INFLUENCE OF POROSITY, FIBER RADIUS, AND FIBER ORIENTATION ON THE TRANSPORT AND ACOUSTIC PROPERTIES OF RANDOM FIBER STRUCTURES

By Hoang Tuan LUU^{1, 2}, <u>Camille PERROT</u>^{1, a)}, and Raymond PANNETON²

¹Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS

²Groupe d'Acoustique e l'Université de Sherbrooke (GAUS), Mech. Eng. Dpt., Québec, Canada

^{a)}Email: camille.perrot@univ-paris-est.fr

I. 1) Problem definition & Aims

- Motivation. The ability of air-saturated fibrous media to mitigate sound waves in controlled by their transport properties.
- Objective. Propose micro-/macro relationships to link microstructural features to macroscopic transport properties (random fiber structures).
- Methodology.
- 1) Generate representative elementary volumes (REV) of random fiber structures (scale separation, rigid frame, overlapping fiber assumptions).
- 2) Transport equations are numerically solved.
- 3) Micro-/macro relationships are derived.

[H. T. Luu, C. Perrot, V. Monchiet, R. Panneton, "Three-dimensional reconstruction of a random fibrous medium: Geometry, transports, and sound absorbing properties" J. Acoust. Soc. Am. 141, 4768 (2017).]

A. Orientation distribution function

- For the purpose of the present research, the random fiber structures result from the successive generation of <u>rigid uniform cylinders</u> of the <u>same diameter</u>.
- Let 's associate a vector p to the fiber.

O **Definition**. A random structure, an arrangement of fibers for which the orientation distribution function $\psi(\varphi, \theta)$ is a function of two variables defining the orientation of a single fiber.

B. Orientation tensor definition

- The use of tensor to describe fiber orientation of composite fibers
 [Advani and Tucker, J. Rheol. 31, 751 (1987)]
- The second order orientation tensor Ω_{ij} is obtained by forming diadic products of the vector p and then averaging the products with the distribution function ψ over all possible directions: $\Omega_{ij} = \int p_i p_j \Psi(\overrightarrow{p}) d\overrightarrow{p}$
- o For a discrete set of fibers:

$$\begin{aligned} p_1 &= sin\theta cos\varphi \\ p_2 &= sin\theta sin\varphi \end{aligned} \qquad [\Omega] = \frac{1}{N_f} \sum_{i=1}^{N_f} \left[\begin{array}{ccc} sin^2\theta^{(i)}cos^2\varphi^{(i)} & sin^2\theta^{(i)}cos\varphi^{(i)}sin\varphi^{(i)} & sin\theta^{(i)}cos\theta^{(i)}cos\varphi^{(i)} \\ sin^2\theta^{(i)}cos\varphi^{(i)}sin\varphi^{(i)} & sin^2\theta^{(i)}sin^2\varphi^{(i)} & sin\theta^{(i)}cos\theta^{(i)}sin\varphi^{(i)} \\ sin\theta^{(i)}cos\theta^{(i)}cos\varphi^{(i)} & sin\theta^{(i)}cos\theta^{(i)}sin\varphi^{(i)} & sin\theta^{(i)}cos\theta^{(i)}sin\varphi^{(i)} \\ \end{array} \right] \end{aligned}$$

• **Properties**: [Ω] is symmetric. Since Trace [Ω] = 1 (renormalization condition), for transversely isotropic materials [Ω] completely determined by Ω_{zz} .

B. Orientation tensor properties

O By varying $Ω_{zz}$ from planar ($Ω_{zz}$ = 0) to aligned ($Ω_{zz}$ = 1) random fibers, one can study the influence of fiber orientation on the transport properties of random fibrous media.

One by adjusting $(μ_θ, σ_θ)$ of a normal distribution for θ; with a uniform distribution for φ.

C. Generation of random fiber structures

- o Algorithm used to generate a representative elementary volume (REV) for a given fiber orientation coefficient Ω_{zz} .
- Fibers allowed to overlap (does not affect transport properties).
- \circ As a general rule, a characteristic fiber radius r_f and target open porosity Φ are imposed (supposed to be known from measurements).
- Main features of the algorithm:

```
- Iteratively increased the size of the box L^{(i)}.

- The solid volume fraction of fibers is known, V_f^{(i)} = (1-\Phi)L^{(i)3}.

- Compute the required number of fibers such that V_f^{(i)} \ge V_f^{(i)} with V_f^{(i)} = \pi r_f^2 \sum_{i=1}^k I_f^{(k)}; and I_f^{(k)} determined analytically from the knowledge of (\mathbf{r}, \theta, \phi).

- Average this process over several realizations (1 000).

- If |\phi^{(i)} - \phi|/\phi \le \varepsilon, then L = L^{(i)}.

- In practice, LRVE \le 500 \ \mu m, for 0.75 \le \phi \le 0.99, with \varepsilon = 0.3 \ \%.
```

III. Identification of the geometrical properties

- \circ (φ , r_f) measured or imposed.
- ο The thermal characteristic length Λ' remains to be identified, $\Lambda' = 2V_p/S_w$ where: V_p the fluide phase volume, S_w the wet surface area; are directly computed from the discretized REV

VI. Identification of the transport properties

A) Tortuosity and viscous characteristic length

1) Theoretical framework – electric conduction problem (potential flow)

$$\overrightarrow{E} = -\overrightarrow{\nabla}\pi + \overrightarrow{e}$$

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = 0$$

$$\overrightarrow{E} \cdot \overrightarrow{n} = 0$$
 at the wall $\partial \Omega$

 π spatially periodic

where

 \overrightarrow{E} electric field

 π microscopic potential

 \overrightarrow{e} macroscopic electric field.

 \overrightarrow{n} unit normal vector to $\partial\Omega$

o Tortuosity tensor : $e_i = \alpha_{\infty ij} \langle E_j \rangle$

Viscous characteristic length Λ:

$$\Lambda = 2 \frac{\int_{\Omega} ||\overrightarrow{E}||^2 dV}{\int_{\partial \Omega} ||\overrightarrow{E}||^2 dS}$$

✓ Setting **e** along x and y directions: Λ_{xy}

Setting e along z direction: Λ,

[Johnson, Koplik, Dashen, J. Fluid Mech. 176, 379 (1987)]

VI. Identification of the transport properties

A) Tortuosity and viscous characteristic length

2a) Numerical results and discussion (tortuosity)

Simulations fit with $\alpha_{\infty} = \left(\frac{1}{\phi}\right)^{M(\Omega_{zz})}$

(generalized Archie's law, with $M(\Omega_{zz})$ a polynomial of the 2nd order)

- The transverse tortuosity $\alpha_{\infty_{xy}}$ and the longituinal tortuosity α_{∞_z} are very sensitive to Ω_{zz}
- Fibers that are orthogonal to the direction of wave propagation yield higher tortuosity values than fibers that are // to the direction of wave propagation.

 $ullet \ \overline{lpha}_{\infty}$ fewly sensitive to Ω_{zz} .

VI. Identification of the transport properties

A) Tortuosity and viscous characteristic length

2b) Numerical results and discussion (viscous characteristic length)

Simulations (approximately) fit with $\Lambda^{'}/\Lambda=1+M(\Omega_{zz})$

(with $M(\Omega_{zz})$ a 2nd order polynomial)

- ✓ Along **e**₃, no dependence of Λ'/Λ_{7} with φ.
- Almost the case along the transverse direction for Λ'/Λ_{xy};
 however, as Ω_{zz} ¬, Λ'/Λ_{xy} ¬ when φ □.
 (Strong effect of the weighting according to the value of E in the definition of Λ when φ □)

VI. Identification of the transport properties

B) Static viscous permeability

1) Theoretical framework – Stokes equations

$$\begin{split} \eta \nabla^2 \overrightarrow{v} - \overrightarrow{\nabla} p &= -\overrightarrow{G} \\ \overrightarrow{\nabla} \cdot \overrightarrow{v} &= 0 \\ \overrightarrow{v} &= 0 \quad on \quad \partial \Omega \\ \overrightarrow{v} \quad \text{and} \quad p \quad \text{spatially periodic} \\ \overrightarrow{v} \quad \text{velocity} \\ p \quad \text{pressure} \\ \eta \quad \text{dynamic viscosity} \\ \overrightarrow{G} &= \overrightarrow{\nabla} p^m \\ \text{macroscopic pressure gradient} \end{split}$$

O Permeability tensor : $k_{0ij}=\phi\left\langle k_{0ij}^*
ight
angle$ defined from $v_i=-rac{k_{0ij}^*}{\eta}G_j$

o Kozeny-Carman equation: $\dfrac{k_0}{r_f^2} = \zeta \dfrac{\phi^3}{(1-\phi)^2}$

 ζ is the Kozeny "constant"

[Johnson, Koplik, Dashen, J. Fluid Mech. 176, 379 (1987)]

VI. Identification of the transport properties

B) Static viscous permeability

2) Numerical results and discussion

- The through plane permeability k_{0z} is more sensitive to fiber orientation Ω_{zz} than the in-plane permeability k_{0yz} :
 - (a) k_{0xy} varies linearly with $\varphi^3/(1-\varphi)^2$, which is consistent with the KC Eq.
 - (b) k_{0z} also depends on Ω_{77} .

VI. Identification of the transport properties

C) Static thermal permeability

1) Theoretical framework – diffusion controlled reactions

$$abla^2 \tau = -1$$
 $abla = 0 \quad \text{on} \quad \partial \Omega$
 $abla \quad \text{is spatially periodic.}$
 $abla \quad \text{excess temperature}$

2) Numerical results

- k₀' independent of fiber orientation (the diffusion heat does not provide any preferred direction
- Simulations fit with:

$$\frac{k'_0}{r_f^2} = \frac{1}{M} \frac{\phi^3}{(1 - \phi + e)^2}$$

$$M = 14.4718 \text{ and } e = 0.0216$$

V. Concluding remarks

• Knowing the fiber radius r_f , the fiber orientation Ω_{zz} , and the open porosity φ ; the proposed relations completely define the input macroscopic parameters to be used in an equivalent fluid model.

[H. T. Luu, C. Perrot, R. Panneton, "Infuence of porosity, fiber radius and fiber orientation on the transport and acoustic properties of random fiber structures" *under review* in Acta Acust united Ac., Ms. No. AAA-D-16-00177 (2017)]