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I. INTRODUCTION

I. 1) Problem definition & Aims

o General Objective. Optimization of the long-wavelengths acoustic properties of 

real sound proofing foam samples.

o Methodology. Use the method of Periodic Unit Cell (PUC) reconstruction of 

porous media, which consists of 2 main steps:

1) Identification of the critical local geometry features governing long-wavelengths 

acoustics of porous media.

2) Generation of 3D parameterized PUCs suitable for optimization.

- Transport properties are obtained by ensemble averages of velocity and thermal 

fields, solutions of the local boundary value problems.

- Elastic properties are derived from micromechanical techniques.

Aim of this work

o To present techniques devised to account explicitly for the role played by 

membranes in transport phenomena.

o To perform numerical homogenization simulations of linear elastic properties 

through the finite element technique in solid foams containing membranes.
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I. INTRODUCTION

I. 2) Motivations

o Solid films or membranes in porous 

materials such as polyurethane or metal 

foams only account for a very small 

fraction in the overall mass of the porous 

media.

o Yet, their role might be of primary 

importance in the understanding of 

transports, elastic, and acoustical

properties of these poroelastic foams.
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I. INTRODUCTION

I. 3) Specific Objectives

A fundamental physical challenge to the microstructural identification of features 

which are characteristic of the overall transports and elastic properties

long-wavelength wave

propagates

visco-inertial

(+)

thermal interactions

- frequency-dependent -

Periodic Unit Cell

(PUC)

?

Elastic properties



Multi-Scale Acoustics of Poro-Elastic Foams

5
Camille PERROT, Acoustics 2013 New Delhi, India, November 10-15, 2013

II. MATERIALS & METHODS

II. 1) Key Linkages

Part of the solution of this 

problem lies in the fact that the 

overall dissipation of the 

porous material is expected to 

be dominated by a few key 

linkages.

Key linkages

o Low frequency

o High frequency

Porosity, φ [-]

Permeability, k0 [m
2]

Viscous length, Λ [m]

Tortuosity, α
∞

[-]

References

[1] D. L. Johnson et al., J. Fluid Mech. 176: 379 (1987)

[2] P. Sheng and M.-Y. Zhou, PRL 61: 1591 (1988)

“Universal functions”
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II. MATERIALS & METHODS

II. 2) Viscous dissipations

… and in the identification of an 

open-cell responsible for the 

viscous dissipations

Key linkages

o Low frequency

o High frequency

References

[3] C. Perrot et al., J. Appl. Phys. 111: 014911 (2012)

“Microstructure, transport, and acoustic properties of 

open-cell foam samples: Experiments and three-

dimensional numerical simulations”

Porosity, φ [-]

Permeability, k0 [m
2]

Viscous length, Λ [m]

Tortuosity, α
∞

[-]

Experiments &3D Numerical simulations
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II. MATERIALS & METHODS

II. 3) A missing ingredient

The superimposed average values of the experimental measurements (Lm, o) and ligament length of the 

open-cell solid foam structure with the same average permeability (Lc, �) convey the impression of a 

missing microstructural ingredient in the PUC
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II. MATERIALS & METHODS

II. 4) Iterative approach

The iterative procedure illustrates the importance of porosity φ, permeability k0; and average ligament 

lengths length Lm measurements from which all the transport parameters are computed without any 

adjusted constant.

References

[4] M. T. Hoang and C. Perrot, J. Appl. Phys. 112, 054911 (2012) 

“Solid films and transports in cellular foams”

[5] M. T. Hoang  and C. Perrot, J. Appl. Phys. 113, 084905 (2013) 

‘’Identifying local characteristic lengths governing sound wave 

properties in solid foams’'
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Material with cubic symmetry
� What is a cubic symmetry? 
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 
  
 

ɶ

� Elasticity matrix of a material 

with cubic symmetry:

=> A structure which contains 9 planes of symmetry

Our geometrical model satisfies the criteria for a cubic symmetry

(a) Description of cubic symmetry; (b) Non-

dimensional tetrakaidecahedron geometrical model.

� Non-zero constants of compliance 

matrix:
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(7) (8)

=> 3 independent elastic coefficients

II. MATERIALS & METHODS

II. 5.1) Micromechanical approach

(a) (b)
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Elastic longitudinal modulus and Poisson’s ratio

� Elastic longitudinal modulus and 

Poisson’s ratio were deduced:  

2 2
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11 11 12

12 12
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13 12
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21
L
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
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+

E

(12)

II. MATERIALS & METHODS

II. 5.2) Micromechanical approach

FF

L

� Hook’s law:  
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Basic description of tensile testing 

� Strain constants:   
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III. RESULTS AND DISCUSSION

III. 1) Transport properties

Macroscopic parameters: Comparison between computations and experiments

Experimental results include direct measurements of porosity ϕ and permeability k0 (plus cell size), and 

inverse characterization of the remaining parameters.

The purely geometrical macroscopic properties and transport parameters computed 

from the course of this multi-scale approach are in a good agreement with experimental 

data, especially when standard deviations are taken into account
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III. RESULTS AND DISCUSSION

III. 2) Microstructure

Analysis of the representativity of the microstructure from SEM imaging

[H1 left, H2 right]

Our approach is also consistent with microstructural results 
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Numerical experiments allowing to identify the elastic 
constants

III. RESULTS AND DISCUSSION

III. 2.1) Elastic properties

A
a b

B
a b

c

(A) Tensile strain numerical 

experiment.

(a) the displacement field (μm),

(b) the stress field σ11(N/m2)

(c) the stress field σ22 (N/m2)

(B) Shear strain numerical 

experiment.

(a) the displacement field (μm),

(b) the stress field σ12 (N/m2)
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III. RESULTS AND DISCUSSION

III. 2.2) Elastic properties

Very significant effect of membranes on the elastic properties of foam samples

Computed non-dimensional elastic properties of foam samples H1 and H2. In these 

simulations, the membrane thickness is equal to 1.7 μm.
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III. RESULTS AND DISCUSSION

III. 2.3) Acoustic properties

Estimates (Biot-Johnson) close to laboratory measurements of sound absorption

(Poroelastic FE formulation to properly model the boundary condition for STL)

Acoustical properties of two different poroelastic foam samples, H1 (A) and H2 (B)
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III. RESULTS AND DISCUSSION

III. 2.4) Acoustic/Elastic properties

The method estimates linear elastic properties (no compression rate)

Elastic properties depend on the compression rate
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IV. CONCLUDING REMARKS

o The proposed micromechanical method can provide reasonable estimates of 

linear elastic properties for poroelastic foams including the significant effects of 

membranes’ closure rate and thickness.

o The method is an idealized periodic cell method, based on the use of a simplified 

cellular morphology with identified local characteristic lengths.

o Further systematic investigation on the sensitivity of the results with regard to 

choice of particular features of the cellular morphology should be carried out. 

o Accurate values for the Young’s modulus and Poisson ratio of the base material

are difficult to obtain because of the variability of the base material itself.

o Extending this multi-scale method to real life sound insulation optimization 

problems is not straightforward but the present methodology should readily be 

extended.


