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A simple proof of the Wirsching-Goodwin representation of integers connected to 1 in the 3x + 1 problem

This paper gives a simple proof of the Wirsching-Goodwin representation of integers connected to 1 in the 3x+1 problem (see [5] and [2]). This representation permits to compute all the ascending sequences (f

Basic elements

In the presentation of the book "The Ultimate Challenge: The 3x+1 Problem", [3], J.C. Lagarias write The 3x + 1 problem, or Collatz problem, concerns the following seemingly innocent arithmetic procedure applied to integers: If an integer x is odd then "multiply by three and add one", while if it is even then "divide by two". The 3x + 1 problem asks whether, starting from any positive integer, repeating this procedure over and over will eventually reach the number 1. Despite its simple appearance, this problem is unsolved. We refer to this book and other papers from the same author for a good review of the context and the references.

Graph g(n)

Let (n 1 , n 2 ) be odd integers. n 1 and n 2 are connected by an edge if n 1 = f (n 2 ) or n 1 = f (n 2 ). g(n) is the subset of the odd integers connected to n.

Properties of g(1)

 give a short history of their work and provide some more results. This paper follow the same line of research and the theorems 1, 2 and 3 are not new. However we tried to give a simple and clear presentation of the results and the proofs. The theorems 4 and 5 are new as long as we know.

Definitions

Let n ∈ N.

Direct algorithm

T (n) = 3n + 1 if n ≡ 1 mod 2 n/2 if n ≡ 0 mod 2
Inverse algorithm

U (n) = 2n and n -1 3 if n ≡ 4 mod 6 1 Graph G(n) Let (n 1 , n 2 ) ∈ N 2
. n 1 and n 2 are connected by an edge if n 1 = T (n 2 ) or n 2 = T (n 1 ). G(n) is the subset of the integers connected to n.

Conjecture "3x + 1" ∀n ∈ N, ∃k ∈ N : T k (n) = 1. An equivalent assertion is G(1) = N * .

2 Restriction to odd integers

f and h

If the "3x + 1" conjecture is true for the odd integers it is also true for the even ones by definition of T . The expressions of T and U restricted to odd terms are the following with n odd:

• T becomes f: f (n) = (3n + 1)2 -j(3n+1) with j(3n + 1) the power of 2 in the prime factors decomposition of 3n + 1. f is often called the "Syracuse function".

• U becomes h, see [START_REF] Colussi | The convergence classes of Collatz function[END_REF]:

h(n) =      ∅ if n ≡ 0 mod 3 n2 k -1 3 , k = 2, 4, 6... if n ≡ 1 mod 3 n2 k -1 3 , k = 1, 3, 5... if n ≡ 2 mod 3
The expression of h comes from the following:

f (n) = (3n + 1)2 -j(3n+1) ⇒ n = f (n)2 j(3n+1) -1 3 ∈ N (1) 
There are 3 cases

• (f (n) ≡ 0 mod 3) ( 1) is impossible, • (f (n) ≡ 1 mod 3) ⇒ f (n) = 3x + 1 with x ∈ N f (n)2 j(3n+1) -1 3 = (3x + 1)2 j(3n+1) -1 3 = 3x.2 j(3n+1) + 2 j(3n+1) -1 3 ∈ N if j(3n + 1) even (see Lemma 5 on page 10) • (f (n) ≡ 2 mod 3) ⇒ f (n) = 3x + 2 with x ∈ N f (n)2 j(3n+1) -1 3 = (3x + 2)2 j(3n+1) -1 3 = 3x.2 j(3n+1) + 2 j(3n+1)+1 -1 3 ∈ N if j(3n + 1) odd (see Lemma 5 on page 10) 3.1 Expression of n ∈ g(1) as a sum of fractions Theorem 1. Let n ∈ g(1). ∃(b, a > u 1 > u 2 , ... > u b = 0) ∈ N b+2 : n = 2 a 3 b - i=1,b 2 u i 3 b-i+1 . Note that 2 a 3 b ≥ 1 ⇒ a ≥ b log3 log2 . Proof. n ∈ g(1) ⇔ ∃b : n ∈ h (b) (1). The proof use induction with b. Theorem 1 is true for b = 1 because h(1) = 2 k -1
3 , k = 2, 4, 6..., , and for b = 2 because h (2) (1) ⊂ 1 3

2 k 1 -1 3 2 k 2 -1 , k 1 = 2, 4, 6...; k 2 ∈ N ⊂ 2 k 1 +k 2 3 2 - 2 k 2 3 2 - 2 0 3 , k 1 = 2, 4, 6...; k 2 ∈ N Assume that theorem 1 is true for l ≤ b -1. h (b) (1) ⊂    1 3     2 a 3 b-1 - i=1,b-1 2 u i 3 b-i   2 k -1   , (a > u1 > ...u b-1 = 0, k) ∈ N b+1    ⊂    2 a+k 3 b - i=1,b-1 2 u i +k 3 b-i+1 - 2 0 3 , (a > u1 > ...u b-1 = 0, k) ∈ N b+1   
The last expression has the form claimed in theorem 1.

Note that k 1 is even but k l may be odd or even for l > 1. Thus a -u 1 is even. If a -u 1 = 2, h(1) = 1, so the first "interesting" value is a -u 1 = 4.

Proof. An alternative proof of theorem 1 on the previous page using f : n ∈ g(1) ⇔ ∃b ∈ N : f b (n) = 1. b is the number of odd integers (excluding 1) in the sequence from n to 1.

Induction with b: Let b = 1 and 3n + 1 = 2 j(3n+1) x be a partial prime factors decomposition of 3n + 1.

f (n) = (3n + 1)2 -j(3n+1) = 2 j(3n+1) x2 -j(3n+1) = x b = 1 ⇒ f (n) = 1 ⇒ x = 1 ⇒ 3n + 1 = 2 j(3n+1) ⇒ n = 2 j(3n+1) 3 - 1 3 . Let b = 2. b = 2 ⇒ f (f (n)) = 1 ⇒ f (n) = 2 j(3f (n)+1) 3 -1 3 . f (n) = (3n + 1)2 -j(3n+1) ⇒ (3n + 1)2 -j(3n+1) = 2 j(3f (n)+1) 3 - 1 3 . 
Therefore

n = 2 j(3n+1)+j(3f (n)+1 3 2 - 2 j(3n+1) 3 2 - 1 3 .
Assuming that the theorem is true till b -1 we have to prove that it is true for b.

f (n) = (3n + 1)2 -j(3n+1) = 2 a 3 b-1 - i=1,b-1 2 u i 3 b-i . Therefore n = 2 a+j(3n+1) 3 b - i=1,b-1 2 u i +j(3n+1) 3 b-i+1 - 1 3 .
Note that the general form of u i is thus

u b-i = l=1,i j[3f (l-1) (n)+1] , with f (0) = Id, and a = l=1,b j[3f (l-1) (n) + 1]. 3.2 Admissible tuple (b, a > u 1 > u 2 , ... > u b = 0)
Only some values of (b, a > u 1 > u 2 , ... > u b = 0) give an integer n in theorem 1, most of them do not.

Definition 1. A tuple (b, a ≥ b log3 log2 , a > u 1 > u 2 , ... > u b = 0) of b + 1 integers is admissible if 2 a 3 b -i=1,b 2 u i 3 b-i+1 ∈ N.
The admissible parity of u i -u i+1 is determined by the remainder modulo 3 of the integer obtained at step i (see the definition of h in section 2.1 on page 2).

Lemma 1. Let n2 k -1 3 ∈ N and n2 k -1 3 ≡ v mod 3. Then n2 k+2 -1 3 ≡ v + 1 mod 3.
The lemma indicates that v is a periodic function of k with period 6:

n2 k -1 3 ≡ n2 k+6 -1 3 mod 3. Proof. n2 k -1 3 ≡ v mod 3 ⇒ n2 k -1 3 = 3x + v, n2 k+2 -1 3 = 4 n2 k -1 3 + 1 = 4(3x + v) + 1 ≡ v + 1 mod 3 Lemma 2. Let n ∈ N and n 1 = n2 k -1 3 / ∈ N. Then ∀l ∈ N, n 1 2 l -1 3 / ∈ N.
The lemma indicates that if (b, a > u 1 > u 2 , ... > u b = 0) is admissible and k has not the correct parity, the tuple

(b + 1, a + k > u 1 + k > u 2 + k, .. > u b + k, u b+1 = 0)
is not admissible and all tuples based on it are also not admissible.

Conversely, if (b, a > u 1 > u 2 , ... > u b 0) is admissible, (b-1, a-u b-1 > u 1 -u b-1 > u 2 -u b-1 , ... > u b-1 -u b-1 = 0)
is also admissible and all such successive reduced tuples till (1, a -

u 1 > u 1 -u 1 = 0) Proof. n 1 = n2 k -1 3 = p
3 , with p and 3 relatively prime. n 1 2 l -1

3 = p 3 2 l -1 3 = p2 l -3 9 . Suppose that p2 l -3 9 = x ∈ N.
Then p2 l = 9x + 3 that is impossible because p and 3 are relatively prime.

Structure of g(1)

Lemma 3. g(1) is a tree with an additionnal loop in its root 1.

Proof. Let h * be a modified version of

h: h * (1) = 2 k -1 3 , k = 4, 6, 8..., g * (1) = 1 ∪ h * (1) ∪ h[h * (1)], .. ∪ h (l) [h * (1)].. . The case n ∈ h(n 1 ) ∩ h(n 2 ) with n 1 = n 2 ,
is impossible because there is only one f (n). Thus g * (1) is a tree because any n ∈ g * (1) cannot have two different parents. g(1) is equal to g * (1) with a supplementary loop at node 1.

The following definition 2 and proposition 1 are not nessessary for the proof of theorem 3 on page 7 and may be skipped. Definition 2. g * (1)[t, s] ⊂ g * (1) is the graph generated by the admissible tuples with b ≤ t, 4 ≤ a -u 1 ≤ 2 + 6s and u i -u i+1 ≤ 6s.

Proposition 1. |g * (1)[t, s]| = 1 + 3s[(2s) t -1] 2s-1
, with |A| is the cardinal of the set A.

Proof. Lemma 1 on the preceding page implies that for each node of the tree there are 3s admissible children of which 2s have children.

Note that with s = 1 one obtains that the ratio of integers pertaining to g * (1)[t, 1] and less than max(g * (1)[t, 1]) 2 2+6t 3 t is greater than 

u i = u i + 2.3 b-j-1 if i ≤ j and u i = u i if i > j. Then the tuple (b, u 0 > u 1 > u 2 , ... > u b = 0) is admissible. Proof. Let n = 2 u 0 3 b -i=1,b 2 u i 3 b-i+1 , and x = 2 u 0 3 b -i=1,b 2 u i 3 b-i+1 . x -n =   2 u 0 3 b - i=1,j 2 u i 3 b-i+1   2 2.3 b-j-1 -1 =   2 u 0 3 b - i=1,j 2 u i 3 b-i+1   q3 b-j = q   2 u 0 3 j - i=1,j 2 u i 3 j-i+1
  Lemma 7 on page 11 implies that q ∈ N and lemma 2 on the preceding page implies that the second term is integer, therefore x is integer.

We introduce an alternative notation for the tuple (b,

u 0 > u 1 > u 2 , ... > u b = 0). Let v i = u i-1 -u i , i = 1, ...b. The tuple (b, i=1,b v i , i=2,b v i , ...v b ) is equal to the tuple (b, u 0 > u 1 > u 2 , ... > u b = 0). The alternative notation for this tuple is (b, v 1 , v 2 , ..., v b ).
Note that v i = j(3f (b-i) (n) + 1), with n given by theorem 1 on page 3, see the second proof of theorem 1 on page 3.

Theorem 2. Let v i ∈ N, i = 2, ...b with 1 ≤ v i ≤ 2.3 b-i and b > 1. For each tuple (v 2 , v 3 , ...v b ) ∃v 1 even with 4 ≤ v 1 ≤ 2.3 b-1 such that (b, i=1,b v i , i=2,b v i , ...v b ) is admissible. Proof. The cardinal number of F = {v 2 , ...v b } is |{v 2 , ...v b }| = i=2,b 2.3 b-i = 2 b-1 3 i=2,b (b-i) = 2 b-1 3 k=0,b-2 k = 2 b-1 3 (b-2)(b-1)
2

Let E be the set of the admissible {v 1 , v 2 , ...v b }. #E is equal to the product of the number of admissible nodes with children at each step excepted the last one with sterile nodes taken into account. At the first step v 1 , this number is 2 3 3 b-1 . Then for each v 1 there are 3 b-2 possible admissible values for v 2 . From these values only 2 3 3 b-2 have children, and so on till the last step with one admissible node (with or without child for this last step). The product is equal to 2 b-1 3

(b-2)(b-1) 2 . Let t : E → F with t(v 1 , v 2 , ...v b ) = (v 2 , ...v b ). t is injective because t(v 1 , v 2 , ...v b ) = t(v 1 , v 2 , ...v b ) ⇒ (v 2 , ...v b ) = (v 2 , ...v b ). n = 2 a 3 b -b i=1 2 u i 3 b-i+1 ∈ N and n = 2 a 3 b - b i=1 2 u i 3 b-i+1 ∈ N. Therefore n -n = 2 a 3 b -2 a 3 b = 2 a 2 a -a -1 3 b = 2 a 2 v 1 -v 1 -1 3 b
∈ N and thus v 1 -v 1 = p.2.3 b-1 with p ≥ 1. Therefore v 1 = v 1 and t is injective. #E = #F and t injective imply that t is bijective and that only one v 1 ≤ 2.3 b-1 correspond to a t-uple (v 2 , ...v b ).

Note that the number of admissible {v 2 , ...v b } corresponding to one v 1 is Among the possible sequences (v 2 , ...v b ) allowed by the Theorem 2 on the previous page some are specially interesting such as the strictly ascending sequence (f (i) (n), i = 1, b -1) (see n = 151 in the above table as an example), given in the following corollary.

2 b-1 3 (b-2)(b-1) 2 2 3 3 b-1 = 2 b-2 3 (b-3)(b-
Corollary. ∀b ∈ N, ∃n ∈ N : ∀i ∈ (1, b -1), f (i) (n) > f (i-1) (n).
Proof. n is obtained with v i = 1, i = 2 : b, and v 1 given by theorem 2 on the preceding page and lemma 4 on the previous page.

The Wirsching-Goodwin representation of the nodes of g(1) obtained with b steps (see [START_REF] Goodwin | The 3x+1 Problem and Integer Representations[END_REF]) may be now stated in the following theorem. Let g * (1, b) = {n ∈ g(1) : f (b) = 1 and f (b-1) = 1} and v * 1 the value of v 1 whose existence is proven in theorem 2 on the preceding page. 

v i = v i + 2.3 b-i c i , c i ∈ N * , v i ∈ N, i = 2, ...b with 1 ≤ v i ≤ 2.3 b-i and 4 ≤ v 1 = v * 1 ≤ 2.3 b-1 .
Proof. Direct from theorem 2 on the previous page and lemma 4 on the preceding page.

For each b and (v 2 , ...v b ) there is a unique v 1 ∈ (4, 2.3 b-1 + 2). The theorem 4 give its value.

A simpler (but not directly related to theorem 3) proof of theorem 5 is the following: a Collatz sequence (n 0 , n 1 , . . . , n b ) is growing if ∀i, n i+1 = (3n i + 1)/2. Therefore ∃k ∈ N * , n 0 = k2 b -1 and n b = k3 b -1 and n i = k3 i 2 b-i -1. If the following term of the sequence is 1, then ∃l ∈ N * , 1 = (k3 b+1 -2)/2 l . Thus k3 b+1 = 2 + 2 l and 2 l ≡ -2 (mod 3 b+1 ), which is equivalent to l -1 ≡ 3 b (mod 2 × 3 b ). The first term of this Collatz sequence is n 0 = (1 + 2 (2p+1)3 b )(2/3) b+1 -1 with p ∈ N.
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Lemma 4 .

 4 Let (b, u 0 > u 1 > u 2 , ... > u b = 0) an admissible tuple. Let j < b and

Theorem 3 .

 3 There is a one to one relation between g * (1, b) with b > 1 and the set of the tuples (b, v 1 , v 2 , ..., v b ) with

Table 1 :

 1 The 12 admissible tuples with b = 3

	2	2)	.

Proof.

The group (Z Z/3 b Z Z) * is cyclic and 2 is a primitive root modulo 3 b (see [START_REF] Vinogradov | Elements of Number Theory[END_REF]). Thus

is bijective and F -1 is the reciprocal function,

Ascending Collatz sequences excepted the last term

It is possible to give explicitely a and v 1 in some particular cases such as (v 2 = v 3 = ... = v b = 1) and any b. The following theorem defines all the strictly ascending sequence

Proof. With induction with b. The theorem is true for b = 2 and b = 3

3 j-i+1 , j = 1, b, the values obtained at step j with b total steps, and

the values obtained at step j with b -1 total steps. The m j are integers by the induction hypothesis. Note that

Therefore the lemma 4 on page 6 implies that n 1 , ...n b-1 are integers. We have to prove that n b ∈ N. This is true if n b-1 ≡ 2 mod 3.

, and the lemma 8 on page 11 implies that

A Proof of Lemmas Lemma 5.

(2 0 ≡ 1 mod 3) ⇒ (2 2k ≡ 1 mod 3) and (2 2k+1 ≡ 2 mod 3) Lemma 6. 2 3 k +1 3 k+1 ∈ N and ≡ 1 mod 3 Proof. By induction. The lemma is true for k = 0 and k = 1.

Assume that the lemma is true till k -1, which implies that

x ≡ 1 mod 3. 

11 Lemma 6 on the preceding page implies that