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Abstract We propose a methodology to anonymize microdata (i.e. a
table of n individuals described by d attributes). The goal is to be
able to release an anonymized data table built from the original data
while meeting the differential privacy requirements. The proposed solu-
tion combines co-clustering with synthetic data generation to produce
anonymized data. First, a data independent partitioning on the domains
is used to generate a perturbed multidimensional histogram; a multidi-
mensional co-clustering is then performed on the noisy histogram res-
ulting in a partitioning scheme. This differentially private co-clustering
phase aims to form attribute values clusters and thus, limits the impact
of the noise addition in the second phase. Finally, the obtained scheme
is used to partition the original data in a differentially private fashion.
Synthetic individuals can then be drawn from the partitions. We show
through experiments that our solution outperforms existing approaches
and we demonstrate that the produced synthetic data preserve sufficient
information and can be used for several datamining tasks.
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1 Introduction

There is an increasingly social and economic demand for open data in order to
improve planning, scientific research or market analysis. In particular, the public
sector via its national statistical institutes, healthcare or transport authorities,
is pushed to release as much information as possible for the sake of transparency.
Private companies are also implicated in the valorization of their data through
exchange or publication. Orange has recently made available to the scientific
community several mobile communication datasets collected from its networks
in Senegal and Ivory Coast as part of D4D challenges (Data for Development).
These challenges have shown the potential added-value of analyzing such data for
several application domains which address both development projects and im-
provement of public policies effectiveness [3]. This demand for publicly available



data motivated the research community to propose several privacy preserving
data publishing solutions.

Problem statement. The literature about privacy preserving data publish-
ing is mainly organized around two privacy concepts i) group anonymization
techniques such as k-anonymity [13| and ii) random perturbation methods with
in particular the concept of Differential Privacy (DP) [6]. K-anonymity seeks
to prevent re-identification of records by making each record indistinguishable
within a group of £ or more records and allows the release of data in its original
form. The notion of protection defended by DP is the strong guarantee that the
presence or absence of an individual in a dataset will not significantly affect the
result of aggregated statistics computed from this dataset. DP works by adding
some controlled noise to the computed function. There are two models for differ-
ential privacy: the interactive model and the non-interactive model. A trusted
third party collects data from data owners and make it available for data users.
In the interactive model, the trusted party catches the queries sent by data users
and outputs a sanitized response. In the non-interactive model, the trusted party
publishes a protected version of the data. In this paper, we study the problem
of differentially private data generation. We consider the non-interactive model
and seek to release synthetic data, providing utility to the users while protecting
the individuals represented in the data.

Contributions. We present an original differentially private approach that
combines co-clustering, an unsupervised data mining analysis technique, and
synthetic data generation. We summarize our contributions below.

— We study and implement a two-phase co-clustering based partitioning strategy
for synthetic data generation.

— We experimentally evaluate the released data utility, by measuring the stat-
istical properties preservation and the predictive performance of the syn-
thetic data.

— We compare our approach with other existing differentially private data
release algorithms.

The paper is organized as follows. Section 2 first identifies the most related
efforts to our work, Sections 3 and 4 give the necessary background on differential
privacy and co-clustering, in Section 5 the proposed approach is described. The
utility of the produced synthetic datasets is evaluated in Section 6. The final
section gathers some conclusions and future lines of research.

2 Related Work

There are many methods designed for learning specific models with differential
privacy, but we briefly review here the most related approaches to our work, and
we only focus on histogram and synthetic data generation.



The first propositions that started addressing the non-interactive data re-
lease while achieving differential privacy are based on histogram release. Dwork
et al. [7] proposed a method that publishes differentially private histograms by
adding a Laplacian random noise to each cell count of the original histogram, it is
considered as a baseline strategy. Xu et al. [15] propose two approaches for the
publication of differentially private histograms: NoiseFirst and StructureFirst.
NoiseFirst is based on the baseline strategy: a Laplacian random noise is first
added to each count as in [7]. It is followed by a post-optimization step in which
the authors use a dynamic programming technique to build a new histogram by
merging the noisy counts. StructureFirst consists in constructing an optimal his-
togram using the dynamic programming technique to determine the limits of the
bins to be merged. The structure of this optimal histogram is then perturbed via
an exponential mechanism. And finally the averages of the aggregated bins are
perturbed using the Laplacian mechanism. The authors in [2] propose a method
that uses a divisible hierarchical clustering scheme to compress histograms. The
histogram bins belonging to the same cluster have similar counts, and hence can
be approximated by their mean value. Finally, only the noisy cluster centers,
which have a smaller sensitivity are released. All the mentioned contributions
deal only with unidimensional and bidimensional histogram publication and are
not adapted to the release of multidimensional data. The closest approach to our
work is proposed in [14], first, a cell-based partitioning based on the domains
is used to generate a fine-grained equi-width cell histogram. Then a synthetic
dataset D, is released based on the cell histogram. Second, a multidimensional
partitioning based on kd-tree is performed on D, to obtain uniform or close to
uniform partitions. The resulted partitioning keys are used to partition the ori-
ginal database and obtain a noisy count for each of the partitions. Finally, given a
user-issued query, an estimation component uses either the optimal histogram or
both histograms to compute an answer of the query. Other differentially private
data release solutions are based on synthetic data generation [10][16]. The pro-
posed solution in [10] first probabilistically generalizes the raw data and then
adds noise to guarantee differential privacy. Given a dataset D, the approach
proposed in [16] constructs a Bayesian network N, that approximates the distri-
bution of D using a set P of low dimensional marginals of D. After that, noise is
injected into each marginal in P to ensure differential privacy, and then the noisy
marginals and the Bayesian network are used to construct an approximation of
the data distribution in D. Finally, tuples are sampled from the approximate
distribution to construct a synthetic dataset that is released. Our work focuses
on releasing synthetic data and complements the efforts of [14] and [16] in the
way that we also study a differentially private aggregation of multidimensional
marginals. As in [14], we use the co-clustering like a multidimensional parti-
tioning that is data-aware. And, unlike the variance threshold used in [14] or
the 6 parameter that determines the degree of the Bayesian network in [16] our
solution is parameter-free.



3 Preliminaries and Definitions

3.1 Differential Privacy

Definition 1 (e-Differential Privacy [5]). A random algorithm A satisfies e-
differential privacy, if for any two datasets D; and D, that differ only in one
tuple, and for any outcome O of A, we have

PrlA(D,) = 0] < ¢ x PrlA(Dy) = 0], (1)

where Pr[.] denotes the probability of an event.

Laplace Mechanism. To achieve differential privacy, we use the Laplace mech-
anism that adds random noise to the response to a query. First, the true value
of f(D) is computed, where f is the query function and D the data set, then
a random noise is added to f(D) And the A(D) = f(D) + noise response is
finally returned. The amplitude of the noise is chosen as a function of the biggest
change that can cause one tuple on the output of the query function. This amount
defined by Dwork is called sensitivity.

Definition 2 (L;-sensitivity). The L;-sensitivity of f : D — R¢ is defined as

A(f) = max |[f(D1) = f(D2)ll, (2)

Dy,D
For any two datasets D; and D5 that differ only in one tuple.

The density function of the Laplace distribution is defined as follows.

1 —|z —
L b) = — —==A 3
anlalnt) = g exp (% )
Where p is called the position parameter and b > 0 the scale parameter.

The use of a noise drawn from a Laplacian distribution, noise = Lap(Af/e),
with the position parameter = 0, and the scale parameter = Af /e guarantees
the e-differential privacy [11].

Composition. For a sequence of differentially private mechanisms, the com-
position of the mechanisms guarantees privacy in the following way:

Definition 3 (Sequential composition [9]). For a sequence of n mechanisms
Ai,..., A, where each A; respects the g;-differential privacy, the sequence of the
A; mechanisms ensures the (3., &;)-differential privacy.

Definition 4 (Parallel composition [9]). If D; are disjoint sets of the original
database and A; is a mechanism that ensures the e-differential privacy for each
D;, then the sequence of A; ensures the e-differential privacy.



3.2 Data model

We focus on microdata. Each record or row is a vector that represents an entity
and the columns represent the entity’s attributes. We suppose that all the d
attributes are nominal or discretized. We use d-dimensional histogram or data
cube, to represent the aggregate information of the data set. The records are the
points in the d-dimensional data space. Each cell of a data cube represents the
count of the data points corresponding to the multidimensional coordinates of
the cell.

3.3 Utility metrics

Hellinger distance. In order to measure the utility of the produced data, we
use the Hellinger distance between the distributions in the original data and our
synthetic data. We considered the Kullback-Leibler divergence, but we found the
Hellinger distance to be more robust given that multidimensional histograms are
highly sparse.

Definition 5 (Hellinger distance). The Hellinger distance between two dis-
crete probability distributions P = (p1,...,px) and Q = (¢, ..., qx) is given by :

DHellinger(PaQ) = %\/226:1(\/]71_ \/qil)Q

Random range queries. We use random range queries as a utility measure
of the synthetic data. We generate random count queries with random query
predicates over all the attributes:

Select COUNT(*) From D Where X; € I} and X3 € I and ... and X4 € I;.

For each attribute X;, I; is a random interval generated from the domain
of X;. We use the relative error to measure the accuracy of a query g, where
Aoriginai(q) denotes the true answer of ¢ on the original data and A,eriurbea(q) is
the noisy count computed when the synthetic data generated from a differentially
private mechanism are used.

— |Apertu7‘bed ((I)_Aor'iginal ((I)l
Aoriginal(q)

Definition 6 (Relative error). RelativeError(q)

4 Co-clustering

Co-clustering is an unsupervised data mining analysis technique which aims
to extract the existing underlying block structure in a data matrix [8]. The
data studied in the co-clustering problems are of the same nature as the data
processed by the clustering approaches: they are composed of m observations
without label, described by several variables, denoted {X;, X, ..., X4}. These
variables can be continuous or nominal, then taking a finite number of different



values. The values taken by the descriptive variables are partitioned in order
to obtain new variables {X{, X! ... XM} that are called variables-partitions.
The values of these new variables are the clusters obtained by the partitions
of the values of the variables {X;, X5, ..., Xq}. Each of the XZ»M variables has
{k1, k2, ..., kq} values which are groups of values if the variable is nominal and
intervals if the variable is continuous. The MODL approach makes it possible to
achieve a co-clustering on the values of d descriptive variables of the data, we
will use this particular feature in our work.

4.1 MODL Co-clustering

We choose the MODL co-clustering [4] because: First, MODL is theoretically
grounded and exploits an objective Bayesian approach [12] which turns the dis-
cretization problem into a task of model selection. The Bayes formula is applied
by using a hierarchical and uniform prior distribution and leads to an analytical
criterion which represents the probability of a model given the data. Then, this
criterion is optimized in order to find the most probable model given the data.
The number of intervals and their bounds are automatically chosen. Second,
MODL is a nonparametric approach according to C. Robert [12]: the number
of modeling parameters increases continuously with the number of training ex-
amples. Any joint distribution can be estimated, provided that enough examples
are available.

Data grid models. The MODL co-clustering approach allows one to automat-
ically estimate the joint density of several (numerical or categorial) variables,
by using a data grid model [4]. A data grid model consists in partitioning each
numerical variable into intervals, and each categorical variable into groups. The
cross-product of the univariate partitions constitutes a data grid model, which
can be interpreted as a nonparametric piecewise constant estimator of the joint
density. A Bayesian approach selects the most probable model given the dataset,
within a family of data grid models. In order to find the best M* model (knowing
the data D), the MODL co-clustering uses a Bayesian approach called Maximum
A Posteriori (MAP). It explores the space of models by minimizing a Bayesian
criterion, called cost, which makes a compromise between the robustness of the
model and its precision:

cost(M) = —log(P(M|D))a — log(P(M) x P(D|M)) (4)
The MODL co-clustering also builds a hierarchy of the parts of each dimen-
sion using an ascending agglomerative strategy, starting from M™*, the optimal
grid result of the optimization procedure up to My, the Null model, the uni-
cellular grid where no dimension is partitioned. The hierarchies are construc-
ted by merging the parts that minimize the dissimilarity index A(eq,c) =
cost(Mc, ue,) — cost(M), where ¢, ¢y are two parts of a partition of a dimen-
sion of the grid M and M., ., the grid after fusion of ¢; and cy. In this way
the fusion of the parts minimizes the degradation of the cost criterion, and thus,
minimizes the loss of information.



5 DPCocGen

We present our DPCocGen algorithm, a two-phase co-clustering based partition-
ing strategy for synthetic data generation. First, a data independent partitioning
on the domains is used to generate a multidimensional histogram, the Laplace
mechanism is used as in the baseline strategy [7] to perturb the histogram. Then,
a multidimensional MODL co-clustering is performed on the noisy histogram.
This first phase corresponds to a differentially private co-clustering (as shown in
figure 1) and aims to produce a partitioning scheme. In the second phase, DP-
CocGen uses the partitioning scheme to partition the original data and computes
a noisy count for each of the partitions (using Laplace mechanism). Finally, the
noisy counts are used to draw synthetic individuals from each partition.

Differentially private Co-clustering

A

ﬁ T .l
l - I- -
Full-dim distribution Noisy distribution Partitioning scheme

o T
" :. w—»‘- generate
- " l- - .H

Partitions Noisy partitions Synthetic data

Figure 1: DPCocGen: a two-phase co-clustering based partitioning strategy for
synthetic data generation.

The advantage of this approach lies in the fact that the partitioning scheme
obtained through the co-clustering is indirectly dependent on the data structure,
the intuition is that even after perturbing the multidimensional histogram, the
co-clustering phase will preserve some of the relations between the clusters of
attribute values (partitions) of the various dimensions. The resulting cell fusions
limit the impact of the noise addition in the second phase. The original data is not
consulted during the co-clustering construction which saves the privacy budget
that is divided between the two phases to perturb the counts. The detailed steps
of DPCocGen are given in Algorithm 1.



Algorithm 1 DPCocGen algorithm

Require: Dataset D, the overall privacy budget ¢

: Phase 1:

Build a multidimensional histogram from D.

Perturb the counts of each cell using a privacy budget €;.

Perform a multidimensional co-clustering from the histogram obtained in step 3.

Phase 2 :

Partition the data set D based on the partitioning scheme obtained from step 4.

Perturb the aggregated counts of each partition returned form step 6 using a

privacy budget €2 = ¢ — €.

8: Generate synthetic individuals from each partition using the perturbed counts re-
turned from step 7 to build a synthetic dataset D’.

Algorithm 2 Perturb algorithm

Require: Count ¢, privacy budget ¢
¢ =c+ Lap(1/e)
if ¢ <0 then
=0
end if
: Return ¢’

TRy

5.1 Privacy guarantee

DPCocGen follows the composability property of the differential privacy, the first
and second phases require direct access to the database, Steps 3 and 7 of the
Algorithm 1 are e1, eo-differentially private. No access to the original database
is invoked during the sampling phase. The sequence is therefore e-differentially
private with € = 1 + e5.

6 Experiments

In this section we conduct three experiments on a real-life microdata set in order
to illustrate the efficiency of our proposition on a practical case. The objective
is to explore the utility of synthetic data by measuring the statistical properties
preservation, the relative error on a set of random range queries answers and
their predictive performance.

6.1 Experimental Settings

Dataset. We experiment with the Adult database available from the UCI Ma-
chine Learning Repository® which contains 48882 records from the 1994 US
census data. We retain the attributes {age, workclass, education, relationship,
sex}. We discretize continuous attributes into data-independent equi-width par-
titions.

3 https:/ /archive.ics.uci.edu/ml/



Baseline. We implement the baseline strategy [7] to generate a synthetic data-
set, a multidimensional histogram is computed and then disturbed through a
differentially private mechanism. Records are then drawn from the noisy counts
to form a data set.

PrivBayes. We use an implementation of PriveBayes [16] available at [1] in
order to generate a synthetic dataset, we use § = 4 as suggested by the authors.

Privacy budget allocation. The privacy budget is equally divided between
the two phases of DPCocGen for all the experiments, £; = g9 = £/2.

6.2 Descriptive performance

In this experiment, we are interested in preservation of the joint distribution of
the original dataset in the generated synthetic data. In order to measure the
difference between two probability distribution vectors we choose the Hellinger
distance. First, we compute the multivariate distribution vector P of the ori-
ginal dataset, then, we compute the multivariate distribution vector @ of the
synthetic data generated using DPCocGen and the multivariate distribution
vector Q' of the synthetic data generated using Base line. Finally, the distances
Dyeitinger(P, Q) and Dyejiinger(P, Q') are measured. For each configuration the
distances are calculated through 50 synthetic data sets and represented in Fig-
ure 2. We use box-plots diagrams to represent these results where the x-axis
represents the synthetic data generation method, the first box in the left rep-
resents the baseline strategy, the following boxes correspond to DPCocGen with
different levels of granularity (number of cells). The y-axis indicates the Hellinger
distance measured between the distribution calculated on the generated data and
the original distribution.

Regardless of the privacy budget, the joint probability distribution of the
synthetic data generated with DPCocGen is closer to the original distribution
than the distribution of the data that is obtained using Baseline, except when ¢ =
0.5 and for the DPCocGen case with a high co-clustering aggregation level (144
cells), in that particular configuration the partitioning was too coarse and failed
to correctly describe the data. The optimal aggregation level varies according
to noise magnitude, but the finest aggregation level seems to offer a satisfying
result for each configuration.

6.3 Random range queries

The goal of this experiment is to evaluate the utility of the produced data in
terms of relative error when answering random range queries. We first generate
100 random queries. We produce synthetic datasets using Base line, PrivBayes
and DPCocGen. We compute all the queries and report their average error over
15 runs. We use for this experiment the finer co-clustering level. Figure 3 shows
that the average relative error decreases as the privacy budget € grows for the
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Figure 2: Joint distribution distances

three algorithms. One can also observe that PrivBayes and DPCocGen are close
and do better than Base line regardless of the privacy budget.

6.4 Predictive performance

In this experiment we are interested in the classification performances obtained
with a supervised classifier whose learning is based on synthetic datasets. We
randomly select 80% of the observations in order to generate the synthetic data
using DPCocGen, Base line and PrivBayes, we use the generated data to train
a classifier in order to predict the value of the attributes Sex and Relationship.
The remaining 20% are used for the evaluations. We use for this experiment the
finer co-clustering level. The results are presented Figures 4 and 5, they represent
the average on 50 runs. The privacy budget value is shown on the x-axis, the
y-axis shows the area under the ROC curve (AUC) measured on the test set.
The figure also indicates the performances obtained when the real data are used
for learning the model (Original Data).

We retain that the classification performances obtained with DPCocGen are
close to those obtained when the real data are used for learning the model. The
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performances of DPCocGen are always higher than those of the Base line and
PrivBayes.

7 Conclusion

This work presents an approach for the anonymization of microdata sets. The
goal was to be able to produce synthetic data that preserve sufficient inform-
ation to be used instead of the real data. Our approach involves combining
differential privacy with synthetic data generation. We use co-clustering a data
joint distribution estimation technique, in order to partition the data space in a
differentially private manner. Then, we use the resulting partitions to generate
synthetic individuals. We have shown that the synthetic data generated in this
way retain the statistical properties of the raw data, thus using the synthetic data
for various data mining tasks can be envisaged. We have also shown that our
parameter-free approach outperforms other existing differentially private data



release algorithms. We now plan to compare our approach to a previous work,
that is being published, which is based on a group anonymization technique and
we aim to articulate the discussion around the utility /protection trade-off.
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