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Detector’s quantum backaction effects on a mesoscopic
conductor and fluctuation-dissipation relation
Luca Magazzù1,2,3, Davide Valenti1, Bernardo Spagnolo1,2,4, Thierry Martin5,
Giuseppe Falci4,6,7, and Elisabetta Paladino4,6,7∗

When measuring quantum mechanical properties of
charge transport in mesoscopic conductors, backac-
tion effects occur. We consider a measurement setup
with an elementary quantum circuit, composed of an
inductance and a capacitor, as detector of the current
flowing in a nearby quantum point contact. A quantum
Langevin equation for the detector variable including
backaction effects is derived. Differences with the quan-
tum Langevin equation obtained in linear response are
pointed out. In this last case, a relation between fluc-
tuations and dissipation is obtained, provided that an
effective temperature of the quantum point contact is
defined.

1 Introduction

Probing a quantum system implies disturbing its state
according to the Heisenberg uncertainty principle. Mea-
surements on a mesoscopic system require quantum de-
tectors, and measurement-induced disturbances result in
quantum backaction. Research on quantum electronics
has progressed to the point where backaction effects, of-
ten near to the limit imposed by the uncertainty relations,
are of key relevance to experiments [1–5]. This is the case
of nanoelectromechanical systems where quantum elec-
tronic conductors have been used as position detection
of nanomechanical oscillators [6–11]. Analogous backac-
tion effects occur when measuring quantum mechanical
properties of charge transport in mesoscopic conductors.
In fact, to perform time-resolved detection of the quan-
tum mechanical current in a quantum transport process,
mesoscopic on-chip detectors are required. Some effects
of the detector backaction have been addressed already
in the literature [12–18] also in connection with qubit
measurements [19–29], a relevant issue for quantum net-
working [30–32]

In the present work we address the quantum backac-

tion effects of a mesoscopic detector on a prototype quan-
tum conductor, a quantum point contact (QPC) consisting
of two metallic leads driven out of equilibrium by a static
voltage bias which establishes a tunneling current [33–35].
We model the detector as a dissipative quantum LC cir-
cuit which is coupled inductively to the QPC [36–42]. In
this scheme, the detector is continuously weakly coupled
to the mesoscopic conductor. Measurement-induced dis-
turbances on the QPC affect the detector. These are the
focus of our work. We derive a Quantum Langevin Equa-
tion (QLE) for the charge on the capacitor’s plates, corre-
sponding to the x coordinate of the quantum oscillator,
accounting for backaction effects. The QLE, derived per-
turbatively in the LC-QPC coupling, presents non trivial
damping and frictional terms in addition to the traditional
ones entering the QLE of a dissipative quantum harmonic
oscillator [43, 44]. We compare this equation with the QLE
for our dissipative detector coupled to the QPC obtained
in linear response. In this case the QPC’s force noise is not
related to the QPC damping kernel via the temperature,
as it would be for an equilibrium system [43, 45, 46], [47,
and references therein]. However, similarly to other analy-
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V

Figure 1 Scheme of the LC oscillator (upper part) coupled to
the quantum point contact with external bias eV = µL −µR

(lower part). The dashed box indicate the dissipative environ-
ment in which the oscillator is embedded.

ses [15, 48–50], we find that, in linear response, for each
given frequency, an effective temperature can be defined.
In the present work, the measured system is a non-linear
and non-equilibrium system. This places our work in the
intriguing and timely research field investigating connec-
tions among quantum measurements, fluctuations theo-
rems and non-equilibrium systems [51–57].

The paper is organized as follows. In the next section
we introduce the model. The full Hamiltonian consists
of three parts, namely the dissipative resonant circuit
described by the Caldeira-Leggett model, the QPC part
and the inductive QPC-detector coupling. In Sec. 3 the
Heisenberg equation for the QPC current including back-
action contributions is solved and the full QLE is derived.
Within linear response theory, we derive a QLE analogous
to that found for a classical variable whose average is the
expectation value of the operator x [15, 49]. In Sec. 4, a
fluctuation-dissipation relation for our system, in linear
response regime, is derived provided that an effective tem-
perature related to the QPC is introduced. Finally, in Sec. 5
we draw conclusions.

2 Model

The Hamiltonian of our measurement setting is the sum
of the dissipative LC circuit term, the QPC term, and the
LC-QPC interaction term

H = HLC +HQPC +Hint. (1)

The dissipative LC circuit is modeled by a quantum har-
monic oscillator of position and momentum operators x
and p, respectively, where x is the charge in the capacitor
of the LC circuit. The oscillator is linearly interacting with
a dissipative environment at finite temperature, which
is modeled as a thermal reservoir, or heat bath, of N in-
dependent quantum harmonic oscillators of coordinates
x j and momenta p j . The coupling with the heat bath is
not constrained to be small and, to keep the discussion as
general as possible, we do not specify a particular spectral
density for the oscillators in what follows [44, 58, 59]. The
corresponding Hamiltonian is the celebrated Caldeira-
Leggett model [60]

HLC = p2

2M
+ 1

2
Dx2 + 1

2

∑
j

[
p2

j

m j
+m jω

2
j

(
x j −

g j

m jω
2
j

x

)2]
.

(2)

Identifying the bare oscillator mass M with the induc-
tance L, and the coefficient D with the inverse of the ca-
pacitance C yields the resonance frequency of the LC cir-
cuitΩ=p

1/LC =p
D/M .

The second term in Hamiltonian (1) is the QPC part

HQPC = ∑
r∈R

Er c†
r cr +

∑
l∈L

El c†
l cl +ħ∑

r,l
∆r,l

(
c†

l cr + c†
r cl

)
. (3)

This Hamiltonian has free left (L) and right (R) lead parts
plus a tunneling term with energy-dependent tunneling
frequencies∆r l . Creation and annihilation operators obey
Fermi anticommutation relations.

Finally, the inductive LC-QPC interaction in Hamilto-
nian (1) couples the oscillator coordinate x with the
derivative of the QPC current [36, 40]

Hint =αxİ , (4)

where α is the inductive coupling strength, with dimen-
sion e−2ω−1ħ [36, 40].

In what follows we assume that the heat bath is ini-
tially in the canonical thermal state at temperature Tosc

and then the coupling with the LC oscillator is turned
on. Similarly, we assume for the leads an initial canonical
thermal state with temperature T . At t = t0 the coupling
α is switched on and a voltage bias V , which keeps left
and right leads at chemical potentials µL and µR , with
eV =µL −µR > 0, is applied (see Fig. 1).
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3 Quantum Langevin equation for the LC
circuit coupled to the QPC

In order to take into account backaction effects we derive
an equation for the quantum mechanical evolution of the
whole system formed by the detector and the measured
mesoscopic conductor. An analogous point of view has
been taken to address the dynamics of the measurement
process in quantum dot systems [61, 62]. The quantum
Langevin equation for the LC circuit is derived from the
second time derivative for the x operator whose evolution
is induced by the full Hamiltonian (1). The Heisenberg
equation for x is

ẋ = i

ħ [H , x] = p

M
. (5)

By replacing this equation into ẍ = i
ħ [H , ẋ] , we get

M ẍ =−Dx+∑
j

g j

(
x j −

g j

m jω
2
j

x

)
+ i

ħα
(
x[İ , p]+ iħİ

)
. (6)

Further, by replacing the solution of the Heisenberg equa-
tions for the coordinates x j of the bath oscillators into
Eq. (6) the quantum Langevin equation for the coordinate
of the oscillator coupled to the QPC is obtained (t0 = 0)

M ẍ +M
∫ t

0
d t ′γ(t − t ′)ẋ(t ′)+Dx − i

ħα
(
x[İ , p]+ iħİ

)
= ξ(t ),

(7)

where the friction memory kernel reads [44]

γ(t ) =Θ(t )
1

M

∑
j

g 2
j

m jω
2
j

cos(ω j t ). (8)

The bath force operator is given by

ξ(t ) = ∑
j

g j

[
x j (0)cos(ω j t )+ p j (0)

m jω j
sin(ω j t )

]
−Mγ(t )x(0). (9)

Note that the presence of the slippage term, dependent on
the initial position of the oscillator, is an artifact due to the
choice of a factorized initial condition with the harmonic
bath in the thermal equilibrium state. Upon choosing a
shifted thermal bath described by the density matrix

ρB = 1

Z
exp

{
−βosc

∑
j

[
p2

j

2m j
+

m jω
2
j

2

(
x j −

g j

m jω
2
j

x(0)

)2]}
,

(10)

the bath force operator satisfies 〈ξ(t )〉 = 0 [43, 44].

Eq. (7) is the starting point of our analysis. In the fol-
lowing we will derive the QPC current derivative operator,
including the backaction effect of the meter (LC circuit)
on the measured system (QPC).

3.1 Evaluation of the QPC current

The dynamics of the detector, described by the degree
of freedom x, depends on the variables of the system to
be measured, İ . Here we derive the current operator I
and, via its Heisenberg equation, İ . We will distinguish
terms describing the current flowing in the QPC in the
absence of any coupling with the detector from terms due
to backaction effects of the detector on the QPC.

The current I flowing from the left to the right lead of
the QPC is given by

I = i

ħ [HQPC +Hint,QR ]

≡I0 + Iba ,

(11)

where QR = e
∑

r∈R c†
r cr is the charge on the right lead.

Note that I is the sum of two terms: The first is the cur-
rent which would flow in the QPC in the absence of the
detector

I0 =
∑
r,l

i e∆r l

(
c†

l cr − c†
r cl

)
≡∑

r,l
I0,r l , (12)

and the second is the backaction current

Iba =αxIba , where Iba = i

ħ [İ ,QR ]. (13)

From Eq. (11) the time derivative of the current operator
reads İ = İ0 + İba , where

İ0 = i

ħ [HQPC, I0]+ i

ħ [Hint, I0] ≡ İ (0)
0 +δİ0 , (14)

and

İba = i

ħ [HQPC +HLC,αxIba]+ i

ħ [Hint,αxIba]. (15)

Note that, whereas I0 is of order zero in α, its time deriva-
tive İ0 is the sum of the operators İ (0)

0 (of order zero in α)
and δİ0 which includes higher orders in α (see Eq. (14)).
In other words, the variation in time of the unperturbed
current in the QPC depends on the detector’s variables.
Both terms, İba and δİ0, represent the backaction effect
in the current derivative. We keep these terms separate for
comparison with the linear response regime addressed in
Section 4.

Copyright line will be provided by the publisher 3
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Up to now everything is exact. To leading order in α

the QPC current is given by

I ≈ I0 +αxI (0)
ba , (16)

where I (0)
ba = i [İ (0)

0 ,QR ]/ħ (see Eq. (13)). The leading order
backaction effect in Eq. (7) is obtained by approximating
İ up to linear order in α. We find

İ ≈ İ (0)
0 +αx

(
İ0 + İ (0)

ba

)
+αẋI (0)

ba , (17)

where we approximatedδİ0 ≈αxİ0, with İ0 ≡ i [İ (0)
0 , I0]/ħ.

The terms appearing in Eq. (17) take, in the tunneling limit
(second order in ∆) [33], the following form

İ (0)
0 = e

∑
r,l
∆r lωr l

(
c†

l cr + c†
r cl

)
+ 2e

∑
r,l ,l ′

∆r l∆r l ′c
†
l cl ′ −2e

∑
r,r ′,l

∆r l∆r ′l c†
r cr ′ (18)

İ0 = e2

ħ
∑
r,l
∆r l

[∑
l ′
ωr l ′∆r l ′

(
c†

l cl ′ + c†
l ′cl

)

−∑
r ′
ωr ′l∆r ′l

(
c†

r cr ′ + c†
r ′cr

)]
(19)

I (0)
ba = i

ħe2
∑
r,l
∆r lωr l

(
c†

l cr − c†
r cl

)
= e

ħ
∑
r l
ωr l I0,r l (20)

İ (0)
ba = e2

ħ
∑
r,l
∆r lω

2
r l

(
c†

l cr + c†
r cl

)
+ İ0 , (21)

where ωλ ≡ Eλ/ħ with λ = l ,r , ωr l ≡ ωr −ωl , and I0,r l is
given by Eq. (12). We remark that, for energy independent
tunneling amplitudes ∆r l ≡ ∆, and assuming the leads
at equal temperatures, the second order approximation
is meaningful only in the presence of an applied bias,
µL 6=µR . This is signalled by the vanishing of the thermal
averages of Eqs. (18) - (21) under the above conditions
and V = 0.
To obtain the explicit solution for İ (t) we take the time
derivative of Eq. (17). We find for each r l component (İ =∑

r l İr l )

Ïr l = Ï (0)
0,r l+αxÏ (0)

ba,r l+αẋ
(
İ0,r l +2İ (0)

ba,r l

)
+αẍI (0)

ba,r l , (22)

where we considered that the first non vanishing term in
Ï0 is O(∆3). The same happens with the last two terms of
the expression for İ (0)

0 in Eq. (18). By taking this fact into

account and calculating the time derivatives of İ (0)
0 and

İ (0)
ba,r l via the Heisenberg equations we find

Ï (0)
0,r l +αxÏ (0)

ba,r l ≈−ω2
r l (I (0)

0,r l +αxI (0)
ba,r l ) ≈−ω2

r l Ir l (23)

where in the last equality we used Eq. (16). Thus Eq. (22)
can be cast in the form

Ïr l =−ω2
r l Ir l +αẋ

(
İ0,r l +2İ (0)

ba,r l

)
+αẍI (0)

ba,r l , (24)

which is readily solved by Laplace transform to give the r l
component of the QPC current

Ir l (t ) = Ir l (0)cos(ωr l t )+ 1

ωr l
İr l (0)sin(ωr l t )

+ α

ωr l

∫ t

0
d t ′ẋ(t ′)

(
İ0,r l +2İ (0)

ba,r l

)
(t ′)sin[ωr l (t − t ′)]

+ α

ωr l

∫ t

0
d t ′ẍ(t ′)I (0)

ba,r l (t ′)sin[ωr l (t − t ′)]. (25)

3.2 Quantum Langevin equation including the QPC
backaction current

Taking the derivative of Eq. (25) with respect to t , we ob-
tain the r l component of the operator İ appearing in the
QLE (7) (t > 0)

İr l (t ) =−ωr l Ir l (0)sin(ωr l t )+ İr l (0)cos(ωr l t )

+ α

∫ t

0
d t ′ẋ(t ′)

(
İ0,r l (t ′)+2İ (0)

ba,r l (t ′)
)

cos[ωr l (t − t ′)]

+ α

∫ t

0
d t ′ẍ(t ′)I (0)

ba,r l (t ′)cos[ωr l (t − t ′)]. (26)

This solution, summed over r and l , can be replaced in
Eq. (7). By integrating by parts the last term in (26), the
QLE in the full Hilbert space, including backaction, takes
on the final form (t > 0)

M ẍ(t )+M
∫ t

0
d t ′γ(t − t ′)ẋ(t ′)+Dx(t )

− α2x(t )
∫ t

0
d t ′

∑
r l

Xr l (t , t ′)cos[ωr l (t − t ′)]

+ α2
∫ t

0
d t ′ẋ(t ′)

∑
r l

{(
İ0,r l (t ′)+ İ (0)

ba,r l (t ′)
)

cos[ωr l (t − t ′)]

− I (0)
ba,r l (t ′)ωr l sin[ωr l (t − t ′)]

}
+α2ẋ(t )I (0)

ba (t )

= ξ(t )+α∑
r l

(
Ir l (0)ωr l sin(ωr l t )− İr l (0)cos(ωr l t )

)
+ α2ẋ(0)

∑
r l

I (0)
ba,r l (0)cos(ωr l t ). (27)

The operators Xr l in Eq. (27) act in the full QPC-LC detec-
tor Hilbert space and read

Xr l (t , t ′) ≡ i

ħ [ẋ(t ′), p(t )]
(
İ0,r l (t ′)+2İ (0)

ba,r l (t ′)
)

+ i

ħ [ẍ(t ′), p(t )]I (0)
ba,r l (t ′).

(28)
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Taking the average with respect to the factorized ther-
mal state of the leads, which for lead Λ = R,L reads
e−β(HΛ−µΛNΛ)/ZΛ (where ZΛ = TrΛ{e−β(HΛ−µΛNΛ)},HΛ =∑
λ∈ΛEλc†

λ
cλ, NΛ = ∑

λ∈Λ c†
λ

cλ), from Eq. (27) we get the
following QLE in the Hilbert space of the dissipative oscil-
lator (t > 0)

M ẍ(t )+M
∫ t

0
d t ′γ(t − t ′)ẋ(t ′)+Dx(t )

− α2x(t )
∫ t

0
d t ′

∑
r l
〈Xr l (t , t ′)〉cos[ωr l (t − t ′)]

+ α2
∫ t

0
d t ′ẋ(t ′)

∑
r l

{
〈İ0,r l (t ′)+ İ (0)

ba,r l (t ′)〉cos[ωr l (t − t ′)]

− 〈I (0)
ba,r l (t ′)〉ωr l sin[ωr l (t − t ′)]

}
+α2ẋ(t )〈I (0)

ba (t )〉

= ξ(t )+α∑
r l
〈Ir l (0)ωr l sin(ωr l t )− İr l (0)cos(ωr l t )〉 , (29)

where we considered that 〈I (0)
ba,r l (0)〉 = 0 (see Appendix

A). Eq. (29) is the central result of this work. The detec-
tor, considered as an open quantum system in contact
with a heat bath including backaction effects on the mea-
sured system, obeys a generalized QLE. It is a non-linear
equation due to the presence of detector’s variables enter-
ing 〈Xr l (t , t ′)〉, in the second line of Eq. (29). We interpret
terms in the third and fourth lines as a QPC contribution
to the friction memory kernel. In the second member of
Eq. (29) we find a stochastic force contribution from the
QPC.

3.3 Quantum Langevin Equation in linear response

In this section we derive the Quantum Langevin equation
for the LC detector in linear response regime. To this end
we identify İ in the interaction Hamiltonian Eq.(4) with
the unperturbed current in the QPC, İ (0)

0 , that is

Hint ≈αxİ (0)
0 . (30)

Under these conditions, the effect on the meter of the
current flowing in the QPC can be obtained following the
same procedure used to solve the Heisenberg equations
for the harmonic oscillators, namely by solving

...
I (0)

0,r l =−ω2
r l İ (0)

0,r l −ω2
r lαxİ0,r l . (31)

Its solution is formally similar to that for a heath bath
oscillator driven by the coordinate of the particle, namely

İ (0)
0,r l (t ) =−ωr l I0,r l (0)sin(ωr l t )+ İ (0)

0,r l (0)cos(ωr l t )

+α
∫ t

0
d t ′ẋ(t ′)İ0,r l (t ′)cos[ωr l (t − t ′)]

−αx(t )İ0,r l (t )+αx(0)İ0,r l (0)cos(ωr l t ) ,

(32)

where we disregarded terms from the derivative of İ0,
to order ∆2 (see Appendix B for an outline of the deriva-
tion). Inserting this solution into Eq. (7) and taking the
average with respect to the thermal state of the QPC, we
end up with the following QLE in the Hilbert space of the
dissipative oscillator

M ẍ(t ) + M
∫ t

0
d t ′γ(t − t ′)ẋ(t ′)+ (

D −DQPC −〈D(t )〉)x(t )

+ α2
∫ t

0
d t ′ẋ(t ′)

∑
r l
〈İ0,r l (t ′)〉cos[ωr l (t − t ′)] (33)

= ξ(t )+〈ξQPC(t )〉−α2x(0)
∑
r l
〈İ0,r l (0)〉cos(ωr l t ) .

Here DQPC describes a renormalization of the LC potential.
In fact, by including time dependent terms to order ∆2 in
Eq.(19) (see Appendix A), it follows that

DQPC ≡ 2α2
∑
r l
〈İ0,r l (t )〉

= α2 4e2

ħ
∑
r l
∆2

r lωr l
[

fL(ωl )− fR (ωr )
]

, (34)

where fΛ(ω) = {exp[β(ħω−µΛ)]+1}−1 is the Fermi func-
tion for the Λ-lead. Also in this case the QLE is of non-
linear form due to the additional contribution

D(t ) =α2 i

ħ
{

[x(0), p(t )]
∑
r l

İ0,r l (0)cos(ωr l t )

+
∫ t

0
d t ′[ẋ(t ′), p(t )]

∑
r l

İ0,r l (t ′)cos[ωr l (t − t ′)]
}

. (35)

On the other side, because of the mentioned time inde-
pendence of 〈İ0,r l (t )〉used in Eq.(34), the dissipative term
in Eq. (33) is convolutive and allows to cast the QLE in lin-
ear response in the form

M ẍ(t )+M
∫ t

0
d t ′γ(t − t ′)ẋ(t ′)

+ (
D −DQPC −〈D(t )〉)x(t )+M

∫ t

0
d t ′γQPC(t − t ′)ẋ(t ′)

= ξ(t )+〈ξQPC(t )〉−MγQPC(t )x(0) (36)

Copyright line will be provided by the publisher 5
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where the QPC memory damping kernel γQPC(t ) is given
by

γQPC(t ) ≡ α2

M
Θ(t )

∑
r l
〈İ0,r l (0)〉cos(ωr l t )

= α2 2e2

MħΘ(t )
∑
r l
∆2

r lωr l
[

fL(ωl )− fR (ωr )
]

cos(ωr l t ) (37)

and the stochastic force ξQPC(t ) by

ξQPC(t ) ≡
α

∑
r l

(
ωr l I0,r l (0)sin(ωr l t )− İ (0)

0,r l (0)cos(ωr l t )
)

. (38)

Notice that this stochastic force contribution is the same
as the one entering the QLE (29). Therefore it is not related
to backaction effects. On passing, we observe that the
slippage term dependent on x(0) of the RHS of Eq. (36) is
analogous to that of Eq. (9).

4 Fluctuation-dissipation relation and
effective temperature

The QLE (36) for the detector in linear response includes,
in addition to the damping and fluctuating force due to
the equilibrium bath of harmonic oscillators, analogous
contributions due the QPC, similarly to [15, 49]. Consid-
ering that 〈ξ(t)〉 = 0, the correlation function of the full
force ξ(t)+ ξQPC(t) has no cross terms of mixed origin
(heat bath and QPC). Since the QPC is a non-equilibrium
system, we cannot expect that the spectrum of the QPC
stochastic force and the corresponding dissipative term
are related by the standard equilibrium relation holding
for the thermal bath

S̄ξ(ω) =ħωcoth

( ħω
2KB T

)
γ̃′ξ(ω) , (39)

where S̄ξ(ω) is the symmetrized quantum noise spectral
density of ξ(t). Neverthless, an indication of the asym-
metry of the QPC’s quantum noise can be obtained by
defining, for any given frequency, an effective tempera-
ture [15, 49], Teff(ω), via the relation

S̄ξQPC (ω) = Mħωcoth

( ħω
2KB Teff(ω)

)
γ̃′QPC(ω) . (40)

The QPC damping kernel in the continuum limit reads

γQPC(t ) = Θ(t )
2α2

Mħe2
∫

dω′
∫

dω′′ω′′ρL(ω′)ρR (ω′+ω′′)

×∆2(ω′′)
[

fL(ω′)− fR (ω′+ω′′)
]

cos(ω′′t ) . (41)

The real part of the Fourier transform of γQPC(t ) is

γ̃′QPC (ω) =πω α2

Mħe2∆2(ω)
∫

dω′ρL(ω′)

×
{[
ρR (ω′−ω) fR (ω′−ω)−ρR (ω′+ω) fR (ω′+ω)

]
+ fL(ω′)

[
ρR (ω′+ω)−ρR (ω′−ω)

]}
. (42)

In the above expressions ∆(ω) is the continuum limit of
∆r l , and ρΛ(ω) denotes the density of states in the lead
Λ. By using the expression for the QPC force operator
given in Eq. (38), we can calculate the symmetrised noise
spectrum of the QPC force operator S̄ξQPC (ω)

S̄ξQPC (ω) =
∫ +∞

−∞
d t〈ξQPC(t )ξQPC(0)〉cos(ωt )

=ω2πα2e2∆2(ω)
∫

dω′ρL(ω′)

×
{
ρR (ω′−ω)

[
fL(ω′)

(
1− fR (ω′−ω)

)
+ fR (ω′−ω)

(
1− fL(ω′)

)]
+ρR (ω′+ω)

[
fL(ω′)

(
1− fR (ω′+ω)

)
+ fR (ω′+ω)

(
1− fL(ω′)

)]}
,

(43)

where we neglected the squared average of the operator
İ (0)

0 , which is of order ∆4.
In the limit T → 0, assuming a constant density of states
ρΛ = Γ around ω< (µL −µR )/ħ, Eq. (43) yields

S̄ξQPC (ω) ≈ 2πω2α2∆2(ω)Γ2(µL −µR )/ħ. (44)

Under the same conditions, the real part of the damping
kernel in Fourier space reads

γ̃′QPC(ω) ≈ 2π

Mħω
2e2α2∆2(ω)Γ2. (45)

The effective temperature Teff(ω), resulting of the non-
equilibrium fluctuations that arise during the evolution
of the entire system follows from Eq. (40) and is given by

coth

( ħω
2KB Teff(ω)

)
≈ µL −µR

ħω . (46)

The frequency dependence of the effective temperature
resulting from Eq. (46) is reported in Fig. 2. Under station-
ary conditions, ω→ 0, Teff(ω) reduces to

Teff(ω→ 0) ≈ µL −µR

2kB
. (47)

Analogously to single electron transistor and tunnel junc-
tion detectors [48,63,64], the effective temperature at zero

6 Copyright line will be provided by the publisher
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frequency is proportional to the applied source-drain volt-
age drop V , that is KB Teff ≈ eV . Physically, the finite effec-
tive temperature entering the QLE is a result of different
excitation and relaxation rates of the oscillator caused
by the shot noise in the QPC when the leads are at zero
temperature. For a tunnel junction it has been shown [48]
that the effective oscillator temperature is responsible for
a quadratic term in the I-V characteristic. An analogous
back-action effect can be expected in our case, but it is
beyond the scope of the present paper.

In concluding this section we note that, by consider-

 0

 0.5

 0  0.5  1

k B
 T

ef
f/(
µ

L-
µ

R)

 ! ω/(µL-µR)

Figure 2 Behavior of the effective temperature defined by
Eq. (46) for small frequencies ω< (µL −µR )/ħ. It is a result of
different excitation and relaxation rates of the oscillator caused
by the shot noise in the QPC for zero temperature of the leads.

ing the full QLE (29) with backaction terms, additional
contributions to the memory kernel are involved which
display nontrivial time dependencies, while the QPC force
operator is left untouched. Therefore, an analogous effec-
tive temperature can not be defined when considering
backaction effects in our non-equilibrium and non-linear
system.

5 Conclusions

In the present work we addressed the quantum back-
action effects of a mesoscopic detector on the tunnel-
ing current in a QPC, a prototype quantum conductor.
The detector has been modelled as a dissipative quan-
tum LC circuit inductively coupled to the QPC as in
Refs. [36, 40]. In those articles no backaction effect was
included, whereas dissipation in the resonant circuit mea-
suring finite-frequancy curren moments was the subject

of Ref. [40]. Measurement-induced disturbances on the
QPC are originated by the continuos and weak meter-QPC
coupling and we found that they enter both the backac-
tion current and its derivative. These backaction effects,
treated in lowest order in the coupling strength, enter
the non-linear QLE for the dissipative resonator, Eq.(29),
which is the main result of this work. Backaction gives rise
to non-trivial damping and frictional terms in the QLE. We
also derived the QLE in linear response. In this case, the
QPC’s force noise can be related to the damping kernel
by a frequency-dependent effective temperature. Inter-
estingly, the same QPC stochastic force enters the QLE
in linear response and QLE including backaction effects.
However, due to the more involved damping contribu-
tions originated by backaction, the stochastic force noise
and damping kernel can not be related via a similar re-
lation. A further step of our work, currently in progress,
consists in evalating the role of measurement induced
disturbances (backaction) on measurable quantities, like
the second current cumulant both under stationary con-
ditions and at finite frequencies, extending the analysis of
Ref. [40].
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A Time evolution of the QPC operators

The Heisenberg equation for the QPC operator cl , to zero
order in α, is

ċl =− iωl cl − i
∑
r ′
∆r ′l cr ′ . (48)

Eq. (48) has solution

cl (t ) = cl (0)e−iωl t − i
∑
r ′
∆r ′l

∫ t

0
d t ′e−iωl (t−t ′)cr ′(t ′)

' cl (0)e−iωl t − i
∑
r ′
∆r ′l cr ′(0)

∫ t

0
d t ′e−iωl (t−t ′)e−iωr ′ t ′ ,(49)

where, in passing to the second line, we replaced the simi-
lar solution for cr (t ) taken to zero order in ∆.

By substituting Eq. (49) and the analogous expression
for cr (t ) (and their Hermitian conjugates) into Eq. (20) we

Copyright line will be provided by the publisher 7
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get, to order ∆2,

I (0)
ba (t ) = i

ħe2
∑
r l
∆r lωr l

{
c†

l (0)cr (0)e−iωr l t −h.c.

− ∑
l ′( 6=r )

∆r l ′

[
c†

l (0)cl ′(0)
e−iωl ′l t −e−iωr l t

ωr l ′
−h.c.

]

+ ∑
r ′( 6=l )

∆r ′l

[
c†

r ′(0)cr (0)
e−iωr r ′ t −e−iωr l t

ωr ′l
−h.c.

]}
. (50)

Similarly, by replacing the solutions for c†(t),c(t) into
Eq. (21), the time derivative of the operator I (0)

ba , to or-

der ∆2, reads

İ (0)
ba (t ) = e2

ħ
∑
r l
∆r lω

2
r l

{
c†

l (0)cr (0)e−iωr l t +h.c.

− ∑
l ′( 6=r )

∆r l ′

[
c†

l (0)cl ′(0)
e−iωl ′l t −e−iωr l t

ωr l ′
+h.c.

]

+ ∑
r ′( 6=l )

∆r ′l

[
c†

r ′(0)cr (0)
e−iωr r ′ t −e−iωr l t

ωr ′l
+h.c.

]}

+e2

ħ
∑
r,l
∆r lωr l

{∑
l ′
∆r l ′

[
c†

l (0)cl ′(0)e−iωl ′l t +h.c.
]

−∑
r ′
∆r ′l

[
c†

r (0)cr ′(0)e−iωr r ′ t +h.c.
]}

. (51)

The average value with respect to the equilibrium QPC
thermal state selects the terms with l ′ = l and r ′ = r in
Eq. (51). As a result we have

〈İ (0)
ba (t )〉 = 2

ħe2
∑
r l
∆2

r lωr l
[

fL(ωl )− fR (ωr )
]

cos(ωr l t )

=∑
r l
〈İ0,r l (t )〉cos(ωr l t ),

(52)

where, in passing to the second line we used the explicit
expression for İ0 given in Eq. (19). Note that, up to second
order in ∆, this average value is constant in time. This is
easily seen by replacing in Eq. (19) the solutions for the
QPC creation and annihilation operators to zero order in
∆ given by Eq. (49).

B Time derivative of the QPC current in
linear response

Here we outline the derivation of Eq. (32), namely the
solution for the time derivative of the current operator in
linear response. Eq. (31) is obtained by taking twice the
time time derivative of İ (0)

0,r l , the r l component of Eq. (18).

This is done by means of the Heisenberg equation Ȧ =

i /ħ[HQPC + Hint, A], where the interaction Hamiltonian

features İ (0)
0 itself (see Eq. (30)). We get

Ï (0)
0,r l = i e∆r,l (−ω2

r l )
(
c†

l cr − c†
r cl

)
. (53)

The time derivative
...
I (0)

0,r l of the above operator is obtained

via the commutator i /ħ[HQPC + Hint, Ï (0)
0,r l ] which yields

Eq. (31). This equation can be formally solved, for example
by Laplace transform, and has solution

İ (0)
0,r l (t ) =

Ï (0)
0,r l (0)

ωr l
sin(ωr l t )+ İ (0)

0,r l (0)cos(ωr l t )

−αωr l

∫ t

0
d t ′x(t ′)İ0,r l (t ′)sin[ωr l (t − t ′)].

(54)

Now, by comparing Eq. (53) with Eq. (12) one finds the
relation Ï (0)

0,r l (0)/ωr l =−ωr l I0,r l (0). Using this relation for
the first term (RHS) of Eq. (53), integrating by parts the
third term (RHS), and neglecting the time derivative of
İ0,r l , Eq. (54) can be cast in the form of Eq. (32).

Key words. Quantum backaction, mesoscopic conductor,
quantum Langevin equation, fluctuation-dissipation relation.
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