
Multi-scale acoustics of partially open-cell poroelastic foams: Linear elastic properties derivation from microstructures representative Of transport parameters

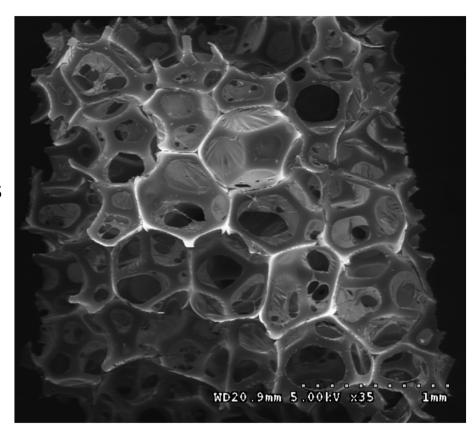
By Minh Tan HOANG^{1, 2} Guy BONNET, and Camille PERROT^{1, a}

¹Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS

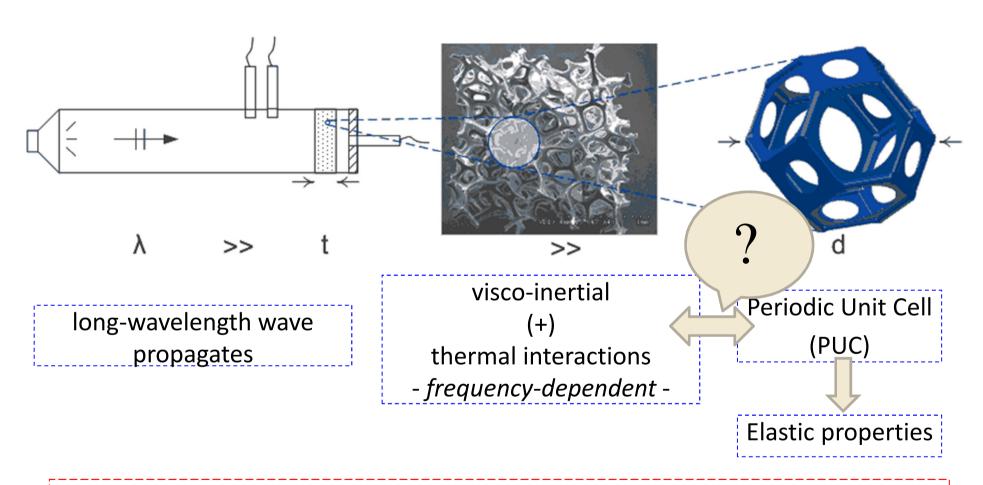
²Faurecia Interior Systems, Acoustic TechCenter, Mouzon, France

a) Email: camille.perrot@univ-paris-est.fr

I. 1) Problem definition & Aims

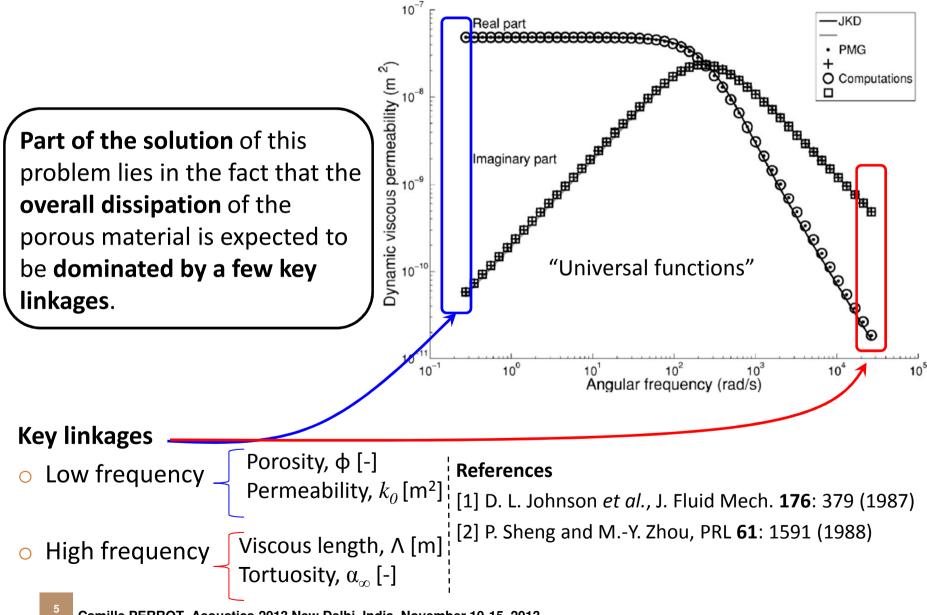

- General Objective. Optimization of the long-wavelengths acoustic properties of real sound proofing foam samples.
- Methodology. Use the method of Periodic Unit Cell (PUC) reconstruction of porous media, which consists of 2 main steps:
- 1) Identification of the critical local geometry features governing long-wavelengths acoustics of porous media.
- 2) Generation of 3D parameterized PUCs suitable for optimization.
- Transport properties are obtained by ensemble averages of velocity and thermal fields, solutions of the local boundary value problems.
- Elastic properties are derived from micromechanical techniques.

Aim of this work

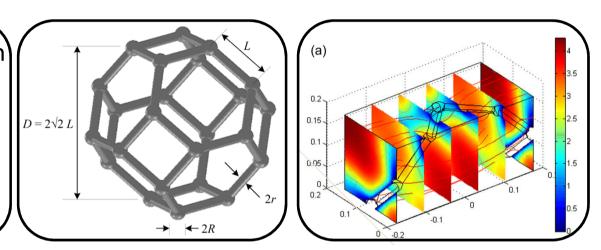

- To present techniques devised to account explicitly for the role played by membranes in transport phenomena.
- To perform numerical homogenization simulations of linear elastic properties through the finite element technique in solid foams containing membranes.

I. 2) Motivations

- Solid films or membranes in porous materials such as polyurethane or metal foams only account for a very small fraction in the overall mass of the porous media.
- Yet, their role might be of primary importance in the understanding of transports, elastic, and acoustical properties of these poroelastic foams.



I. 3) Specific Objectives


A fundamental physical challenge to the microstructural identification of features which are characteristic of the overall transports and elastic properties

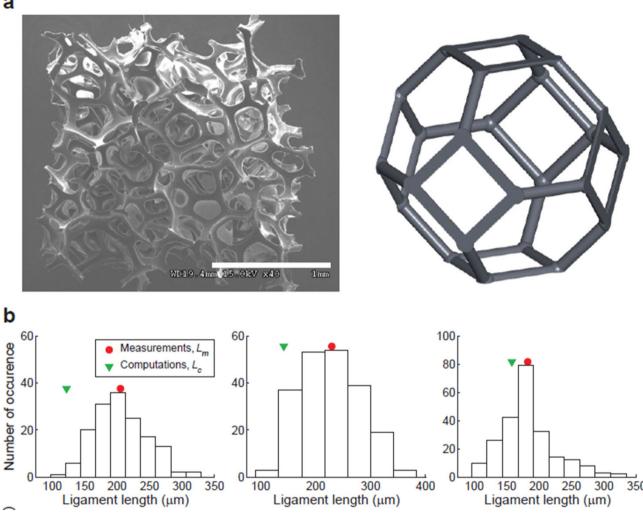
II. 1) Key Linkages

II. 2) Viscous dissipations

... and in the **identification** of an open-cell responsible for the **viscous dissipations**

Experiments &3D Numerical simulations

Key linkages

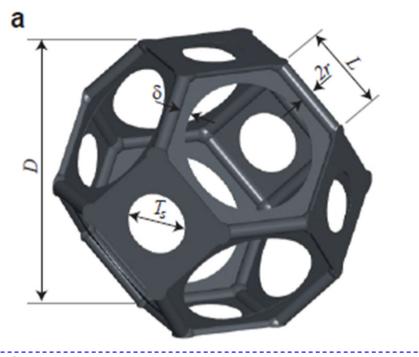

- Low frequency Porosity, ϕ [-] Permeability, k_0 [m²]
- High frequency Viscous length, Λ [m] Tortuosity, α_{∞} [-]

References

[3] C. Perrot et al., J. Appl. Phys. **111**: 014911 (2012)

"Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and threedimensional numerical simulations"

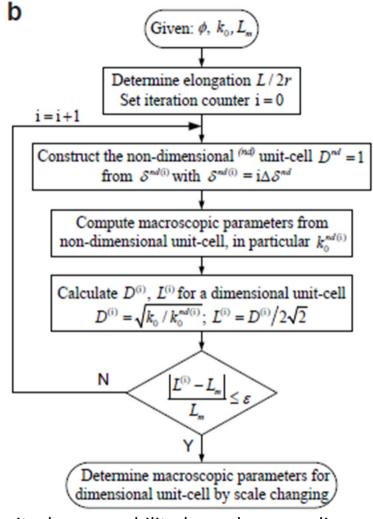
II. 3) A missing ingredient



The superimposed average values of the experimental measurements (L_m , o) and ligament length of the open-cell solid foam structure with the same average permeability (L_c , \blacksquare) convey the impression of a missing microstructural ingredient in the PUC

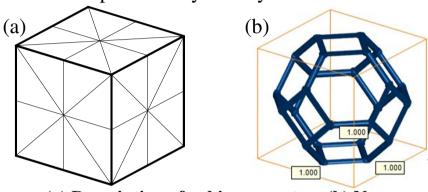
II. MATERIALS & METHODS

Multi-Scale Acoustics of Poro-Elastic Foams


II. 4) Iterative approach

References

[4] M. T. Hoang and C. Perrot, J. Appl. Phys. **112**, 054911 (2012) "Solid films and transports in cellular foams"


[5] M. T. Hoang and C. Perrot, J. Appl. Phys. 113, 084905 (2013)
"Identifying local characteristic lengths governing sound wave properties in solid foams"

The iterative procedure illustrates the importance of porosity ϕ , permeability k_0 ; and average ligament lengths length L_m measurements from which all the transport parameters are computed **without any adjusted constant**.

Material with cubic symmetry

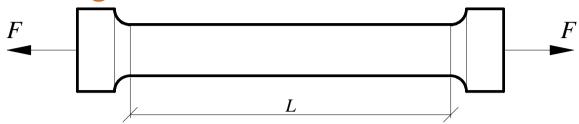
- What is a cubic symmetry?
 - => A structure which contains 9 planes of symmetry

(a) Description of cubic symmetry; (b) Nondimensional tetrakaidecahedron geometrical model.

Our geometrical model satisfies the criteria for a cubic symmetry

- Elasticity matrix of a material with cubic symmetry:

=> 3 independent elastic coefficients


Non-zero constants of compliance matrix:

II. MATERIALS & METHODS

Multi-Scale Acoustics of Poro-Elastic Foams

II. 5.2) Micromechanical approach

Elastic longitudinal modulus and Poisson's ratio

Basic description of tensile testing

Hook's law:

$$\begin{pmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\sqrt{2}\varepsilon_{23} \\
\sqrt{2}\varepsilon_{31} \\
\sqrt{2}\varepsilon_{12}
\end{pmatrix} = \begin{pmatrix}
S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \\
S_{12} & S_{11} & S_{12} & 0 & 0 & 0 \\
S_{12} & S_{12} & S_{11} & 0 & 0 & 0 \\
S_{21} & S_{22} & S_{23} & 0 & 0 & 0 \\
S_{31} & S_{31} & S_{32} & S_{31} & 0 & 0 & 0 \\
S_{32} & S_{32} & S_{31} & 0 & 0 & 0 \\
S_{34} & 0 & 0 & 0 & 0 \\
S_{44} & 0 & 0 & 0 & 0
\end{pmatrix} (9)$$

We deduce: $\begin{cases} \sigma_{11} = \frac{1}{S_{11}} \varepsilon_{11} \\ \varepsilon_{22} = \frac{S_{12}}{S_{11}} \varepsilon_{11} \end{cases}$ (11) $\varepsilon_{33} = \frac{S_{13}}{S_{11}} \varepsilon_{11}$

Strain constants:

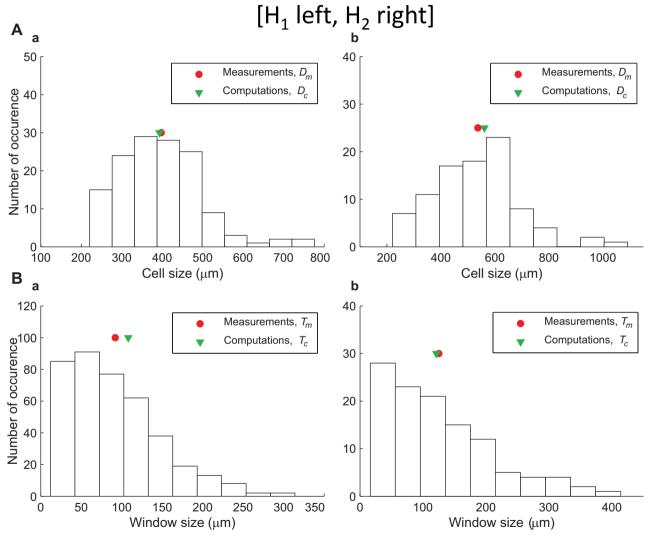
$$\begin{cases} \boldsymbol{\varepsilon}_{11} = S_{11}\boldsymbol{\sigma}_{11} \\ \boldsymbol{\varepsilon}_{22} = S_{12}\boldsymbol{\sigma}_{11} \\ \boldsymbol{\varepsilon}_{33} = S_{13}\boldsymbol{\sigma}_{11} \\ \boldsymbol{\varepsilon}_{23} = \boldsymbol{\varepsilon}_{31} = \boldsymbol{\varepsilon}_{12} = 0 \end{cases}$$

$$(10)$$

Elastic longitudinal modulus and Poisson's ratio were deduced:

$$\begin{cases} \boldsymbol{E}_{L} = \frac{1}{S_{11}} = \frac{C_{11}^{2} + C_{11}C_{12} - 2C_{12}^{2}}{C_{11} + C_{12}} \\ v_{12} = -\frac{S_{12}}{S_{11}} = \frac{C_{12}}{C_{11} + C_{12}} \\ v_{13} = -\frac{S_{13}}{S_{11}} = \frac{C_{12}}{C_{11} + C_{12}} \end{cases}$$
(12)

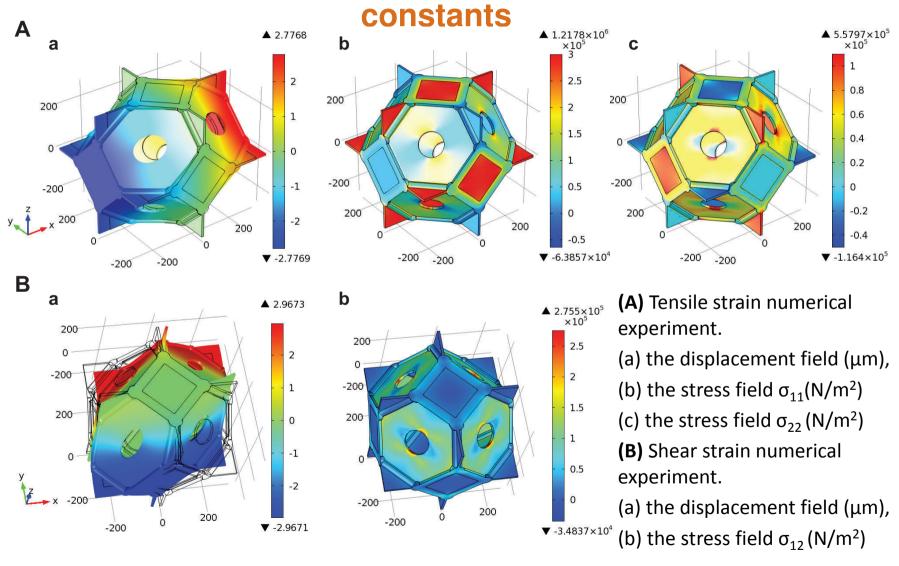
Macroscopic parameters: Comparison between computations and experiments


Experimental results include direct measurements of porosity ϕ and permeability k_0 (plus cell size), and inverse characterization of the remaining parameters.

Foam	Method	φ	Λ' (μm)	$k_0 (\times 10^{-10} \mathrm{m}^2)$	$\Lambda \left(\mu m \right)$	α^{∞}	k_0 ' (×10 ⁻¹⁰ m ²)
H ₁	Computation Measurements	0.93 ± 0.01	146 ± 22	5.35 ± 0.42	55 ± 6	1.40 ± 0.26	28 ± 12
	Characterization	0.93 ± 0.01	143 ± 57	3.33 ± 0.42	33 ± 4	1.05 ± 0.08	55 ± 28
H ₂	Computation Measurements	0.97 ± 0.01	179 ± 46	2.56 ± 0.60	53 ± 9	2.40 ± 0.55	48 ± 26
	Characterization		424 ± 92		13 ± 6	1.58 ± 0.64	53 ± 16

The purely geometrical macroscopic properties and transport parameters computed from the course of this multi-scale approach are in a good agreement with experimental data, especially when standard deviations are taken into account

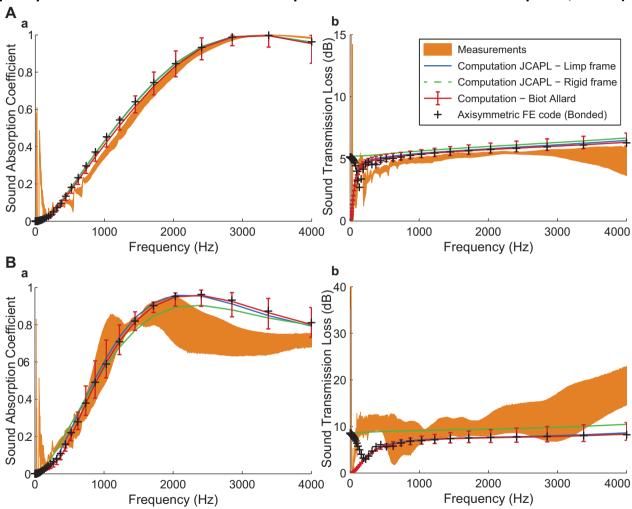
III. 2) Microstructure


Analysis of the representativity of the microstructure from SEM imaging

Our approach is also consistent with microstructural results

III. 2.1) Elastic properties

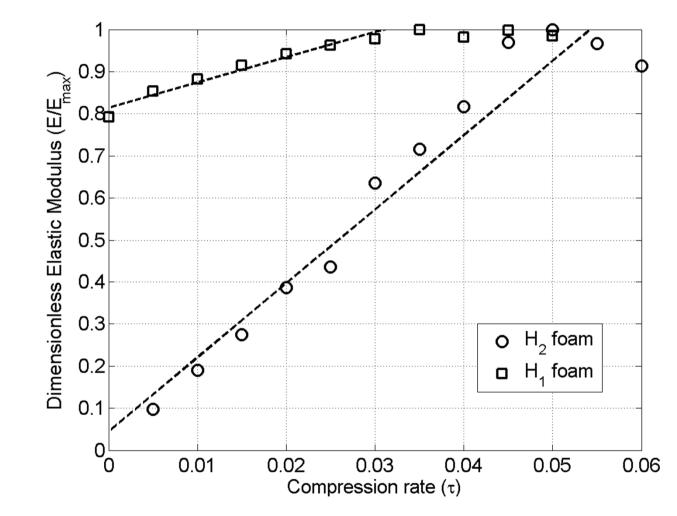
Numerical experiments allowing to identify the elastic


Multi-Scale Acoustics of Poro-Elastic Foams

Computed non-dimensional elastic properties of foam samples H1 and H2. In these simulations, the membrane thickness is equal to 1.7 μ m.

Foam	Method	$\Sigma_{11}^{nd} \times 10^{-3})$	Σ_{22}^{nd} (×10 ⁻³)	Σ_{12}^{nd} (×10 ⁻³)	C_{11}^{nd} (×10 ⁻³)	C_{12}^{nd} (×10 ⁻³)	C_{44}^{nd} (×10 ⁻³)	E_{TI}^{nd} (×10 ⁻³)	ν _Π (-)	$E_{I}^{nd} \times 10^{-3}$	ν _I (-)
H ₁	Without membranes	0.13 ±0.02	0.09 ±0.01	0.03 ±0.01	13.06 ±2.50	9.33 ±1.36	3.15 ±0.94	5.28 ±1.57	0.42 ±0.01	4.79 ±1.40	0.43 ±0.01
	With membranes	0.18 ±0.03	0.10 ± 0.01	0.05 ± 0.01	17.62 ±2.57	10.00 ±1.3	5.34 ±1.07	10.38 ±1.71	0.36 ±0.01	8.43 ±1.56	0.38 ±0.01
H ₂	Without membranes	0.04 ±0.02	0.04 ±0.01	0.00 ±0.00	4.24 ±1.88	3.72 ±1.45	0.47 ±0.38	0.76 ±0.62	0.47 ±0.01	0.71 ±0.57	0.47 ±0.01
	With membranes	0.09 ±0.02	0.05 ±0.01	0.03 ±0.01	8.77 ±2.33	5.03 ±1.38	3.27 ±0.68	5.10 ±1.51	0.36 ±0.02	4.73 ±1.12	0.37 ±0.01

Very significant effect of membranes on the elastic properties of foam samples


Acoustical properties of two different poroelastic foam samples, H1 (A) and H2 (B)

Estimates (Biot-Johnson) close to laboratory measurements of sound absorption (Poroelastic FE formulation to properly model the boundary condition for STL)

III. 2.4) Acoustic/Elastic properties

Elastic properties depend on the compression rate

The method estimates linear elastic properties (no compression rate)

Multi-Scale Acoustics of Poro-Elastic Foams

- The proposed micromechanical method can provide reasonable estimates of linear elastic properties for poroelastic foams including the significant effects of membranes' closure rate and thickness.
- The method is an idealized periodic cell method, based on the use of a simplified cellular morphology with identified local characteristic lengths.
- Further systematic investigation on the **sensitivity** of the results with regard to choice of particular features of the **cellular morphology** should be carried out.
- Accurate values for the Young's modulus and Poisson ratio of the base material are difficult to obtain because of the variability of the base material itself.
- Extending this multi-scale method to real life sound insulation optimization problems is not straightforward but the present methodology should readily be extended.