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ABSTRACT 

This work is concerned with the multiscale prediction of the transport properties associated with industrial 

glass wool samples. In a first step, an experimental characterization is performed on various products using 

optical granulometry and porosity measurements. A morphological analysis, based on scanning electron 

imaging, is further conducted in order to identify the probability density functions associated with the fiber’s 

angular orientation. A computational framework is subsequently proposed and allows for the reconstruction 

of an equivalent fibrous network. Multiscale simulations are carried out to estimate key transport properties 

such as the static viscous permeability and the viscous characteristic length. The results are finally compared 

with the experimental data and used to assess the relevance of both the reconstruction procedures and the 

multiscale computations. 

 

Keywords: fibrous materials, micro-macro.  I-INCE Classification of Subjects Number(s): 23, 35, 51, 76. 

1. INTRODUCTION 

Diffusion and fluid flow in random fibrous media are encountered in many processes of great 

interest, such as filtration, composite fabrication, and sound insulation. Here we are concerned with a 

better understanding of the transport processes through fibrous acoust ic materials in order to predict 

the acoustical properties of lightweight glass wool samples. The other purpose of this paper is to relate 

fiber structure to transport coefficients of such random fiber geometries by choosing the appropriate 

microstructural parameters and formulating a suitable multiscale framework.  

What is the microscopic basis of macroscopic properties in acoustic fibrous media? How do 

macroscopic transport properties depend on the microstructural parameters of a fibrous material? 

These are two of the many questions that have dominated studies of fluid flow and thermal diffusion 

through microscopically-disordered fibrous materials such as glass wools. Such questions may be 

addressed in a variety of ways [1,2]. Perhaps, the most direct method is to conduct a series of 

laboratory measurements on samples of varying sizes and types [3-8]. Alternatively, in the quest for 

theoretical understanding, one may seek to better understand the mathematical or physical basis of the 

generalized Darcy-scale equations for macroscopic transports [9-14]. Lastly, one can consider studies 

based on numerical simulations [15-17]. 

Each of these approaches has strengths and weaknesses. Laboratory measurements are of 

undisputed value; however, their usefulness may be limited to a specific range of already available 

manufactured materials. Importantly, the attempts in the literature of fibrous materials where transport 

properties have been related empirically to microstructural parameters – usually through some kind of 

power law with fitted exponents – cannot reflect what the microphysical origins are behind exponents 

modifications; suggesting that this approach is not appropriate to understand transport processes in 

fibrous materials. Analytical studies, on the other hand, are not necessarily limited to a specific kind of 

fiber materials, but they usually require simplifying assumptions (e.g., periodic array of cylinders [16], 

specific fiber orientations [19,20], or negligible interaction between the shear stress fields of 
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neighboring fibers [21]) that have only a partial relevance to reality. Numerical simulation usually 

attempts to bridge the gap between theory and experiments. It is typically hampered, however, by 

either the need to simplify geometry [16,18] or physics [15,22]. In recent years, however, another 

approach to the numerical study of diffusion and fluid flow through fibrous media has gained some 

popularity. The idea is to numerically solve the asymptotic behaviors of the linearized Navier -Stokes 

and heat equations in a realistic microscopically disordered geometry, and then study how 

volume-averaged properties of the diffusion process and the fluid flow depend on the details of the 

microstructures. Such studies offer the ability to study the micro-physical basis of macroscopic 

transport without the need for simplified geometries or physics; they are however limited to samples of 

small size. 

Considering the difficulties that have been stated about empirical and analytical approaches, an 

attempt to relate fibrous structure to transport parameters should be based on direct measurements of 

the microstructural parameters of a single fibrous sample. Examples of such microstructural 

parameters include porosity, specific surface area, and some kind of average or typical  fiber diameter 

and fiber orientation. We could then proceed to numerically solve the appropriate transport equations 

in a reconstructed fibrous microstructure. A challenge is in choosing the appropriate microstructural 

parameters and in proposing a reconstruction procedure as a way of predicting transport properties of 

the sample. 

This work follows a series of papers focusing on the determination of the acoustic properties of 

random fibrous materials from their microstructures, thus extending the earlier developed 

methodologies for foams to random fibrous media (see for instance Sec. 1.2 of Ref.  [23] for a recent 

literature review on foams):  (1) First, we examined a reconstruction methodology of a random 

fibrous medium that can account for the external porosity of the material, as well as fiber diameters 

and orientations [24]. The material under consideration was made of natural fibers and synthetic fibers 

used as a thermal binder. The acoustic properties were computed assuming long wavelength and rigid 

skeleton without any adjusted parameter. An experimental validation was provided by comparison 

with permeability and sound absorption measurements. Thus, the sample was relatively simple 

because it was made of two different populations of fibers, each of them having a constant diameter. 

Moreover, the fibers were long when compared to the size of the reconstructed representative 

elementary volume. In particular, this study indicates that the considered case consists in a model 

material that showed a sharply peaked distribution, both in the diameters and the lengths of the fibers.  

(2) Secondly, we addressed the question of whether a fibrous medium made of a non-sharply peaked 

distribution of fiber diameters can be represented by an equivalent monodisperse fibrous medium with 

a mean fiber diameter [17]. Again, this numerical study was restricted to a sharply peaked distribution 

of fiber lengths. 

This article focuses on fibrous media with highly complex structures: glass wools. These random 

fibrous media present at the same time a non-sharply peaked distribution of fibers diameters, fibers 

lengths, and angular orientations, making it more difficult for engineers and researchers to understand 

and model transport processes in acoustical fibrous materials. Therefore, our approach to model the 

acoustical properties of random fibrous media by means of a multi-scale method differs from the 

numerical models in the literature (it should be noticed at this point that the determination of the elastic 

properties of random fibrous media from their microstructural characteristics is out of the scope  of this 

paper). Indeed, although several numerical studies of some of the microstructural features that are at 

play in a non-woven acoustical material have been proposed, they have described only the viscous 

fluid flow [15], sometimes adding visco-thermal coupling but it was limited to two-dimensional 

microstructures [16], or investigated the effect of fiber diameter and fiber orientation on the acoustical 

properties of model materials [17,24,25]. None of these studies however attempted to resolve 

simultaneously both the physics and the microgeometry involved in complex random fibrous samples: 

the non-sharply peaked distributions associated with fiber lengths, diameters and orientations; and the 

visco-inertial and thermal dissipation mechanisms, which correspond to transport parameters entering 

into the description of the acoustical macro-behavior of porous media. 

This paper is organized as follows. Sec. II is devoted to the experimental characterization of the 

acoustical fibrous materials under study, at both micro- and macro- scales. Sec. III deals with the 

introduction of a stochastic model, from which all the transport properties of interest are computed and 

further compared with measurements. Sec. IV concludes this work.  

 



 

 

2. Experimental Characterization of the Random Fibrous Network and 

Transport Properties 

This section is concerned with the statistical characterization of the fibrous network associated 

with manufactured glass wools. The raw materials and the experimental setup are first described in 

Sec. 2.1. The statistical results are then presented in Sec. 2.2. 

2.1 Description of the Raw Materials and Methodological Aspects 

In this study, we consider glass wools manufactured using sand, limestone and soda ash, as well as 

recycled off-cuts as the basic raw materials. The raw materials are melted in a furnace at very high 

temperatures, typically between 1050 °C to 1500 °C. The mixture is drawn through tiny holes in 

rapidly rotating spinners. This process shapes it into fibers. The structure and density of the product 

may be adapted according to its final usage. Small quantities of binding agents are added to the fibers. 

The glass wool is then hardened in a curing oven at around 200 °C, and is cut to the required size and 

shape. Ten batches corresponding to different surface densities and various processing parameters are 

considered and labeled from 1 to 10. From a manufacturing perspective, the batches 1-5 constitute a 

first class of products (which will be referred to as Class 1 below) characterized by a given surface 

density S1 (which is left undefined for industrial confidentiality reasons) yielding a porosity of about 

0.995. Similarly, the batches 6-10 exhibit a surface density S2 > S1 (with a porosity equal to 0.985 

approximately), and represent a second class of raw materials (which is denoted by Class 2). Samples 

of the material under consideration are shown at both the microscopic and macroscopic scales in Fig.1. 

In order to proceed with the multiscale analysis, the random fibrous network is characterized by 

measuring key geometrical parameters, including the diameters and lengths of the fibers, as well as 

their orientation angles in horizontal and vertical planes (the former are planes parallel to (O, e1, e2), 

while the latter correspond to planes parallel to (O, e2, e3) in the coordinate system depicted in Fig. 1). 

More specifically, the measures for the diameters and lengths are automatically obtained by using a 

granulomorphometer. The fibers are taken by coring with a syringe, the maximum length of the 

fibers being equal to or less than 3.6mm. Samples are blown up in order to ensure that the fibers are 

well separated. The fibers whose length is not more than three times the diameter and the fibers 

emerging from the observation window are excluded from the analysis. Micrographs are then 

sequentially extracted and processed by an image recognition algorithm.  

The horizontal and vertical orientations of the fibers are directly measured, inside a given plane, 

from SEM pictures. Here, it is assumed that the microstructure is reasonably homogeneous over the 

macroscopic domain, so that the spatial sampling does not introduce a bias. For each product, 40 

pictures are extracted for each plane of interest at random locations (note that the horizontal plane 

corresponds the fibrous drawing plane), as shown in Fig.  2. 

On average, each product is characterized by 200 angular measurements in both the horizontal 

and vertical planes, using the ImageJ software [26]. Below, it is assumed that the thickness of the 

samples is small enough to make the effect of out-of-plane fibers negligible in the (two-dimensional) 

reconstruction of the microstructure. 

      

Fig. 1.  This figure shows a macroscopic view of a glass wool (left panel) and the associated microstructure 

obtained with a Scanning Electron Microscope (SEM; right panel), for the surface density S1. The descendent 

arrow shows the airflow direction. Two angles θ and φ are also defined in this coordinate system. The 

heterogeneity of fiber diameters can easily be observed in the micrograph. The scale bar in the SEM image is 

5×mD, where mD is the mean diameter of the analyzed fibers. 



 

 

       
FIG. 2. Examples of micrographs taken in the horizontal (left panel) and vertical (right panel) planes. 

The scale bar in the SEM images is 5×mD, in which mD is the mean value of diameter. Sample sizes 

are respectively equal to 48.4mD × 32.5mD (left) and 41.5mD × 27.8mD (right). 

2.2 Statistical Characterization of the Random Microstructure 

From a statistical point of view, the probability density functions of interest are estimated through 

a nonparametric kernel method. The density functions associated with the diameter and length of the 

fibers are shown in Figs. 3 and 4 for the batches 1 and 6, respectively. In these figures, the closest fits 

obtained with Gamma laws are also shown (maximum likelihood estimation). It should be noticed that 

the fiber lengths may be underestimated due to the characterization process. For latter use, introduce 

the mean weighted diameter Dw defined as 

Dw =
1

 Vi
Nf

i=1

 ViDi

Nf

i=1
 (1) 

where Vi and Di are the volume and diameter associated with the i-th fiber. The probability density 

functions of the horizontal and vertical orientation angles are shown in Figs. 5 and 6, respectively. By 

convention, the support of the aforementioned probability density function is defined as [0°, 180°]. 

Based on these figures, the following modeling assumptions are formulated:  

• the horizontal angle φ follows a uniform distribution between 0° and 180°;  

• the probability density function of the vertical angle θ provides information that corresponds to a 

preferred out-of-plane orientation generated by the manufacturing technique; 

• the fiber diameter is distributed according to a Gamma distribution with shape parameter 1/(δD)
2
 

scale parameter mD(δD)
2
, where mD and δD are the mean and coefficient of variation of the diameter, 

respectively.These assumptions will be used in Sec. 3 in order to define the geometry of the fibrous 

media within the multiscale framework. 

  

FIG. 3. The estimated probability density function of 

fiber diameter is shown for products 1 (left panel) 

and 6 (right panel). Here, the diameter is normalized 

by its mean value (for confidentiality reasons). 

FIG. 4. The estimated probability density function of 

fiber length is shown for products 1 (left panel) and 6 

(right panel). Here, the length is normalized by its mean 

value. 

  

FIG. 5. The estimated probability density function of 

the horizontal orientation angle φ is shown for Class 

1 (left panel) and 2 (right panel). 

FIG. 6. The estimated probability density function of 

the vertical orientation angle θ is shown for Class 1 

(left panel) and 2 (right panel). 



 

 

2.3 Experimental Characterization of Transport Properties 

The macroscopic density ρ, the porosity ϕ and the through-thickness permeability (along e3) are 

determined from direct measurements [27,28]. A geometrical estimate of the thermal characteristic 

length Λ' can also be obtained from the knowledge of the porosity ϕ and the specific surface area Sp, 

since Sp is a direct output of the granulomorphometry analysis (see Eq.(6)). More specifically, the 

through-thickness permeability of each sample is measured for various static airflows (between 95 and 

165 cubic centimeters/minute) and its quasi-static value is considered as the interpolated value for 

airflow equal to 0.5 mm/s. The tortuosity α∞, the viscous characteristic length Λ, the static thermal 

permeability k', and the thermal characteristic lengths Λ' are determined using the indirect 

characterization method proposed in [29,30]. This requires, in particular, the measurement of both the 

equivalent dynamic bulk modulus and dynamic density, which is performed here by using the 

3-microphone impedance tube method (see [31] for methodological aspects, as well as [32] for an 

application to foams and fibrous materials). In this study, the tube used for the measurements has a 40 

mm inner diameter and the loudspeaker at one end generates a broadband random signal in the 

frequency band 200-4000 Hz. The determination of the aforementioned parameters is considered 

satisfactory when both the measured equivalent dynamic bulk modulus and equivalent dynamic 

density of the materials are correctly predicted [29,30]. 

3. Multi-scale analysis and experimental validation 

3.1 Overview of the Modeling Methodology 

Let Ω be the representative volume element (RVE) under consideration (with boundary ∂Ω), and 

let Ωf denote the part of Ω occupied by the fluid phase (the viscosity of which is denoted by η). Let ∂Ωf 

be the contact surface between the fluid and solid phases. We further introduce the following notations.  

Table 1 – List of symbols 

Symbols Property Symbols Property 

ϕ Porosity α∞ High-frequency tortuosity 

[K] Static viscous permeability Λ Viscous characteristic length 

k' Static thermal permeability Λ' Thermal characteristic length 

3.2 Definition of the Microstructure and Multiscale Simulations 

3.2.1 Definition of the Porosity and Thermal Characteristic Length 
The porosity ϕ and the thermal characteristic length Λ' are purely geometrical quantities that can 

be readily deduced from the definition of the microstructure. More precisely, the porosity is defined as  

ϕ = Vf/VT  (5) 

where Vf= |Ωf| is the volume occupied by the fluid (air) and VT=|Ω| is the total volume of the domain 

under consideration. The thermal characteristic length Λ' is given by 

Λ′ = 2ϕ/Sp = 2Vf/Sfs  (6) 

in which Sfs is the contact area between the fluid and the solid, and Sp=Sfs/VT denotes the specific 

surface area.  

3.2.2 Computational Homogenization 
First of all, multiscale predictions of the static viscous permeability tensor are obtained. For this 

purpose, recall that the velocity v and the pressure p of the (incompressible) fluid satisfy the 

momentum equation and the mass conservation equation 

η∆𝐯 − 𝛁p = −𝐆 (7) 

𝛁. 𝐯 = 0 (8) 

in Ωf, where G is a source term and the symbol “.” denotes the classical inner product in R
3
. The above 

system of Stokes equations is supplemented with the boundary condition 

𝐯 = 𝟎 (9) 

on ∂Ωf, with (v,p) periodic on ∂Ω. The components of the static viscous permeability tensor [K] can 

then be calculated as 

 K ij = ϕ  K∗ ij , 1 ≤ i, j ≤ 3  (10) 

where <.> denotes volume averaging in the fluid phase, viz. 



 

 

 .  =
1

 Ωf 
 .
Ω𝑓

𝑑𝑉, (11) 

and [K*] is such that 

vi = −
 K∗ ij

η
Gj  . (12) 

In practice, three independent problems must be solved for defining the entries of [K*], each 

problem being defined by considering the source term G
(i)

, 1≤i≤3, such that Gj
(i)

=δij, 1≤j≤3, with δij the 

Kronecker symbol (δij=1 if i=j, 0 otherwise). In this work, the Stokes equations are solved by the finite 

element method. More specifically, 5-node MINI tetrahedral elements are used for the velocity field, 

while 4-node tetrahedral elements are used for the pressure field [35]. This P
1
-bubble/P

1
 formulation 

satisfies the Babuska-Brezzi condition [36], and was implemented within in-house Matlab routines. 

The code verification was carried out by addressing various benchmarks proposed elsewhere in the 

literature (such as [37]). In order to ensure a proper refinement near the boundary layers, the mesh 

generation was performed by using the commercial software COMSOL Multiphysics.  

The next step involves the estimation of the high-frequency tortuosity α∞ and viscous 

characteristic length Λ. These quantities of interest can be obtained by solving the following potential 

equations 

𝐄 = −𝛁Φ + 𝐞 , 𝛁.𝐄 = 0 , (13) 

in Ωf, where E is the electric field, Φ is an electric potential and e is a (given) input macroscopic 

electric field. The associated boundary conditions write 

𝐄 ∙ 𝐧 = 0 (14) 

on ∂Ωf, with n the unit vector normal to the boundary ∂Ωf, and Φ periodic on ∂Ω. The through- 

thickness high-frequency tortuosity is then defined by considering the microscopic field e=e3 and by 

letting 

α∞ =
 𝐄 ∙ 𝐄 

 𝐄 ∙  𝐄 
 . (15) 

The associated viscous characteristic length reads as 

Λ = 2  𝐄 ∙ 𝐄
 

Ω

dV   𝐄 ∙ 𝐄
 

∂Ω

dS 

−1

 . (16) 

Finally, the static thermal permeability K0
(0)

 is estimated by solving the heat transfer equation, 

namely 

∆u = −1 (17) 

in Ωf, with 

u = 0 (18) 

on ∂Ωf and u periodic on ∂Ω. The transport parameter k'
(0)

 is then obtained as 

k′  0 =  u  . (19) 

The two boundary value problems that are respectively defined by Eqs. (13-14) and Eqs. (17-18) 

are presently solved by using 4-node tetrahedral finite elements.  

3.2.3 Definition of a Random Model 
We now introduce a random model involving the features characterized through the experiments. 

The model is, in part, parametrized by the angles defining the orientation of the fibers: these angles are 

sampled in accordance with the probability law inferred from the database. Regarding the definition of 

the diameters, three types of configuration are considered as follows: 

• in the first random model, the diameter is randomly sampled for each fiber, according to the 

Gamma law estimated from the data (see Fig. 3 for instance);  

• in the second model, the diameter is similarly sampled for each fiber, but the probability 

distribution corresponds to weighted diameters. 

• in the third type of configuration, the diameter is set equal to Dw, regardless of the fiber under 

consideration. 

Once the number of fibers has been determined, the sampling of the f iber diameter and length is 

performed iteratively to populate the RVE, using either a standard random generator (for labelled 



 

 

distributions) or the inverse transform method with empirical distributions (for the probability law 

involving weighted diameters). Similarly, the orientation angles are sampled according to their 

empirical distributions, and the center of the fibers is sampled according to a uniform distribution. 

Note that the fibers are allowed to intersect, since it does affect the prediction of t ransport properties. 

In order to ensure the periodicity of the medium, fibers exiting the RVE are forced to re -enter the 

domain from the opposite side. The number of fibers hence generated for each product  is about 100 to 

200. 

One realization of the random microstructure with fiber-dependent diameters and the associated 

FE mesh are shown in Fig. 7 for Product 2. The solution fields for one component of the velocity field 

and scaled concentration field are finally shown, for illustration purposes, in Fig.  8. Note that, visually, 

the fluid-flow paths are clearly more concentrated, and follow a more tortuous path, than do the heat 

diffusion field. 

 

FIG. 7. Meshed view of one realization of the random microstructure associated with Product 2. 

 
FIG. 8. Solution fields associated with the realization of the random microstructure shown in Fig. 7: velocity field x→v3(x) 

[μm/s] associated with the source term G(3) (left panel) and scaled concentration field x→u(x) [μm2] (right panel). 

3.2.4 Acoustic Properties 
The effective density ρeff (ω) and the effective bulk modulus Keff (ω) of the fluid phase can be 

evaluated by simple analytic admissible functions [10-13] as follows: 

ρeff  ω = ρ0α0  1 +
1

ω 
f ω    , (20) 

1

Keff  ω 
=

1

Ka
 γ −  γ − 1  1 +

1

jω ′
f ′ ω ′  

−1

  , (21) 

where ρ0 is the air density at rest, Ka  is the adiabatic bulk modulus of air and γ is its specific 

heat ratio. The quantities ω  and ω ′  are dimensionless viscous and thermal angular frequencies 

given by the following expressions: 

ω =
ω

ν

K33α∞

ϕ
 , (22) 

 ω ′ =
ω

ν′
k′

ϕ
 , (23) 

with ν’=ν/Pr, ν being the kinematic viscosity and Pr is the Prandtl number (≈0.71 for air). f ω   and   

f ′ ω ′  are shape functions defined by 



 

 

f ω  = 1 − P + P 1 +
M

2P2
jω  , (24) 

f′ ω ′ = 1 − P′ + P′ 1 +
M′

2P′2 jω ′ . (25) 

The quantities M, M’, P, and P' are referred to as dimensionless shape factors determined from 

M =
8K33α∞

Λ2ϕ
 , (26) 

 M′ =
8k′

Λ′2ϕ
 , (27) 

P =
M

4(
α033
α∞

− 1)
  , 

(28) 

P′ =
M′

4 α0
′ − 1 

  . (29) 

• For P=P'=1, the dynamic response functions reduce to a 6 parameters model (ϕ, K33, k', α∞, Λ, 

Λ'), known as the “Johnson-Champoux-Allard-Lafarge” (JCAL) or “Johnson-Lafarge” model 

[10,11,13]. 

• A complete model relies on 8 parameters (ϕ, K33, k', α∞, Λ, Λ', α033, α0'). This is the refined 

“Johnson-Champoux-Allard-Pride-Lafarge” (JCAPL) model  

 The ρeq(ω)=ρeff(ω)/ϕ and Keq(ω)=Keff(ω)/ϕ are the equivalent density and bulk modulus of the 

so-called rigid-frame equivalent-fluid medium. Assuming plane wave solutions varying as 

exp[j(ωt-qeq(ω)x], where qeq(ω) represents the wave number of the equivalent fluid medium, ρeq(ω) 

and Keq(ω) can be used to calculate the wave number and the characteristic impedance of the 

equivalent fluid medium with: 

qeq = ω 
ρeq  ω 

Keq  ω 
  , (30) 

Zeq = ω ρeq  ω Keq  ω  (31) 

The sound absorption coefficient at normal incidence of a porous material layer of thickness Ls 

backed by a rigid wall is evaluated by 

α = 1 −  
Zn − 1

Zn + 1
 

2

  , (32) 

with 

Zn = −j
Zeq

Z0
cot qeq Ls  . (33) 

the effective normal impedance on the free face of the excited material, where Z0 is the characteristic 

impedance of ambient air. Therefore, an estimation of the acoustic properties of fibrous media can be 

obtained on the basis of macroscopic parameters determined from the computational homogenization 

framework. 

3.3 Comparison with Experimental Results 

We present in Figs. 9 and 10 a comparison between the computational and experimental results 

for the transport parameters. We see that a quantitative appreciation of the stat ic viscous permeability 

K33 can be obtained from both the equivalent and the random model, when a weighting of the fiber 



 

 

diameters is applied (left panel of Fig. 9). On the other hand, a single random model is such that 

diameters distributed to a Gamma law without the weighting of the fiber  diameters corresponds to 

underestimated static viscous permeability. It is noteworthy that the difference between the static 

viscous permeabilities with diameters distributed according to a weighted Gamma law and with a 

constant diameter equal to Dw are insignificant. Therefore, when simulating weighted fiber diameters, 

a simple way to simplify the generation of the random model is to use a single constant diameter equal 

to Dw. Our results indicate that a weighting of the diameters in volume is required to  quantitatively 

model the static viscous permeability of a random fibrous media when the distributions of the 

parameters of the fibers are broad. What is the meaning of the weighting requirement in complex 

random fibrous webs? If the distributions of the parameters of the fibers are sharply peaked, the overall 

system behavior is similar to that of the individual elements. On the other hand, if the distributions of 

the parameters of the fibers are broad, the fibers with the largest relative volume with respect to length 

and diameter dominate. That means the permeability coefficient of the overall system is expressible by 

defining a domain Ω of typical characteristic length L where the fiber diameters are again taken to be 

weighted in volume. 

Our simulated values for the viscous characteristic length Λ were overestimated. For a random 

model with weighted diameters, the ratio between the simulated and characterized data is equal to 

4.16 ± 1.63 (Right panel of Fig. 9). The right panel of Fig. 9 also shows that the calculations 

corresponding to the second class of products (Class 2) characterized by a higher surface density are 

in better agreement with measurements (the ratio was 2.93 ± 0.68 for Class 2, and 5.38 ± 1.34 for 

Class 1). The left panel of Fig. 10 shows that, except for Product Reference 6, the characterized 

values of the thermal characteristic length Λ' obtained from the acoustical and granulomorphometry 

method differ significantly, this ratio was equal to 3.26 ± 1.05 for the ten analyzed products. One can 

see, however, that in a few cases the dispersion of measurements is such that the two different 

characterization techniques tend to provide values in better agreement (Product reference numbers 7 

and 10). Because we determined the thermal characteristic length of the models from the 

granulomorphometry analysis, the later values are typically the same as those reported in the direct 

geometrical characterization method: the thermal characteristic length variations between the models 

and the direct geometrical characterization are relatively small (CV = 0.14). The static thermal 

permeability k' with the random model including weighted diameters was presumably 

underestimated: the ratio between the experimental and simulated data was close to two (1.96 ± 0.57) 

with a weighted random model. Let us mention that because all the data corresponding to the 

tortuosity were very close to one, they were not shown here.  

It is clear from these results that the estimates of macroscopic properties based on the weighted 

random model are the most reliable. This is not surprising because the estimates are computed 

directly from transport parameters that are related to the three-dimensional micro-geometry of the 

fibrous structure. By contrast, the permeability based on the non-weighted model (□, black) does not 

readily distinguish between sharply peaked and broad distributions of the parameters of the fibers. 

The permeability K33 and the tortuosity α∞ incorporate visco-inertial information. Here the Λ 

parameter calculations follow the same trends as experimental data. It is seen from the right panel of 

Fig. 9 that the simulations are indeed an upper bound for the experimental estimate. Two additional  

     
FIG. 9. Left panel: graph of the static viscous permeability. Right panel: graph of the viscous characteristic length. Colors 

and symbols: experimental data (○, red); random model with diameters distributed to a Gamma law (□, black); random 

model with distribution corresponding to weighted diameters (∇, green); random model with a constant diameter (equal to 

Dw) (*, magenta). 



 

 

     

FIG. 10. Left panel: graph of the thermal characteristic length. Right panel: graph of the static thermal permeability. Colors and 

symbols: experimental data by characterization (○, red); experimental data with direct geometrical characterization performed 

using the granulomorphometer (●, red) (see Eq. 6); random model with diameters distributed to a Gamma law (□, black); 

random model with distribution corresponding to weighted diameters (∇, green); random model with a constant diameter 

(equal to Dw) (*, magenta). 

points are worth making in connection with Figs. 9 and 10. Firstly, all of these macroscopic 

parameters were determined without any adjusted parameters. Secondly, the models considered here 

all depend on the morphogranulometry excluding long fibers from the analysis.  Evidently, the 

weighting procedure implied by Eq. 17 substantially favors the smaller inter-fiber sizes. The number 

of fibers that was characterized is considerably smaller than that from the sample size in the 

experiments. As regards the overestimation of the smaller inter-fiber sizes, one can judge for oneself 

whether a ratio between the simulated and characterized data equals to 4.16 ± 1.63 corresponds to a 

half-full or half-empty glass. The same kind if remark can be drawn for the Λ' parameter, whose 

determination is very sensitive to ϕ since (1-ϕ) is very small at low densities. (Λ' ~ ϕE{D
2
}/[2(1-ϕ) 

E{D}] providing that the diameters and the lengths of fibers are independent.)  

In Fig. 11, we also compare the predicted and characterized sound absorption coefficients at 

normal incidence for the geometrical models studied here. The characterization uses the JCAL model, 

while the simulations results are deduced from the full JCAPL model. It is clear from these results 

that the experimental data are consistent with the weighted random model over the whole frequency 

range. It is interesting to see that the sound absorption of a glass wool can be predicted without 

adjustable parameters in the model for ten different products. Clearly, the difficulty in this 

multi-scale simulation process was the broad distribution of the parameters of the geometry.  

 

 
FIG. 11. Sound absorption coefficient (normal incidence). Top panel: Product 1 to 5 (from left to right). Bottom panel: Product 

6 to 10 (from left to right). Colors and symbols: measurements (gray zone); inverse characterization method (dash-dot line, 

red); random model with diameter distributed to a Gamma law (dashed line, black); random model with distribution 

corresponding to weighted diameters (thick line, green); random model with a constant diameter equals to Dw (dotted line, 

magenta). 

Finally, it should be noticed that the above (samplewise) comparison is meaningful if and only if 

the condition of scale separation reasonably holds for all products under consideration. Here, the 

fulfillment of this condition was numerically checked through numerical experiments. From a metho- 

dological standpoint, the estimation of the transport properties was first carried out on a limited set of 

realizations of the random microstructure (for a given product). Given the small number of virtual 

samples (which is typically equal to 10), the coefficients of variation associated with the predicted 

properties were subsequently estimated by using the maximum likelihood method with appropriate 



 

 

labeled distributions. The coefficient of variation is seen to be smaller or equal to 5%, hence validating 

the assumption about scale separation (which can only be satisfied approximately in simulations).  

4. CONCLUSIONS 

The recent approach has been to treat a polydisperse fibrous media as if it was equivalent to a 

monodisperse fiber media, i.e. by means of an average diameter of the corresponding distribution [25]. 

Here, the effective fiber diameter is derived from optical granulometry and is a weighted fiber volume 

diameter accounting for the relative length and diameter of each fiber. Fully stochastic microstructural 

models were subsequently introduced in a classical manner. It was shown that the weighted random 

models provide an excellent estimate of the permeability K33. The Λ parameter was probably the most 

difficult quantity to predict (and measure) accurately. Estimates of Λ were less reliable; their accuracy 

decreased with decreasing density. However, the sound absorption was accurately described for the 10 

different glass wools under study corresponding to various processing parameters. This makes this 

procedure a powerful probe of the sound absorbing properties of complex fibrous materials. Moreover, 

in our view interesting and complementary research topics for future research lie in the multiscale 

determination of the tensorial elastic properties and loss factor of complex random fibrous materials 

(such as glass wools and rock wools). 
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