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A simple proof of the Wirsching-Goodwin representation
of integers connected to 1 in the 3x + 1 problem.

J.J. Daudin

December 13, 2017

Summary. A proof of the Wirsching-Goodwin representation of integers connected to 1
in the 3x+ 1 problem (see [3] and [2]) with elementary mathematics.

1 Basic elements

1.1 Definitions

Let n ∈ N.

Direct algorithm

T (n) =

{
3n+ 1 if n ≡ 1 mod 2
n/2 if n ≡ 0 mod 2

Inverse algorithm

U(n) =

{
2n and

n− 1

3
if n ≡ 4 mod 6

}
Graph G(n)

Let (n1, n2) ∈ N2. n1 and n2 are connected by an edge if n1 = T (n2) or n2 = T (n1).
G(n) is the subset of the integers connected to n.

Conjecture "3x+ 1"

∀n ∈ N,∃k ∈ N : T k(n) = 1. An equivalent assertion is G(1) = N.
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2 Restriction to odd integers

2.1 f and h

If the "3x + 1" conjecture is true for the odd integers it is also true for the even ones
by definition of T . The expressions of T and U restricted to odd terms are the following
with n odd:

• T becomes f: f(n) = (3n+1)2−j(3n+1) with j(3n+1) is the power of 2 in the prime
factors decomposition of 3n+ 1. f is often called the "Syracuse function".

• U becomes h, see[1]:

h(n) =


∅ if n ≡ 0 mod 3
n2k−1

3 , k = 2, 4, 6... if n ≡ 1 mod 3
n2k−1

3 , k = 1, 3, 5... if n ≡ 2 mod 3

The proof of the expression of h needs the following lemma.

Lemma 1.

2k
mod 3≡

{
2 if k odd
1 if k even

Proof. (2k ≡ 1 mod 3) ⇒ (2k = 3x + 1 with x ∈ N) ⇒ 2k+1 = 3.2x + 2 ⇒ (2k+1 ≡ 1
mod 3).

(2k ≡ 2 mod 3) ⇒ (2k = 3x + 2 with x ∈ N) ⇒ 2k+1 = 3(2x + 1) + 1 ⇒ (2k+1 ≡ 2
mod 3).

(20 ≡ 1 mod 3)⇒ (22k ≡ 1 mod 3) and (22k+1 ≡ 2 mod 3)

The expression of h comes from the following:

f(n) = (3n+ 1)2−j(3n+1) ⇒ n =
f(n)2j(3n+1) − 1

3
∈ N (1)

There are 3 cases

• (f(n) ≡ 0 mod 3) (1) is impossible,

• (f(n) ≡ 1 mod 3)⇒ f(n) = 3x+ 1 with x ∈ N

f(n)2j(3n+1) − 1

3
=

(3x+ 1)2j(3n+1) − 1

3

=
3x.2j(3n+1) + 2j(3n+1) − 1

3
∈ N if j(3n+ 1) even (lemma1)
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• (f(n) ≡ 2 mod 3)⇒ f(n) = 3x+ 2 with x ∈ N

f(n)2j(3n+1) − 1

3
=

(3x+ 2)2j(3n+1) − 1

3

=
3x.2j(3n+1) + 2j(3n+1)+1 − 1

3
∈ N if j(3n+ 1) odd (lemma1)

2.2 Graph g(n)

Let (n1, n2) be odd integers. n1 and n2 are connected by an edge if n1 = f(n2) or
n1 = f(n2). g(n) is the subset of the odd integers connected to n.

3 Properties of g(1)

3.1 Expression of n ∈ g(1) as a sum of fractions

Theorem 1. Let n ∈ g(1). ∃(b, a > u1 > u2, ... > ub = 0) ∈ Nb+2 :

n =
2a

3b
−
∑
i=1,b

2ui

3b−i+1
.

Note that 2a

3b
≥ 1⇒ a ≥ b log3log2 .

Proof. n ∈ g(1) ⇔ ∃b : n ∈ h(b)(1). The proof use induction with b. Theorem 1 is true
for b = 1 because h(1) =

{
2k−1
3 , k = 2, 4, 6...,

}
, and for b = 2 because

h(2)(1) ⊂
{
1

3

(
2k1 − 1

3
2k2 − 1

)
, k1 = 2, 4, 6...; k2 ∈ N

}
⊂

{
2k1+k2

32
− 2k2

32
− 20

3
, k1 = 2, 4, 6...; k2 ∈ N

}
Assume that theorem 1 is true for l ≤ b− 1.

h(b)(1) ⊂

1

3

 2a

3b−1
−

∑
i=1,b−1

2ui

3b−i

 2k − 1

 , (a > u1 > ...ub−1 = 0, k) ∈ Nb+1


⊂

2a+k

3b
−

∑
i=1,b−1

2ui+k

3b−i+1
− 20

3
, (a > u1 > ...ub−1 = 0, k) ∈ Nb+1


The last expression has the form claimed in theorem 1.

Note that k1 is even but kl may be odd or even for l > 1. Thus a − u1 is even. If
a− u1 = 2, h(1) = 1, so the first "interesting" value is a− u1 = 4.
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Proof. An alternative proof of theorem 1 using f : n ∈ g(1) ⇔ ∃b ∈ N : f b(n) = 1. b is
the number of odd integers (excluding 1) in the sequence from n to 1.

Induction with b:
Let b = 1. 3n+ 1 = 2j(3n+1)x a partial prime factors decomposition of 3n+ 1.

f(n) = (3n+ 1)2−j(3n+1)

= 2j(3n+1)x2−j(3n+1)

= x

b = 1⇒ f(n) = 1⇒ x = 1⇒ 3n+ 1 = 2j(3n+1) ⇒ n =
2j(3n+1)

3
− 1

3
.

Let b = 2. b = 2⇒ f(f(n)) = 1⇒ f(n) = 2j(3f(n)+1)

3 − 1
3 .

f(n) = (3n+ 1)2−j(3n+1) ⇒ (3n+ 1)2−j(3n+1) =
2j(3f(n)+1)

3
− 1

3
.

Therefore

n =
2j(3n+1)+j(3f(n)+1

32
− 2j(3n+1)

32
− 1

3
.

Assuming that the theorem is true till b− 1 we have to prove that it is true for b.

f(n) = (3n+ 1)2−j(3n+1) =
2a

3b−1
−

∑
i=1,b−1

2ui

3b−i
.

Therefore

n =
2a+j(3n+1)

3b
−

∑
i=1,b−1

2ui+j(3n+1)

3b−i+1
− 1

3
.

Note that the general form of ui is thus ub−i =
∑

l=1,i j[3f
(l−1)(n)+1] , with f (0) = Id,

and a =
∑

l=1,b j[3f
(l−1)(n) + 1].

3.2 Admissible tuple (b, a > u1 > u2, ... > ub = 0)

Only some values of (b, a > u1 > u2, ... > ub = 0) give an integer n in theorem 1, most
of them do not.

Definition 1. A tuple (b, a ≥ b log3log2 , a > u1 > u2, ... > ub = 0) of b + 1 integers is
admissible if 2a

3b
−
∑

i=1,b
2ui

3b−i+1 ∈ N.

The admissible parity of ui − ui+1 is determined by the remainder modulo 3 of the
integer obtained at step i (see the definition of h in section 2.1).

Lemma 2. Let n2k−1
3 ∈ N and n2k−1

3 ≡ v mod 3. Then n2k+2−1
3 ≡ v + 1 mod 3.
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The lemma indicates that v is a periodic function of k with period 6: n2k−1
3 ≡ n2k+6−1

3
mod 3.

Proof. n2k−1
3 ≡ v mod 3⇒ n2k−1

3 = 3x+ v,

n2k+2 − 1

3
= 4

n2k − 1

3
+ 1

= 4(3x+ v) + 1

≡ v + 1 mod 3

Lemma 3. Let n ∈ N and n1 =
n2k−1

3 /∈ N. Then ∀l ∈ N, n12l−1
3 /∈ N.

The lemma indicates that if (b, a > u1 > u2, ... > ub = 0) is admissible and k has not
the correct parity, the tuple (b+ 1, a+ k > u1 + k > u2 + k, .. > ub + k, ub+1 = 0) is not
admissible and all tuples based on it are also not admissible. Conversely, if (b, a > u1 >
u2, ... > ub = 0) is admissible, (b−1, a−ub−1 > u1−ub−1 > u2−ub−1, ... > ub−1−ub−1 =
0) is also admissible and all such successive reduced tuples till (1, a− u1 > u1 − u1 = 0)

Proof. n1 =
n2k−1

3 = p
3 , with p and 3 relatively prime. n12l−1

3 =
p
3
2l−1
3 = p2l−3

9 . Suppose
that p2l−3

9 = x ∈ N. Then p2l = 9x+ 3 that is impossible because p and 3 are relatively
prime.

3.3 Tree structure of g(1)

Lemma 4. g(1) is a tree with an additionnal loop in its root 1.

Proof. Let h∗ be a modified version of h: h∗(1) = n2k−1
3 , k = 4, 6, 8...,

g∗(1) =
{
1 ∪ h∗(1) ∪ h[h∗(1)], .. ∪ h(l)[h∗(1)]..

}
. The case n ∈ h(n1) ∩ h(n2) with

n1 6= n2, is impossible because there is only one f(n). Thus g∗(1) is a tree because any
n ∈ g∗(1) cannot have two different parents. g(1) is equal to g∗(1) with a supplementary
loop at node 1.

The following definition 2 and proposition 1 are not nessessary for the proof of theorem
3 and may be skipped.

Definition 2. g∗(1)[t, s] ⊂ g∗(1) is the graph generated by the admissible tuples with
b ≤ t, 4 ≤ a− u1 ≤ 2 + 6s and ui − ui+1 ≤ 6s.

Proposition 1. |g∗(1)[t, s]| = 1 + 3s[(2s)t−1]
2s−1 , with |A| is the cardinal of the set A.

Proof. Lemma 2 implies that for each node of the tree there are 3s admissible children
of which 2s have children.

Note that with s = 1 one obtains that the ratio of integers pertaining to g∗(1)[t, 1]

and less than max(g∗(1)[t, 1]) ' 22+6t

3t is greater than 3
4

(
25

3

)t
.
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Lemma 5. 22.3
k − 1 ≡ 0 mod 3k+1

Proof. By induction. The lemma is true for k = 0 and k = 1 because 22 − 1 = 3 and
26 − 1 = 63 = 327. Assume that lemma is true till k − 1, with

(
22.3

k−1 − 1
)
= 3kx with

x ∈ N.

22.3
k − 1 =

(
22.3

k−1
)3
− 1

=
(
22.3

k−1 − 1
)[(

22.3
k−1
)2

+
(
22.3

k−1
)
+ 1

]
= 3kx

[(
22.3

k−1
)2
− 1 +

(
22.3

k−1 − 1
)
+ 3

]
= 3kx

[(
22.3

k−1 − 1
)(

22.3
k−1

+ 1
)
+ 3kx+ 3

]
= 3kx

[
3kx

(
22.3

k−1
+ 1
)
+ 3kx+ 3

]
= 3k+1x

[
3k−1x

(
22.3

k−1
+ 2
)
+ 1
]

Lemma 6. Let (b, u0 > u1 > u2, ... > ub = 0) an admissible tuple. Let j < b and u′i =
ui +2.3b−j−1 if i ≤ j and u′i = ui if i > j. Then the tuple (b, u′0 > u′1 > u′2, ... > u′b = 0)
is admissible.

Proof. Let n = 2u0
3b
−
∑

i=1,b
2ui

3b−i+1 , and x = 2u
′
0

3b
−
∑

i=1,b
2u
′
i

3b−i+1 .

x− n =

2u0

3b
−
∑
i=1,j

2ui

3b−i+1

(22.3b−j−1 − 1
)

=

2u0

3b
−
∑
i=1,j

2ui

3b−i+1

(q3b−j)

= q

2u0

3j
−
∑
i=1,j

2ui

3j−i+1


Lemma 5 implies that q ∈ N and lemma 3 implies that the second term is integer,
therefore x is integer.

We introduce an alternative notation for the tuple (b, u0 > u1 > u2, ... > ub = 0).
Let vi = ui−1 − ui, i = 1, ...b. The tuple (b,

∑
i=1,b vi,

∑
i=2,b vi, ...vb) is equal to

the tuple (b, u0 > u1 > u2, ... > ub = 0). The alternative notation for this tuple is
(b, v1, v2, ..., vb).

Note that vi = j(3f (b−i)(n) + 1), with n given by theorem1, see the second proof of
theorem1.
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Theorem 2. Let vi ∈ N, i = 2, ...b with 1 ≤ vi ≤ 2.3b−i and b > 1. For each tuple
(v2, v3, ...vb) ∃v1 even with 4 ≤ v1 ≤ 2.3b−1 such that (b,

∑
i=1,b vi,

∑
i=2,b vi, ...vb) is

admissible.

Proof. On one side the cardinal number of {v2, ...vb} is

|{v2, ...vb}| =
∏
i=2,b

2.3b−i

= 2b−13
∑

i=2,b(b−i)

= 2b−13
∑

k=0,b−2 k

= 2b−13
(b−2)(b−1)

2

On the other side the number of admissible {v1v2, ...vb} nodes of g∗(1) is equal to
the product of the number of admissible nodes with children at each step excepted the
last one with sterile nodes taken into account. At the first step v1, this number is 2

33
b−1,

at the step v2 it is equal to 2
33

b−2, and so on till the last step with one admissible node

(with or without child for this last step). The product is equal to 2b−13
(b−2)(b−1)

2 . The
admissible nodes are different from each other because g∗(1) is a tree, therefore there is
a one to one function between the admissible nodes obtained with b steps and the tuple
{v∗1, v2, ...vb} defined in the theorem.

Example.
v1* 4 4 8 8 10 10 14 14 16 16 20 20
v2 3 5 2 6 1 5 4 6 1 3 2 4
v3 2 1 1 2 1 2 2 1 2 1 2 1
n 17 35 75 2417 151 4849 ... 1242755

Table 1: The 12 admissible tuples with b = 3

Among the possible sequences (v2, ...vb) allowed by the Theorem 2 some are specially
interesting such as the strictly ascending sequence (f (i)(n), i = 1, b− 1) (see n = 151 in
the above table as an example), given in the following corollary.

Corollary. ∀b ∈ N, ∃n ∈ N : ∀i ∈ (1, b− 1), f (i)(n) > f (i−1)(n).

Proof. n is obtained with vi = 1, i = 2 : b, and v1 given by theorem 2 and lemma 6.

The Wirsching-Goodwin representation of the nodes of g(1) obtained with b steps
(see [2]) may be now stated in the following theorem. Let g∗(1, b) = {n ∈ g(1) : f (b) =
1 and f (b−1) 6= 1} and v∗1 the value of v1 whose existence is proven in theorem 2.

Theorem 3. There is a one to one relation between g∗(1, b) with b > 1 and the set of
the tuples (b, v′1, v

′
2, ..., v

′
b) with v′i = vi + 2.3b−ici, ci ∈ N∗, vi ∈ N, i = 2, ...b with 1 ≤

vi ≤ 2.3b−i and 4 ≤ v1 = v∗1 ≤ 2.3b−1.

Proof. Direct from theorem2 and lemma 6.
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