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. INTRODUCTION Anisotropic Random Fiber Structures
|. 1) Problem definition & Aims

O Motivation. The ability of air-saturated fibrous media to mitigate sound waves in
controlled by their transport properties.

O Objective. Propose micro-/macro relationships to link microstructural features to
macroscopic transport properties (random fiber structures).

0 Methodology.

1) Generate representative elementary volumes (REV) of random fiber structures
(scale separation, rigid frame, overlapping fiber assumptions).

2)  Transport equations are numerically solved.
3) Micro-/macro relationships are derived.
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[H. T. Luu, C. Perrot, V. Monchiet, R. Panneton, “Three-dimensional reconstruction of a random fibrous medium:
Geometry, transports, and sound absorbing properties” J. Acoust. Soc. Am. 141, 4768 (2017).]
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Il. Random fiber structures —— ~ Apjsotropic Random Fiber Structures
A) Orientation distribution function

A. Orientation distribution function

O For the purpose of the present research, the random fiber structures result from
the successive generation of rigid uniform cylinders of the same diameter.

O Let ‘s associate a vector p to the fiber.

A e3

p1 = sinfcosy
p3 'S
po = sinfsing

p3 = cost

O Definition. A random structure, an arrangement of fibers for which the
orientation distribution function (¢, 8) is a function of two variables defining
the orientation of a single fiber.
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Il. Random fiber structures

hdom Anisotropic Random Fiber Structures
B) Orientation tensor

B. Orientation tensor definition
O The use of tensor to describe fiber orientation of composite fibers

[Advani and Tucker, J. Rheol. 31, 751 (1987)]

O The second order orientation tensor Q; is obtained by forming diadic products of
the vector p and then averaging the products with the distribution function

over all possible directions:
)i = /Piqu’(ﬁ)dﬁ

O For a discrete set of fibers:

p1 = stnbcosy 5in20® cos? sin?0® cosp W sing®  sinf® cosf® cosp?
N
. P U E . o
po = sinbsing Q] = 1\—} Z sin20® cosp® sing? sin20@ sin%p sinf® cosf® sinpt)
=1
p3 = cost sinfcoshWcosp®  sinf®cosh® sinp® cos0®)

O Properties: [Q] is symmetric. Since Trace [Q] = 1 (renormalization condition), for
transversely isotropic materials [Q] completely determined by Q, .
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- FREE O HOEr SILEiUlEs Anisotropic Random Fiber Structures
B) Orientation tensor

B. Orientation tensor properties

O By varying Q,, from planar (Q,, = 0) to aligned (Q,, = 1) random fibers, one can
study the influence of fiber orientation on the transport properties of random
fibrous media.

O Done by adjusting (pg, 0g) of a normal distribution for 8; with a uniform
distribution for .
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Il. Random fiber structures Anisotropic Random Fiber Structures
C) Generation

C. Generation of random fiber structures

0 Algorithm used to generate a representative elementary volume (REV) for a given
fiber orientation coefficient Q,,.

O Fibers allowed to overlap (does not affect transport properties).

O As a general rule, a characteristic fiber radius r; and target open porosity @ are
imposed (supposed to be known from measurements).

O Main features of the algorithm:

- The solid volume fraction of fibers is known, Vi) = (1-®)L3,

- Compute the required number of fibers such that Vi > v
with V) = rir 2 T 109

Eand l{(*) determined analytically from the knowledge of (r, 6, ¢).
: Average this process over several realizations (1 000).

HIf [0 — |/ < €, then L= L0

- In practice, LRVE < 500 pum, for 0.75 < ¢ < 0.99, with € = 0.3 %.

Ui s coree e Sene S mere e e b S eee S Bt SRS Skt R Sy S e S|

Camille PERROT, Acoustics’ 2017 Boston, Boston, 25-29 June 2017



lll. Geometrical properties Anisotropic Random Fiber Structures

lll. Identification of the geometrical properties

O (o, r;) measured or imposed.

O The thermal characteristic length A’ remains to be identified, N' =2V /S,
where: V, the fluide phase volume, S, the wet surface area; are directly computed from the discretized REV
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IV. Transport properties Anisotropic Random Fiber Structures

VI. Identification of the transport properties
A) Tortuosity and viscous characteristic length

1) Theoretical framework — electric conduction problem (potential flow)

ﬁ — _ﬁﬂ +7¢ 0 Tortuosity tensor : i = Qooij (Ej)
ﬁ ) E* _0 0 Viscous characteristic length A:
F.7=0 at the wall 90 o — o JallE|PaV
m spatially periodic fagg ||E)||Qd5
where
ﬁ electric field \/ Setting e along x and y directions: A
7 microscopic potential v Setting e along z direction: A,
¢ macroscopic electric field. R
77 unit normal vector to 9Q

[Johnson, Koplik, Dashen, J. Fluid Mech. 176, 379 (1987)]
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IV. Transport properties Anisotropic Random Fiber Structures

VI. Identification of the transport properties
A) Tortuosity and viscous characteristic length
2a) Numerical results and discussion (tortuosity)

Simulations fit with 1\ M=) (generalized Archie’s law, with /(€. )
imufations L With - aee = | 7 a polynomial of the 2"d order)
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IV. Transport properties Anisotropic Random Fiber Structures

VI. Identification of the transport properties
A) Tortuosity and viscous characteristic length

2b) Numerical results and discussion (viscous characteristic length)

Simulations (approximately) fit with j"f/ﬁ =1+ M(Q..) (with N/ (€)..)a 2" order polynomial)
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IV. Transport properties Anisotropic Random Fiber Structures

VI. Identification of the transport properties
B) Static viscous permeability

1) Theoretical framework — Stokes equations

?}VQ? B ﬁp _ _a O Permeability tensor : koij = @ <kﬂij>
defined from

ﬁ T =0 s

T =0 on 0 vi:_?? G;

¥ and p spatially periodic 0 Kozeny-Carman equation: ko _ ¢ ¢’

o velocity -r:?, (1— ¢)?
P pressure

n dynamic viscosity
g = ﬁﬂm

macroscopic pressure gradient

¢ 18 the Kozeny "constant”

[Johnson, Koplik, Dashen, J. Fluid Mech. 176, 379 (1987)]
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IV. Transport properties Anisotropic Random Fiber Structures

VI. Identification of the transport properties
B) Static viscous permeability
2) Numerical results and discussion
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" The through plane permeability kg, is more sensitive to fiber orientation Q,, than the in-plane
permeability k,,:
(a) koyy varies linearly with $3/(1-¢)?, which is consistent with the KC Eq.
(b) ko, also depends on Q,,.
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V. Transport properties

Anisotropic Random Fiber Structures

VI. Identification of the transport properties
C) Static thermal permeability

1) Theoretical framework — diffusion controlled reactions
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2) Numerical results

i\/ ko, independent of fiber orientation (the
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preferred direction
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V. Conclusions Anisotropic Random Fiber Structures

V. Concluding remarks

O Knowing the fiber radius r, the fiber orientation Q,,, and the open porosity ¢; the
proposed relations completely define the input macroscopic parameters to be
used in an equivalent fluid model.

(a) fjf =25 pum; ¢ |=0.9

(c) df =25 pm; ¢ =0.99 (e) df =10 pm; ¢ =0.99
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[H. T. Luu, C. Perrot, R. Panneton, “Infuence of porosity, fiber radius and fiber orientation on the transport and acoustic
properties of random fiber structures” under review in Acta Acust united Ac., Ms. No. AAA-D-16-00177 (2017)]
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