, the idea is that all information on the functional and
non-functional (e.g. power) states of the devices should be gathered and exploited by a
global policy implemented as a centralized controller.

1.3. Problem Formulation and Proposal

The problem we consider is the following: given a hardware architecture made of several
devices whose functional and non-functional states are known, plus some existing application
software (e.g., the protocol stack in the case of sensor networks nodes), how to replace the
low-level software (typically the set of drivers) by a control layer that implements a global
resource management policy? One should still be able to implement the application software
as a set of concurrent threads on top of a scheduler, or with event-driven programming. Also,
only small changes in existing software should be required, if any.

1.3.1. Synchronous Programming and Controllers. To build the control layer we use syn-
chronous programming, which has been studied a lot in the embedded system commu-
nity, especially for hard real-time safety-critical systems. The family of synchronous lan-
guages |Benveniste et al. 2003| offers complete solutions, from pure static scheduling to
some operating system support |Caspi et al. 2008|. The control layer is designed as a par-
allel program in a synchronous language, and then statically scheduled by the compiler to
produce a piece of sequential C code.

The design of the control layer is inspired by controller synthesis techniques |[Ramadge
and Wonham 1989). The approach is similar to several proposals that have been made in the
family of synchronous languages and tools (see, for instance, [Chandra et al. 2003|, |Girault
and Rutten 2009| or |Altisen et al. 2003)).

To summarize, the approach is as follows: (i) each device driver is described as a Mealy
automaton M;, whose transitions are labeled by Boolean formulas made of inputs from

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:3

both the hardware and the software, and by outputs representing low-level C code; (ii) we
specify some global properties, like: “P: the devices A and B should not be in their highest
consuming modes at the same time’; (iii) the automata of the drivers are made controllable,
meaning that the absence of an additional input may prevent the automaton from changing
states: this yields the family of automata M/’s; (iv) we build an automaton C, to control
the M!’s in such a way that global properties like P are ensured; (v) C' and the M/’s are
programmed in some synchronous language; (vi) the control layer is obtained by compiling
the parallel composition of C' and the M/’s into a single piece of sequential C code.

When there is a large number of devices to be controlled, or when the global properties
are complex, designing the automaton C' may become a hard task. This is typically when a
tool implementing controller synthesis should be used. We do not use a controller synthesis
tool yet, for efficiency reasons, but there exist promising tools. See comments on the use of
such tools in Section [6.3l

1.3.2. Programming Model and Adaptation of Existing Software. Implementing a global resource
management policy (e.g., “never have two devices in their highest consuming modes at the
same time”) has some intrinsic consequences on programming models: some commands have
to be refused, if they yield a global state that violates the resource management policy.
This happens whatever the solution chosen: (i) using parallel programming and blocking
primitives (see Section [7] for proposals of this kind); or (ii) using our proposed approach.

Our approach enables a systematic identification and handling of refused commands: the
control layer refuses to execute a command if it results in a global state that violates one
of the global properties P; the control layer can implement two options: either the request
is canceled, or it is delayed until it becomes acceptable.

Moreover, when the handling of refused commands is application-specific, and cannot
be done with a systematic implementation, the control layer can transmit a complete and
precise description of the situation (current global state, and state that would be reached
by executing the command) to the upper layer.

The whole approach allows the easy reuse of previously written software and operating
systems. Porting existing code to our new hardware/software architecture only requires the
modification of the software that drives the physical devices (e.g., radio transceiver, flash
memory), or that manages a bus: part of the code of device drivers has to be replaced
by requests to the control layer. Higher level parts of the original operating system, like a
network stack or a file system, are unchanged.

1.4. Contributions and Structure of the Paper

This paper makes four contributions to global resource control in embedded systems: (i)
a software architecture based on a control layer, between the hardware and the high level
software; (ii) a method for obtaining the control layer automatically from a formal descrip-
tion of the device drivers, plus a description of the global properties that should be ensured;
(iii) a working implementation of these two ideas, which can be used with an either purely
event-driven, or multithreading operating system, seating on top of the control layer; (iv)
guidelines for the adaptation of existing software on top of the control layer.

The remainder of the paper is structured as follows: in Section [2] we briefly present the
technical background for the definition of the control layer; Section [3] gives the hardware
platform example; Section [4] gives the principles of our approach; Section [f]is a case study;
Section [6] provides an evaluation of the whole approach, and suggests extensions; Sections [7]
and [{ review related work and conclude.

2. BACKGROUND ON SYNCHRONOUS LANGUAGES

The essential points of synchronous languages semantics [Benveniste et al. 2003| can be
explained with synchronous products of Boolean Mealy Automata (BMAs), as described

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:4 Authors' version

Fig. 1. Two Boolean Mealy Automata Sa and Sb synchronized via a signal b, and the result of their
composition SE.

node SE (a: bool) returns (c: bool);

var inAO, inAl, mA, inB0O, inBl, mB, b: bool; -- Internal wvariables.
let
inAl = not mA; inA0 = mA; b = a and inAl; -- Encoding of Sa.
mA = true —> pre (not a and inA0 or a and inAl); -- (cont’d)
inBl1 = not mB; inBO = mB; c =b and inB1; -- Encoding of Sb.
mB = true —> pre (not b and inBO or b and inBl); -- (cont’d)
tel;

Fig. 2. The two Boolean Mealy automata Sa and Sb of Figure m encoded in LUSTRE, in a single node that
behaves as SE. b is the only variable shared among the two corresponding sets of equations. mA and mB
are the persistent state variables, the remaining consists of formula aliases for readability, and definition of
outputs; e.g., mA holds iff Sa is in state A0 (it is initially true, being the initial state of Sa).

/* The reactive kernel produced by the compiler: */
int M1, M2, M3; /* State wvariables. */
void init () { M3=1; } /* Initialization. */
void run_step (int a) /* Step function, calling output procedures. */

{ int L1, L2, L3, L4, L5, L6, L7;
L3 =M3 | M1; L2 = 7L3; L6 =M3 | M2; L5 = "L6 & a; L1 = L2 & L5; main_O_c(L1);

L4 = L3 & 7L5; L7 =1L6 & Ta; Ml =14 | L1; M2= L7 | L5; M3 = 0; }
/¥ To be added to get a main program: */
void main_O_c (int x) { printf ("%d\n", x); } /* Output procedure. */
int main () {

init (); /* Initialization. */

while (1) /* Infinite loop. */

{ int a; printf ("Givepay(0/1):u"); scanf ("%d", &a); /* Get inputs. */

run_step (a); } } /* Compute next state and produce outputs. */

Fig. 3. Reactive kernel for the example of Figure [I} and example main program.

in [Maraninchi and Rémond 2001]. In such automata inputs and outputs are distinguished,
and the communication is based on the asymmetric synchronous broadcast mechanism.

Figure [1] is an example. Automaton Sa (resp. Sb) reads a (resp. b), and emits a b (resp.
¢) every two a’s (resp. b’s). SE is the result of their composition. It is a automaton that
reads a and emits a ¢ every four a’s. Note that emitting b in Sa, and reacting to b in Sb,
are combined into a single transition, making communication instantaneous.

In all synchronous languages, a program is made of several components that can be viewed
as separate BMAs. Several constructs allow to combine them, in parallel or hierarchically.
The various automata communicate via the synchronous broadcast, by sending and receiving
signals. From a parallel program, the compilers produce a piece of code called the reactive
kernel. This kernel has to be wrapped in some loop code, which calls the kernel repeatedly,
to make it execute one transition at a time. The C code of the reactive kernel is sequential:
the parallelism present in the original program has been compiled, i.e., statically scheduled.
Note also that the size of the resulting code is linear in the size of the original BMAs, not
in the size of their product.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:5

Serial[l MCU Flashl RAM I;I SPI Radio
Interface 16 bits & 7y Transceiver
8 bits
2 1

CPU 16 bits

Serial Id |1 wire| | MSP430 | N

1MB Flash
int ted ipheral
TR R ™ Memory

Fig. 4. The Wsn430 hardware platform (taken from [Fraboulet et al. 2007]).

1 main () /* This function never returns to preserve an ezecution context. */
2 /* Initialization of the hardware devices and the whole application. */
3 while (true) enter_lpm (); /% Enter low-power mode and enable interrupts. */
4 /* Interrupts will awake the MCU, and their handlers will ezecute on this

5 stack. When they terminate, the low-power mode is immediately reentered. */

Fig. 5. Typical structure of the main() function, when programming on bare hardware. Notice interrupts are
disabled when this function is called, so the whole initialization process (cf. line is usually uninterrupted.

For the example given above, we can encode the two automata in LUSTRE w
, as illustrated in the listing of Figure [2l We can then use a compiler from LUSTRE to C
code. The code produced looks like the one on Figure[3] The first part is the “reactive kernel”
produced by the compiler: the run_step and init functions, plus the declaration of the state
variables. The second part shows how to use such a kernel, by providing an output function,
and calling the kernel in an infinite loop that provides it with inputs. The execution of this
code outputs “1” every 4 occurrences of value 1 for the input a.

3. EXAMPLE PLATFORM AND USUAL PROGRAMMING PRACTICES

Figure [4 is a block diagram describing the Wsn430 hardware platform for wireless sensor
networks. It is composed of an MSP430 MCUE| including several integrated peripherals:
timers, Analog-to-Digital Converters (ADCs), Universal Synchronous/Asynchronous Re-
ceiver/Transmitters (USART) supporting several protocols such as the Serial Peripheral
Interface (SPI), etc. This micro-controller has 6 operating modes, among which: the Active
mode, in which everything is active (this is the mode with the highest consumption); the
LPM/ mode (the one with the lowest consumption), in which there is no RAM retention,
the real-time clock is disabled, and the only way to wake up is by an external interrupt; the
LPM3 mode (having an intermediate consumption) in which there is only one peripheral
clock available. This MCU can be woken up by any interrupt, including those emitted by
its integrated peripherals if they are still active (e.g., ADCs or timers), and external ones.
The Wsn430 platform features a CC1100 radio transceivelﬂ a DS2411 serial identifier
hardware devic&ﬁ7 a flash memory module, and various sensors. A network simulator, along
with a cycle-accurate emulator, can be used in order to test and debug applications and full
systems from their target binary code |[Fraboulet et al. 2007|. The flash memory module, the
radio chip, and a sensor, share the same serial bus. Simultaneous accesses must be avoided.
Programming WSN nodes can be done adopting one of the following practices:

(i) Programming on the bare hardware consists in designing the whole software without
any system support. Typically, a basic C library is used, with no parallel programming
abstraction facility: a single execution context (stack) is provided, in which the main()
function starts executing. Figure [5| exemplifies the typical structure of such a main() func-
tion. Architecture-dependent code may additionally be used, allowing accesses to low-level
features such as MCU operating mode selection (e.g., enter_lpm() on line |3| in Figure [5)),

Thttp://focus.ti.com/lit/ug/s1au049f/s1au049f .pdf; 2http://focus.ti.com/lit/ds/symlink/cc1100.
pdf; Shttp://www.maxim-ic.com/datasheet/index.mvp/id/3711

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

http://focus.ti.com/lit/ug/slau049f/slau049f.pdf
http://focus.ti.com/lit/ds/symlink/cc1100.pdf
http://focus.ti.com/lit/ds/symlink/cc1100.pdf
http://www.maxim-ic.com/datasheet/index.mvp/id/3711

A:6 Authors' version

Guest Operatin% System é é i Guest Task(s) § ! Paravirtualization approach:

N

|
+ Application(s | Adapted st L
+ Network stack I apted Guest Layer
+ ... I
i Adaptation Layer (management of the resources) ‘

|

I

I

I

I

N L !

\ hypercalls P A :

Control Layggin() ’ Device Automata & Controller : '\ Interception 1
S S .

,,,,,,,, ————— —————————————————————————— D> HW inputs/outputs/1\""?""""""”"”" :

" NCU_) CTme(s))] Buses T I |

Hardware Platform l:lizlmzliig:Tiri@ﬁisEiﬁyar\, ————— n:Fi‘laE‘}iliMér;pir);/‘ ‘\ Hardware Resources)

Fig. 6. Global description of the approach.

interrupt management or peripheral device register handling. In this case, all resource man-
agement is under application control.

(ii) Using operating system support extends the previous approach with the inclusion of
system-level services. Threading and associated communication mechanisms can be provided
by existing OSes, along with advanced services such as networking or file system manage-
ment. Besides, solutions involving an OS come with their set of available device drivers, and
supporting a new hardware platform often requires writing complete new pieces of low-level
code. At last, they generally exploit generic mechanisms like locks or monitors for resource
and energy management, when they exist; ad hoc solutions are used otherwise, which often
require deep and non-trivial modifications of the OS implementation. Widespread operating
systems used in WSNs include RETOS |[Cha et al. 2007], TINYOS [Hill et al. 2000].
Dunkels et al. [2004] propose CONTIKI, which also belongs to these systems. It features an
event-driven execution model, and concurrent tasks are implemented as stackless cooper-
ating threads called protothreads [Dunkels et al. 2006] in order to reduce context switching
and stack management costs. CONTIKI is implemented in C exclusively, so it is a suitable
candidate to estimate the impact of the control layer on purely event-driven programs.

In cases (i) and (ii), the usual programming practice is event-based, meaning that separate
portions of code communicate with each other by posting events in queues, which trigger
executions of handlers attached to them. Interrupt requests are seen as events that can
occur even when the MCU is in a low-power mode. Note also that interrupt handlers can
force the MCU to stay in active mode, or to go back in low-power mode, when they return.
In this way, the software is written so that the MCU is in a low-power mode most of the
time, i.e., when nothing useful is to be computed.

Fault Handling. A WSN node is a quite constrained embedded system, with no hardware
redundancy. If a faulty device is able to return an error code, then the fault can be handled by
some upper layer. But if a device fails silently, the entire node may fail. In WSN applications,
fault-tolerance is considered at the network level, exploiting the redundancy of nodes.

4. PRINCIPLES OF THE SOLUTION

The solution we propose can be explained by looking at the implementation we obtain for
the example platform given in Section [3| In the sequel, we call tasks (or guest tasks) the
execution flows executing concurrently in the guest operating system (if any) and application
layer, whatever the concurrency model of this system is.

The solution being technically involved, we first give an overview of the solution, ending
in Section [£:3:2] with example execution paths for software and hardware requests. Then
Sections [4.4] and give more details on each part. Section illustrates the solution with
a complete example execution.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A7

1 turn_adc_on () /* Provided by the adaptation layer to the upper layers. */
2 R = on_sw (adc_on); /* Submit request ‘adc_on’ to the control layer. */
3 if (acky, € R) return success;

4 return error; /* Return an error code if request has been refused. */
5

6 turn_adc_on () /* (Ibid), however blocking until ADC is on. */
7 R = on_sw (adc_on); /* Submit request ‘adc_on’ to the control layer. */
s if (acky, € R) return success;

9 timer_wait (some time); /* If request refused, block for some time... */
10 turn_adc_on (); /* ... and then retry. */

Fig. 7. 'Two versions of a function of an ADC driver, which is to be included in the adaptation layer. adc_on
is an input of the control layer that can be refused, in which case ack, does not belong to the result of
on_sw().

4.1. Main Structure

Figure [6] describes the main structure. From bottom to top, it shows: the hardware, the
Control Layer, and the guest code (the guest OS, plus the application code). In order to
communicate with the hardware, the guest uses dedicated function calls instead of direct
low-level register operations. The element called adaptation layer on Figure [f] represents
this modification. Modulo this slight modification of the hardware accesses, any existing OS
can be ported on top of the control layer; Section [5| gives more details on this point.

The control layer implements the global control objectives for resource and power man-
agement by intercepting hardware requests (i.e., interrupt requests) and software requests
(from the guest, via the adaptation layer). It maintains an up-to-date view of the current
states of all the hardware devices. It presents a simplified view of the real hardware to the
guest, by exporting a set of functions that may be called by the guest through the adap-
tation layer. These functions play the same role as the hypercalls of the paravirtualization
approaches [Whitaker et al. 2002].

4.2. The Adaptation Layer

The adaptation layer is the part of the guest that needs to be modified in order to use the
control layer. It comprises: (i) functions provided to the upper layers that issue software
requests to the control layer (see turn_adc_on() example below); these functions can also
register callbacks to be executed upon emission of a given event by the control layer; (ii) a
run_guest() function exported to the control layer, whose purpose is to schedule and execute
all runnable guest tasks, if any; this function returns when all tasks are blocked and all
needed computations have been performed by the guest, meaning that the control layer can
put the MCU in low-power mode (see Figure [10| below for details about the usage of this
function). Figure [7|illustrates functions to be exported by the adaptation layer, for an ADC
driver. on_sw() is a function (hypercall) provided by the control layer (see below).

4.3. Overview of the Control Layer

4.3.1. Structure. As depicted in Figure[8] the control layer is made of two parts: the reactive
part, and the event management part.

The reactive part (also referred to as tick in the sequel) comes from all the automata of
the drivers to be controlled, plus a controller. These drivers consist of BMAs as depicted in
Section [2| which produce outputs triggering the execution of low-level code accessing regis-
ters of the devices. They also produce output events to provide information about the state
of the devices to the adaptation layer. Inputs of these BMAs are twofold: requests emitted
by the adaptation layer that trigger operations on the devices, plus approval signals from
the controller, which restrict this behavior (details on approval signals and the controller

are given in Section |4.5)).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:8 Authors' version

software requests (from the adaptation layer)

run_guest() software, callbacks
Egﬁ?;cwl\(/ganagement Reactive Part: tick
Controller
— function call
..... Device ush/po
Automata o Fs)et/ e?c rZ, uest
/% T8l get red

on_it(E 0 RERREE function calls---|-----

C _ A -- low-level register handling - -

<

= hardware events from interrupt controller
Fig. 8. Details of the Control Layer.

The tick is an object providing the methods init() and run_step(). It is the reactive kernel
obtained from the compilation of the controller and the device automata, when composed
in parallel (as mentioned in Section . The tick is entirely passive: it has to be called from
the other part of the control layer; when called (using its run_step() method), it executes
exactly one transition of the compiled automata, thus possibly executing some low-level
code, and producing output events.

The event management part is in charge of managing a queue for hardware requests,
handling the software ones, and building input events in order to call the tick. It also
interprets the output events produced by the reactive part in order to send information
to the upper layers. The event management part is made of the hardware request queue,
plus several pieces of code. The hardware event queue is filled by the hardware only; the
software request comes from the guest layer only. We first describe each piece of software.
The complete behavior that results from their organization is best understood by looking
at the two possible execution paths of Figure [§] The pieces of software are as follows:

— on_it() is the interrupt handler: its execution is launched by the occurrence of some
interrupt (which has also posted an element in the hardware queue); it calls react();

— on_sw() is executed by the adaptation layer so as to emit a software request to be
given to the tick; it mainly calls react() and returns some feedback about the request;

— react() consumes the elements in the queue of hardware requests and gather the pend-
ing software request, if any, in order to build an input event to be given to tick. It is a loop,
calling tick.run_step() until the hardware queue becomes empty; when a software request s
is given by on_sw(), and used as part of an event to run one tick, react() is able to interpret
the outputs of the tick execution, and to transmit information to the adaptation layer both
by executing callbacks and specifying the value returned by on_sw(s).

4.3.2. Example Execution Paths. Figure [J] describes the execution paths corresponding to
software and hardware requests alone. Figure [I§ and Section [£.0] illustrate a more general
execution, where hardware and software requests may happen concurrently.

Example 1: Software Request Handling. Let us look at Figure @(a) first, and suppose
that no hardware interrupt occurs. The guest code needs to perform an operation on the
hardware (e.g., turn the ADC on); to do so, it calls a function of the adaptation layer,
say, turn_adc_on() (see Figure . This function posts a software request adc_on, by calling
the on_sw() function. Then, on_sw() immediately calls react(), that picks the new software
request, and calls tick.run_step() with an event of the form: adc_on . T . 7... where z,y,...

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:9

- guest i/o
tick tick
/f /f
.. l l
<~ hardware events T hardware events
(a) software event handling (b) hardware event handling

Fig. 9. Illustration of two different execution paths in the Control Layer. (a) Upon emission of a request
by the adaptation layer by using on_sw(), the react() function is called, which triggers in turn an execution
of tick.run_step(), and possibly some low-level code (e.g., £()). When tick.run_step() returns, some callbacks
previously registered by the guest layer, may be executed. (b) Similarly, the notification of a hardware event
(interrupt request) may trigger executions of the tick, and then some callbacks, through the on_it() function.

are the other possible software and hardware inputs (i.e., not input to the current reaction).
The execution of the tick with such an event executes the appropriate transition from its
current state, may execute some low-level code, and returns by providing the output events
of the transition. react() analyzes this output, and may call some callback functions of the
adaptation layer, to report about what happened when the software event was treated. In
this execution path, the flow of control is not stopped during the treatment of one software
request; as a result, the loop in react() iterates exactly once.

Ezample 2: Hardware Request Handling. Let us look at Figure @-(b) A hardware interrupt
occurs, i.e., the hardware puts an event irg, in the hardware queue, and then “calls” on_it().
This may happen at any time, in particular while the processor is busy executing the
software, including one call of react(). If a call to react() is executing currently, on_it() leaves
the interrupt in the hardware queue, but does nothing to treat it (see below). If no call to
react() is executing currently, then the software is preempted, and on_it() calls react(). That
consumes the hardware event just posted in the hardware queue, and calls tick.run_step()
with an event of the form: irq, . T . 7... where z,y,... are the software inputs, and the
other hardware inputs. The execution of the tick with such an event executes the appropriate
transition from its current state, may execute some low-level code, and returns by providing
the output events of the transition. react() analyzes this output, and may call some functions
of the adaptation layer. For instance, in case of an interrupt from the timer, the adaptation
layer may have to wake up some task, or execute a callback, in the guest code.

4.4. Details on the Event-Management Part

Let us describe the left part of Figure [§] whose goal is to efficiently interleave the execu-
tions of the reactive part with those of the guest layer. It also manages all input requests,
translating them into input events to be given to the reactive part, and conveys output
information to the adaptation layer. The events that trigger executions of the reactive part
are: hardware events (or interrupts), and software requests.

4.4.1. MCU State Management.

Running the Guest Layer. Figure presents the main() function, which is always exe-
cuted upon (re-)start of the MCU. Its role is to ensure that the MCU is in a low-power

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:10 Authors' version

1 main () /* Usual software entry point, executed with interrupts disabled. */
2 tick.init (); /* Initialize the reactive part. */
3 while (true)

4 enable_interrupts (); /* Enable interrupts before entering guest. */
5 run_guest (); /* Run guest until it requests entering low-power mode (LPK)

6 by returning from this function. */
7 disable_interrupts (); /* Disable interrupts, because ‘enter_lpm()’ may

8 need to perform some computation. */
9 /* Here, we are guaranteed that no emission of software request s

10 possible until occurrence of next interrupt request. */
11 enter,lpm (), /* Enter LPM, and enable interrupts so that the MCU can be

12 awakened: this function will return upon the next hardware
13 event occurrence (cf. function ‘on_it()’ of Figure [12);

14 also disables interrupts on return. */

Fig. 10. The main() function. Details for ensuring that we do not execute enter_lpm() if an interrupt occurs
during execution of instructions between lines E] and |Z| have been omitted.

1 example_timer_irq_handler () /* Note that interrupts are automatically disabled
2 by hardware when this handler is ezecuted. */
3 acknowledge_irq (); /* Clear pending IR{ flag. */
4 hw_queue. push (irqexpired); /* Push hardware event corresponding to the

5 current interrupt request. */
6 on_it (); /* Next, call ‘on_it()’. */

Fig. 11. Example handler for a timer expiration interrupt. Notice details about interruption nesting have
been omitted; yet such a behavior is still compatible with a use of the control layer.

1on_it () /* Note that the event has already been pushed in ‘hw_queue’, and

2 interrupts are disabled. */
3 if (! already_in_reaction) {

4 react (); /* Trigger reaction. */
5 stay_awake (); /* Ensure the MCU will stay in active mode upon return */
6 3 /* from interrupt, if it was in low-power mode hitherto. */

Fig. 12. The on_it() function. It is called upon insertion of a new hardware event into the associated queue.

mode as often as possible. It is an endless loop, continuously executing the guest task(s)
through the run_guest() function provided by the adaptation layer (typically, a call to the
guest tasks manager, meaning that it runs until all tasks are blocked — see Section .
If the latter function returns, then no more guest task is runnable, i.e., there is no more
computation to perform. Until then, executions of both on_sw() and on_it() are possible.

Low-Power Mode Management. When the guest layer does not need to compute, the
main() tries to enter the MCU in a low-power mode by using enter_lpm() (line in Fig-
ure. Upon wake up of the MCU by one or more interrupts, associated interrupt handlers
start executing.

Figure [11] depicts an example low-level interrupt handler in the control layer. One of its
roles is to push the new request into the hardware requests queue, then call on_it() (lines
and @ If the latter has triggered one or more reactions (i.e., some hardware requests have
been emitted and taken into account), then it instructs the MCU to stay active upon return
from the interrupt handler; the MCU goes back into its previous operating mode otherwise.

Going back to the code of the main() function in Figure enter_Ipm() returns if the
MCU stays active after having returned from all pending interrupt handlers. Thus, guest
tasks, which could have been released during executions of callbacks through on_it(), are
executed across the subsequent call to run_guest().

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:11

1 on_sw (software_input)

2 sw_req.create (software_input); /* Create a new software request. */
3 disable_interrupts (); /# Disable interrupts to protect request management. */
4 sw_cell.set (sw_req); /* Assign the software request cell. */
5 react (); /* Trigger reaction. */
6 enable_interrupts (); /* Re-enable interrupts. */
7 return sw_req.result (); /* Return the result that has been recorded in the

8 software request object by ‘react()’. */

Fig. 13. The on_sw() function. The sw_req object records both the emitted input signal and the outputs
resulting from the corresponding execution of tick. The latter data is assigned in react() (see Figure
below). sw_cell is a reference either pointing to a pending software request (not yet handled by react()), or
nil if none exists.

1 react ()

2 already_in_reaction = true; /* Start the reaction (needed in ‘on_it()’). */
3 all_outputs = empty_set ();

4 do { /* Build an input event by eztracting the software request (if any)

5 and all the hardware events from the queue: */
6 input_event = build_input_event (hw_queue, sw_cell);

7 enable_interrupts (); /% Enabling interrupts allows new */
8 outputs = tick.run_step (input_event); /* hardware events to be pushed */
9 disable_interrupts (); /* into ‘hw_queue’ during the tick.*/
10 all _outputs.merge (outputs); /* Union (bit-array operation actually). */
11 /* If there was a software request, then setup its result: */
12 if (sw_cell I= nil) sw_cell.set_result (outputs);

13 sw_cell = nil; /* There is no more pending software request. */
14} while (! hw_queue.is_empty ());

15 /* Here, hardware queue %is empty, and no software request is pending. */
16 already_in_reaction = false; /* Notify we leave the reaction. */
17 /* Eventually, launch callbacks associated with all emitted outputs: */
18 launch_callbacks (all_outputs);

Fig. 14. The react() function.

4.4.2. Handling Requests from the Hardware. As seen above, the low-level interrupt handlers
call on_it() when a hardware request is pushed into the hardware requests queue. This
function, depicted in Figure calls the react() function if it was not already running
when the interrupt occurred (with the help of the already_in_reaction flag). Notice that after
having called react(), it configures the MCU to stay in active mode on return of the current
interrupt handler, so that any guest task potentially released can be executed (as stated in

Section above).

4.4.3. Handling Requests from the Software. The role of the on_sw() function (cf. Figure[13) is
to trigger reactions upon emission of a software request by the adaptation layer. It returns
the feedback information attached to the request by the react() function.

4.4.4. Running the Reactive Part. The react() function in Figure [14|behaves as follows: when
called, it sets the already_in_reaction flag so that upcoming hardware events do not trigger
reactions themselves (cf. on_it() function in Figure . The latter situation may happen
if an interrupt occurs during the execution of tick.run_step() (instructions between lines
and |§| in react()). In such a case, hardware requests will be taken into account (i.e., popped
from hw_queue and given to the reactive part) when the current execution of tick.run_step()
ends. The already_in_reaction flag is reset at the end of the reaction.

The loop from lines [to [I4] extracts and treats all pending requests from the hardware
event queue until it becomes empty. It also treats any pending software request, if there is
one. Each turn, all requests are popped from the queue and cell, and an input event is built
and given to the reactive part (on line .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:12 Authors' version

i ini start /timer_start() stop . start/
(a) ftimer-init() Disabled timer_restart()
: > top . start . 1 ;
stop /timer_stop() stop . star quezplred/

timer_expire

. . : stop . start . ok/
o) /timer_init() Disableztart . ok¢/acky, tlmer,star acky, timer_restart()
- RO Stop . start . irqegpired/
stop . oki/acky, timer_stop() d

timer_expire

Fig. 15. Original (a) and controllable (b) device driver automata for a timer.

The output of this execution step of the tick is set as result of the software request that
triggered it, if any (line[I2).

Again, this result is merged with all outputs gathered during the preceding iteration of the
loop (in set all_outputs, initialized to the empty set at the beginning of the function). This
set serves on line 18| to launch all previously registered callbacks associated with the outputs
that have been emitted during the reaction. Note that subsequent executions of react() are
possible during the latter stage, either if interrupts occur (callbacks of the adaptation layer
are executed with interrupts enabled), or if software requests are emitted.

4.5. Details of the Reactive Part
Let us now look at the details of the reactive part of Figure [§] sketched in Section [4.3.1

4.5.1. Device Driver Automata. Designing the control path of a usual driver as an explicit
automaton is quite natural. The states of this automaton reflect the operating modes of
the device. The transitions are triggered by inputs that may be of two kinds: requests
for changing modes, and hardware events. The idea is to guarantee that the state of the
automaton always reflects the state of the device. The outputs on the transitions may
represent low-level code (accesses to the device registers) that has to be executed to perform
the real device operation.

In the sequel, we use the following syntax for a transition label: “i; . iy / 01, 02, f()”
where i1 . 45 is an example Boolean formula built from the set of software and hardware
inputs, o; and og are example outputs, and f() is the call to some low-level code. For the
sake of simplicity, self-loops with no outputs are not represented on the figures.

An important point here is the notion of controllability. Indeed, if we want to meet global
control objectives, the requests from the software (and potentially some of the hardware
events) should not always be accepted by the device driver. In the vocabulary of controller
synthesis, it means that the automata to be controlled should have controllable inputs,
otherwise the global control objective may be unfeasible. In the sequel, we design controllable
automata for the devices. For one of the simplest (the timer), we explain how to add
controllable inputs.

Figure[I5}(a) is the automaton for a timer driver. timer_init(), timer_start(), timer_restart()
and timer_stop() are low-level functions updating the timer operating mode and registers.
The input ir¢ezpireq is a hardware signal, whose meaning is the expiration of this timer.
Finally, stop and start are input requests issued by the upper software layer to drive this
device, and timer_expired is an output signal reflecting the expiration of the timer.

In Figure [15}(b), the automaton of Figure [[5}(a) has been modified by introducing an
approval input (ok;): a controllable transition is triggered only when the input request holds
and the controller emits ok;.

In order to notify the requesting software, additional outputs are also used (ack; in the
timer example). They are emitted when controllable transitions are permitted.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:13

/adc_init()) /
\ fifo_threshold

leep .
sleep . olr/ refill_tx_buffer()

acky., sleep()

O
(1die)

i”bn,packet

wake_up . okr/
acky, wake_up()

Wy done/
tx_done

calibrate . okr/
acky, calibrate()

|
|
|
|
|
|
|
adc_off . oka/ |
|
acka, ade_off() | /radio_init()
|
|
|
|
|
|
|
|

enter_tx . okr/
acky, enter_tx()

enter_rx . okr/
acky., enter_rx()

adc_on . ok, "qend_of _packet/ €xit_rx(),

ackg, adc_on() packet_received

T exit_rr . okr/
acky, exit_rx()

iT‘I_fznd, of _packet -
) irafifo_ threshold/
empty_rx_buffer()

(a) 1 (b)

Fig. 16. Controllable ADC (a) and radio (b) automata. In the latter, ok, and ack, are approval and
acknowledgment signals respectively. The driver is in Tx when the actual device transmits a packet, and in
RxPacket when receiving one; it is in Rx when listening to the channel, and no packet was detected yet.

enter, ok,
elser/ok,« tlr/
entery|, . adc_ off/ okr, okq

irqy|, . adc_on/okq

Z47nq07L_packet/on7pa(:ket()

elser/okfr

else, . adc,oﬁ/okr, okq
gy, . exit_rT . adc_on/ oky, okq

g, + exit_rz) . adc_on ok,

entery, = enter_tz + enter_rz — meaning: attempt to make the radio device enter Tx or Rx
irQt)r = end_of_packet T Wltz_done — meaning: radio device enters Idle
elser = entery|, . (calibrate + wake_up + sleep) — meaning: radio device stays in {Idle, Sleep}

Fig. 17. Basic controller automaton for the drivers of Figure

Note that, when in state Disabled and the condition start . ok; occurs (i.e., the controller
refuses the request start), there is a loop on state Disabled (not represented on Figure ,
which does not emit any output (in particular, ack).

Figure [16] describes a driver for an ADC, and a slightly simplified radio transceiver driver
(without error handling transitions and wake-on radio feature) respectively.

4.5.2. The Controller Automaton. Figure [17] is an example of a controller designed from the
radio transceiver and ADC automata of Figure It ensures the exclusiveness between
three energy-greedy states of the former (Tx, Rx and RxPacket) and the On mode of the
latter. For instance, when the controller is in Radio (meaning that this device currently
consumes energy), the ADC is necessarily in its Off state and can reach On (i.e., ok, holds)
iff the transceiver attains either Idle or Sleep.

4.5.3. The Compiled Automaton. Finally, the drivers and the controller are compiled into a
single piece of code that forms the tick, and behaves as their product automaton. For the
same example as before, the product automaton will be in state FreexOffxldle when the
controller, ADC and radio will be in Free, Off and Idle states respectively.

4.6. A Complete Example Execution

We illustrate on Figure [18] a complete interleaving of executions between the control layer
and the guest layer for a simple example application, and a reactive part comprising device
automata of Figures (b)7 and along with the controller of Figure The time goes
from left to right. For sake of simplicity, we trace the states of the controller, the ADC and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:14 Authors' version

Guest Thétworking H l l | l D :J
L
AT ade_o T e ﬁfé%"i‘a'c"'"}id"c'"o'ﬁf'éﬁi'é'r"ii """""""""""""""""""""
e A O EEETVEAAC O CMVET N

C timer, \ezpzred aok nmerzw expired timer) lexpired \ aa& aak umk, to_ done

CL adeon ! enter_ty adcLoff enter_ tx

. |

of @ [l @ @) e [G

ADC |-+ @D +| QO |-+ |-+ O T O

Radio-| |-+ QD> | |||+ | |- 0> - PO || Woum
. A‘ enter | m() f) f adc off() entervl ‘ enter,vlpm()
Mexpired adc,on(expireds ezpired; enter_ tX Z Tqtx_done

" control flow 4 callback -} on_sw(r) A hardware request [_|tick.run_step() E]E]guest tasks execution

Fig. 18. Example execution. Inputs and outputs of the reactive part are shown only if they are relevant.

the radio transceiver between reactions. We also depict the role of the adaptation layer in
this process by describing the software requests emitted to the control layer.

The guest layer is composed of two tasks; one performs the sensor management by using
the ADC (Tgepsing); and the other periodically operates on the radio network (T peryorking)-
Executions of these two tasks are triggered by two distinct timers. Again, consider the CPU
is initially in one of its low power modes.

First, the hardware event irq,zpireq, Occurs, and triggers an execution of the reactive part.
This outputs the timer;_expired signal, and the react() function launches the associated
callback. This callback restarts the Tgepsing task execution, returns, and then the guest
layer can continue its execution (the main() function calls run_guest()).

Upon emission of a software request by this task (a call to on_sw(adc_on)), a new reaction
is triggered. Since the complete tick automaton is in state FreexOffxIdle at this time, this
input triggers the transition taken as example in Section [£.5.3} the request is then approved
and it turns the ADC on (the low-level adc_on() function is called). The request returns
ack,, and the task stops its execution: the main() function can then call enter_lpm().

Ibid, when irqegpireq, occurs and wakes up the CPU, the task Tnetworking is scheduled.
While computing, this task is interrupted by an irgepireq, hardware event, a reaction, and
then a new call to the callback associated with timer;_ezxpired. In turn, this callback enables
a new execution of the sensing task. When exiting the interrupt handler, the networking
task continues its execution, and tries to put the radio transceiver in its emitting mode
(on_sw(enter_tx)). While the controller is in state Adc, it does not allow this software
request, and its result is ack, so the networking task can choose to yield and retry later.

Afterwards, the sensing task executes and turns the ADC off (on_sw(adc_off)); the as-
sociated reaction executes the adc_off() function, and updates the state of the controller.
Eventually, the next emission of enter_tz is permitted and can succeed.

5. IMPLEMENTATION, CASE STUDY AND GUIDELINES FOR USING OUR SOLUTION

Let us now present a first assessment of our solution, based on a proof-of-concept implemen-
tation, and a case study to evaluate the impact of the adaptation of guest system software.
We first describe some technical choices for the implementation. Next, we detail the case
study, draw some guidelines, and measure the impact.

5.1. Technical Choices and Implementation

We have implemented the control layer on top of the hardware architecture described in Sec-
tion [3] We have tested it using the cycle-accurate platform and network simulator provided
with the Worldsens tools [Fraboulet et al. 2007].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:15

5.1.1. Implementation of the Reactive Part. We have implemented a reasonable and usable set
of device drivers so as to build up a working control layer on top of the Wsn430 hardware
platform. The reactive part has been implemented using the LUSTRE academic compiler
|Caspi et al. 1987]. We have manually designed a controller for all the devices and resources
of the platform. It ensures simple safety properties like state exclusions for shared resource
management, as well as reduction of current consumption peaks by avoiding reachability
of global states when two or more peripherals (such as ADC and radio transceiver) are in
their highest consumption modes.

5.1.2. Guest Layers. Regarding the guest layer, we have ported two operating systems that
could also run on the bare hardware, onto our control layer implementation.

Targeting CONTIKI. We already depicted CONTIKI in Section [3] Its adaptation required
writing a set of device drivers dedicated to the abstract hardware exposed by the control
layer. The writing of these drivers is easy, whatever the strategy for handling rejected
requests is: one could choose to retry requests after a given time, or return a dedicated
error code to let the application processes select a more suitable strategy.

Targeting a Multithreading Operating System. The second operating system ported onto
the control layer is a priority-based preemptive multithreading kernel we designed from
scratch. Writing adapted device drivers in this guest was similar to writing those of CONTIKI,
except for the task management and synchronization parts, as a result of the change of
concurrency model.

5.2. Presentation of the Case Study

The goal is to adapt an existing implementation of a piece of software, so that it accesses
the actual hardware through the control layer instead of the device drivers it is initially
meant to use. We show in the following section that this process requires limited changes
in the way the original software operates the hardware.

Original Software. In order to be convincing, we have chosen to port one of the most
sophisticated system-level services in wireless sensor networks, that is, an implementation of
a Medium Access Control (MAC) protocol, the part of the network stack responsible for the
management of the physical layer (radio transceiver) in the OSI model. More particularly,
it is an implementation of the X-MAC [Buettner et al. 2006|, a low-power MAC protocol
designed for WSNs. It comes from the SensTools suite [INRIA 2008| and has been designed
to run without any particular operating system support (as described in Section . Also,
it uses device drivers provided in the same suite as above, that drive the hardware platform
described in Section [3] The original CC1100 transceiver driver is a rather basic one: it
mostly acts as a wrapper of bus commands, and does not maintain the state of the device
internally.

Required Radio Transceiver Driver Capabilities. In order to support all the possible oper-
ating mode transitions required by the X-MAC protocol, the radio device driver automaton
integrated in the control layer needs to be slightly more complex than the one presented in
Figure[16}(b) of Section In practice, it has more controllable transitions. For instance,
it comprises an additional state that represents the transmit operating mode from which the
radio transceiver automatically jumps to listening mode when the packet is sent, without
prior notification to the MCU. Additionally, it features a low-power listening (aka, “Wake
on radio”) state, which reflects a sleep state where the device is automatically awakened
when it detects some radio signal.

5.3. X-MAC Original Implementation Details
We depict in Figure [19] the overall structure of the original X-MAC implementation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:16 Authors' version

(Routing Layer) |

N
av

| |

L7

X-MAC mac_init() mac send() [received_cb|[sent_cb |[error_cb | state, counters
7 2 A : frame_to_send flag |
; e By
i E];H;a_d:s,_ set_wor() ack_timeout() try_send() s_eerid_ata(._)-_ _ _ _ _ _ _ medium _busy(),
o] P P YR
L _I _____ ikl \—‘\\—\ 1= ;, /:—_’_—__—_-» ——————— N :_ —————— Y~‘_‘_‘_ —==d
Yoooeoes v oonirg() [;0 b Yooreoes Y on_irq() Fadio_irq_cH A
commands & A timery_c commands & adio_Irq_cq
configurations ¢> timerl_cb configurations -7
o
Timer Driver | . 7 ___ | timer2 cb CC1100 Driver § |....... L

| \ Hardware Platform g |

b hardware access _}"_ interrupt handling — function call ->|]—> indirect callback call

Fig. 19. Overall structure of the original X-MAC implementation, and the device drivers it uses. “Indirect
callback calls” denote calls through function pointers that can be changed dynamically.

5.3.1. Programming Model and Implicit Requirements. After a first call to its initialization func-
tion mac_init(), all internal computations are performed either during interruption handling
(i.e., a hardware event occurred) or on the initiative of the upper part of the network stack.
In other words, it uses an event-driven programming model, where events are hardware
interrupts, or direct function calls from other parts of the software stack.

The X-MAC can dynamically change the callbacks that the drivers call upon reception
of an interrupt request. For instance, radio_irq_cb can be set to point to a function, which
is then executed upon reception of the radio interrupt. At last, it also uses three alarm
counters of the timer concurrently, each being able to trigger the execution of a different
function, possibly periodically.

Using the X-MAC. Sending a packet requires calling mac_send(), which immediately re-
turns a non-null integer in case of erroneous usage, or zero if the sending process has
successfully started. Subsequently, the routing layer is asynchronously notified about the
final status of this operation by executions of callbacks: the function pointed to by sent_cb
is executed upon successful transmission of a frame; otherwise, the function pointed to by
error_cb is called (e.g., the channel is too busy). Additionally, received_cb can also point to
a function, which is then executed upon successful reception of a packet.

The return value of the callbacks can convey information on the subsequent state of the
CPU as needed by the upper layer.

Internal Structure and Usage Constraints. This implementation is actually the encoding
in an event-driven style of the X-MAC protocol state machine. Indeed, the state is encoded
at any time by the mapping from the callback pointers provided by the device drivers to
the callbacks of the X-MAC, plus a small amount of memory which persists across calls to
X-MAC’s functions. For instance, the set_wor() function, which puts the transceiver into a
low-power listening mode of operation, also sets up read_frame() as the function to be called
upon the next occurrence of the radio interrupt (radio_irg_cb — indicating that a packet
has arrived when the device is low-power listening). Additionally, a state variable (encoding
three very abstract states of the X-MAC — sleeping, transmitting or receiving), along with
an additional frame_to_send flag and two counters, make up the remaining of the X-MAC
internal state memory. Latter data serve two purposes: (i) detecting erroneous usage of the
X-MAC; (ii) deciding what is the actual state of the protocol upon certain events.

Moreover, this implementation is not reentrant, basically meaning that any function or
callback must never be called with interrupts enabled. It does not support concurrent re-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:17

1 /* ‘mac_send()’ copies the buffer iff it succeeds... */
2 if (mac_send (buffer, buffer_length, destination_address) != 0)

3 { ... } /* Usage error (either the given packet is too long or there is one

4 to send already). */
5 /* Do some more work, without detecting if the packet has effectively

6 been sent, or that an error occurred (both detectable by ezecutions of

7 callbacks pointed to by ‘sent_cb’ or ‘error_cb’). */
8 /* Potential fatlure: the MAC may still be sending the packet given on line . */
o if (mac_send (buffer, buffer_length, destination_address) != 0)

w { ...} /* Usage error again... */

Fig. 20. Example erroneous usage of the X-MAC implementation: the call to mac_send() on line|§|Will most
probably fail, if the computation since line [2]is not long enough to let the MAC successfully send the first
packet.

1 static uintl6_t send_data(void) { /* Sends a frame contained in tzframe. */
2 timerB_unset_alarm (ALARM_PREAMBLE) ; /* Unset alarm. */
3 ¢ccl100_cmd_idle (); /* Goto idle operating mode. */
4 ccl100_cmd_flush _rx (); ccl1100_cmd_flush_tx(); /* Flush FIF0s. */
5 /* Dictate the device to enter idle mode upon end of transmission: */
6 ccl100_cfg_txoff_mode(CC1100_TXOFF_MODE_IDLE);

7 ¢ccl1100_emd_tx (); /* Goto transmit mode */
s ¢ccl100_fifo_put((uint8_t*)(&txframe.length), txframe.length+1);

9 /* Setup function to be executed upon end of transmisstion: */
10 ¢ccl100_gdoO_register_callback(send_done);

11 return 0; /* Indicate we can stay in low-power mode, if we were already. */
12 }

Fig. 21. A piece of code of the original X-MAC implementation.

quests from the routing layer neither: as exemplified in Figure any call to mac_send()
must be followed by an execution of a function pointed to by either sent_cb or error_cb,
before mac_send() can be called again.

5.3.2. Example Function. Figure [21| presents a listing of one of the functions of this MAC. It
initiates the transmission of the contents of txframe, and is always explicitly called by other
functions (i.e., never assigned as hardware event handler).

First, it disables a timer that can still be enabled at this execution point (line [2) and
prepares the physical device for the transmission (lines [3] to [8). The behavior of the radio
device is configured on line [f] to automatically go into idle mode once the packet is trans-
mitted. The values of state and frame_to_send are left unchanged (a simple analysis of the
call-graph indicates that their value always indicates that the MAC is currently transmitting
a packet). Lastly, the callback associated with the radio interrupt (at this execution point
always configured to be received upon end of transmission), is modified to the send_done()
function on line

5.4. Principles of the Adaptation

Identifying States of the Device. In order to adapt the X-MAC implementation we have
described above, hardware devices operating mode transitions and configuration accesses
need to be identified, and translated into appropriate software requests emitted to the
control layer. This task is performed by reverse engineering the original implementation,
and guessing the actual state of the device from the commands issued to its driver; since the
latter does not track any state-related data, the required information needs to be incurred
from the implicit control flow of the X-MAC (i.e., the call-graph is not sufficient due to the
event-driven style of the encoding).

Once this information is extracted, the original commands are replaced with calls to
functions of the adaptation layer, that issue state transition requests.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:18 Authors' version

Refused Request Handling. As stated in Section special care needs to be taken to
handle potentially refused requests. Several choices are most often possible when adapting
software. For instance, a (possibly unbounded) number of retries can be chosen when adapt-
ing a function that is never expected to fail (i.e., no error handling mechanism is provided
to notify the upper software layers about failures). Doing so, the caller of such a procedure
does not need to be modified.

5.5. Porting the X-MAC

Figure [22] presents the code resulting from an adaptation of the original code of Figure
Clearly, some of the commands sent to the radio transceiver can be directly translated into
appropriate software requests sent to the control layer, as it is the case for the line [3|in the
listing of Figure[21] resulting in the lines[22)to[26]in Figure[22] Further error handling mech-
anism could be easily employed since the X-MAC already exposed the error_cb callback. By
using this solution, a request refused every try (in the radio_idle() or radio_send() wrappers)
would be seen by the routing layer as an unsuccessful sending. Detailed information could
also be given as argument to this callback, in order to indicate what caused the error, so
the routing layer can take more suitable decisions.

Also, the command on line [7] in the original code of Figure has led to the use of a
transmit state that directly enters into idle mode upon end of emission. Hence, for our
example radio transmitter driver, the radio_send() function called on line [29| in Figure
emits signal enter_tz to the control layer; this function is similar to radio_idle(), yet it also
manages parameters of the request.

At last, dynamic interrupt handler assignments were straightforwardly translated into
assignment of callbacks to outputs of the control layer. In Figure line registers
send_done(); after executing this instruction, the given function will be called upon emission
of tx_done by the control layer, i.e., upon end of transmission.

Debugging the X-MAC. Figure 23] presents an additional possible adaptation of the orig-
inal code of Figure that can be very helpful for debugging the X-MAC protocol imple-
mentation. In a context of non-controllable radio device driver in the control layer, this can
reveal incorrect use of the radio, such as use of non-existent operating mode transitions.

5.6. Generalization

Adapting the X-MAC required converting 28 commands into appropriate calls to 9 distinct
functions of the adaptation layer, each similar to the one presented in Figure More than
85% of the original 700 lines of C code remained unchanged.

The X-MAC is a rather sophisticated piece of software, yet it required a limited amount of
modifications. Moreover, the adaptation relies on general principles for the identification of
states. We think we have now a reasonable guarantee that the method is widely applicable.

6. EVALUATION, DISCUSSION AND EXTENSIONS

The technical elements we have described in Section 5.1 constitute a complete proof of con-
cept, for the implementation of centralized resource control policies in a paravirtualization
framework. The implementation runs on top of a quite detailed emulator, which is a rea-
sonable guarantee that it will also work on the real hardware.

Providing global property enforcement necessarily introduces some computation and
memory overhead. In order to show that the proposed solution is practicable, we now
estimate this overhead compared to available data about existing OSes for WSNs.

6.1. Quantitative Evaluation of our Solution

The memory footprint of the tick is about 1.5 to 2 KB (recall that the size of the tick is
linear in the size of the individual automata descriptions, as stated in Section . Stack

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:19

1 /* Ezample wrapper function for radio management through the control layer.

2 This function is part of the adaptation layer. */
3 extern status_t radio_idle (void) {

4 /* Some arbitrary value defining the mazimum number of retries; we could

5 also make it an argument, retry infinitely, etc.: */
6 const uint8_t max_tries = 8; uint8_t tries = 0;

7 cl_outputs_v received; /* This will be assigned by ‘on_sw()’. */
s on_sw (ccll00_idle, & received); /* First try. */
9 while (! cl_outputs_test (received, cc1100_ack) && /* While we... */
10 tries++ != max_tries) /¥ ... do not receive the acknowledgment: */
11 ... /* Some code to be ezecuted on forbidden request... note that it can

12 be a call to a blocking function (e.g., for waiting some time); */
13 on_sw (ccll00_idle, & received); /* Nezt try. */
14 /* Return an error code on constant refusal: */
15 return cl_outputs_test (received, ccl100_ack) ? SUCCESS : —EFAIL;

16 }

17

18 /* Adapted function for sending data, with advanced refusal handling. */
10 static uintl6_t send_data (void)

20 timerB_unset_alarm (ALARM_PREAMBLE); /* Unset alarm. */
21 /* Goto idle operating mode (this also flushes the buffers): */
22 if (radio_idle () != SUCCESS)

23 /* The request has been refused, we can choose to notify the error;

24 one could also try to enter in low-power listening here. (%) */
25 if (error_cb) /* Notify, if we have an error handler. */
26 return error_cb (); /* We could also pass a detailed error code. */
27 /* Setup function to be executed upon end of transmission: */

28 radio_register_transmission_done_cb (send_done);
20 if (radio_send ((uint8_t*)(&txframe.length), txframe.length+1) != SUCCESS)

30 if (error_cb) return error_cb (); /* Ibid (%) */
31 return O; /* This wvalue is ignored by the control layer actually. */
32 }

Fig. 22. Possible adaptation of original code of Figure [21] with advanced refused request handling.
radio_idle() and radio_send() are parts of the adaptation layer: they emit input requests to the control
layer, manage the data-path (e.g., payload), and deal with the outputs (by using, e.g., cl_outputs_test() that
tests if a given signal belongs to a set of outputs from the control layer). radio_idle() is given as example: it
tries to emit the cc1100_idle signal several times until it receives the acknowledgment, otherwise it returns
an error code.

1 /* Addapted function for sending data (debug version). */
2 static uintl6_t send_data (void)

3 timerB_unset_alarm (ALARM_PREAMBLE); /* Unset alarm. */
4 /¥ Goto idle operating mode (this also flushes the buffers): */
5 assert (radio_idle () = SUCCESS);

6 /* Setup function to be exzecuted upon end of transmission: */
7 radio_register_transmission_done_cb (send_done);

s assert (radio_send ((uint8_t*)(&txframe.length),txframe.length+1) = SUCCESS);
9 return 0; /* This value is ignored by the control layer actually. */

10 }

Fig. 23. Another way of adapting the original code of Figure[21] useful for debugging the usage of the radio
device by the X-MAC. The assert() function is a debugging tool that usually prints an appropriate error
message, and then blocks execution forever, if its argument evaluates to false.

space required for its computation is about 100 bytes, but it could be shared among all
guest threads since there is always at most one call to the tick at a time. Other parts of the
control layer mainly comprise the low-level code of the device drivers that would be in the
guest otherwise. Rough implementation of the event-management part occupies 1 KB.

Let us now define the time overhead. The total time it takes to execute the tick once
corresponds to: (i) executing code in the event-management part that feeds the tick; (ii)
computing the next states of the compiled automata; (iii) possibly executing some low-level

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:20 Authors' version

Table I. Typical memory footprint of some existing OSes deployed on actual WSNs, with various sensor
drivers and network modules. The “MtK/Control Layer” column represents our multithreading kernel
and control layer implementation (TinyOS and RETOS data are taken from |Cha et al. [2007]).

| TinyOS-1.1 (minimal kernel) | TinyOS-1.1 | RETOS kernel | MtK/Control Layer
ROM 11.2 KB 21 KB 23.1 KB 24 KB
RAM 311 B 798 B 824 B 806 B

Table Il. Typical overhead of ICEM decentralized shared resource arbiters and device power managers (more
details about ICEM in Section [7.2)), compared to our global control implementation.

ICEM with n arbiters & m power managers ‘ one transition of the compiled automata in the tick
=~ 350n 4+ 400m CPU cycles ‘ ~ 1,600 CPU cycles

code. (i) is negligible compared to (ii) since sets of requests are implemented as small bit-
arrays; (iii) must be executed whatever the solution for resource control is. Hence the time
overhead is the time needed for (ii). For instance, if the automaton of Figure [L6}(b) is
in state Idle, the overhead of on_sw(enter_rz) is the computation of the transitions of the
compiled automata, without the time spent in low-level code like enter_rx().

More precisely, the time overhead is due to a sequence of Boolean operations (as in the
body of run_step() in Figure [3)): it is independent of the inputs, so the worst case can be
obtained with one measure. We get it as the time of a call to tick.run_step(), with an event
made of a software request that is refused, so that no low-level code is executed: it takes
roughly 1,600 CPU cycles (200us on an MSP430 clocked at 8MHz) in our proof-of-concept

implementation.

Comparison with Existing Solutions. There are no available figures about other solutions
for global control in WSN OSes, so we compare the results for our implementation with
existing solutions involving localized resource control. We sum up in Table [[] the memory
footprint of some of these OSes. Compared to these results, our solution involves a code
size increase of less than 10%. This memory overhead is very realistic w.r.t. the benefits of
global resource control that our approach can manage.

Table [lI| compares overheads of decentralized control in the ICEM framework [Klues et al.
2007] and our proposal. The order of magnitude of the overhead introduced by our solution
for global control and power management is reasonable, even if the tick is run for each
software or hardware request.

6.2. Qualitative Evaluation

Developing a device driver for the control layer having the associated automaton in mind,
reveals simpler than for classical OSes. Because in our approach, a clear distinction is made
between low-level code that affects device operating modes, and effective application code.

The example adaptation process depicted in Section [5| shows that our solution involves
a slight modification of parts of the guest software for refused request handling. Yet, we
claim that the needed modifications have the advantage of making such error case handling
explicit (and almost mandatory). It thus helps the software programmer in achieving a neat
design, even for device drivers and OS services.

6.3. Towards Using Automatic Controller Synthesis

For this paper, we built controllers by hand, for simple safety properties like mutual exclu-
sion. We used model-checking to check that the controller indeed enforces the properties.
Yet, for more complex properties, and bigger systems, it is quite natural to try and use tools
able to compute controllers automatically. There are not so many tools available, however,
since research on controller synthesis is quite theoretical. In the synchronous community,
we know of only one, called S1GALI [Marchand et al. 2000|, developed for the language S1G-
NAL. Delaval et al. [2010] integrated this particular tool-chain into BZR, a language and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:21

framework designed for investigating modular compilation. BZR has been used to generate
system code in |Bouhadiba et al. 2011].

The controller synthesis algorithms are meant to produce the most permissive controller,
which is often non-deterministic (for instance, to guarantee mutual exclusion, the controller
makes a non-deterministic choice among potential users of the resource, when they are
simultaneous; the simplest way to make the controller deterministic is to keep only one
choice among the ones allowed). A tool like SIGALI implements those algorithms, plus a
determinization phase, in order to produce a piece of C code that can be used as the actual
controller. BZR also produces the controller as a C function FC.

We experimented with BZR, using it mainly as a wrapper of SIGALI. We first compose
all the device automata at the synchronous language level, then compile the result into a C
function FD. We call FC from FD, which is a trick to compose the controller with the device
automata. Non-determinism is removed by choosing static priorities between the users of a
resource. For the example described in the paper, the experiment is not entirely satisfactory.
FC is quite big, thus leading to a noticeable overcost in the size of the code.

In fact, in our approach, we need to use the controller synthesis tool as a building block
in a compiler, which is a non-intended use. In particular, we need to further compose the
controller with other synchronous subprograms, and is not possible in the general case if it
is given as an already sequentialized piece of C code. The ideal tool chain would produce
the controller as a deterministic Mealy automaton with oracles (i.e., a non-deterministic
choice between two transitions t; and ts is encoded by adding conditions ¢ on ¢; and —i
on tg, i being an additional oracle input). This automaton could then be composed freely
with the driver automata. When a non-deterministic choice is due to two users asking for a
resource at the same time, the choice could be resolved by composing the controller with a
kind of fair scheduler, giving the resource to each user, in turn (technically, such a scheduler
is an automaton emitting the oracle inputs of the controller). At the end, the synchronous
program resulting from the composition of all these automata would be compiled into C.

The research groups working on SIGALI and BZR have similar concerns. They are cur-
rently working on more modular implementations of the controller synthesis algorithms,
able to produce a controller as a program in some synchronous language, not as a C func-
tion. This is very promising for our purposes, because this will give us complete control on
the removal of non-determinism, and it is likely to produce smaller code.

6.4. Deadlock Problem Considerations

Consider the following case, in our solution: a guest task 77 (resp. T») controls a resource
Ry (resp. Rz), in such a way that Ty (resp. T») is in state 1 (resp. ¢2) if and only if the
resource Ry (resp. Rg) is in state r1 (resp. rq). If a global property to be enforced forbids
the state (r1,72) for the resources, then the state (¢1,t2) is forbidden for the guest tasks.
If the application wants to reach the state (¢1,t2), and depending on the way the global
property is programmed, this may reveal as a deadlock, or as a livelock.

Anyway, enforcing global properties which are not compatible with the application, may
lead to intrinsic deadlocks, whatever the solution used. In our solution, these deadlocks are
easier to detect. Results from [Wang et al. [2009] suggest that potential deadlocks can be
detected by modeling the guest tasks into the control layer: a possible deadlock, as any
unenforceable property, leads to unsuccessful synthesis of a controller. See next section for
the problem of modeling tasks.

6.5. Extensions

The approach can be extended to treat more complex cases.

We may need to give some guest tasks a direct access to the hardware resources. Consider a
multithreading OS guest, and a guest task that prints reports by directly sending characters
through an UART, connected to a bus. Another device (e.g., the flash memory) uses the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:22 Authors' version

same bus. We need some control for bus accesses, but since the task has a direct access to
the hardware, it seems this cannot be done with our approach. In fact it can, by considering
the task as an additional object similar to a device. We model its behavior with a two-state
automaton (using the bus, or not) and controllable transitions, and we add this automaton
to the set of automata for which we have to design a global controller. Then, we need to
make sure that this two-state automaton always reflects the real state of the task. When the
controller forbids a transition from the state “not using the bus’ to the state “using the bus’
of the task model, it also communicates with the guest scheduler, requesting him to remove
the task from the list of eligible tasks. This mechanism is such that a global invariant is
maintained: whenever the task is running (and accessing the bus), the control layer is in
state “using the bus’ and prevents other devices from using the bus.

Our approach can also be extended to ensure that the CPU is always in the lowest
consumption mode possible. Note that the MCU should not be put in a mode M from
which only external interrupts can exit, if there is no chance for such external interrupts
to happen. Information on which external interrupts may occur is given by the states of
the automata that model the hardware devices. We model the MCU by an automaton in
which all the available mode changes are controllable transitions. The “best low-power mode”
objective can then be stated as an invariant property (avoid the global states in which the
MCU is in a mode M, and the interrupts that can occur in this state cannot exit M), plus
a quality objective (among all the remaining states, choose the one corresponding to the
lowest consumption mode).

7. RELATED WORK
7.1. Operating Systems for WSNs

Whereas originally designed for real-time embedded systems, MANTIS [Bhatti et al. 2005|
has been ported to some WSN platforms. It is a priority-based preemptive multithreaded op-
erating system and has shown the power of this concurrency model for WSNs by enabling
the implementation of lengthy tasks. RETOS [Cha et al. 2007] and Nano-RK |Eswaran
et al. 2005] are also multithreaded operating systems. However, neither MANTIS nor RE-
TOS provide support for global resource management. Nano-RK provides static reservation
mechanisms for energy and timing management of applications.

TiNYOS [Hill et al. 2000] is the most widely known operating system for WSNs. It is
fully component-based, event-driven and based on the nesC language |Gay et al. 2003|, thus
facilitating composition and reuse of previously written code. Component connections ex-
press the overall structure of the operating system along with the application. Nevertheless,
building complex applications exploiting a broad range of the available devices supplied by
a platform implies using dozens of components, hence leading to component bindings and
interactions that are hard to apprehend globally.

7.2. Energy Management for WSN Nodes

Several works addressed the problem of energy management within a WSN node by means
of a dedicated device driver architecture. The following ones are close to our proposal.
Klues et al. [2007] propose to address both concurrency and energy requirements in
a single framework called ICEM, a core component of TINYOS 2.0. The key idea is to
offer a driver interface based on (potentially concurrent) application I/O requests to better
control the power states of the devices. From the application point of view, this concurrency
level can be expressed by means of distinct driver classes. Virtualized drivers allow implicit
concurrency between multiple users. Client requests are buffered and scheduled according
to some desired properties (e.g., fairness), and a per-client state is maintained to control the
power state of the device. Shared drivers also support multiple users, but they offer a lower
level of interface in terms of (power) locks: each client should acquire a lock before using

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

Authors’ version A:23

a shared driver. A special component, the power manager, is responsible for implementing
the energy management policy of a shared driver (e.g., powering off this driver as soon as
its associated lock is idle). The ICEM’s architecture leads to a decentralized energy and
resource management scheme, split among driver classes.

Choi et al. [2008| suggested a global device driver architecture dedicated to multithreaded
WSN OSes. This architecture also provides three kinds of driver models (offering several
trade-offs between performance and complexity), and some global operating system services
to control shared access and energy consumption through a device manager. This control
is performed by means of a fixed set of dedicated request functions (either non blocking, or
with a specified waiting time). Thanks to a centralized data structure indicating the current
state of each device (and some specific device control functions) the device manager can
assign the best suitable low-power state to the MCU and to each hardware element.

Although this proposal is close to our work in the sense that it offers a global control, it
suffers from some drawbacks and limitations. The multithreaded device manager is certainly
hard to write due to the concurrent shared access management and the use of multiple locks.
Liveness problems may also occur, and not all devices are controlled (e.g., the timers are
left uncontrolled, although they can impact the best low-power mode).

Other approaches have been proposed where the application logic is not involved in re-
source management decisions. ECOSystem |Zeng et al. 2002| is a general purpose operating
system that integrates an explicit notion of “energy resource” into the scheduling mecha-
nism of shared system devices. Eon [Sorber et al. 2007] can be viewed as an energy-aware
data-flow programming language, where flow paths within programs are annotated with
energy states by the programmer. Then, at runtime, Eon “adapts” the application code by
selecting a suitable dataflow path according to current energy availability.

Pixie OS |Lorincz et al. 2008| is a more recent operating system dedicated to sensor nodes.
It borrows some ideas from ECOSystem and Eon. Its purpose is to enable some resource-
aware programming model with respect to energy, radio bandwidth, storage, etc. It relies
on a dataflow model plus a notion of resource tickets to abstract the allocation of physical
resources. Resource management policies can be enforced by means of (dedicated) resource
brokers that deliver resource tickets to the application. The notion of “broker” is rather
close to the global controller we propose. However, it differs in several points: first, brokers
are dedicated to specific resources, meaning that a broker competition could be necessary
to enforce global properties (related to several resources); second, correctly estimating an
energy quantum for a given work unit could be a difficult task, and a too conservative
approach could degrade the node performance; finally, there is no general technique for
designing a “correct” broker with respect to a given policy.

7.3. Automated Control and Operating Systems

The research community on computing systems, in particular operating and distributed sys-
tems, has been showing interest for the use of control theory for some years now.|[Abdelzaher
et al. [2008] present a very good introduction to the field, and exposes several applications,
among which power control.

7.4. Formal Models for Driver Design

In [Wang et al. 2009], formal models of drivers are used as an abstract specification, from
which the code can be produced. The whole approach is comparable to our use of automata
labeled by function calls for the low-level programs.

In |Chis et al. 2009|, formal models are used to map a MAC algorithm on top of a complex
radio device; the radio device has more states than the functional states that matter for the
software. The proposed method may allow, for instance, to specify in the MAC algorithm
that the radio should go from idle to transmit mode; the formal model of the radio device is
then used to transform this functional behavior into a more complex behavior of the radio,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

A:24 Authors' version

which needs to go through various states of different energy levels between idle and transmit.
The mapping algorithm could be formulated as a control objective, with controlled events
forcing transitions instead of inhibiting them, but this would need further investigation.

8. CONCLUSIONS AND FURTHER WORK

We proposed a software architecture for embedded systems, allowing for global control of the
hardware devices. The advantages of the approach are: (i) a clear expression of the global
control objectives, that helps designing the global controller; (ii) the use of a synchronous
language for the control layer, which makes it possible to compile the set of drivers and the
controller into a piece of statically-scheduled efficient code; (iii) the easy extensibility of an
existing control layer. Our method requires a slight adaptation of the application software,
but does not change the way it is designed and programmed. We showed how to modify an
existing piece of software to run it on top of our control layer; the method used is sufficiently
general to be applicable to a large set of low-level software.

Further work will follow three main directions. First, we will study situations in which
the applications may need to book some resources in advance, to prevent their requests
from being canceled; this can be done with more complex automata for the resources, but
essentially the same kind of controller as presented in this paper. Second, we will follow
the advances in automatic controller synthesis tools, and adapt them to our context. A
longer term perspective is to implement the whole software of a node in some synchronous
language, and to perform static analysis and then static scheduling. When the application
is written using event-driven programming, as in TINYOS for instance, it would not change
the practice a lot to write it in the kind of automaton-based language we used here (the
automata exchange signals in a synchronous way to express the synchronization, and this
mechanism is indeed compiled; their transitions are also labeled by calls to pure C code,
allowing for an easy reuse of, e.g., the protocol stack). This would provide both: structured
event-driven programming with no additional runtime cost, and a formal model of the whole
system that can be analyzed before it is deployed.

References

ABDELZAHER, T., Di1ao, Y., HELLERSTEIN, J. L., Lu, C., anD ZHuu, X. 2008. Introduction to control
theory and its application to computing systems. In Performance Modeling and Engineering, Z. Liu
and C. H. Xia, Eds. Springer US, Boston, MA, USA, 185-215.

Artisen, K., Cropic, A., MaraniNcHI, F., AND RuTTEN, E. 2003. Using controller-synthesis techniques
to build property-enforcing layers. In Proceedings of the 12th European Conference on Programming.
ESOP’03. Springer-Verlag, Berlin, Heidelberg, 174-188.

BENVENISTE, A., Caspi, P., EDwaRDS, S. A., HaLBwacHs, N., LE GueErNic, P., AND DE SIMONE, R.
2003. The synchronous languages 12 years later. Proc. of the IEEE 91, 1, 64-83.

BuarTi, S., Caruson, J., Dai, H., DeEng, J., Rosg, J., SHETH, A., SHUCKER, B., GRUENWALD, C.,
ToRGERSON, A., AND Han, R. 2005. MANTIS OS: an embedded multithreaded operating system for
wireless micro sensor platforms. Mob. Netw. Appl. 10, 563-579.

BounapiBa, T., SaBan, Q., DeELavaL, G., aND RuTTeEN, E. 2011. Synchronous control of reconfiguration
in fractal component-based systems — a case study. In Proceedings of the 11st ACM International
Conference on Embedded Software. EMSOFT ’11. ACM, New York, NY, USA.

BueTTNER, M., YEE, G. V., ANDERSON, E.; AND Han, R. 2006. X-MAC: a short preamble MAC pro-
tocol for duty-cycled wireless sensor networks. In Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems. SenSys ’06. ACM, New York, NY, USA, 307-320.

Casp1, P., Piraup, D., HaLBwacHs, N., aND Praicg, J. A. 1987. LUSTRE: a declarative language for
real-time programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. POPL ’87. ACM, New York, NY, USA, 178-188. The LUSTRE compiler is
available at http://www-verimag.imag.fr/The-Lustre-Toolbox.html!

Casp1, P., Scarrg, N., Sorronis, C., AND TRiPAKIS, S. 2008. Semantics-preserving multitask implemen-
tation of synchronous programs. ACM Trans. Embed. Comput. Syst. 7, 15:1-15:40.

CHa, H., CHoi, S., Jung, I., Kim, H., SHiN, H., Yoo, J., anD Yoon, C. 2007. RETOS: resilient,
expandable, and threaded operating system for wireless sensor networks. In Proceedings of the 6th

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

http://www-verimag.imag.fr/The-Lustre-Toolbox.html

Authors’ version A:25

International Conference on Information Processing in Sensor Networks. IPSN ’07. ACM, New York,
NY, USA, 148-157.

CHANDRA, V., HuaNGg, Z., AND KuMAR, R. 2003. Automated control synthesis for an assembly line using
discrete event system control theory. IEEE Trans. Syst. Man and Cybernetics 33, 2, 284—289.

Cuis, A., FLEURY, E., AND FrRABOULET, A. 2009. An optimized MAC layer to physical device mapping
methodology. In Proceedings of the 6th International Conference on Mobile Technology, Application &
Systems. Mobility '09. ACM, New York, NY, USA, 47:1-47:8.

CHol, H., Yoon, C., anD CHA, H. 2008. Device driver abstraction for multithreaded sensor network oper-
ating systems. In Proceedings of the 5th European Conference on Wireless Sensor Networks. EWSN’08.
Springer-Verlag, Berlin, Heidelberg, 354—-368.

DerLavaL, G., MARCHAND, H., AND RUTTEN, E. 2010. Contracts for modular discrete controller synthesis.
In Proceedings of the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and Tools
for Embedded Systems. LCTES ’10. ACM, New York, NY, USA, 57-66.

DunkELs, A., GRONVALL, B., AND VoigT, T. 2004. Contiki - A lightweight and flexible operating system
for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks. LCN ’'04. IEEE Computer Society, Washington, DC, USA, 455-462.

DunkEeLs, A., Scumipt, O., Voiar, T., AND ALri, M. 2006. Protothreads: simplifying event-driven pro-
gramming of memory-constrained embedded systems. In Proceedings of the 4th International Confer-
ence on Embedded Networked Sensor Systems. SenSys ’06. ACM, New York, NY, USA, 29-42.

Eswaran, A., Rowg, A., aAND Raskumar, R. 2005. Nano-RK: An energy-aware resource-centric RTOS
for sensor networks. In Proceedings of the 26th IEEE International Real-Time Systems Symposium.
IEEE Computer Society, Washington, DC, USA, 256-265.

FraBouLET, A., CHELIUS, G., AND FLEURY, E. 2007. Worldsens: development and prototyping tools for

application specific wireless sensors networks. In Proceedings of the 6th International Conference on
Information Processing in Sensor Networks. IPSN ’07. ACM, New York, NY, USA, 176-185.

Gay, D., Levis, P., von BEHREN, R., WELsH, M., BREWER, E., AND CULLER, D. 2003. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation. PLDI 03. ACM, New York,
NY, USA, 1-11.

GIirauLT, A. AND RuTTEN, E. 2009. Automating the addition of fault tolerance with discrete controller
synthesis. Form. Methods Syst. Des. 35, 190-225.

Hiuwn, J., Szewczyk, R., Woo, A., HoLLAR, S., CULLER, D., aAND PisTER, K. 2000. System architecture
directions for networked sensors. SIGOPS Oper. Syst. Rev. 34, 93-104.

INRIA 2008. SensTools. INRIA. http://senstools.gforge.inria.fr/.

Krugs, K., Hanpziski, V., Lu, C., Wouisz, A., CULLER, D., Gay, D., aND Levis, P. 2007. Integrating
concurrency control and energy management in device drivers. SIGOPS Oper. Syst. Rev. 41, 251-264.

Lorincz, K., CHEN, B.-R., WATERMAN, J., WERNER-ALLEN, G., AND WELSH, M. 2008. Resource aware
programming in the Pixie OS. In Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems. SenSys '08. ACM, New York, NY, USA, 211-224.

MaranincHI, F. AND REMonD, Y. 2001. Argos: an automaton-based synchronous language. Comput.
Lang. 27, 1-3, 61-92.

MarcHAND, H., Bournal, P., LE BoraNE, M., AND LE GuernNic, P. 2000. Synthesis of discrete-event
controllers based on the signal environment. Discrete Event Dynamic Systems 10, 325-346.

Ramapce, P. J. G. anD WonHAM, W. M. 1989. The control of discrete event systems. Proc. of the
IEEE 77, 1, 81-98.

SORBER, J., Kostapinov, A., GARBER, M., BRENNAN, M., CorNER, M. D., aND BErGER, E. D. 2007.
Eon: a language and runtime system for perpetual systems. In Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems. SenSys ’07. ACM, New York, NY, USA, 161-174.

Wanga, Y., Larortung, S., KeLry, T., KubLur, M., AND MAHLKE, S. 2009. The theory of deadlock
avoidance via discrete control. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL '09. ACM, New York, NY, USA, 252-263.

WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. 2002. Scale and performance in the Denali isolation kernel.
SIGOPS Oper. Syst. Rev. 36, 195—209.

Zeng, H., Eruis, C. S., LEBECK, A. R., AND Vanpar, A. 2002. ECOSystem: managing energy as a first
class operating system resource. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS-X. ACM, New York, NY, USA,
123-132.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: March 2013.

http://senstools.gforge.inria.fr/

	Introduction
	Resource Control in Embedded Systems
	Need for Global Control
	Problem Formulation and Proposal
	Synchronous Programming and Controllers
	Programming Model and Adaptation of Existing Software

	Contributions and Structure of the Paper

	Background on Synchronous Languages
	Example Platform and Usual Programming Practices
	Principles of the Solution
	Main Structure
	The Adaptation Layer
	Overview of the Control Layer
	Structure
	Example Execution Paths

	Details on the Event-Management Part
	MCU State Management
	Handling Requests from the Hardware
	Handling Requests from the Software
	Running the Reactive Part

	Details of the Reactive Part
	Device Driver Automata
	The Controller Automaton
	The Compiled Automaton

	A Complete Example Execution

	Implementation, Case Study and Guidelines for Using our Solution
	Technical Choices and Implementation
	Implementation of the Reactive Part
	Guest Layers

	Presentation of the Case Study
	X-MAC Original Implementation Details
	Programming Model and Implicit Requirements
	Example Function

	Principles of the Adaptation
	Porting the X-MAC
	Generalization

	Evaluation, Discussion and Extensions
	Quantitative Evaluation of our Solution
	Qualitative Evaluation
	Towards Using Automatic Controller Synthesis
	Deadlock Problem Considerations
	Extensions

	Related Work
	Operating Systems for WSNs
	Energy Management for WSN Nodes
	Automated Control and Operating Systems
	Formal Models for Driver Design

	Conclusions and Further Work

