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On the existence of vector �elds with
nonnegative divergence in

rearrangement-invariant spaces

Eduard Curc�a

Abstract

We investigate the existence of solutions of

divF = �; on Rd: (*)

Here, � � 0 is a Radon measure, and we look for a solution F 2 X(Rd ! Rd), where X
is a rearrangement-invariant space.

We �rst prove the equivalence of the following assertions:
(i) (*) has a solution for some nontrivial �;
(ii) the function x 7! jxj1�d1Bc(x) belongs to X.

Here, B is the unit ball in Rd.
We next investigate the solvability of (*) when � is �xed. A su�cient condition is

that I1� 2 X, where I1� is the 1-Riesz potential of �. This condition turns out to be also
necessary when the Boyd indexes of X belong to (0; 1).

Our analysis generalizes the one of Phuc and Torres (2008) when X = Lp.

We will study the existence of solutions in di�erent function spaces for the divergence equation

divF = �; on Rd; (1)

where � is a nonnegative Radon measure. Here, d � 2.

Our work is motivated by the following result of Phuc and Torres:

Theorem 1. (Theorem 3.1 in [4]) Let 1 � p � d=(d � 1) and let � be a nonnegative Radon
measure on Rd. If there exists a vector �eld F 2 Lp(Rd ! Rd) such that divF = � on Rd, then
we have that � � 0.

The proof given in [4] uses the Calder�on-Zygmund theory. More speci�cally, assume that (1)
has a solution F in Lp. It is shown �rst that the 1-Riesz potential I1� of �, de�ned by the formula

I1�(x) =

Z
Rd

jx� yj1�dd�(y);

satis�es the relation

I1�(x) = (1� d) lim
"!0

Z
jx�yj>"

F (y)
x� y

jx� yjd+1d�(y) = cd

dX
j=1

RjFj(x), a.e. on Rd;

1



where Rj are the Riesz transforms and cd is a constant only depending on d. Now, since F 2 Lp,
the Calder�on-Zygmund theory ensures that I1� 2 Lp, whenever p > 1, and that I1� 2 L1;1, if
p = 1. However, since we have the trivial inequality

I1�(x) �
�(B(0; R))

(jxj+R)d�1
; for any R > 0;

we must have �(B(0; R)) = 0 for all R > 0. Indeed, the function (jxj+R)1�d is never in L1;1 or
an Lp space for p 2 (1; d=(d� 1)]. Therefore � � 0.

Also, using functional analytical methods, in [4] is proved (this follows easily from Theorem
3.2 and Theorem 3.3 from [4]) that the constant d=(d� 1) in the above theorem is sharp, in the
sense that if d=(d� 1) < p � 1 then there exists an F 2 Lp such that divF = 1Bm. Here, m is
the Lebesgue measure and 1B is the characteristic function of the unit ball.

Rewriting the condition on p in an integral form, we can express these facts by saying that if
the divergence equation has a solution in Lp, then the measure � is forced to be trivial if and only
if the function jxj1�d1Bc is not in Lp (here, 1Bc is the characteristic function of the complement
of the unit ball). As we will see, this phenomenon still occurs in a more general context where
instead of the Lp spaces we consider rearrangement-invariant spaces (r.i. spaces for short). Our
proof is quite elementary and does not use tools like the Calder�on-Zygmund theory. It only makes
use of basic properties of r.i. spaces whose de�nition is recalled below.

Following the presentation in [1] (Chapters 1 and 2) we de�ne �rst the notion of the Banach
function space. Consider a measured space (Y; �) and the set

M+ := ff : Y ! [0;1] j f is �-measurableg :

We call function norm a mapping � :M+ ! [0;1] with the following properties:

(P1) �(f) = 0 i� f = 0 � � a:e:, �(af) = a�(f) and �(f + g) � �(f) + �(g);
(P2) 0 � g � f � � a:e: implies �(g) � �(f);
(P3) 0 � fn " f � � a:e: implies �(fn) " �(f);
(This condition has an immediate important consequence called the Fatou property: if fn; f

are nonnegative measurable functions and fn ! f � � a:e:, then �(f) � lim
n!1

�(fn):)

(P4) �(E) <1 implies �(1E) <1;
(P5) �(E) <1 implies

R
E
fd� � CE�(f)

whenever f; fn; g 2 M+, a � 0 and E is a measurable subset of Y . Here, CE > 0 is a constant
only depending on E.
The set of measurable functions f : Y ! R for which �(jf j) <1 is called the Banach function

space associated to �. It turns out that this space (in which we consider two functions equal when
they are equal � � a:e:) with the norm k�k = �(j � j) is a complete normed vector space (Theorem
1.6 in [1], p. 5).
A r.i. space is a Banach function space associated to a function norm � with the property that

�(jf j) = �(jgj) for every pair of measurable functions on Y with the same distribution function
�f = �g (we recall that �f (t) = �(fx 2 Y j jf(x)j > tg) for all t � 0). Here are few examples: the
Lebesgue spaces Lp, the Lorentz spaces Lp;q, the Orlicz spaces �(L).

In our case we will always have Y = Rd and � = m will be the Lebesgue measure on Rd. In
this setting, we will use the following version of Theorem 4.8 in [1], p. 61:
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Lemma 1. Let m be the Lebesgue measure on Rd and let (Ej)j�1 be a sequence of measurable

pairwise disjoint subsets of Rd, each with �nite positive measure. Let E = Rdn
S
j Ej. For each

measurable nonnegative function f on Rd, we de�ne

Af = f1E +

1X
j=1

 
1

m (Ej)

Z
Ej

fdx

!
1Ej .

Then A is a contraction on each r.i. space X over (Rd;m), that is,

kAfkX � kfkX ; for all f 2 X:

We can now state the �rst result:

Theorem 2. Let � be a nonnegative Radon measure on Rd, and X a r.i. space of functions
on Rd such that jxj1�d1Bc does not belong to X. If the equation divF = � has a solution
F 2 X(Rd ! Rd), then � � 0.

Proof. For each integer j � 0 we consider the set Uj = B(0; 2j+1)n B(0; 2j) and the function
'j 2 C0;1c (R

d) de�ned by 'j(x) = 1 if jxj 2 [0; 2j), 'j(x) = �2�jjxj + 2 if jxj 2 [2j; 2j+1) and
'j(x) = 0 if jxj � 2j+1. We consider also the weights gj := �(B(0; 2j)).
Supposing that the equation divF = � has a solution in the space X, we estimate the weights

gj as follows:

gj �
Z
Rd

'jd� = �
Z
Rd

F � r'jdx �
1

2j

Z
Uj

jF jdx for all j � 0

so that

gj
2j(d�1)

� c
1

m(Uj)

Z
Uj

jF jdx for all j � 0; (2)

where c is a positive constant depending on d. Now if A is the operator de�ned in Lemma 1
corresponding to the sequence of sets U0, U1,..., we have

AjF j = jF j1B +
1X
j=0

 
1

m(Uj)

Z
Uj

jF jdx
!
1Uj

and, by Lemma 1 and axiom (P2), we obtain that
1X
j=0

 
1

m(Uj)

Z
Uj

jF jdx
!
1Uj


X

� 2 kFkX <1: (3)

Of course we always have gj � g0 and we can use (P2), (2) and (3) to write

g0�(jxj1�d1Bc) � �

 1X
j=0

g0
2j(d�1)

1Uj

!
� �

 1X
j=0

gj
2j(d�1)

1Uj

!
<1;

where � is the norm function which de�nes the norm on X:
However, since �(jxj1�d1Bc) = 1, the quantity g0 must be zero. By a translation argument,

the measure � must be trivial. �

We saw that the condition
jxj1�d1Bc =2 X (4)
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was used for proving the nonexistence of a solution F when � 6� 0.
In order to obtain existence results we assume that condition (4) does not hold, that is

jxj1�d1Bc 2 X. (5)

In this case we will prove the following

Proposition 1. Assume (5) and let � be a measure such that � = �m for a nonnegative function
� 2 L1c (Rd). Then (1) has a solution F in X(Rd ! Rd).

The above result is an immediate consequence of the following two statements (which do not
require (5)):

Proposition 2. Let � 2 L1c (Rd) be such that � � 0 and let � be the measure de�ned by � = �m.
Then there exists a constant C > 0 only depending on � and d such that

I1�(x) � C(1B(x) + jxj1�d1Bc(x)), on Rd.

(The proof of Proposition 2 is immediate.)

Proposition 3. Let � be a nonnegative Radon measure on Rd and let X be a r.i. space of
functions on Rd. If I1� 2 X, then there exists a vector �eld F 2 X(Rd ! Rd) such that
divF = � in the distributional sense.

Proof of Proposition 3. If � is the norm function de�ning the norm on X, we have (using the
property (P5)) that, for any x0 2 Rd, there exist a constant Cx0 such thatZ

B(x0;1)

I1�dx � Cx0�(I1�) = Cx0 kI1�kX <1.

It follows that I1� must be a �nite quantity a.e. on R
d. Now we can �x a point x1 2 Rd, such

that I1�(x1) <1. Using this property of x1, we �nd that:Z
Rd

d�(y)

hyid�1
� C1

 Z
jx1�yj<1

d�(y)

hyid�1
+

Z
jx1�yj�1

d�(y)

jx1 � yjd�1

!
� C2 (�(B(x1; 1)) + I1�(x1)) <1 (6)

for some positive constants C1 and C2. Here, hyi = (1 + jyj2)1=2.
If E is the standard fundamental solution of the Laplacian on Rd, we de�ne the vector �eld

F : Rd ! Rd by the formula

Fj(x) =

Z
Rd

@jE (x� y) d�(y), j 2 f1,..., dg :

We can easily see that F is a.e. well-de�ned. Indeed there exist a constant C3 > 0 such thatZ
Rd

j@jE (x� y)j d�(y) � C3

Z
Rd

���� xj � yj
jx� yjd

���� d�(y) � C3I1�(x),

and thus jF j � C4I1� <1 a.e. In addition, since I1� is already in X, using the monotonicity of
� we get F 2 X. Choosing a test function ' 2 C1c (Rd) and using (6), we get thatZ

Rd

Z
Rd

���� xj � yj
jx� yjd

���� d�(y)j@j'(x)jdx � Z
Rd

I1j@j'jd� � C'

Z
Rd

d�(y)

hyid�1
<1:
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Here, we have used the straightforward estimate

I1j@j'j(y) � C'
1

hyid�1
:

We can now prove, using Fubini's theorem, that F solves (1):

�
X
j

< Fj; @j' >= �
X
j

Z
Rd

Z
Rd

@jE (x� y) @j'(x)dxd�(y) =
X
j

Z
Rd

(@jE) � (@j')d�

=
X
j

Z
Rd

@2j (E � ')d� =
Z
Rd

'd� =< '; � > :

So divF = � in the distributional sense on Rd. �

Remark. The above proof does not extend to the case of signed Radon measures. The existence
problem in this case is more di�cult and seems to be unsolved even in the Lp setting (see [4], p.
1575 and the references therein).

As we saw, in the Lp case, the proof sketched after the statement of Theorem 1 gives a stronger
conclusion when 1 < p < 1, namely if we can �nd a solution F 2 Lp of equation (1) then, not
only that the condition (5) is satis�ed, but the 1-Riesz potential of � must be in Lp too. In what
follows we prove that we have a similar situation in the case of r.i. spaces, giving a su�cient
condition in terms of the Boyd indexes of the considered space. We recall some basic facts which
will be useful and the de�nition of these indexes, again following the presentation in [1]:

Let X be a r.i. space over Rd whose function norm is �. We can de�ne the associate norm �0

of � by:

�0(g) = sup

�Z
Rd

fgdx j f 2M+, �(f) � 1
�
, for g 2M+:

It is known (Theorem 2.2 in [1], p. 8) that �0 is a norm function whose corresponding Banach
function space, which is also an r.i space, will be denoted by X 0. The following H�older type
inequality is a direct consequence of the de�nition:Z

Rd

jfgjdx � kfkX kgkX0 ; when f 2 X, g 2 X 0:

Let g� denote the nonincreasing rearrangement of a measurable function g : Rd ! R:

g�(s) := inf ft > 0j �g(t) � sg , s > 0.

We also recall the following inequality of Hardy and Littlewood (Theorem 2.2 in [1], p. 44)
that will be useful later. We have thatZ

Rd

jfgjdx �
Z 1

0

f �(s)g�(s)ds

for all measurable functions f , g on Rd.

The Luxemburg representation theorem (Theorem 4.10 in [1], p. 62) provides a unique
rearrangement-invariant function norm � de�ned on the nonnegative measurable functions on
(0;1), de�ned by

�(h) = sup

�Z 1

0

h�g�dx j g 2M+, �0(g) � 1
�
,
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with the property that �(f) = �(f �). The corresponding r.i. space of � will be denoted by X.
For any � > 0 we can de�ne the dilation operator E� : X ! X by the formula E�f(s) = f(�s)
for all f 2 X. One may prove that each E� is a bounded operator. The lower Boyd index and
the upper Boyd index are given by

�X := sup
0<t<1

log
E1=t
log t

; �X := inf
1<t

log
E1=t
log t

respectively. Here
E1=t is the norm of the operator E1=t. It turns out (Proposition 5.13 in [1],

p. 149) that we can actually take limits in the de�nition:

�X = lim
t!0

log
E1=t
log t

; �X = lim
t!1

log
E1=t
log t

,

and that always 0 ��X � �X � 1. As an important example consider the spaces Lp. In this case
both indexes are equal to 1=p. For the Lorentz spaces Lp;q (1 � p <1, 1 � q � 1) the indexes
are again both equal to 1=p.

In order to obtain the necessity of the condition I1� 2 X, we adapt the proof of Theorem 1.
To do so, we will need the following lemma which is just a rephrasing of some ideas presented in
[1] and [3] (see, more speci�cally, the results of Calder�on and Stein in section 3 in [3]).

Recall that a singular integral operator is an operator K of the form

Kf(x) = lim
"!0+

Z
jyj>"

k(y)f(x� y)dy:

The kernel k is odd if k is a function of the form k(r!) = r�d
(!) for all r > 0 and all
! 2 Sd�1, where 
 2 L1(Sd�1) is odd.

Lemma 2. Let X be a r.i. space of functions on Rd such that 0 <�X � �X < 1. Then any
singular integral operator with odd kernel is well-de�ned and bounded from L2 \ X into X. In
particular, the Riesz transforms R1,..., Rd : L

2 \X ! X are well-de�ned and bounded.

Proof. Let K, k be as above. It is well-known that the operator K is well-de�ned and continuous
on Lp(Rd) for 1 < p < 1. According to Theorem 3 in [3] p. 193, if f 2 L2(Rd) then, for all
s > 0, we have that

(Kf)�(s) � 1

s

Z s

0

(Kf)�(t)dt � k
kL1(S(0;1))
�
1

s

Z 1

0

f �(t) sinh�1
�s
t

�
dt

�
:

Introducing the two operators

Pg(s) =
1

s

Z s

0

g(t)dt and Qg(s) =

Z 1

s

g(t)
dt

t
,

for g measurable nonnegative, and integrating by parts, we can write for all s > 0,

1

s

Z 1

0

f �(t) sinh�1
�s
t

�
dt =

Z 1

0

Pf �(t)p
s2 + t2

dt =

Z s

0

Pf �(t)p
s2 + t2

dt+

Z 1

s

Pf �(t)p
s2 + t2

dt

� P 2f �(s) +QPf�(s);

concluding that there exist a constant Ck > 0 such that for all s > 0 we have

(Kf)�(s) � Ck
�
P 2 +QP

�
f �(s): (7)
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Theorem 5.15 in [1] guarantees that the operators P , Q are well-de�ned and continuous fromX
into X in the case where the Boyd indexes of X are in the interval (0; 1). Under this assumption,
the inequality (7) implies that there exist a constant Ck;X > 0 only depending on k and X such
that, for all f 2 L2 \X(Rd) we have

kKfkX � Ck;X kfkX ,
and we obtain the conclusion. �

Theorem 3. Let X be a r.i. space of functions on Rd such that 0 <�X � �X < 1. If (1) has
a solution F 2 X(Rd ! Rd), then I1� 2 X. Moreover, there exists a constant CX > 0 only
depending on X such that kI1�kX � CX kFkX .

Remark 1. In particular, Theorem 3 applies to all Lp and, more generally, Lp;q spaces with
1 < p <1, 1 � q � 1. Also the theorem applies to all reexive Orlicz spaces.

Proof. Firstly we observe that, using Fubini's theorem and the monotone convergence theorem,
we can rewrite the 1-Riesz potential of a Radon measure � on Rd, for which I1j�j <1 a.e.:

I1�(x) = lim
�!0+

Z
Rd

min(jx� yj1�d; �1�d)d�(y) = (d� 1) lim
�!0+

Z
Rd

�Z 1

�

1B(x;r)(y)

rd
dr

�
d�(y)

= (d� 1) lim
�!0+

Z 1

�

�(B(x; r))

rd
dr = (d� 1)

Z 1

0

�(B(x; r))

rd
dr. (8)

Suppose (1) has a solution F 2 X. Consider a standard radial bump function ' 2 C1c (R
d)

with 0 � ' � 1, supp ' � B(0; 1), k'kL1(Rd) = 1 and some � 2 C1c (Rd) with 0 � � � 1, � = 1
on B(0; 1). For any �; " > 0 we de�ne '" and �� on R

d by the formula '"(x) = "�d'(x=") and
��(x) = �(�x). Fixing an " > 0, the smooth functions F" := F �'" and �";� := (� � '")��+F"�r��,
clearly satisfy div (��F") = �";� . As in [4], we can now use the Gauss-Ostrogradskii theorem and
(8) to compute I1�";�(x) for all x in R

d, in terms of ��F":

I1�";�(x) = (d� 1) lim
�!0+

Z 1

�

1

rd

Z
S(x;r)

(��F") � nd�dr

= (d� 1) lim
�!0+

Z 1

�

Z
S(x;r)

(��F") (y) �
x� y

jx� yjd+1d�(y)dr

= (d� 1) lim
�!0+

Z
jx�yj>�

(��F") (y) �
x� y

jx� yjd+1dy:

The last expression equals cd
P

j Rj (��F";j) (x) a.e. in x. Thanks to Lemma 2 and noticing

that ��F";j 2 C1c (Rd) � L2, we have that there exists a constant CX > 0, only depending on X,
withI1�";�X � cd

X
j

Rj (��F";j)


X

� CX
X
j

k��F";jkX � CX
X
j

kF";jkX , for all " > 0: (9)

It is not hard to see that, if f 2 X, we have

� (jf � '"j) = �

�����Z
Rd

f(� � "y)'(y)dy

����� � Z
Rd

� (jf(� � "y)j'(y)) dy

=

Z
Rd

� (jf(� � "y)j)'(y)dy

7



(we just consider an increasing sequence of nonnegative continuous functions converging pointwise
to the function jf j and then we apply (P3) to reduce the problem to the case of continuous
functions, case which can be handled using Riemann sums and the property (P3) as before).
Since f and jf(� � "y)j have the same distribution function and X is a r.i. space, we get thatR
Rd f(� � "y)'(y)dy belongs to X and its norm is bounded by kfkX . This fact combined with (9)
gives us I1�";�X � CX kFkX <1, for all �; " > 0: (10)

It remains to show that this implies I1� 2 X and the expected estimate. We have that
I1�";� = I1 (�"��) + I1 (F" � r��), where �" := � � '". When � ! 0, for the second term we can
write for each x 2 Rd,

jI1 (F" � r��) (x)j � �

Z
Rd

jF"(y) � r�(�y)j
jx� yjd�1 dy =

Z
Rd

jF"(y=�) � r�(y)j
j�x� yjd�1 dy

�
E1=�F"X  r�

j�x� �jd�1


X0
�
E1=� kF"kX

 r�
(1� j�xj)d�1


X0

� 2
E1=� kF"kX kr�kX0 � 2��X=2 kF"kX kr�kX0 ! 0:

The dominated convergence theorem gives for the �rst term that I1 (���") ! I1�" pointwise
when � ! 0. From these two observations, (10) and the Fatou property of � (which follows from
(P3)) we conclude:

kI1�"kX � lim
"!0

I1�";�X � CX kFkX <1, for all " > 0: (11)

We now let "! 0 in (11). For each x 2 Rd and r > 0 we can write:

�"(B(x; r)) =

Z
B(x;r)

Z
Rd

'"(z � y)d�(y)dz =

Z
Rd

'" � 1B(x;r)(y)d�(y):

It is not hard to see that, taking "! 0, '"�1B(x;r)(y)! 1 when y 2 B(x; r), '"�1B(x;r)(y)! 0
when y =2 B(x; r) and '" � 1B(x;r)(y)! 1=2 when y 2 @B(x; r). Moreover the function '" � 1B(x;r)
is bounded by 1 and has its support contained in B(x; r + 1) when " is small. The dominated
convergence theorem yields

�"(B(x; r))! �(B(x; r)) +
1

2
�(@B(x; r)), when "! 0

and hence, for any l � 1,

Z l

1=l

�(B(x; r))

rd
dr �

Z l

1=l

�(B(x; r))

rd
dr +

1

2

Z l

1=l

�(@B(x; r))

rd
dr

= lim
"!0

Z l

1=l

�"(B(x; r))

rd
dr.

The inequality from (11) and the Fatou property of � will give

(d� 1)
Z l

1=l

�(B(�; r))
rd

dr


X

� (d� 1) lim
"!0

Z l

1=l

�"(B(�; r))
rd

dr


X

� lim
"!0

kI1�"kX � CX kFkX

and we can �nish the proof by using the Fatou property and (8), taking l!1. �
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The above result covers the case of Lp spaces when 1 < p < 1. However, even in the
Lp setting, the fact that the equation (1) has a solution in X does not imply that the 1-Riesz
potential of the measure belongs to X. More speci�cally, we have the following classical result
(see [4]):

Theorem 4. (Theorem 3.3 in [4]) Let � be a nonnegative Radon measure on Rd. Then the
equation (1) has a solution F2L1(Rd ! Rd) if and only if the measure � is (d� 1)�Frostman,
i.e., there exist a constant M only depending on � such that

�(B(x; r)) �Mrd�1, for all x 2 Rd and r > 0.

In order to prove Theorem 4, let � be a Radon measure. The fact that there exists a solution
F2L1 for the equation divF = � is equivalent to the fact that � belongs to the dual of the space
w1;1. Here, w1;1 is the closure of C1c (R

d) under the norm k�kw1;1 , where kukw1;1 := krukL1 ,
u 2 C1c (R

d). Now, for nonnegative measures this condition is equivalent to the fact that � is
(d� 1)�Frostman. This result is due to Meyers and Ziemer (originally appearing in [2]; see also
Lemma 4.9.1 in [5], p. 209 for a proof of a more general statement).

Clearly, there exist (d� 1)�Frostman nonnegative measures whose 1-Riesz potential is un-
bounded. Take for example the measure � de�ned by �(E) = md�1(E\fx1 = 0g) for all Borel sets
E � Rd. Here, md�1 is the (d� 1)�dimensional Lebesgue measure on the hyperplane fx1 = 0g.
For this �, the quantity

R1
1
r�d�(B(x; r))dr is in�nite for all x 2 Rd and then, by (8), I1� is

in�nite everywhere.

Note that the Boyd indexes of L1 are 0 and thus the example obtained in the previous
paragraph does not contradict Theorem 3.

The case of the space L1 is also a pathological one, the Boyd indexes being equal to 1.
However we cannot �nd a counterexample for the assertion of the Theorem 3 in the case of
nonnegative measures. Indeed, by Theorem 1, the measure � will be trivial and then I1� � 0 2 L1.
Nevertheless, we can give a simple example of a vector �eld F 2 L1 and of a signed Radon measure
� such that divF = �, but the 1-Riesz potential, I1�, does not belong to L

1. The construction
of F and � relies on the following observation. Consider  2 C1c (B(0; 1)). When jxj is large we
can write, for r = jxj, ! = x=jxj, that

I1 (x) =
1

rd�1

Z
B(0;1)

 (y)

j! � y=rjd�1dy =
1

rd�1

Z
B(0;1)

 (y)

j1� 2y � !=r + jyj2=r2j(d�1)=2dy

=
1

rd�1

Z
B(0;1)

 (y)dy +
d� 1
rd

! �
�Z

B(0;1)

y (y)dy

�
+

1

rd+1

Z
B(0;1)

 (y)h(r; y)dy,

where h is a smooth bounded function on (1;1)�Rd. Thus,

I1 (x) =
A

jxjd�1 +
b � x
jxjd+1 +O

�
1

jxjd+1

�
as jxj ! 1, (12)

where

A :=

Z
B(0;1)

 (y)dy and b :=

Z
B(0;1)

y (y)dy.

The right hand side of (12) belongs to L1 if and only if A = 0 and b = 0. In conclusion,
 2 C1c (B(0; 1)) has the property that I1 2 L1 if and only if

9



Z
B(0;1)

 (y)dy =

Z
B(0;1)

yj (y)dy = 0 for all j 2 f1; :::; dg .

We can now construct our example. Let ' 2 C1c (B(0; 1)) be such that
R
B(0;1)

'(y)dy 6= 0, and
set F = ('; 0; :::; 0) 2 L1 and � = (@1')m. Clearly, we haveZ

B(0;1)

y1@1'(y)dy = �
Z
B(0;1)

'(y)dy 6= 0

and, by the above observation (with  = @1'), I1� does not belong to L
1.

These examples show that, at least in the case where the measure is signed, we cannot expect
for the pathological Lp spaces, namely L1 and L1, to have the property stated in the above
Theorem 3. This is also the case in the more general context of r.i. spaces: as long as at least
one of the Boyd indexes of the space X is equal to 0 or 1, we can always �nd a signed Radon
measure which is the divergence of a �eld F belonging to X, but whose 1-Riesz potential does
not have the norm in X controlled by the norm of F . It is not hard to observe that, after minor
modi�cations in the proof, the conclusion of Theorem 3 remains true in the case of signed Radon
measures. With this in mind, Proposition 4 below is a sort of converse.

Proposition 4. Let X be a r.i. space of functions on Rd with the property that whenever � is
a signed Radon measure on Rd with � = divF for a vector �eld F 2 X(Rd ! Rd), we have that
I1�

+, I1�
� are �nite a.e., I1� 2 X and kI1�kX � CX kFkX for a positive constant CX . Then

0 <�X � �X < 1.

Proposition 4 is a consequence of Lemma 3 below, which is a d�dimensional version of Propo-
sition 4.10 p. 140 in [1], with essentialy the same proof. To state Lemma 3, consider the operators
P and Q de�ned in the proof of Lemma 2 and let S be the Calder�on operator de�ned by the
formula:

Sf(s) = Pf(s) +Qf(s) =

Z s

0

f(t)

s
dt+

Z 1

s

f(t)

t
dt =

Z 1

0

f(t)min

�
1

t
;
1

s

�
dt, s > 0,

initially for nonnegative measurable functions f on (0;1) (see [1], p 133 and 142).

Lemma 3. Let X be a r.i. space of functions on Rd and f 2 X. Consider the sets

C+ := (0;1)d; C� := (�1; 0)d

and the function G : Rd ! [0;1], G(x) = f �(vdjxjd)1C�(x), where vd := m(B(0; 1))=2d. Then
G and f are equimeasurable functions, the Riesz transforms R1G,..., RdG of G are well-de�ned
as functions on C+ and there exist a constant cd > 0 such that:

((R1G+ :::+RdG)1C+)
� (s) � cdS(f

�)(s), for all s > 0. (13)

Moreover, if (R1G+ :::+ RdG)1C+ 2 X for all f 2 X then 0 <�X � �X < 1. In particular,
the same conclusion holds if the sum of the Riesz transforms is a well-de�ned operator from X
into X .

Proof of Lemma 3. Consider for simplicity the function g : (0;1) ! [0;1] with g(s) =
f �(vds

d). Note that g is nonincreasing, and thus g� = g. It is easy to see that, since G(x) =
g(jxj)1C�(x) and since g is nonincreasing, we have �G(t) = vd�

d
g(t) for all t > 0. Hence, a simple
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computation gives us G�(s) = g�(v
�1=d
d s1=d) = g(v

�1=d
d s1=d) = f �(s) for all s > 0, which shows the

equimeasurability of G and f . Taking now a j 2 f1; :::; dg we can write, for x 2 C+:

RjG(x) = c1d

Z
C+

xj + yj
jx+ yjd+1 g(jyj)dy = c1d

Z
C+

xj
jx+ yjd+1 g(jyj)dy + c1d

Z
C+

yj
jx+ yjd+1 g(jyj)dy

� c2dxj

Z
C+
min

�
1

jxjd+1 ;
1

jyjd+1

�
g(jyj)dy + c2d

Z
C+
yj min

�
1

jxjd+1 ;
1

jyjd+1

�
g(jyj)dy

� c3d
xj

jxjd+1
Z
B(0;jxj)\C+

g(jyj)dy + c3d

Z
Bc(0;jxj)\C+

yj
jyjd+1 g(jyj)dy.

Summing up these inequalities yields

dX
j=1

RjG(x) � c3d
x1 + :::+ xd
jxjd+1

Z
B(0;jxj)\C+

g(jyj)dy + c3d

Z
Bc(0;jxj)\C+

y1 + :::+ yd
jyjd+1 g(jyj)dy

� c4d
1

jxjd
Z
B(0;jxj)\C+

g(jyj)dy + c4d

Z
Bc(0;jxj)\C+

1

jyjd g(jyj)dy

� c5d
1

jxjd
Z jxj

0

rd�1g(r)dr + c5d

Z 1

jxj

g(r)

r
dr

� c6d
1

jxjd
Z vdjxjd

0

f �(t)dt+ c6d

Z 1

vdjxjd

f �(t)

t
dt � cdS(f

�)(vdjxjd).

Since S(f �) is a nonincreasing function, we can see as above that the nonincreasing rearrange-
ment of the function x! S(f �)(vdjxjd)1C+(x) computed in s > 0 is equal to S(f �)(s). Hence, we
have proved the inequality (13).
To prove the next claim, observe that the inequality (13) under the assumption that (R1G+

:::+RdG)1C+ 2 X gives us that, if f 2 X, then we must have S(f �) 2 X.
Let us note that we have S(jf j) � S(f �). This can be easily seen by applying the Hardy-

Littlewood inequality to jf j and the nonincreasing function t ! min(1=s; 1=t) when s > 0 is
�xed:

S(jf j)(s) =
Z 1

0

jf(t)jmin
�
1

s
;
1

t

�
dt �

Z 1

0

f �(t)min

�
1

s
;
1

t

�
dt = S(f �)(s).

Up to now we have that, if f 2 X and (R1G + ::: + RdG)1C+ 2 X, then S(jf j) 2 X.
As in the proof of Theorem 1.8, p. 7, [1] we suppose by contradiction that the operator S :
X ! X is not continuous. Then we can �nd a sequence (fn)n�1 of nonnegative functions in

X with kfnkX = 1 and such that kS(fn)kX � n3 for all n � 1. The series
P

n�1 fn=n
2 being

absolutely convergent in X, it de�nes a function f 2 X, hence S(f) 2 X. However since all
the functions fn are nonnegative, we have f � fn=n

2 and consequently S(f) � S(fn)=n
2 which

implies kS(f)kX � kS(fn)kX =n2 � n for all n � 1, obtaining a contradiction.
Having that S is a continuous operator, we can use Theorem 5.15, p. 150, [1] to obtain the

statement about the Boyd indexes of X. �

Proof of Proposition 4. To prove the Proposition 4, consider a function f 2 X and the �eld
F = (G; :::; G), with G constructed from f as in Lemma 3. Suppose �rst that f � is compactly
supported. Note that � := divF is not always a Radon measure (we can compute explicitly �+ and
�� to see that these measures are not always locally �nite), but is of course a distribution. With
the notation from the proof of Theorem 3, we have that � � '" and F � '" are smooth compactly
supported functions. In particular, ��'" is a compactly supported signed Radon measure on Rd.
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Since � � '" = div (F � '") and, as in the proof of Theorem 3, kF � '"kX � kFkX , we must have
then, that kI1 (� � '")kX � CX kF � '"kX � CX kFkX for all " > 0. As above, the formula (8)
and the Gauss-Ostrogradskii theorem give us that:

I1 (� � '") (x) = (d� 1) lim
�!0+

Z
jx�yj>�

F � '"(y) �
x� y

jx� yjd+1dy for all x 2 R
d. (14)

Fix r > 0 and take " 2 (0; r). The support of F is contained in the closure of the set C�.
Hence F �'" is supported in the closure of C�+"B. We can write, for all x 2 C+r := (r; :::; r)+C+,
that

lim
�!0+

Z
jx�yj>�

F � '"(y) �
x� y

jx� yjd+1dy =

Z
C�+"B

F � '"(y) �
x� y

jx� yjd+1dy

�
Z
C�

F � '"(y) �
x� y

jx� yjd+1dy. (15)

Since the integrand of the last term is nonnegative, one can use Tonelli's theorem to change
the order of integration, and �nd thatZ

C�
F � '"(y) �

x� y

jx� yjd+1dy =

Z
Rd

�Z
C�

F (y � "�) � x� y

jx� yjd+1dy
�
'(�)d�

�
Z
C+

�Z
C�

g(jy � "�j) � x1 � y1 + :::+ xd � yd
jx� yjd+1 dy

�
'(�)d�.

The fact that the function g is nonincreasing enables us to see that for a �xed � 2 C+ we have
g(jy � "�j) � g(jy � "0�j) for all y 2 C� and for all 0 < "0 < ". Hence the monotone convergence
theorem gives usZ

C�
g(jy � "�j) � x1 � y1 + :::+ xd � yd

jx� yjd+1 dy !
Z
C�

g(jyj) � x1 � y1 + :::+ xd � yd
jx� yjd+1 dy,

when "! 0. With the help of Fatou's lemma and the above calculation we have

lim
"!0

Z
C�

F � '"(y) �
x� y

jx� yjd+1dy � A

Z
C�

g(jyj) � x1 � y1 + :::+ xd � yd
jx� yjd+1 dy,

where A =
R
C+
'(�)d� > 0. Using (14), (15) we obtain

lim
"!0

I1 (� � '") (x) � (d� 1)A
Z
C�

g(jyj) � x1 � y1 + :::+ xd � yd
jx� yjd+1 dy � 0,

for all x 2 C+r and all r > 0. Since (d� 1)A do not depend on r, this inequality can be rewriten
as

lim
"!0

(I1 (� � '")) 1C+ � cd (R1G+ :::+RdG) 1C+ � 0,

and consequently by the Fatou property of X, we get

k(R1G+ :::+RdG) 1C+kX � C1X lim
"!0

kI1 (� � '")kX

which implies k(R1G+ :::+RdG) 1C+kX � C2X kFkX , and by using inequality (13) from Lemma
3, we get that

kS(f �)kX � C3X kf �kX (16)

whenever f 2 X and f � is compactly supported. Now, if f 2 X and f � is not necessarly compactly
supported, from (16) we have

S(f �1(0;n))X � C3X
f �1(0;n)X for all n � 1. By the monotone
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convergence theorem and the Fatou property of X we get, taking n ! 1, that (16) is true
whenever f 2 X. Since as in the proof of Lemma 3 we have S(jf j) � S(f �), we get now that
kS(jf j)kX � C3X kfkX for all f 2 X, obtaining that S is bounded from X into X.
The conclusion follows now as in Lemma 3. �
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