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Summary
The ability of air-saturated fibrous media to mitigate sound waves is controlled by their transport properties that
are themselves controlled by the geometrical characteristics of their microstructure such as the open porosity, fiber
radius, and fiber orientation. Here, micro-macro relationships are proposed to link these microstructural features
to the macroscopic transport properties of random fiber structures. These transport properties are the tortuosity,
the viscous and thermal static permeabilities, and the viscous and thermal characteristic lengths. First, represen-
tative elementary volumes (REVs) of random fiber structures are generated for different triplets of porosity, fiber
radius and fiber orientation. The fibers are allowed to overlap and are motionless (rigid-frame assumption). The
fiber orientation is derived from a second order orientation tensor. Second, the transport equations are numer-
ically solved on the REVs which are seen as periodic unit cells. These solutions yield the transport properties
governing the sound propagation and dissipation in the respective fibrous media. From these solutions, micro-
macro relationships are derived to estimate the transport properties when the geometry of the fiber structure is
known. Finally, these relationships are used to study the influence of the microstructural features on the acoustic
properties of random fiber structures.

© 2017 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).

PACS no. 43.50.Gf, 43.55.Ev, 43.20.Hq

1. Introduction

The ability to tune the porosity, the fiber radius, and the
fiber orientation of fiber structures make them attractive
materials for sound absorption-based applications. These
three geometrical characteristics affect the transport prop-
erties that govern the visco-inertial and thermal losses of
sound waves in fiber structures. These transport properties
are the tortuosity, the viscous and thermal static permeabil-
ities, and the viscous and thermal characteristic lengths.
Consequently, it is important to understand how the geo-
metrical characteristics influence the anisotropic transport
properties of random fiber structures.

In sound absorbing fibrous media, visco-thermal dissi-
pation phenomena are mainly determined by permeabil-
ity/resistivity of the porous sample, which gives rise to em-
pirical models with versatile applications [1, 2]. As a gen-
eral rule, the low frequency limit (ω → 0) of the dynamic
viscous permeability k(ω) of the fibrous sample always
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decreases with the increase of average angle θ between
the fiber axis and the sound wave propagation direction
[3, 4]. This microstructural effect results in a lower mean
velocity

�−→v � in a viscous fluid flow solution of the Stokes
equations,

φ
�−→v � =

k(ω)
η

−→∇p, (1)

where φ is the open porosity, η is the dynamic viscosity
of the saturating fluid and

−→∇p is a macroscopic pressure
gradient acting as a source term in the generalized Darcy
law. The low frequency limit of the dynamic viscous per-
meability is called the static viscous permeability k0. It is
linked to the static airflow resistivity as σ = η/k0, which
is usually used in the acoustic literature [1]–[4].

At high frequencies (ω → ∞), the imaginary part of
k(ω) dominates and the real distance traveled by the wave
between two points is the rectilinear distance between
them multiplied by

√
α∞ because of the tortuosity α∞ of

the path [5]. The tortuosity is directly measurable from
conductivity experiments or simulations [6]. This fact was

1050
© 2017 The Author(s). Published by S. Hirzel Verlag · EAA.
This is an open access article under the terms of the CC BY 4.0 license.



Luu et al.: Properties of random fiber structures ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 103 (2017)

first pointed out by Rayleigh [7] and Brown [6]. The tor-
tuosity also decreases with the average angle reduction
(α∞ ≥ 1 → 1, when θ → 0) and with the porosity in-
crease (α∞ ≥ 1 → 1, when φ → 1). The variation of
Re[k(ω)] arises from a combination of the inertial effect
plus a dependence of the viscous boundary layer thickness
δv =

�
2η/ρ0ω, ρ0 being the density of the fluid at rest. At

high frequencies, the real part of k(ω) is given by

lim
ω→∞

Re
�
k(ω)

�
=

φ

2Λα∞
δ3
v , (2)

where Λ is the viscous characteristic length. The Λ param-
eter and its significance as a weighted measure of the pore
volume-to-surface ratio was first emphasized by Johnson
et al. [8, 9].

Diffusion controlled reactions can be simulated in mi-
crostructural models to provide estimates of the trapping
constant Γ, or the so-called static thermal permeability
k

�
0 = 1/Γ (k

�
0 k0) [10], which represents the low fre-

quency limit of the thermal response function,

φ�τ� = k
�
(ω)
κ

∂ �p�
∂t

, (3)

where �τ� is the macroscopic excess temperature in fluid
phase, k

�
(ω) is the dynamic thermal permeability, �p� is

the macroscopic pressure and κ is the thermal conduction
coefficient.

Johnson et al. [9] and Lafarge et al. [10] showed that
k(ω) and k

�
(ω) can be adequately described by approxi-

mate but robust semi-phenomenological models based on
more readily measurable physical properties (φ, α∞, Λ,
Λ

�
, k0, k

�
0). Here, Λ

�
denotes the generalized hydraulic

radius also known as the thermal characteristic length in
the context of sound absorbing materials [11]. The results
of Zhou and Sheng [5], on the universality properties of
the dynamic permeability k(ω), suggest that the acoustic
properties of fibrous media can be deduced from a lim-
ited amount of geometrical characteristics (fiber informa-
tion orientation Ωzz, fiber radius rf , porosity φ, hydraulic
radius Λ

�
) and resulting transport information (static vis-

cous permeability k0, tortuosity α∞, viscous characteristic
leng th Λ, static thermal permeability k

�
0).

The use of even-order tensors was introduced by Advani
and Tucker to describe the probability distribution func-
tion of fiber orientation in fiber materials [12]. The ver-
satile modelling capability of tensors makes them appro-
priate to elucidate the effect of angular orientation on the
sound propagation and dissipation mechanisms; this will
be shown in this paper.

A thorough review of the literature was conducted by
Tomadakis and Robertson [13] who compared many ex-
perimental and theoretical studies on the viscous perme-
ability of various types of fiber structures. The data from
these studies were presented in terms of dimensionless vis-
cous permeability versus porosity to facilitate the compar-
ison with theoretical predictions. They were categorized
by the type of the fiber structure and flow configuration.
The structures formed by cylindrical overlapping fibers

distributed randomly in 1, 2, or 3 directions were con-
sidered; the fibers being allowed to overlap freely in all
the three cases. All one- and two-directional structures ex-
amined are statistically anisotropic, therefore the perme-
ability was derived both parallel and perpendicular to their
characteristic directions. It was found that the conjecture
of Johnson et al. [8, 9] (k0 = φΛ2/8α∞) provides very
good permeability estimates in most cases, resulting in an
overall ratio of the theoretical prediction to measurement
close to 1.25 for the over 500 experimental points utilized.
However, the predictions of all examined fiber structures
and flow configurations also revealed a significant effect
of fiber directionality on permeability (Figure 8 of [13]),
an effect that can also be regarded as a specific mean to
functionalize the fibrous material.

Starting from the comment that some non-woven fi-
brous materials yield a very low absorption contrast with
X-rays, and therefore that usual computer tomography
does not yield satisfying 3D images of the materials,
Schladitz et al. [14] used 2D images of sections paral-
lel and orthogonal to the flow direction obtained by clas-
sical light microscopy. The material was first infiltrated
with a resin. Then, sections were cut, ground and pol-
ished. Repeated simulations of a stochastic model combin
ed with image processing techniques gave evidence that
the anisotropy parameter β of spatially stationary random
system of lines (Poisson line process) can be successfully
estimated from the number of fibers observed in sections
parallel and orthogonal to the flow direction. This pro-
cedure corresponds to an experimental method available
to estimate the orientation of fibers when 3D images are
missing or failing to yield satisfying information. Addi-
tional mapping between the tensorial formalism and the
Poisson line process leads to a common framework for the
generation of disordered fiber structures, illustrating the
crucial role of the parameter governing the orientation of
fibers in transversely isotropic fibrous materials (Ωzz as
defined in Section II.B). The Poisson line process model
was subsequently used by Jensen and Raspet [15] to in-
vestigate thermoacoustic properties of overlapping fibrous
materials in order to test the prediction of analytical mod-
els [16, 17]. The parameters of the models (shape factors
and relaxation times) are selected to best fit the numeri-
cal simulations that were made using a lattice Boltzmann
approach.

In this paper, new numerical data are presented and
used to systematically describe the anisotropic transport
properties of sound absorbing fibrous media from geo-
metrical information only. Rigid frame models will be ex-
amined with special attention to fiber orientation effect,
and a large range of porosities will be studied. Section 2
presents the generation of Representative Elementary Vol-
umes (REVs) of randomly overlapping fiber structures
based on a parametrized fiber orientation. While Section 3
deals with the identification of the geometrical properties
from the REVs, Section 4 deals with the identification of
the transport properties. Finally, Section 5 summarizes the
main micro-macro relationships developed in Sections 3
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and 4, and these relations are applied to study the influ-
ence of the microstructural features on the acoustic prop-
erties of random fiber structures.

2. Random fiber structures

Like in previous studies [14, 15], a simple model for the
fiber structure with the smallest possible number of pa-
rameters is considered. Following Schladitz et al. [14], the
following assumptions were made. Compared to the sam-
ple size, the fibers are long and their curvature is negligi-
ble. There is no interaction between the fibers. Due to the
production process, the fiber structure is macroscopically
homogeneous and isotropic in the horizontal (xy-)plane.
That is, the distribution properties of the random model
are invariant by translations as well as rotations around the
z-axis. Therefore, a detailed study of the effect of correla-
tions between fibers is out of the scope of this work.

2.1. Orientation distribution function

For the purpose of the present research, the random fiber
structures result from the successive generation of rigid
uniform cylinders of the same diameter. The fibers are in-
troduced at random locations with a uniform number of
fibers per unit volume. A way to describe the orientation
of a fiber is to associate a unit vector −→p to the fiber, as
shown in Figure 1. A random fiber structure is therefore
an arrangement of fibers for which the orientation distri-
bution function is a defined function Ψ(ϕ, θ) of two vari-
ables describing the orientation of a single fiber. Examples
are given in Figures 1 and 2. Note that in these figures,
the x, y, z axes respectively correspond to unit vectors −→e 1,−→e 2, −→e 3.

It is worth recalling that Tomadakis and Robertson
[13] simulated one-, two-, and three- dimensional ran-
domly overlapping fiber structures. However, these struc-
tures only corresponds to the three specific configurations
of the fiber orientations shown in Figure 1b,c,d.

2.2. Orientation tensor

The use of tensors to describe fiber orientation of compos-
ite fibers was presented in a series of papers [18]–[21] and
reviewed by Advani and Tucker [12]. The second-order
orientation tensor is obtained by forming dyadic products
of the vector −→p and then integrating the products with the
distribution function over all possible directions,

Ωij =
�
pipjΨ(−→p ) d−→p , (4)

where the set of all possible directions of −→p corresponds
to the unit sphere, and the integral over the surface of the
unit sphere is noted by�

d−→p =
� 2π

ϕ=0

�π
θ=0

sinθ dθ dϕ. (5)

A fiber oriented at any angle (ϕ, θ) is undistinguishable
from a fiber oriented at angle (ϕ + π, π − θ), so Ψ must
satisfy

Ψ(ϕ, θ) = Ψ(ϕ + π, π − θ) or Ψ(−→p ) = Ψ(−−→p ). (6)

Ψ must be normalized, since every fiber has some orienta-
tion,

2π�
ϕ=0

π�
θ=0

Ψ(ϕ, θ)sin(θ) dθ dϕ =
�
Ψ(−→p ) d−→p = 1. (7)

Because the distribution function is even [Equation (6)],
only the even-order tensors are of interest (the odd-order
integrals are zero). Using Equation (7), the integral over
all −→p weighted by Ψ(−→p ), which appears in Equation (4)
becomes, for a discrete set of fibers,

[Ω] =
1
Nf

Nf�
i=1

 sin2θ(i)cos2ϕ(i)

sin2θ(i)cosϕ(i)sinϕ(i)

sinθ(i)cosθ(i)cosϕ(i)
· · · (8)

· · ·
sin2θ(i)cosϕ(i)sinϕ(i) sinθ(i)cosθ(i)cosϕ(i)

sin2θ(i)sin2ϕ(i) sinθ(i)cosθ(i)sinϕ(i)

sinθ(i)cosθ(i)sinϕ(i) cos2θ(i)

 ,

where Nf is the total number of fibers, θ(i) is the vertical
orientation angle, and ϕ(i) is horizontal orientation angle.
Here, [Ω] is completely symmetric, and from the normal-
ization condition (7) it can be shown that Trace[Ω] = 1.
[Ω] constitutes the most concise nontrivial description of
the orientation. Assuming a transversely isotropic mate-
rial, [Ω] is completely determined by Ωzz. Varying the
value of Ωzz from planar (Ωzz = 0) to aligned (Ωzz = 1)
random fibers, one can study the influence of fiber orienta-
tion on the transport properties of fibrous media. This was
simply done by adjusting the mean µθ and standard devia-
tion σθ of a normal distribution of angle θ with a uniform
random orientation of angle ϕ. All the corresponding co-
efficients are reported in Table I.

The choice of the distributions on θ and ϕ is based
on the experimental knowledge acquired by the authors
on several random fibrous materials using SEM images.
From the authors’ knowledge, the following modelling
assumptions can be formulated: (i) the horizontal angle
follows a uniform distribution between 0 and 180 ◦; (ii)
as the number of analysed fibers increases, the probabil-
ity density function of the vertical angle is approximately
normal (with a mean value generally centered at 90◦ in
most cases). An example of such a distribution obtained
by SEM image analysis is given elsewhere [22].

2.3. Generation of random fiber structures

Here is a short description of the algorithm which is fully
detailed elsewhere [22], and displayed in Figure 3. The
algorithm is used to generate a representative elementary
volume (REV) for a given fiber orientation coefficientΩzz.
The algorithm allows fibers to overlap as in [13], [14] and
[15]. This can be questionable since in reality the fibers
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1

= sin cos

p
2

= sin sin

p
3

= cos

(b) (c) (d)

(a)

Figure 1. (Colour online) (a) The fiber definition in the polar coordinates (ϕ, θ). Examples of typical randomly overlapping fiber
structures. (b) Two-directional (2-d) random fiber structures where fibers are in parallel planes (transversely isotropic); this configu-
ration corresponds to Ωzz = 0 (layered fibrous media). (c) Three-directional (3-d) random fiber structures where fibers are randomly
positioned and oriented in the three-dimensional space; this configuration corresponds to Ωzz = 1/3 (isotropic fibrous media). (d)
One-directional (1-d) random fiber structures where fibers are parallel to each other, with their traces randomly positioned in the plane
Oxy; this configuration corresponds to Ωzz = 1 (aligned fibrous media).

Table I. Coefficient Ωzz of the second-order transversely isotropic fiber orientation tensor and the corresponding mean µθ and standard
deviation σθ adjusted assumming that θ is described by a normal distribution function and ϕ by a uniform distribution function.

Ωzz 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91 1

µθ(o) 90 90 90 90 90 45.18 33.48 14.22 0 0 0
σθ(o) 0 19.17 29.98 38.88 51.50 171.18 29.98 36.18 28.80 19.08 0

can not physically interpenetrate. However, since they can
deform, two fibers can be crushed one on the other.

As a general rule, a characteristic fiber radius rf and a
target open porosity φ are imposed. The position of a fiber
is represented by the location −→r (x, y, z) of its center and
by a set (ϕ, θ) of two angles that give the orientation of its
axis with respect to the coordinate system. The fibers are
generated in a square vertical box, as shown in Figures 1
and 2. The numerical calculations of the properties of the
fiber structure are conducted in an elementary volume box
of size L(i), where i represents the ith iteration on the box
size. At the initial iteration, the box size is set to 100 µm,
and will be iteratively increased by a value ΔL = 10 µm.

This domain typically contains a solid volume of fibers
equal to

V
(i)
f =

�
1 − φ

�
L(i)3. (9)

To identify the number of fibers of radius rf that are re-
quired to meet this volume V (i)

f , the number of fibers ran-
domly generated in the box, following the predetermined
Ωzz coefficient, is iteratively increased. The iteration is
stopped when for j fibers the solid volume of fibers V (j)

f is

greater or equal to V
(i)
f . Here, V (j)

f = πr2
fΣ

j

1(l
(k)
f ), where

l
(k)
f is the length of the kth fiber generated during the proc

ess at iteration j. From the found volume V (j)
f , the actual

porosity φ(i) of the elementary volume box i filled with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. (Colour online) Various configurations corresponding to the variation of fiber orientation states with Ωzz ranging from 0.1 to
0.9, respectively.

j fibers is compared to the expected value φ. If the rela-
tive error of the actual porosity is smaller than tolerance ε,
then the convergence criterion on iteration i is finally met,
and the current elementary volume box of size L(i) is the
REV - its actual porosity is φREV and it contains j fibers.
From this REV, numerical calculations are performed to
retrieve the geometrical and transport properties. In prac-
tice, since there are variations between randomly gener-
ated fibrous networks for the same number of fibers and
Ωzz coefficient, the actual porosity that is used in the con-
vergence criterion is an averaged value over 1000 realiza-
tions of the conditional loop over j - see counted loop over
m in Figure 3. As a general trend, the size of the repre-
sentative elementary volume LREV is linearly decreasing
with increasing porosity (at a given ε), and the smaller is
ε the higher is LREV . For the range of studied porosities,
with 0.75 ≤ φ ≤ 0.99, the value LREV ≤ 500 µm is large
enough to ensure that ε = 0.003.

Note that the results presented in this study were con-
ducted on a REV withLREV = 500 µm, a number of fibers
Nf = 68 and a fiber radius varying between 4.3 µm and

19.23 µm to cover the porosity range 0.75 ≤ φ ≤ 0.99
(within ε = 0.003). For instance, at φ = 0.9, rf = 11.1
µm and LREV ≈ 45rf . In practice, a numerical approach
was used to determine the final volume and wet surface
area of the resulting fiber webs, because there generally
exists some overlaps between fibers.

3. Identification of the geometrical proper-
ties

The simplest geometrical properties of a random fiber
structure are the characteristic fiber radius rf , open poros-
ity φ, and thermal characteristic length Λ

�
. Since rf and φ

are two input parameters of the REV generation (see Sec-
tion 2.3), they are either imposed or obtained by measure-
ments. They are imposed when one wants to study their
effects on the acoustic properties, and they are measured
when one wants to predict the acoustic or transport prop-
erties of an existing material. In the latter case, the char-
acteristic fiber radius can be obtained from image analy-
sis or the manufacturing process, and the open porosity
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Figure 3. Algorithm for the determination of REV.

measured from existing methods [24]–[26]. Additionaly, it
is worth mentionning that for polydisperse and bidisperse
fiber structures, it was shown that the weighted fiber radius
can be used as the characteristic fiber radius [27].

The only geometrical property that remains to be iden-
tified is Λ

�
. This property is defined as twice the ratio be-

tween the fluid phase volume Vp and the wet solid surface
area of the fibers Sw ,

Λ
�
=

2Vp
Sw

. (10)

In this study, each constructed REV is discretized by vol-
ume finite elements. Consequently, Vp and Sw are directly
computed on each discretized REV, and Λ

�
deduced from

the previous equation. The numerically computed ratios
between the thermal characteristic length and the charac-
teristic fiber radius Λ

�
/rf are plotted in Figure 4 as a func-

0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

Figure 4. (Colour online) Normalized thermal characteristic
length Λ

�
/rf as a function of the open porosity φ. The symbols

indicate the statistically averaged orientation of fibers as deter-
mined by the value of Ωzz: Ωzz = 0 (◦), Ωzz = 0.1 (�), Ωzz = 0.2
(�), Ωzz = 0.3 (+), Ωzz = 0.4 (#), Ωzz = 0.5 (∗), Ωzz = 0.6 (9),
Ωzz = 0.7 (×) Ωzz = 0.8 (◦), Ωzz = 0.9 (:), Ωzz = 1 ( ). The
continuous curve corresponds to the theoretical model, Equation
(11). The thick curve corresponds to the corrected model for
overlapping fibers, Equation (12).

tion of the porosity for the various fiber orientations. As
expected, all of the generated fiber structures follow the
same behavior, with a nonlinear increase of Λ

�
/rf as the

fibrous media become more porous. Λ
�
/rf is roughly in-

dependent on the angular orientation Ωzz. Assuming that
the fibers do not overlap, one can derive from Equation
(10), a theoretical expression for this normalized length in
function of the open porosity. It is given by

Λ
�

rf
=

φ

1 − φ
. (11)

If the fibers are allowed to overlap, one can show from
Equation (10) that an additional term would appear in the
denominator of Equation (11). This term would depend
on the rf/L ratio, the number of intersections, and their
corresponding shape (ex.: shape formed by intersection of
two oblique fibers). The latter properties are difficult to
evaluate on the studied REVs; however, the influence of
the intersections can be taken into account by a correction
term c in the denominator of Equation (11). Consequently,
a better model to fit the numerical data obtained for our
randomly overlapping fiber structures is given by

Λ
�

rf
=

φ

1 − φ + c
. (12)

This expression is plotted on Figure 4. One can note that
Equation (12) fits with the numerically calculated normal-
ized characteristic thermal lengths, in which the value of c
represents the fiber intersection intensity. By using a sim-
ple fit from the simulation results, we obtain c = 0.0036.

Thus, it can be concluded that a good approximation of
Λ

�
can be deduced from rf and φ by Equation (12) when
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the characteristic fiber radius and porosity are imposed, or
known from measurements.

4. Identification of the transport properties

In this section, the macroscopic effective coefficients for
the basic transport processes by conduction, convection
and diffusion- controlled reactions in random networks of
fibers are studied. The governing equations and their solu-
tion methods are briefly recalled in this section. They are
detailed in an earlier paper [22]. In all cases, the macro-
scopic coefficients are deduced by integrating the local
fields, obtained by solving the transport equations at the
pore scale. Since the webs are macroscopically homoge-
neous, they are considered as infinite periodic media, made
of identical unit cells. The unit cells are the REVs gener-
ated as described in section II. Periodicity conditions along
the x, y, and z axes were applied when computing the
transport properties.

4.1. Tortuosity and viscous characteristic length

4.1.1. Theoretical framework
Electric conduction is governed by the following set of
equations,

−→
E = −−→∇π + −→e , −→∇ · −→E = 0, (13)

where
−→
E and π are respectively the local values of the elec-

tric field and microscopic potential in the fluid, and −→e is a
specific macroscopic electric field.

−→
E satisfies the no-flux

boundary condition at the wall ∂Ω when the solid phase is
assumed to be insulating,

−→
E · −→n = 0, (14)

where −→n is the unit normal vector to ∂Ω. π is assumed to
be spatially periodic with a period Ω in the three directions
of space.

The quantities
−→
E and −→e are related by the symmetric

positive definite tortuosity tensor α∞ij,

ei = α∞ij

�
Ej

�
, (15)

which depends only upon the geometry of the medium.
Typically, for an isotropic random medium, α∞ij is a spher-
ical tensor equal to α∞I . For transversely isotropic fiber
webs, the x and y directions play equivalent roles, but a
different behavior along the z axis is expected. In the fol-
lowing, α∞xy denotes the average of the tortuosities along
the x and y axes, which were found equal within the sta-
tistical fluctuations, and α∞z denotes the tortuosity in the
vertical direction. The mean value over the three axes is
denoted α∞.

The viscous characteristic lengthΛ, introduced by John-
son et al. [8] and applicable to any kind of porous media,
is defined as

Λ = 2

�
Ω ||−→E ||2 dV�
∂Ω ||−→E ||2 dS

. (16)

Table II. Coefficients of polynomial P (Ωzz) used to correlate the
tortuosity tensor α∞ij and viscous characteristic length tensor Λij

to the porosity φ and fiber orientation Ωzz. Polynomial is of the
form AΩ2

zz + BΩzz + C.

A B C

α∞xy,Λxy 0.2631 0.2895 0.5957
α∞z,Λz -0.0596 -0.9994 1.0590
α∞ - - 0.7659

It is an effective pore-volume-to-surface ratio wherein
each volume or area element is weighted according to the
local value of the electric field

−→
E , which would exist in

the absence of a surface mechanism. Λ is a characteris-
tic parameter of the geometry of the porous medium. This
length can be derived from the numerical solution of the
Laplace’s equation in the pore space and used for the anal-
ysis of transport properties. The value of Λ obtained when
setting −→e along the x and y directions is denoted by Λxy ,
while Λz corresponds to the z direction.

4.1.2. Numerical results and discussions

The calculations of the tortuosity tensor α∞ij were per-
formed for the fiber structures described above. The pur-
pose is to obtain a description for all types of random
fibrous media using their single-geometry characteristics
such as the porosity φ and the fiber orientation Ωzz assum-
ing transverse isotropy.

A study of the possible anisotropy of the results is first
conducted. Figure 5 shows that, while the averaged tortu-
osity α∞ is fewly sensitive to Ωzz, the transverse tortuosity
α∞xy and longitudinal tortuosity α∞z are very sensitive to
Ωzz. As a general trend, it can be noted that fibers that
are orthogonal to the direction of wave propagation yield
higher tortuosity values than fibers that are parallel to the
direction of wave propagation.

One popular empirical model for the determination of
the tortuosity of porous media is the Archie’s law given
by α∞ = (1/φ)γ ,where γ is a constant which depends on
the microstructure of the porous medium. In our randomly
overlapping fiber structures of transverse isotropy, the mi-
crostructure depends on the direction of the flow (along
z or xy) and the fiber orientation coefficient Ωzz. To ex-
tend Archie’s law to our numerical results, the following
expression is proposed:

α∞ =
�

1
φ

�P (Ωzz)

(valid for 0.75 φ 1), (17)

where P (Ωzz) is a polynomial of the second order whose
coefficients are obtained by a nonlinear curve-fitting on
our numerical results in a least-square sense. For α∞xy and
α∞z, the polynomial coefficients are given in Table II. Ex-
cept for strongly aligned fiber networks with Ωzz = 0.9
and Ωzz = 1, the effect of fiber orientation is barely visi-
ble on α∞ as shown in Figure 5c. Consequently, a constant
value P (Ωzz) = 0.7659 can be used in Equation (17) for
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Figure 5. (Colour online) The tortuosities (a) α∞xy , (b) α∞z, and (c) α∞ as a function of porosity φ. Same convention of colors and
symbols as in Figure 4. The symbols refer to numerically computed values. Dotted lines are estimates obtained by the micro-macro
relationship, Equation (17). Thick gray lines refer to Tomadakis and Robertson’s model (Equation(11) and Table 1 of [13]).

α∞. This value is also obtained by the same curve-fitting
on all the numerical data.

Tortuosity estimates obtained with Equation (17) are
plotted in Figure 5 (dotted lines). These estimates are also
compared with results obtained by Tomadakis and Robert-
son [13]. Based on random-walk simulations on three spe-
cific types of randomly overlapping fiber structures (1-d,
2-d and 3-d), they derived a curve-fit relationship based on
a generalization of the Archie’s law. These fiber structures
are similar to our configurations with Ωzz = 1, Ωzz = 0,
and Ωzz = 1/3, respectively. As shown in Figure 5, good
correlations are obtained for these three specific cases. The
worst comparison is for α∞z with Ωzz = 0 (2-d, red cir-
cles). In this case, the Tomadakis and Robertson’s model
predicts tortuosity values smaller than our results. The
comparison of the results of this work to the data of the
literature reveals that the random-walk simulation results
provide accurate predictions of the tortuosity of random
fibrous structures in most cases - except for the flow per-
pendicular to two-directional randomly overlapping fiber
structures - with the deviation increasing at low porosities
(Figure 5b with Ωzz = 0, red circles). The latter corre-
sponds to the situation where the cross-sectional area of
the pore space varies relatively fast as one moves away
from the throat. This indicates that the diffusional esti-
mates of the tortuosity might not be accurate enough if the
throat region differs significantly from the straight-tube-
like model

As in the case of the tortuosity α∞, the purpose of the
next analysis is to obtain a description for the viscous char-
acteristic length Λ for all random fibrous media as a func-
tion of the microstructural features. The numerical calcu-
lations were performed on the same REVs that were used
for the tortuosity tensor analysis. The numerically com-
puted thermal characteristic length Λ

�
normalized by the

values of Λz and Λxy are shown in Figure 6 as a function
of the porosity φ. One can note that the upper (Λ

�
/Λ ≈ 2)

and lower (Λ
�
/Λ = 1) bounds found here are consistent

with those published in [11] (Equation 49) for fibers per-
pendicular and parallel to the plane wave propagation di-
rection (−→e 3).

Along direction −→e 3, one can observe that there is no de-
pendence of Λ

�
/Λz with φ. This is almost the case along

the transverse direction for Λ
�
/Λxy; however, as the angu-

lar orientation increases, the ratio tends to increase with
decreasing porosity. Indeed, Λ is an effective pore size
of dynamically connected pore regions that contribute the
most to fluid transport (an effective surface-to-pore vol-
ume wherein each area or volume element is weighted ac-
cording to the local value of

−→
E , Equations 13 and 14). This

weighting eliminates contributions from the isolated re-
gions of the pore space that do not contribute to transport.
This effect is strong when the fibers are perpendicular to
flow direction, and increases as the porosity of the fibrous
material decreases.

For a certain types of porous media, Johnson et al. [8]
have shown that the viscous characteristic length can be
expressed by

Λ
�
/Λz = − log(F )

log(φ)
, (18)

where F = α∞/φ is the formation factor. Substituting
the expression of the formation factor in Equation(18),
together with relationship of Equation(17), the previous
equation readily gives the following micro-macro relation-
ship:

Λ
�
/Λ = 1 + P (Ωzz) (valid for 0.75 φ 1). (19)

Here P (Ωzz) is the same polynomial as in Equation (17)
with coefficients defined in Table II for Λz and Λxy .

Estimates of Λ
�
/Λz and Λ

�
/Λxy obtained with Equa-

tion (19), and the respective coefficients of Table II, are
plotted in Figure 6 (dotted lines). These estimates are also
compared with results obtained by Tomadakis and Robert-
son [13] for the three specific randomly overlapping 1-d,
2-d and 3-d fiber structures. Again, good correlations are
obtained, except for Λ

�
/Λz for the 2-d structure (red cir-

cles in Figure 6a). In this case, the ratio is lower than the
expected ratio of 2. The reasons previously given for the
tortuosity still apply here to explain this discrepancy.
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Figure 6. (Colour online) Characteristic length ratio (a) Λ
�
/Λz and (b) Λ

�
/Λxy as a function of porosity φ. Same convention of colors

and symbols as in Figure 4. The symbols refer to numerically computed values. Dotted lines are estimates obtained by the micro-macro
relationship, Equation (19). Thick gray lines refer to Tomadakis and Robertson’s model (Equation(10), Equation(11) and Table 1
of [13]).

It is worth mentioning that the results by Tomadakis
and Robertson also show that the Λ

�
/Λxy ratio is no more

constant as the fiber orientation coefficient approaches 1.
For higher orientation coefficients, it tends to increase as
porosity decreases.

The results above confirm the accuracy of the numeri-
cal model and indicate that it captures the essential physics
of the fluid-structure interaction as frequency tends to infi-
nite. We therefore conclude that the proposed micro-macro
relationships may be regarded as generally valid.

4.2. Static viscous permeability

4.2.1. Theoretical framework
Permeability can be derived from the solution of Stokes
equations,

η∇2−→v − −→∇p = −−→G, −→∇ · −→v = 0, (20)

where −→v , p and η are the velocity, pressure, dynamic vis-
cosity of the fluid, respectively, and

−→
G =

−→∇pm is a macro-
scopic pressure gradient acting as a source term. The ve-
locity −→v verifies the non-slip boundary condition on the
wet surface of the fibers

−→v = 0 on ∂Ω. (21)

Because of the spatially periodic character on the large
scale of the porous media, −→v and p are assumed to be spa-
tially periodic functions with a period equal to the cell size
Ω.

The system of Equations (20) - (21) with the periodic
boundary condition is numerically solved for a specified
macroscopic pressure gradient

−→
G on the REVs, which is

set to be equal to a prescribed constant vector. Since Equa-
tions (20) and (21) form a linear system of equations, it
can be demonstrated that

�−→v � is a linear function of
−→
G.

These quantities are related by the permeability tensor k0ij,

k0ij = φ
�
k∗0ij

�
, (22)

where k0ij is a symmetric positive definite tensor. Here the
components k∗0ij are derived from

vi = −
k∗0ij
η

Gj, (23)

where vi are the components of the local velocity field.
Similarly to the tortuosity tensor α∞ij, k0ij takes the same
values along the x and y axes and can be different along z.

4.2.2. Numerical results and discussions

The permeability of each generated REV described in Sec-
tion 2 having been calculated, the next objective is to ob-
tain a description for all types of random fibrous media
using their single geometrical characteristics rf , φ and
Ωzz. As for the electric conduction problem (tortuosity α∞
and viscous length Λ), a study of the possible effects of
anisotropy on the results is conducted. We start however
by presenting a classical model, which is used in the fol-
lowing for the analysis of our data.

Several classical models aim at representing the depen-
dence of permeability on the geometrical fiber web charac-
teristics. The most classical model is the Kozeny-Carman
equation (see Equation (6) of [28])

k0

r2
f

= ζ
φ3

(1 − φ)2
, (24)

where ζ is the Kozeny "constant" which depends on the
particle shape and size forming the solid skeleton. As
noted in this model, the normalized permeability k0/r

2
f is

proportional to φ3/(1−φ)2. Consequently, the normalized
permeabilities computed on the REVs are plotted in Fig-
ure 7 in function of φ3/(1 − φ)2.

The numerical results show that the behavior of the per-
meability tensor k0ij can be different along the (x, y) and
z axes. Figure 7 shows that the through-plane normal-
ized permeability k0z/r

2
f is more sensitive to fiber orien-

tation than the in-plane normalized permeability k0xy/r
2
f .
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Figure 7. (Colour online) Normalized static viscous permeabilities as a function of φ3/(1 − φ)2; (a) k0xy/r
2
f , (b) k0z/r

2
f , (c) k0/r

2
f .

Same convention of colors and symbols as in Figure 4. The symbols refer to numerically computed values. Dotted lines are estimates
obtained by the micro-macro relationships, Equations (25) and (26). Thick blue lines refer to Tarnow’s work (Equations (37) and (59)
of [3]). Thick pink lines refer to Sangani and Yao’s work (Tables II and III of [29]).

Table III. Coefficients of the linear fits to correlate the static vis-
cous permeability tensor k0ij to the porosity function φ3/(1−φ)2.

k0xy k0

A 0.652 0.640
B -1.022 -0.941

In view of Figure 7a, in-plane normalized permeability
k0xy/r

2
f varies linearly in function of φ3/(1 − φ)2 - this

is consistent with Kozeny- Carman equation. Figure 7b
suggests that ratio k0z/r

2
f also depends on the fiber orien-

tation Ωzz. Indeed, the ratio k0z/r
2
f increases significantly

for larger fiber alignment in the direction of the wave prop-
agation−→e 3. Numerical fits can be obtained for k0xy/r

2
f and

k0/r
2
f in the form of

log10

�
k0

r2
f

�
= A log10

�
φ3

(1 − φ)2

�
+ B (25)

(valid for 0.75 φ 1).

The effect of fiber orientation appears to be negligeable
on the in-plane normalized permeability k0xy/r

2
f when

compared to the through-plane normalized permeability
k0z/r

2
f . Some global numerical fits wit Equation (25) can

be found for k0xy and k0 as linear forms, see Table III for
the corresponding coefficients A and B.

A simple expression for estimating the normalized per-
meability k0z/r

2
f in function of φ3/(1 − φ)2 and fiber ori-

entation Ωzz can take the form of

log10

�
k0

r2
f

�
= A log10

�
φ3

(1 − φ)2

�
+ BΩ2

zz + CΩzz +D (26)

(valid for 0.75 φ 1),

with A = 0.6295, B = 0.4628, C = 0.0621, D =
−1.0482.

Estimates of k0/r
2
f obtained with Equations (25) and

(26) are plotted in Figure 7 (dotted lines). As for the tor-
tuosity and the viscous characteristic length, comparison
with Equation (12) of Tomadakis and Robertson did not
lead to good correlation on all the studied porosity range.
Their permeability estimate may be regarded as valid pro-
vided that the throat region of the pore space varies rela-
tively slow as one moves away from the throat. However,
good comparisons were obtained with results obtained by
Tarnow [3] and Sangani and Yao [29] for the 1-d case
of a random fiber array; this corresponds to the case of
Ωzz = 1 (black squares). This tends to validate our numer-
ical results and micro-macro relationships given by Equa-
tions (25) and (26).

In summary, the permeability of a random fibrous
medium can be related to the fiber radius rf , the porosity
φ, and the angular orientation Ωzz. It can therefore be pre-
dicted directly from the knowledge of the microstructural
features.

4.3. Static thermal permeability

The thermal terminology is used here but the following
developments are also valid for diffusion of Brownian par-
ticles whose size is small with respect to a typical size of
the medium. Isothermal heat diffusion and Brownian mo-
tion in porous media are governed by a Poisson equation,

∇2τ = −1, (27)

where τ is the local field. When the frame has a sufficiently
large thermal capacity, the excess temperature τ can be
considered to vanish at the fiber walls, and the boundary
condition is

τ = 0 on ∂Ω. (28)

The excess temperature field τ is spatially periodic. The
mean value of the excess temperature field in the fluid
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Figure 8. (Colour online) Normalized static thermal permeability
k

�
0/r

2
f as a function of porosity φ. Same convention of colors

and symbols as in Figure 4. The symbols refer to numerically
computed values. Thick blue line is the estimate obtained by the
micro-macro relationship, Equation (31). Thin black line refers
to Umnova et al.’s work (Equation (58) of reference [31]).

space between fibers is directly related to the definition
of the (scalar) static thermal permeability,

k
�
0 = �τ� . (29)

Alternatively, the diffusion controlled trapping constant of
the porous frame is given by Γ = 1/k

�
0.

Based on the numerically calculated values of k
�
0 on

the REVs, the normalized thermal permeability k
�
0/r

2
f is

shown in Figure 8 as a function of the porosity for the var-
ious fiber orientations. Beacause the diffusion of heat does
not provide any preferred direction, the static thermal per-
meability k

�
0 normalized by the square of the fiber radius

r2
f can generally be written as a function independant of

fiber orientation. In their work, Olny and Panneton [30]
provide the following relation between the low-frequency
Champoux-Allard description of the thermal characteris-
tic length Λ

�
lf and the static thermal permeability (Sec-

tion II.B of [30]),

k
�
0 = φ

Λ
�2
lf

8
. (30)

Substituing Λ
�
lf by Equation (12), one can derive a ba-

sic expression for the normalized thermal permeability in
function of the open porosity. It is given by

k
�
0

r2
f

= m1
φ3

(1 − φ + m2)2
(31)

(valid for 0.75 φ 1).

Values of m1 = 0.0691 and m2 = 0.0216 are obtained
by curve-fitting in a least square sense on the simulation
results.

Estimates of k
�
0/r

2
f obtained with Equations (31) are

plotted in Figure 8 (thick line). For the static thermal per-
meability, few results are available in the litterature for

the types of random fiber structures under study. However,
Umnova et al. [31] developed a theoretical expression for
a 1-d square array of fibers. We present in Figure 8 a com-
parison between this analytical result and our numerical
finite element solution. We see that both estimates agree
well.

In summary, the static thermal permeability of a random
fibrous medium can be related to the fiber radius rf , the
porosity φ, and the angular orientation Ωzz. It can there-
fore be predicted directly from the knowledge of the mi-
crostructural features.

5. Application

In this section, the micro-macro relationships developed
earlier are used to investigate the influence of the random-
ness of the fiber orientation on the acoustical properties.
Here, three different nonwoven transversely isotropic fiber
assemblies are studied. The first assembly has an open
porosity of 0.90 and is composed of fibers having an av-
erage diameter of 25 µm (this corresponds to a layer of
natural milkweed hollow fibers compacted up to approx-
imately 33.5 kg/m3). Note that the open porosity is the
inter fiber porosity since the hollow part of the fibers it is
too small to significantly influence the acoustic behaviour.
The fibers are then considered to be solid. Similarly, in the
second assembly, the average diameter is 25 µm; however,
this time the open porosity is 0.99 (this correspond to a
layer of natural milkweed hollow fibers compacted up to
approximately 3.35 kg/m3). The porosity of the third as-
sembly is also 0.99; however, the average fiber diameter is
reduced to 10 µm (this corresponds to a light glass fiber of
25 kg/m3).

Based on the microstructural features rf and φ of the as-
semblies, the previous micro-macro relationships are used
to evaluate the geometrical and transport properties at dif-
ferent angular orientations Ωzz along the z-axis. These
relationships are given by Equation (12) for Λ

�
, Equa-

tion (17) for α∞, Equation (19) for Λ, Equation (26) for
k0, and Equation (31) for k

�
0. Knowing the fiber radius rf

(in connection with the type of fiber), the fiber orientation
Ωzz (in connection with the type of nonwoven manufactur-
ing process), and the open porosity φ (in connection with
the rate of compaction), these relations completely de-
fine the input macroscopic parameters to use in an equiva-
lent fluid model. Here, the six-parameter Johnson-Lafarge
equivalent fluid model is used. In this model, the equiv-
alent dynamic density and bulk modulus are respectively
given by

ρeq =
ρ0

φ

α∞ +
νφ

jωk0

�
1 +

�
2α∞k0

φΛ

�2
jω

ν

 (32)

and

Keq =

γP0
φ

γ − (γ − 1)

�
1 + φν

�

jωk
�
0

�
1 +



2k

�
0

φΛ�

�2
jω
ν
�

�−1
, (33)
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Figure 9. Effects of random fiber orientation on the normalized characteristic impedance (left) and complex wave number (right) for
three non-woven fibrous materials with different microstructural features. (a,b) 0.90 porosity with 25 µm fiber diameter. (c,d) 0.99
porosity with 25 µm fiber diameter. (e,f) 0.99 porosity with 10 µm fiber diameter. The grayed area corresponds to the variation of the
property between 0 < Ωzz < 1, while the solid and dashed lines correspond to Ωzz = 0 and Ωzz = 1, respectively.

where ν
�
is the thermal diffusity of the fluid, P0 is the

static pressure, and ω is the angular frequency. From the
previous dynamic properties, the normalized characteristic
impedance and the complex wavenumber are respectively
defined as

Z =
1

ρ0c0

�
ρeqKeq (34)

and

q = ω

�
ρeq

Keq
, (35)

where c0 is the speed of sound in the fluid. Finally, from
these two acoustic properties, the normal incidence sound
absorption coefficient and transmission loss of a fibrous
slab of thickness h are respectively given by

α = 1 −
�����cos (qh) − j

Z sin (qh)

cos (qh) + j
Z sin (qh)

�����
2

(36)

and

TL = 20 log10

����cos (qh) +
j
2

�
Z +

1
Z

�
sin (qh)

���� . (37)

Figure 9 presents the normalized characteristic impedance
Z and complex wavenumber q for the three materials at
different angular orientations Ωzz. One can note that Z
and q seem sensitive to the angular orientation for lower
porosities, or for smaller fiber diameters. However, for a
diameter of 25 µm at a high porosity of 0.99, both Z and

q seem not sensitive to the angular orientation, see Fig-
ures 9c and 9d. Only based on these complex acoustic
properties, this conclusion may be misleading since for the
second case (where Z and q seem not sensitive to orien-
tation), the angular orientation strongly affects the sound
absorption coefficient of a 100-mm thick (4 inches) layer
as shown in Figure 10c. In fact, comparing Figure 9 with
Figure 10, one can conclude that small variations onZ and
q, with respect to Ωzz, do not systematically imply small
variations on global acoustic indicators such as α and TL.

6. Conclusions

Randomly overlapping fiber structures have been gener-
ated from the knowledge of three parameters describing
their microstructure: the characteristic fiber radius rf , the
open porosity φ, and the fiber orientation coefficient Ωzz.
Their macroscopic geometrical and transport properties
were numerically calculated on Representative Elemen-
tary Volumes (REVs) of the fiber structures. Their depen-
dence on the microstructural parameters were expressed
in terms of micro-macro relationships. These relationships
are given by Equation (12) for the thermal characteris-
tic length Λ

�
, Equation (17) for the tortuosity tensor α∞ij,

Equation (19) for the viscous characteristic length tensor
Λij, Equations (25) and 26 for the static viscous perme-
ability tensor k0ij, and Equation (31) for the static thermal
permeability k

�
0.

The numerical results and the proposed micro-macro re-
lationships were validated by comparison with existing re-
sults found in the literature. Contrary to existing results,
the new results cover the whole range of fiber orientations.
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Figure 10. Effects of random fiber orientation on the sound absorption coefficient (left) and sound transmission loss (right) for three
non-woven fibrous materials with different microstructural features. (a,b) 0.90 porosity with 25 µm fiber diameter. (c,d) 0.99 porosity
with 25 µm fiber diameter. (e,f) 0.99 porosity with 10 µm fiber diameter. The grayed area corresponds to the variation of the property
between 0 < Ωzz < 1, while the solid and dashed lines correspond to the Ωzz = 0 and Ωzz = 1, respectively.

However, the results are limited to open porosities greater
or equal to 0.75. Moreover, some questions remain open
concerning the overlapping of the fibers. In fact, in a real
fibrous material, the fibers do not really overlap. Never-
theless, due to the possible crushing of the fibers one on
the other, it was argued that the overlapping may present
more realistic predictions than the non-overlapping case.
This argument is also supported by the good compar-
isons between overlapping model predictions and some
experimental data in the review by Tomadakis and Robert-
son [13].

Finally, the micro-macro relationships were used to
study the influence of the fiber orientation Ωzz on the
acoustic properties of three specific nonwoven fibrous ma-
terials of different porosities and fiber radii. It was found
that small variations on the characteristic impedance Z
and wave number q, with respect to Ωzz, do not systemat-
ically imply small variations on global acoustic indicators
such as the sound absorption coefficient α and the sound
transmission loss TL - the reverse being also true. Conse-
quently, in order to avoid misinterpretation of the complex
influence of the microstructural features on the acoustic
behavior, the desired acoustic characteristics, or the mi-
crostructural parameters, need to be clearly defined first.
In this case, the micro-macro relationships may be very
useful to investigate this complex influence between the
microstructure and the macroscopic behaviors.
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