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On the existence of vector elds with nonnegative divergence in rearrangement-invariant spaces

We investigate the existence of solutions of div F = ; on R d :

(*)

Here, 0 is a Radon measure, and we look for a solution

where X is a rearrangement-invariant space.

We rst prove the equivalence of the following assertions: (i) (*) has a solution for some nontrivial ; (ii) the function

Here, B is the unit ball in R d . We next investigate the solvability of (*) when is xed. A su cient condition is that I 1 2 X, where I 1 is the 1-Riesz potential of . This condition turns out to be also necessary when the Boyd indexes of X belong to (0; 1).

) when X = L p .

f = g (we recall that f (t) = (fx 2 Y j jf (x)j > tg) for all t 0). Here are few examples: the Lebesgue spaces L p , the Lorentz spaces L p;q , the Orlicz spaces (L).

In our case we will always have Y = R d and = m will be the Lebesgue measure on R d . In this setting, we will use the following version of Theorem 4.8 in [1], p. 61:

We will study the existence of solutions in di erent function spaces for the divergence equation div F = ; on R d ;

(

where is a nonnegative Radon measure. Here, d 2.

Our work is motivated by the following result of Phuc and Torres:

Theorem 1. (Theorem 3.1 in [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF]) Let 1 p d=(d 1) and let be a nonnegative Radon measure on R d . If there exists a vector eld F 2 L p (R d ! R d ) such that div F = on R d , then we have that 0.

The proof given in [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF] uses the Calder on-Zygmund theory. More speci cally, assume that (1) has a solution F in L p . It is shown rst that the 1-Riesz potential I 1 of , de ned by the formula where R j are the Riesz transforms and c d is a constant only depending on d. Now, since F 2 L p , the Calder on-Zygmund theory ensures that I 1 2 L p , whenever p > 1, and that I 1 2 L 1;1 , if p = 1. However, since we have the trivial inequality I 1 (x) (B(0; R))

I 1 (x) = Z R d
(jxj + R) d 1 ; for any R > 0;

we must have (B(0; R)) = 0 for all R > 0. Indeed, the function (jxj + R) 1 d is never in L 1;1 or an L p space for p 2 (1; d=(d 1)]. Therefore 0.

Also, using functional analytical methods, in [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF] is proved (this follows easily from Theorem 3.2 and Theorem 3.3 from [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF]) that the constant d=(d 1) in the above theorem is sharp, in the sense that if d=(d 1) < p 1 then there exists an F 2 L p such that div F = 1 B m. Here, m is the Lebesgue measure and 1 B is the characteristic function of the unit ball.

Rewriting the condition on p in an integral form, we can express these facts by saying that if the divergence equation has a solution in L p , then the measure is forced to be trivial if and only if the function jxj 1 d 1 B c is not in L p (here, 1 B c is the characteristic function of the complement of the unit ball). As we will see, this phenomenon still occurs in a more general context where instead of the L p spaces we consider rearrangement-invariant spaces (r.i. spaces for short). Our proof is quite elementary and does not use tools like the Calder on-Zygmund theory. It only makes use of basic properties of r.i. spaces whose de nition is recalled below.

Following the presentation in [START_REF] Benett | Interpolation of Operators[END_REF] (Chapters 1 and 2) we de ne rst the notion of the Banach function space. Consider a measured space (Y; ) and the set

M + := ff : Y ! [0; 1] j f is -measurableg :
We call function norm a mapping : M + ! [0; 1] with the following properties:

(P1) (f ) = 0 i f = 0
a:e:, (af ) = a (f ) and (f + g) (f ) + (g); (P2) 0 g f a:e: implies (g) (f ); (P3) 0 f n " f a:e: implies (f n ) " (f ); (This condition has an immediate important consequence called the Fatou property: if f n ; f are nonnegative measurable functions and f n ! f a:e:, then (f ) lim

n!1 (f n ):) (P4) (E) < 1 implies (1 E ) < 1; (P5) (E) < 1 implies R E f d C E (f ) whenever f; f n ; g 2 M + , a 0 and E is a measurable subset of Y . Here, C E > 0 is a constant only depending on E.
The set of measurable functions f : Y ! R for which (jf j) < 1 is called the Banach function space associated to . It turns out that this space (in which we consider two functions equal when they are equal a:e:) with the norm k k = (j j) is a complete normed vector space (Theorem 1.6 in [START_REF] Benett | Interpolation of Operators[END_REF], p. 5).

A r.i. space is a Banach function space associated to a function norm with the property that (jf j) = (jgj) for every pair of measurable functions on Y with the same distribution function Lemma 1. Let m be the Lebesgue measure on R d and let (E j ) j 1 be a sequence of measurable pairwise disjoint subsets of R d , each with nite positive measure. Let E = R d n S j E j . For each measurable nonnegative function f on R d , we de ne

Af = f 1 E + 1 X j=1 1 m (E j ) Z E j f dx ! 1 E j .
Then A is a contraction on each r.i. space X over (R d ; m), that is, kAf k X kf k X ; for all f 2 X:

We can now state the rst result: Theorem 2. Let be a nonnegative Radon measure on R d , and X a r.i. space of functions on R d such that jxj

1 d 1 B c does not belong to X. If the equation div F = has a solution F 2 X(R d ! R d ), then 0.
Proof. For each integer j 0 we consider the set U j = B(0; 2 j+1 )n B(0; 2 j ) and the function

' j 2 C 0;1 c (R d ) de ned by ' j (x) = 1 if jxj 2 [0; 2 j ), ' j (x) = 2 j jxj + 2 if jxj 2 [2 j ; 2 j+1
) and ' j (x) = 0 if jxj 2 j+1 . We consider also the weights g j := (B(0; 2 j )).

Supposing that the equation div F = has a solution in the space X, we estimate the weights g j as follows:

g j Z R d ' j d = Z R d F r' j dx 1 2 j Z U j
jF jdx for all j 0 so that

g j 2 j(d 1) c 1 m(U j ) Z U j
jF jdx for all j 0;

(

) 2 
where c is a positive constant depending on d. Now if A is the operator de ned in Lemma 1 corresponding to the sequence of sets U 0 , U 1 ,..., we have

AjF j = jF j1 B + 1 X j=0 1 m(U j ) Z U j jF jdx ! 1 U j
and, by Lemma 1 and axiom (P2), we obtain that

1 X j=0 1 m(U j ) Z U j jF jdx ! 1 U j X 2 kF k X < 1: (3) 
Of course we always have g j g 0 and we can use (P2), ( 2) and (3) to write

g 0 (jxj 1 d 1 B c ) 1 X j=0 g 0 2 j(d 1) 1 U j ! 1 X j=0 g j 2 j(d 1) 1 U j ! < 1;
where is the norm function which de nes the norm on X:

However, since (jxj 1 d 1 B c ) = 1, the quantity g 0 must be zero. By a translation argument, the measure must be trivial.

We saw that the condition

jxj 1 d 1 B c = 2 X (4)
was used for proving the nonexistence of a solution F when 6 0.

In order to obtain existence results we assume that condition (4) does not hold, that is

jxj 1 d 1 B c 2 X. (5) 
In this case we will prove the following Proposition 1. Assume (5) and let be a measure such that = m for a nonnegative function

2 L 1 c (R d ). Then (1) has a solution F in X(R d ! R d ).
The above result is an immediate consequence of the following two statements (which do not require (5)):

Proposition 2. Let 2 L 1 c (R d
) be such that 0 and let be the measure de ned by = m. Then there exists a constant C > 0 only depending on and d such that

I 1 (x) C(1 B (x) + jxj 1 d 1 B c (x)), on R d .
(The proof of Proposition 2 is immediate.) Proposition 3. Let be a nonnegative Radon measure on R d and let X be a r.i. space of functions on R d . If I 1 2 X, then there exists a vector eld F 2 X(R d ! R d ) such that div F = in the distributional sense.

Proof of Proposition 3. If is the norm function de ning the norm on X, we have (using the property (P5)) that, for any x 0 2 R d , there exist a constant C x 0 such that Z B(x 0 ;1)

I 1 dx C x 0 (I 1 ) = C x 0 kI 1 k X < 1.
It follows that I 1 must be a nite quantity a.e. on R d . Now we can x a point x 1 2 R d , such that I 1 (x 1 ) < 1. Using this property of x 1 , we nd that:

Z R d d (y) hyi d 1 C 1 Z jx 1 yj<1 d (y) hyi d 1 + Z jx 1 yj 1 d (y) jx 1 yj d 1 ! C 2 ( (B(x 1 ; 1)) + I 1 (x 1 )) < 1 (6) 
for some positive constants C 1 and C 2 . Here, hyi = (1 + jyj 2 ) 1=2 . If E is the standard fundamental solution of the Laplacian on R d , we de ne the vector eld F : R d ! R d by the formula

F j (x) = Z R d @ j E (x y) d (y), j 2 f1,..., dg :
We can easily see that F is a.e. well-de ned. Indeed there exist a constant

C 3 > 0 such that Z R d j@ j E (x y)j d (y) C 3 Z R d x j y j jx yj d d (y) C 3 I 1 (x),
and thus jF j C 4 I 1 < 1 a.e. In addition, since I 1 is already in X, using the monotonicity of we get F 2 X. Choosing a test function ' 2 C 1 c (R d ) and using (6), we get that Z

R d Z R d x j y j jx yj d d (y)j@ j '(x)jdx Z R d I 1 j@ j 'jd C ' Z R d d (y) hyi d 1 < 1:
Here, we have used the straightforward estimate

I 1 j@ j 'j(y) C ' 1 hyi d 1 :
We can now prove, using Fubini's theorem, that F solves (1):

X j < F j ; @ j ' >= X j Z R d Z R d @ j E (x y) @ j '(x)dxd (y) = X j Z R d (@ j E) (@ j ')d = X j Z R d @ 2 j (E ')d = Z R d 'd =< '; > : So div F = in the distributional sense on R d .
Remark. The above proof does not extend to the case of signed Radon measures. The existence problem in this case is more di cult and seems to be unsolved even in the L p setting (see [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF], p. 1575 and the references therein).

As we saw, in the L p case, the proof sketched after the statement of Theorem 1 gives a stronger conclusion when 1 < p < 1, namely if we can nd a solution F 2 L p of equation ( 1) then, not only that the condition ( 5) is satis ed, but the 1-Riesz potential of must be in L p too. In what follows we prove that we have a similar situation in the case of r.i. spaces, giving a su cient condition in terms of the Boyd indexes of the considered space. We recall some basic facts which will be useful and the de nition of these indexes, again following the presentation in [START_REF] Benett | Interpolation of Operators[END_REF]:

Let X be a r.i. space over R d whose function norm is . We can de ne the associate norm 0 of by:

0 (g) = sup Z R d f gdx j f 2 M + , (f ) 1 , for g 2 M + :
It is known (Theorem 2.2 in [START_REF] Benett | Interpolation of Operators[END_REF], p. 8) that 0 is a norm function whose corresponding Banach function space, which is also an r.i space, will be denoted by X 0 . The following H• older type inequality is a direct consequence of the de nition:

Z R d jf gjdx kf k X kgk X 0 ; when f 2 X, g 2 X 0 :
Let g denote the nonincreasing rearrangement of a measurable function g : R d ! R:

g (s) := inf ft > 0j g (t) sg , s > 0.
We also recall the following inequality of Hardy and Littlewood (Theorem 2.2 in [START_REF] Benett | Interpolation of Operators[END_REF], p. 44) that will be useful later. We have that Z

R d jf gjdx Z 1 0 f (s)g (s)ds for all measurable functions f , g on R d .
The Luxemburg representation theorem (Theorem 4.10 in [START_REF] Benett | Interpolation of Operators[END_REF], p. 62) provides a unique rearrangement-invariant function norm de ned on the nonnegative measurable functions on (0; 1), de ned by

(h) = sup Z 1 0 h g dx j g 2 M + , 0 (g) 1 ,
with the property that (f ) = (f ). The corresponding r.i. space of will be denoted by X.

For any > 0 we can de ne the dilation operator E : X ! X by the formula E f (s) = f ( s) for all f 2 X. One may prove that each E is a bounded operator. The lower Boyd index and the upper Boyd index are given by

X := sup 0<t<1 log E 1=t log t ; X := inf 1<t log E 1=t log t
respectively. Here E 1=t is the norm of the operator E 1=t . It turns out (Proposition 5.13 in [START_REF] Benett | Interpolation of Operators[END_REF], p. 149) that we can actually take limits in the de nition:

X = lim t!0 log E 1=t log t ; X = lim t!1 log E 1=t log t ,
and that always 0

X X
1. As an important example consider the spaces L p . In this case both indexes are equal to 1=p. For the Lorentz spaces L p;q (1 p < 1, 1 q 1) the indexes are again both equal to 1=p.

In order to obtain the necessity of the condition I 1 2 X, we adapt the proof of Theorem 1.

To do so, we will need the following lemma which is just a rephrasing of some ideas presented in [START_REF] Benett | Interpolation of Operators[END_REF] and [START_REF] O'neil | The Hilbert transform and rearrangement of functions[END_REF] (see, more speci cally, the results of Calder on and Stein in section 3 in [START_REF] O'neil | The Hilbert transform and rearrangement of functions[END_REF]).

Recall that a singular integral operator is an operator K of the form

Kf (x) = lim "!0 + Z jyj>" k(y)f (x y)dy:
The kernel k is odd if k is a function of the form k(r!) = r d (!) for all r > 0 and all ! 2 S d 1 , where 2 L 1 (S d 1 ) is odd.

Lemma 2. Let X be a r.i. space of functions on R d such that 0 < X X < 1. Then any singular integral operator with odd kernel is well-de ned and bounded from L 2 \ X into X. In particular, the Riesz transforms R 1 ,..., R d : L 2 \ X ! X are well-de ned and bounded.

Proof. Let K, k be as above. It is well-known that the operator K is well-de ned and continuous on L p (R d ) for 1 < p < 1. According to Theorem 3 in [START_REF] O'neil | The Hilbert transform and rearrangement of functions[END_REF] 

p. 193, if f 2 L 2 (R d ) then, for all s > 0, we have that (Kf ) (s) 1 s Z s 0 (Kf ) (t)dt k k L 1 (S(0;1)) 1 s Z 1 0 f (t) sinh 1 s t dt :
Introducing the two operators

P g(s) = 1 s Z s 0 g(t)dt and Qg(s) = Z 1 s g(t) dt t ,
for g measurable nonnegative, and integrating by parts, we can write for all s > 0,

1 s Z 1 0 f (t) sinh 1 s t dt = Z 1 0 P f (t) p s 2 + t 2 dt = Z s 0 P f (t) p s 2 + t 2 dt + Z 1 s P f (t) p s 2 + t 2 dt P 2 f (s) + QP f (s);
concluding that there exist a constant C k > 0 such that for all s > 0 we have

(Kf ) (s) C k P 2 + QP f (s): (7) 
Theorem 5.15 in [START_REF] Benett | Interpolation of Operators[END_REF] guarantees that the operators P , Q are well-de ned and continuous from X into X in the case where the Boyd indexes of X are in the interval (0; 1). Under this assumption, the inequality (7) implies that there exist a constant C k;X > 0 only depending on k and X such that, for all f 2 L 2 \ X(R d ) we have

kKf k X C k;X kf k X ,
and we obtain the conclusion. Theorem 3. Let X be a r.i. space of functions on R d such that 0 < X X < 1. If (1) has a solution F 2 X(R d ! R d ), then I 1 2 X. Moreover, there exists a constant C X > 0 only depending on X such that kI 1 k X C X kF k X .

Remark 1. In particular, Theorem 3 applies to all L p and, more generally, L p;q spaces with 1 < p < 1, 1 q 1. Also the theorem applies to all re exive Orlicz spaces.

Proof. Firstly we observe that, using Fubini's theorem and the monotone convergence theorem, we can rewrite the 1-Riesz potential of a Radon measure on R d , for which I 1 j j < 1 a.e.:

I 1 (x) = lim !0 + Z R d min(jx yj 1 d ; 1 d )d (y) = (d 1) lim !0 + Z R d Z 1 1 B(x;r) (y) r d dr d (y) = (d 1) lim !0 + Z 1 (B(x; r)) r d dr = (d 1) Z 1 0 (B(x; r)) r d dr. (8) 
Suppose (1) has a solution F 2 X. Consider a standard radial bump function

' 2 C 1 c (R d ) with 0 ' 1, supp ' B(0; 1), k'k L 1 (R d ) = 1 and some 2 C 1 c (R d
) with 0 1, = 1 on B(0; 1). For any ; " > 0 we de ne ' " and on R d by the formula ' " (x) = " d '(x=") and (x) = ( x). Fixing an " > 0, the smooth functions F " := F ' " and "; := ( ' " ) +F " r , clearly satisfy div ( F " ) = "; . As in [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF], we can now use the Gauss-Ostrogradskii theorem and (8) to compute I 1 "; (x) for all x in R d , in terms of F " :

I 1 "; (x) = (d 1) lim !0 + Z 1 1 r d Z S(x;r) ( F " ) nd dr = (d 1) lim !0 + Z 1 Z S(x;r) ( F " ) (y)
x y jx yj d+1 d (y)dr = (d 1) lim

!0 + Z jx yj> ( F " ) (y)
x y jx yj d+1 dy:

The last expression equals c d P j R j ( F ";j ) (x) a.e. in x. Thanks to Lemma 2 and noticing that F ";j 2 C 1 c (R d ) L 2 , we have that there exists a constant C X > 0, only depending on X, with

I 1 "; X c d X j R j ( F ";j ) X C X X j k F ";j k X C X X j kF ";j k X , for all " > 0: (9)
It is not hard to see that, if f 2 X, we have

(jf ' " j) = Z R d f ( "y)'(y)dy Z R d (jf ( "y)j '(y)) dy = Z R d
(jf ( "y)j) '(y)dy

(we just consider an increasing sequence of nonnegative continuous functions converging pointwise to the function jf j and then we apply (P3) to reduce the problem to the case of continuous functions, case which can be handled using Riemann sums and the property (P3) as before). Since f and jf ( "y)j have the same distribution function and X is a r.i. space, we get that R R d f ( "y)'(y)dy belongs to X and its norm is bounded by kf k X . This fact combined with (9) gives us I 1 "; X C X kF k X < 1, for all ; " > 0:

(10)

It remains to show that this implies I 1 2 X and the expected estimate. We have that I 1 "; = I 1 ( " ) + I 1 (F " r ), where " := ' " . When ! 0, for the second term we can write for each x 2 R d ,

jI 1 (F " r ) (x)j Z R d jF " (y) r ( y)j jx yj d 1 dy = Z R d jF " (y= ) r (y)j j x yj d 1 dy E 1= F " X r j x j d 1 X 0 E 1= kF " k X r (1 j xj) d 1 X 0 2 E 1= kF " k X kr k X 0 2 X =2 kF " k X kr k X 0 ! 0:
The dominated convergence theorem gives for the rst term that I 1 ( " ) ! I 1 " pointwise when ! 0. From these two observations, (10) and the Fatou property of (which follows from (P3)) we conclude:

kI 1 " k X lim "!0 I 1 "; X C X kF k X < 1, for all " > 0: (11) 
We now let " ! 0 in (11). For each x 2 R d and r > 0 we can write:

" (B(x; r)) = Z B(x;r) Z R d ' " (z y)d (y)dz = Z R d
' " 1 B(x;r) (y)d (y):

It is not hard to see that, taking " ! 0, ' " 1 B(x;r) (y) ! 1 when y 2 B(x; r), ' " 1 B(x;r) (y) ! 0 when y = 2 B(x; r) and ' " 1 B(x;r) (y) ! 1=2 when y 2 @B(x; r). Moreover the function ' " 1 B(x;r) is bounded by 1 and has its support contained in B(x; r + 1) when " is small. The dominated convergence theorem yields " (B(x; r)) ! (B(x; r)) + 1 2 (@B(x; r)), when " ! 0 and hence, for any l 1,

Z l 1=l (B(x; r)) r d dr Z l 1=l (B(x; r)) r d dr + 1 2 Z l 1=l (@B(x; r)) r d dr = lim "!0 Z l 1=l " (B(x; r)) r d dr.
The inequality from (11) and the Fatou property of will give (d 1)

Z l 1=l (B( ; r)) r d dr X (d 1) lim "!0 Z l 1=l " (B( ; r)) r d dr X lim "!0 kI 1 " k X C X kF k X
and we can nish the proof by using the Fatou property and (8), taking l ! 1.

The above result covers the case of L p spaces when 1 < p < 1. However, even in the L p setting, the fact that the equation ( 1) has a solution in X does not imply that the 1-Riesz potential of the measure belongs to X. More speci cally, we have the following classical result (see [START_REF] Phuc | Characterizations of the existence and removable singularities of divergence-measure vector elds[END_REF]): In order to prove Theorem 4, let be a Radon measure. The fact that there exists a solution F 2L 1 for the equation div F = is equivalent to the fact that belongs to the dual of the space w 1;1 . Here,

w 1;1 is closure of C 1 c (R d ) under the norm k k w 1;1 , where kuk w 1;1 := kruk L 1 , u 2 C 1 c (R d )
. Now, for nonnegative measures this condition is equivalent to the fact that is (d 1) Frostman. This result is due to Meyers and Ziemer (originally appearing in [START_REF] Meyers | Integral inequalities of Poincar e and Wirtinger type for BV functions[END_REF]; see also Lemma 4.9.1 in [START_REF] Ziemer | Weakly Di erentiable Functions[END_REF], p. 209 for a proof of a more general statement).

Clearly, there exist (d 1) Frostman nonnegative measures whose 1-Riesz potential is unbounded. Take for example the measure de ned by (E) = m d 1 (E \fx 1 = 0g) for all Borel sets E R d . Here, m d 1 is the (d 1) dimensional Lebesgue measure on the hyperplane fx 1 = 0g. For this , the quantity R 1 1 r d (B(x; r))dr is in nite for all x 2 R d and then, by (8), I 1 is in nite everywhere.

Note that the Boyd indexes of L 1 are 0 and thus the example obtained in the previous paragraph does not contradict Theorem 3.

The case of the space L 1 is also a pathological one, the Boyd indexes being equal to 1. However we cannot nd a counterexample for the assertion of the Theorem 3 in the case of nonnegative measures. Indeed, by Theorem 1, the measure will be trivial and then I 1 0 2 L 1 . Nevertheless, we can give a simple example of a vector eld F 2 L 1 and of a signed Radon measure such that div F = , but the 1-Riesz potential, I 1 , does not belong to L 1 . The construction of F and relies on the following observation. Consider 2 C 1 c (B(0; 1)). When jxj is large we can write, for r = jxj, ! = x=jxj, that

I 1 (x) = 1 r d 1 Z B(0;1) (y) j! y=rj d 1 dy = 1 r d 1 Z B(0;1) (y) j1 2y !=r + jyj 2 =r 2 j (d 1)=2 dy = 1 r d 1 Z B(0;1) (y)dy + d 1 r d ! Z B(0;1) y (y)dy + 1 r d+1 Z B(0;1) (y)h(r; y)dy,
where h is a smooth bounded function on (1; 1) R d . Thus,

I 1 (x) = A jxj d 1 + b x jxj d+1 + O 1 jxj d+1 as jxj ! 1, (12) 
where y j (y)dy = 0 for all j 2 f1; :::; dg .

A := Z B(0;1) (y 
We can now construct our example. Let ' 2 C 1 c (B(0; 1)) be such that R B(0;1) '(y)dy 6 = 0, and set F = ('; 0; :::; 0) 2 L 1 and = (@ 1 ') m. Clearly, we have Z B(0;1)

y 1 @ 1 '(y)dy = Z B(0;1)
'(y)dy 6 = 0 and, by the above observation (with = @ 1 '), I 1 does not belong to L 1 .

These examples show that, at least in the case where the measure is signed, we cannot expect for the pathological L p spaces, namely L 1 and L 1 , to have the property stated in the above Theorem 3. This is also the case in the more general context of r.i. spaces: as long as at least one of the Boyd indexes of the space X is equal to 0 or 1, we can always nd a signed Radon measure which is the divergence of a eld F belonging to X, but whose 1-Riesz potential does not have the norm in X controlled by the norm of F . It is not hard to observe that, after minor modi cations in the proof, the conclusion of Theorem 3 remains true in the case of signed Radon measures. With this in mind, Proposition 4 below is a sort of converse. Proposition 4. Let X be a r.i. space of functions on R d with the property that whenever is a signed Radon measure on R d with = div F for a vector eld F 2 X(R d ! R d ), we have that

I 1 + , I 1 are nite a.e., I 1 2 X and kI 1 k X C X kF k X for a positive constant C X . Then 0 < X X < 1.
Proposition 4 is a consequence of Lemma 3 below, which is a d dimensional version of Proposition 4.10 p. 140 in [START_REF] Benett | Interpolation of Operators[END_REF], with essentialy the same proof. To state Lemma 3, consider the operators P and Q de ned in the proof of Lemma 2 and let S be the Calder on operator de ned by the formula:

Sf (s) = P f (s) + Qf (s) = Z s 0 f (t) s dt + Z 1 s f (t) t dt = Z 1 0 f (t) min 1 t ; 1 s dt, s > 0,
initially for nonnegative measurable functions f on (0; 1) (see [START_REF] Benett | Interpolation of Operators[END_REF], p 133 and 142). 

((R 1 G + ::: + R d G)1 C + ) (s) c d S(f )(s), for all s > 0. ( 13 
)
Moreover, if (R 1 G + ::: + R d G)1 C + 2 X for all f 2 X then 0 < X X < 1.
In particular, the same conclusion holds if the sum of the Riesz transforms is a well-de ned operator from X into X . 

Z v d jxj d 0 f (t)dt + c 6 d Z 1 v d jxj d f (t) t dt c d S(f )(v d jxj d ).
Since S(f ) is a nonincreasing function, we can see as above that the nonincreasing rearrangement of the function x ! S(f )(v d jxj d )1 C + (x) computed in s > 0 is equal to S(f )(s). Hence, we have proved the inequality (13).

To prove the next claim, observe that the inequality (13) under the assumption that (R 1 G + :

:: + R d G)1 C + 2 X gives us that, if f 2 X, then we must have S(f ) 2 X.
Let us note that we have S(jf j) S(f ). This can be easily seen by applying the Hardy-Littlewood inequality to jf j and the nonincreasing function t ! min(1=s; 1=t) when s > 0 is xed:

S(jf j)(s) = Z 1 0 jf (t)j min 1 s ; 1 t dt Z 1 0 f (t) min 1 s ; 1 t dt = S(f )(s).
Up to now we have that, if f 2 X and (R 1 G + ::: + R d G)1 C + 2 X, then S(jf j) 2 X. As in the proof of Theorem 1.8, p. 7, [START_REF] Benett | Interpolation of Operators[END_REF] we suppose by contradiction that the operator S : X ! X is not continuous. Then we can nd a sequence (f n ) n 1 of nonnegative functions in X with kf n k X = 1 and such that kS(f n )k X n 3 for all n 1. The series P n 1 f n =n 2 being absolutely convergent in X, it de nes a function f 2 X, hence S(f ) 2 X. However since all the functions f n are nonnegative, we have f f n =n 2 and consequently S(f ) S(f n )=n 2 which implies kS(f )k X kS(f n )k X =n 2 n for all n 1, obtaining a contradiction.

Having that S is a continuous operator, we can use Theorem 5.15, p. 150, [START_REF] Benett | Interpolation of Operators[END_REF] to obtain the statement about the Boyd indexes of X.

Proof of Proposition 4. To prove the Proposition 4, consider a function f 2 X and the eld F = (G; :::; G), with G constructed from f as in Lemma 3. Suppose rst that f is compactly supported. Note that := div F is not always a Radon measure (we can compute explicitly + and to see that these measures are not always locally nite), but is of course a distribution. With the notation from the proof of Theorem 3, we have that ' " and F ' " are smooth compactly supported functions. In particular, ' " is a compactly supported signed Radon measure on R d .

Since

' " = div (F ' " ) and, as in the proof of Theorem 3, kF ' " k X kF k X , we must have then, that kI 1 ( ' " )k X C X kF ' " k X C X kF k X for all " > 0. As above, the formula (8) and the Gauss-Ostrogradskii theorem give us that:

I 1 ( ' " ) (x) = (d 1) lim !0 + Z jx yj> F ' " (y)
x y jx yj d+1 dy for all x 2 R d .

(14)

Fix r > 0 and take " 2 (0; r). The support of F is contained in the closure of the set C . Hence F ' " is supported in the closure of C +"B. We can write, for all x 2 C + r := (r; :::; r)+C + , that lim !0 + Z jx yj> F ' " (y)

x y jx yj d+1 dy = Z C +"B F ' " (y)

x y jx yj d+1 dy Z C F ' " (y)

x y jx yj d+1 dy.

(15)

Since the integrand of the last term is nonnegative, one can use Tonelli's theorem to change the order of integration, and nd that Z The fact that the function g is nonincreasing enables us to see that for a xed 2 C + we have g(jy " j) g(jy " 0 j) for all y 2 C and for all 0 < " 0 < ". Hence the monotone convergence theorem gives us Z 

+ R d G) 1 C + k X C 1 X lim "!0 kI 1 ( ' " )k X which implies k(R 1 G + ::: + R d G) 1 C + k X C 2
X kF k X , and by using inequality (13) from Lemma 3, we get that kS(f )k X C 3 X kf k X (16) whenever f 2 X and f is compactly supported. Now, if f 2 X and f is not necessarly compactly supported, from (16) we have S(f 1 (0;n) ) X C 3 X f 1 (0;n) X for all n 1. By the monotone convergence theorem and the Fatou property of X we get, taking n ! 1, that ( 16) is true whenever f 2 X. Since as in the proof of Lemma 3 we have S(jf j) S(f ), we get now that kS(jf j)k X C 3 X kf k X for all f 2 X, obtaining that S is bounded from X into X. The conclusion follows now as in Lemma 3.

jx yj 1

 1 d d (y); satis es the relationI 1 (x) = (1 d) lim "!0 Z jx yj>" F (y) x y jx yj d+1 d (y) = c d d X j=1R j F j (x), a.e. on R d ;

Theorem 4 .

 4 (Theorem 3.3 in [4]) Let be a nonnegative Radon measure on R d . Then the equation (1) has a solution F 2L 1 (R d ! R d ) if and only if the measure is (d 1) Frostman, i.e., there exist a constant M only depending on such that (B(x; r)) M r d 1 , for all x 2 R d and r > 0.

  )dy and b := Z B(0;1) y (y)dy. The right hand side of (12) belongs to L 1 if and only if A = 0 and b = 0. In conclusion, 2 C 1 c (B(0; 1)) has the property that I 1 2 L 1 if and only if Z

Lemma 3 .

 3 Let X be a r.i. space of functions on R d and f 2 X. Consider the setsC + := (0; 1) d ; C := ( 1; 0) d and the function G : R d ! [0; 1], G(x) = f (v d jxj d )1 C (x), where v d := m(B(0; 1))=2 d . Then G and f are equimeasurable functions, the Riesz transforms R 1 G,..., R d G of G are well-de ned as functions on C + and there exist a constant c d > 0 such that:

Proof of Lemma 3 . 3 d x 1 +

 331 Consider for simplicity the function g : (0; 1) ! [0; 1] with g(s) = f (v d s d ). Note that g is nonincreasing, and thus g = g. It is easy to see that, since G(x) = g(jxj)1 C (x) and since g is nonincreasing, we haveG (t) = v d d g (t) for all t > 0. Hence, a simple computation gives us G (s) = g (v 1=d d s 1=d ) = g(v 1=d d s 1=d ) = f (s)for all s > 0, which shows the equimeasurability of G and f . Taking now a j 2 f1; :::; dg we can write, for x 2 C + :R j G(x) = c 1 d Z C + x j + y j jx + yj d+1 g(jyj)dy = c 1 d Z C + x j jx + yj d+1 g(jyj)dy + c 1 jxj)\C + g(jyj)dy + c 3 d Z B c (0;jxj)\C +y j jyj d+1 g(jyj)dy. Summing up these inequalities yields d X j=1 R j G(x) c ::: + x d jxj d+1 Z B(0;jxj)\C + g(jyj)dy + c 3 d Z B c (0;jxj)\C + y 1 + ::: + y d jyj d+1 g(jyj)jxj)\C + g(jyj)dy + c 4 d Z B c (0;jxj)\C + 1 jyj d g(jyj)

CF'F

  " (y) x y jx yj d+1 dy = Z R d Z C (y " ) x y jx yj d+1 dy '( )d Z C + Z C g(jy " j)x 1 y 1 + ::: + x d y d jx yj d+1 dy '( )d .

C g(jy " j) x 1 y 1 +x 1 y 1 +x 1 y 1 + 0 (I 1 (

 11101 ::: + x d y d jx yj d+1 dy ! Z C g(jyj) x 1 y 1 + ::: + x d y d jx yj d+1 dy, when " ! 0. With the help of Fatou's lemma and the above calculation we have lim ::: + x d y d jx yj d+1 dy, where A = R C + '( )d > 0. Using (14), (15) we obtain lim ::: + x d y d jx yj d+1 dy 0,for all x 2 C + r and all r > 0. Since (d 1) A do not depend on r, this inequality can be rewriten as lim"!' " )) 1 C + c d (R 1 G + ::: + R d G) 1 C + 0,and consequently by the Fatou property of X, we get k(R 1 G + :::
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