MULTI-SCALE ACOUSTICS OF CELLULAR FOAM SAMPLES

By Minh Tan HOANG^{1, 2}, Guy BONNET, and <u>Camille PERROT^{1, a}</u>

¹Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS

²Faurecia Interior Systems, Acoustic TechCenter, Mouzon, France

^{a)}Email: <u>camille.perrot@univ-paris-est.fr</u>

- General Objective. Optimization of the long-wavelengths acoustic properties of real sound proofing foam samples.
- **Methodology**. Use the method of Periodic Unit Cell (PUC) reconstruction of porous media, which consists of 2 main steps:
- 1) Identification of the critical local geometry features governing long-wavelengths acoustics of porous media.
- Generation of 3D parameterized PUCs suitable for optimization. 2)
- Transport properties are obtained by ensemble averages of velocity and thermal fields, solutions of the local boundary value problems.
- Elastic properties are derived from micromechanical techniques.

Aim of this work

I. INTRODUCTION

- To present techniques devised to account explicitly for the role played by membranes in transport phenomena.
- To perform numerical homogenization simulations of linear elastic properties 0 through the finite element technique in solid foams containing membranes.

I. INTRODUCTION I. 2) Motivations

- Solid films or membranes in porous materials such as polyurethane or metal foams only account for a very small fraction in the overall mass of the porous media.
- Yet, their role might be of primary importance in the understanding of transports, elastic, and acoustical properties of these *poroelastic* foams.

Multi-Scale Acoustics of Poro-Elastic Foams

I. INTRODUCTION I. 3) Specific Objectives

A fundamental physical challenge to the **microstructural identification** of **features** which are **characteristic** of the **overall transports and <u>elastic</u> properties**

II. MATERIALS & METHODS II. 1) Key Linkages

Multi-Scale Acoustics of Poro-Elastic Foams

Experiments &3D Numerical simulations

Key linkages• Low frequencyPorosity, ϕ [-]
Permeability, k_0 [m²]• High frequencyViscous length, Λ [m]
Tortuosity, α_{∞} [-]References
(3] C. Perrot *et al.*, J. Appl. Phys. **111**: 014911 (2012)
"Microstructure, transport, and acoustic properties of
open-cell foam samples: Experiments and three-
dimensional numerical simulations"

Camille PERROT, Réunion Thématique Simulation du GDR3542, Nantes, 12-13 Juin 2014

II. MATERIALS & METHODS

II. 2) Viscous dissipations

II. MATERIALS & METHODS II. 3) A missing ingredient

Multi-Scale Acoustics of Poro-Elastic Foams

а

The superimposed average values of the experimental measurements (L_m , o) and ligament length of the open-cell solid foam structure with the same average permeability (L_c , \checkmark) convey the impression of a **missing microstructural ingredient** in the PUC

II. MATERIALS & METHODS II. 4) Iterative approach

Multi-Scale Acoustics of Poro-Elastic Foams

The iterative procedure illustrates the importance of porosity ϕ , permeability k_0 ; and average ligament lengths length L_m measurements from which all the transport parameters are computed **without any adjusted constant**.

II. 5.1) Micromechanical approach Multi-Scale Acoustics of Poro-Elastic Foams

Material with cubic symmetry

What is a cubic symmetry?

*

=> A structure which contains 9 planes of symmetry

Elastic longitudinal modulus and Poisson's ratio

III. RESULTS AND DISCUSSION Multi-Scale Acoustics of Poro-Elastic Foams III. 1) Transport properties Multi-Scale Acoustics of Poro-Elastic Foams

Macroscopic parameters: Comparison between computations and experiments

Experimental results include direct measurements of porosity ϕ and permeability k_0 (plus cell size), and inverse characterization of the remaining parameters.

Foam	Method	φ	Λ' (µm)	$k_0 (\times 10^{-10} \text{ m}^2)$	$\Lambda \left(\mu m \right)$	α^{∞}	k_0 ' (×10 ⁻¹⁰ m ²)
H ₁	Computation Massuraments	0.93 ± 0.01	146 ± 22	5.35 ± 0.42	55 ± 6	1.40 ± 0.26	28 ± 12
	Characterization		143 ± 57	5.55 ± 0.42	33 ± 4	1.05 ± 0.08	55 ± 28
H ₂	Computation Measurements	0.97 ± 0.01	179 ± 46	2.56 ± 0.60	53 ± 9	2.40 ± 0.55	48 ± 26
	Characterization		424 ± 92		13 ± 6	1.58 ± 0.64	53 ± 16

The purely geometrical macroscopic properties and transport parameters computed from the course of this multi-scale approach are in a good agreement with experimental data, especially when standard deviations are taken into account

III. RESULTS AND DISCUSSION III. 2) Microstructure

Multi-Scale Acoustics of Poro-Elastic Foams

Analysis of the representativity of the microstructure from SEM imaging

Our approach is also consistent with microstructural results

III. RESULTS AND DISCUSSION III. 2.1) Elastic properties

Numerical experiments allowing to identify the elastic

III. RESULTS AND DISCUSSION Multi-Scale Acoustics of Poro-Elastic Foams III. 2.2) Elastic properties Multi-Scale Acoustics of Poro-Elastic Foams

Computed non-dimensional elastic properties of foam samples H1 and H2. In these simulations, the membrane thickness is equal to $1.7 \ \mu m$.

Foam	Method	Σ_{11}^{nd}	Σ_{22}^{nd}	Σ_{12}^{nd}	C_{11}^{nd}	C_{12}^{nd}	C_{44}^{nd}	E_{TI}^{nd}	VTI	E_I^{nd}	v_I
		$(\times 10^{-3})$	$(\times 10^{-5})$	(-)	$(\times 10^{-3})$	(-)					
H ₁	Without	0.13	0.09	0.03	13.06	9.33	3.15	5.28	0.42	4.79	0.43
	membranes	± 0.02	± 0.01	± 0.01	± 2.50	±1.36	±0.94	±1.57	±0.01	±1.40	±0.01
	With	0.18	0.10	0.05	17.62	10.00	5.34	10.38	0.36	8.43	0.38
	membranes	±0.03	±0.01	±0.01	±2.57	±1.3	±1.07	±1.71	±0.01	±1.56	±0.01
H ₂	Without	0.04	0.04	0.00	4.24	3.72	0.47	0.76	0.47	0.71	0.47
	membranes	± 0.02	± 0.01	± 0.00	± 1.88	±1.45	±0.38	±0.62	±0.01	±0.57	±0.01
	With	0.09	0.05	0.03	8.77	5.03	3.27	5.10	0.36	4.73	0.37
	membranes	± 0.02	±0.01	±0.01	±2.33	±1.38	±0.68	±1.51	±0.02	±1.12	±0.01

Very significant effect of membranes on the elastic properties of foam samples

III. RESULTS AND DISCUSSION III. 2.3) Acoustic properties

Multi-Scale Acoustics of Poro-Elastic Foams

Acoustical properties of two different poroelastic foam samples, H1 (A) and H2 (B)

Estimates (Biot-Johnson) close to laboratory measurements of sound absorption

(Poroelastic FE formulation to properly model the boundary condition for STL) ¹⁵ Camille PERROT, Réunion Thématique Simulation du GDR3542, Nantes, 12-13 Juin 2014

III. RESULTS AND DISCUSSION III. 2.4) Acoustic/Elastic properties

Elastic properties depend on the compression rate

The method estimates linear elastic properties (no compression rate)

- The proposed micromechanical method can provide **reasonable estimates of linear elastic properties** for poroelastic foams including the *significant effects of membranes' closure rate and thickness*.
- The method is an **idealized periodic cell method**, based on the use of a simplified cellular morphology with identified local characteristic lengths.
- Further systematic investigation on the **sensitivity** of the results with regard to choice of particular features of the **cellular morphology** should be carried out.
- Accurate values for the Young's modulus and Poisson ratio of the **base material** are difficult to obtain because of the variability of the base material itself.
- Extending this multi-scale method to real life sound insulation optimization problems is not straightforward but the present methodology should readily be extended.

Reference

[6] M. T. Hoang, G. Bonnet, H. T. Luu, C. Perrot, J. Acoust. Soc. Am. **135(6)**, 3172-3185 (2014) "Linear elastic properties derivation from microstructures representative of transport parameters"

IV. CONCLUSION AND FUTURE Multi-Scale Acoustics of Poro-Elastic Foams WORK 2) Future works

- Generalization of the proposed approach to fibrous materials (i.e. glass wools)
- Generation of REVs corresponding to a specified fiber orientation tensor:
 - (a) 3D random, (b) planar random, and (c) nearly unidirectional structures:

- **Experimental identification** of the orientation tensors for real fibrous samples.
- Modeling contacts between fibers.

Reference

[7] J-P Vassal, L Orgéas and D. Favier, Modelling Simul. Mater. Sci. Eng. 16, 035007 (2008)

"Modelling microstructure effects on the conduction in fibrous materials with fibre–fibre interface barriers"