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Abstract

We show that the Hurwitz scheme Hg,d parametrizing d-sheeted simply
branched covers of the projective line by smooth curves of genus g, up
to isomorphism, is unirational for (g, d) = (10, 8) and (13, 7). The uni-
rationality is settled by using liaison constructions in P1 × P2 and P6 re-
spectively, and through the explicit computation of single examples over
a finite field.

Introduction

The study of the birational geometry of the moduli spaces of curves together
with additional data such as marked points or line bundles is a central subject
in modern algebraic geometry. For instance, understanding the geometry of the
Hurwitz schemes

Hg,d := { C d:1 // P1 simply branched cover | C smooth of genus g}/ ∼

parametrizing d-sheeted simply branched covers of the projective line by smooth
curves of genus g, up to isomorphism, has an important role in shedding light
on the geometry of the moduli spaces of curves Mg. It was through Hurwitz
spaces that Riemann [Rie57] computed the dimension ofMg, and Severi [Sev68],
building on works of Clebsch and Lüroth [Cle73], and Hurwitz [Hur91], showed
that Mg is irreducible.

Recently, the birational geometry of Hurwitz schemes has gained increasing
interest, especially concerning their unirationality. By classical results of Petri
[Pet23], Segre [Seg28], and Arbarello and Cornalba [AC81], it has been known
for a long time that Hg,d is unirational in the range 2 ≤ d ≤ 5 and g ≥ 2.
For g ≤ 9 and d ≥ g, the unirationality has been proved by Mukai [Muk95].
The most recent contributions have been given by [Ver05, Gei12, Gei13, Sch13,
ST16, DS17] and show how active this research area is. For a more complete
picture on the unirationality of Hurwitz spaces, the related speculations and
open questions, we refer to [ST16].
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The main contribution of this paper is the proof of the unirationality of the
Hurwitz schemes H10,8 and H13,7 (Theorem 2.2 and Theorem 3.2). In [ST16,
§1] it is speculated that Hg,d is unirational for pairs (g, d) lying in a certain
range: we remark that our two cases lie in that range, and respect perfectly this
speculation.

The key ingredient for both results is the construction of dominant rational
families of curves constructed via liaison in P1 × P2 and P6 respectively. The
proof of the unirationality of H10,8 is based on the observation that a general
8-gonal curve of genus 10 admits a model in P1 × P2 of bidegree (6, 10), which
can be linked in two steps to the union of a rational curve and five lines. We
show that this process can be reversed and yields a unirational parametrization
of H10,8.

For H13,7, we use the fact that a general 7-gonal curve of genus 13 can be
embedded in P6 as a curve of degree 17, which is linked to a curve D of genus
10 and degree 13. We show that also this process can be reversed; to exhibit a
unirational parametrization of such D’s, we prove the unirationality of M10,n

for n ≤ 5 (Theorem 3.1), a result of independent interest, and we use a general
curve together with 3 marked points to produce a degree 13 curve in P6. A
similar approach yields the unirationality of H12,8, already proven in [ST16],
and is outlined at the end of Section 3.

The reversibility of the above constructions corresponds to open conditions
on suitable moduli spaces or Hilbert schemes. To show that the so-constructed
families of covers of P1 are dominant on the Hurwitz schemes it is thus sufficient
to exhibit single explicit examples of the constructions over a finite field. A
computer-aided verification with the computer algebra software Macaulay2 [GS]
is implemented in the package [KT17], whose documentation illustrates the basic
commands needed to check the truthfulness of our claims. A ready-to-read
compiled execution of our code is also provided.

A priori, it might be possible to mimic these ideas for other pairs (g, d)
for which no unirationality result is currently known. However, a case-by-case
analysis suggests that, in order to apply the liaison techniques as above, one
needs to construct particular curves, which are at the same time far from being
general and not easy to realize.

The paper is structured as follows. In Section 1 we introduce some notation
and some background on Brill–Noether Theory and liaison. In Sections 2 and
3 we prove the unirationality of H10,8 and H13,7 respectively.

Acknowledgements. The authors are grateful to Frank-Olaf Schreyer for sug-
gesting the problem and for many useful conversations. The second author also
thanks Daniele Agostini for interesting discussions, and the Mathematics and
Informatics department of the Universität des Saarlandes for hospitality. The
first author is grateful to the DAAD for providing the financial support of her
studies.

1 Preliminaries

In this section, we introduce some notation and some background facts which
will be needed later on.
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1.1 Brill–Noether Theory

We recall a few facts from Brill–Noether theory, for which we refer to [ACGH85].
Throughout this section, C denotes a smooth general curve of genus g, and d, r
are non-negative integers.

A linear series on C of degree d and dimension r, usually referred to as a grd, is

a pair (L, V ), where L ∈ Picd(C) is a line bundle of degree d and V ⊂ H0(C,L)
is an (r + 1)-dimensional vector space of sections of L. C has a grd if and only
if the Brill–Noether number

ρ = ρ(g, r, d) = g − (r + 1)(g + r − d)

is non-negative. Moreover, in this case, the Brill-Noether scheme

W r
d (C) = {L ∈ Picd(C) | h0(L) ≥ r + 1}

has dimension ρ. The universal Brill–Noether scheme is defined as

Wr
g,d = {(C,L) | C ∈Mg, L ∈W r

d (C)}.

There is a natural dominant morphism α : Hg,d → W1
g,d, which is a PGL(2)-

bundle over a dense open subset of W1
g,d; thus, the unirationality of Hg,d is

equivalent to the unirationality ofW1
g,d, and both Hg,d andW1

g,d are irreducible.

1.2 Liaison

We recall some basic facts on liaison theory.

Definition 1.1. Let C and C ′ be two curves in a projective variety X with no
embedded and no common components, contained in r−1 mutually independent
hypersurfaces Yi ⊂ X meeting transversally. Let Y be the complete intersection
curve ∩Yi. C and C ′ are said to be geometrically linked via Y if C ∪ C ′ = Y
scheme-theoretically.

If we assume that the curves are locally complete intersections and that they
meet only in ordinary double points, then ωC = ωY (C∩C ′)|C and the arithmetic
genera of the curves are related by

(1) 2(pa(C)− pa(C ′)) = deg(ωC)− deg(ωC′) = ωY .(C − C ′).

The relation above and the obvious relation degC+degC ′ = deg Y can be used
to deduce the genus and degree of C ′ from the genus and degree of C.

Let X = P1 × P2 and C be a curve of genus pa(C) and bidegree (d1, d2).
With the above hypotheses, let Y1, Y2 be two hypersurfaces of bidegree (a1, b1)
and (a2, b2), then the genus and the bidegree of C ′ are
(2)

(d′1, d
′
2) = (b1b2 − d1, a1b2 + a2b1 − d2),

pa(C ′) = pa(C)− 1
2 ((a1 + a2 − 2)(d1 − d′1) + (b1 + b2 − 3)(d2 − d′2)) .

For curves embedded in a projective space Pr, the invariants pa(C ′), d′ of
the curve C ′ can be computed via

(3)
d′ =

∏
di − d,

pa(C ′) = pa(C)− 1
2 (
∑
di − (r + 1)) ,

where the di’s are the degrees of the r − 1 hypersurfaces Yi cutting out Y .
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2 Unirationality of H10,8

In this section we prove the unirationality of H10,8. To simplify the notation,
P1 × P2 will be denoted by P.

2.1 The double liaison construction

Let (C,L) be a general element of W1
10,8. As ρ(10, 8, 2) < 0 ≤ ρ(10, 8, 1),

h0(L) = 2 and by Riemann–Roch |K − L| is a 2-dimensional linear series of
degree 10. For a general 6-gonal pencil |D1| of divisors on C, let

φ : C
|D1|×|K−L|−−−−−−−−→ P

be the associated map. We assume φ is an embedding, and in fact this is the
case if the plane model of C inside P2 has only ordinary double points and no
other singularities, and the points in the preimage of each node under |K − L|
are not identified under the map to P1. This way we can identify C with its
image under φ, a curve of bidegree (6, 10) in P.

Moreover, assume C satisfies the maximal rank condition in bidegrees (a, 3)
for all a ≥ 1, that is the maps H0(OP(a, 3)) −→ H0(OC(a, 3)) are of maximal
rank. Let a3 be the minimum degree such that C lies on a hypersurface of
bidegree (a3, 3). Then by Riemann–Roch the maximal rank condition gives
a3 = 3 and C is expected to be contained in only one hypersurface of bidegree
(3, 3). Let Y be a complete intersection curve containing C defined by two forms
of bidegrees (3, 3) and (4, 3), and let C ′ be the curve linked to C via Y . By (2),
C ′ is expected to be a curve of genus 4 and bidegree d′ = (3, 11).

Thinking of C ′ as a family of three points in P2 parametrized by the projec-
tive line P1, we expect a finite number l′ of distinguished fibers where the three
points are collinear. In fact, this is the case when the six planar points of C lie
on a (possibly reducible) conic. We claim that l′ = 5.

To compute l′, we need to understand the geometry of C ′. Let D′2 be the
divisor of degree 11 such that the projection of C ′ to P2 is defined by a linear
subspace of H0(O(D′2)), and let |D′1| be the 3-gonal pencil of divisors defining
the map C ′ −→ P1. Since deg(KC′ − D′2) < 0, by Riemann–Roch we have
h0(O(D′2)) = 11 + 1 − 4 = 8. We consider the map induced by the complete
linear system

(4) ψ2 : C ′
|D′

2|−−−→ P7;

as shown in [Sch86], the 3-dimensional rational normal scroll S of degree 5 swept
out by |D′1| contains the image of ψ2. Hence, the image of the map

ψ : C ′ −→ P1 × P7

is contained in the graph of the natural projection map from S to P1, that is

ψ(C ′) ⊆ P1 × S =
⋃

Dλ∈|D′
1|

([λ]× D̄λ),

where D̄λ is the linear span of ψ2(Dλ) in P7.
As ψ(C ′) is a family of three points in P7 parametrized by P1, C ′ ⊂ P1×P2

is obtained by projection of ψ(C ′) from a linear subspace P1 × V ⊂ P1 × P7
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of codimension 3. Fix a λ ∈ P1; by Riemann–Roch, dim |D′2 −D′1| = 5, hence
ψ2(Dλ) spans a 2-dimensional projective space inside P7. It is clear that the
three points corresponding to λ are distinct and collinear if and only if V ∩ D̄λ

is a point, and the three points coincide if and only if V ∩ D̄λ is a projective
line. The latter case does not occur in general, as the plane model of C ′ has
only double points. The former case occurs in l′ = degS = 5 points if S and V
intersects transversally, an open condition which holds in general.

Now, suppose that for all b ≥ 1 the maps

H0(OP(b, 2)) −→ H0(OC′(b, 2))

are of maximal rank, and set

b2 := min{b : h0(IC′(b, 2)) 6= 0}.

Under the maximal rank assumption, b2 = 5 and h0(IC′(5, 2)) = 2. Let Y ′ be a
complete intersection of two hypersurfaces of bidegree (5, 2) containing C ′, and
let C ′′ be the curves linked to C ′ via Y ′.

Interpreting again C ′ and C ′′ as families of points parametrized by P1, we
observe that a general fiber of C ′′ consists of a single point. In the 5 distinguished
fibers of C ′, the two conics of the complete intersection Y ′ turn out to be
reducible with the line spanned by the three points of C ′ as common factor.
Thus, the curve C ′′ is the union of a rational curve R of bidegree (1, 4) and 5
lines.

2.2 A unirational parametrization

The double liaison construction described above can be reversed and imple-
mented in a computer algebra system. We note that all the assumptions on
C and C ′ we made correspond to open conditions in suitable moduli spaces or
Hilbert schemes, so that it is sufficient to check them on a single example. We
can work on a finite field, as explained in Remark 2.1 here below.

Remark 2.1. In this paper we will often need to exhibit an explicit example
satisfying some open conditions. A priori we could perform our computations
directly on Q, but this can increase dramatically the required time of execution.
Instead, we can view our choice of the initial parameters in a finite field Fp as the
reduction modulo p of some choices of parameters in Z. Then, the so-obtained
example Ep can be seen as the reduction modulo p of a family of examples
defined over a neighborhood SpecZ[ 1b ] of (p) ∈ SpecZ for a suitable b ∈ Z with
p - b. If our example Ep satisfies some open conditions, then by semicontinuity
the generic fiber E satisfies the same open conditions, and so does the general
element of the family over Q or C.

Our construction depends on a suitable number of free parameters corre-
sponding to the choices we made. Picking 5 lines in P1 × P2 requires 5 · 3 = 15
parameters. Choosing 2 forms of bidegree (2, 1) to define the rational curve
R corresponds to the choice of dim Gr(2, 9) = 14 parameters. By Riemann–
Roch we expect h0(IC′′(5, 2)) = 7, so we need dim Gr(2, 7) = 10 parameters
to define the complete intersection Y ′. Similarly, as h0(IC′(3, 3)) = 1 and
h0(IC′(4, 3)) = 8, we require dim Gr(1, 8) − 2 = 5 further parameters for the
complete intersection Y . This amounts to 15 + 14 + 10 + 5 = 44 parameters in
total.
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Theorem 2.2. The Hurwitz space H10,8 is unirational.

Proof. Let A44 be our parameter space. With the code provided by the function
verifyAssertionsOfThePaper(1) in [KT17], and following the construction of
Section 2.1 backwards we are able to produce an example of a curve C ⊂ P and
to check that all the assumptions we made are satisfied, that is:

• for a general choice of a curve C ′′, a union of a rational curve of bidegree
(1, 4) and 5 lines, and for a general choice of two hypersurfaces of bidegree
(5, 2) containing C ′′, the residual curve C ′ is a smooth curve of genus 4
and bidegree (3, 11) which intersects C ′′ only in ordinary double points;

• C ′ satisfies the maximal rank condition in bidegrees (b, 2) for all b ≥ 1
and its planar model has only ordinary double points as singularities;

• for a general choice of two hypersurfaces of bidegree (3, 3), (4, 3) containing
C ′, the residual curve C is a smooth curve of genus 10 and bidegree (6, 10)
that intersects C ′ only in ordinary double points;

• C satisfies the maximal rank condition in bidegrees (a, 3) for all a ≥ 1 and
its planar model is non-degenerate.

This means that our construction produces a rational family of elements in
W2

10,10, the Serre dual space to W1
10,8. As all the above conditions are open,

andW1
10,8 is irreducible, this family is dominant, which proves the unirationality

of both W1
10,8 and H10,8.

3 Unirationality of H13,7

In this section we will prove the unirationality of the Hurwitz space H13,7. As
a preliminary result of independent interest, let us prove the following

Theorem 3.1. The moduli space M10,n of curves of genus 10 with n marked
points is unirational for 1 ≤ n ≤ 5.

Proof. This result is achieved by linkage on P := P1 × P2. We start with a
reducible curve C of arithmetic genus −3, union of 3 general lines and the
graph of a rational plane curve of degree 4. On the one hand, the space of such
curves is clearly unirational; on the other hand, in general C will be contained
in at least two independent hypersurfaces of bidegree (4, 2). The linkage with
respect to 2 general such hypersurfaces produces a curve C ′ of expected bidegree
(3, 9) and genus 4, which will be in general contained in exactly 7 independent
hypersurfaces of bidegree (3, 3).

For the choice of 5 general points {P1, . . . , P5} in P, let IP be their ideal. In
general, the space of bihomogeneous polynomials (3, 3) contained in IC′∩IP will
be generated by two independent polynomials f1, f2, defining two hypersurfaces
X1, X2. The complete intersection of these hypersurfaces link C ′ to a curve C ′′

passing through each Pi; C
′′ turns out to be a curve of genus 10 and bidegree

(6, 9). The projection onto P1 yields an element of H10,6.
In [Gei12] Geiß proved that this construction yields a rational dominant

family in H10,6. Moreover, the Brill–Noether number ρ(6, 1, 10) = 10 − (1 +
1)(10 − 6 + 1) = 0 is non-negative, which implies that this rational family
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dominates M10 as well. Therefore, as the choice of {P1, . . . , P5} is unirational,
we get a rational dominant family of curves of genus 10 together with (up to)
five marked points.

Theorem 3.2. The Hurwitz space H13,7 is unirational.

Proof. Let (D,L) ∈ W1
13,7 be a general element. By Riemann–Roch, ωD ⊗ L−1

is a general g613,17 and therefore the linear system |KD − L| embeds D in P6

as a curve of genus 13 and degree 17. Conversely, if D is a general curve of
genus 13 and degree 17 in P6, by Riemann–Roch the line bundle ωD ⊗OD(−1)
is a general g17 . Hence, in order to prove the unirationality of H13,7, it will be
sufficient to exhibit a rational family of projective curves of genus 13 and degree
17 in P6 which dominates W6

13,17.
Let C be a general curve of genus 13 and degree 17 in P6. Since OC(2) is

non-special, C is contained in at least
(
6+2
2

)
− (17 · 2 + 1− 13) = 6 independent

quadric hypersurfaces. Consider five general such hypersurfaces Xi and suppose
that the residual curve C ′ is smooth and that C and C ′ intersect transversally;
these are open conditions on the choice of (C,OC(1)) ∈ W6

13,17. By (3), C ′

has genus g′ = 10 and degree d′ = 15. By Riemann–Roch, the Serre residual
divisor ωC′⊗OC′(−1) has degree 3 and one-dimensional space of global sections,
hence it corresponds to the class of three points on C ′. Conversely, by Geometric
Riemann–Roch three general points on C ′ form a divisor P with h0(P ) = 1 such
that |KC−P | embeds C ′ in P6 as a curve of degree 15. Hence, the unirationality
of W6

10,15 can be deduced from the unirationality of M10,3, proved in Theorem
3.1 above.

By means of the implemented code verifyAssertionsOfThePaper(2) in
[KT17], we can show with an explicit example that

• for a general curve C ′ of genus 10 and degree 15 in P6 and for a general
choice of five quadric hypersurfaces containing it, the residual curve C is
smooth and intersects C ′ only in ordinary double points;

• C is not contained in any hyperplane.

This way we get a rational family of curves C of genus 13 and degree 17 in P6.
Since all the assumptions we made correspond to open conditions onW6

13,17 and
are satisfied by our explicit examples, such family dominates W6

13,17.

Remark 3.3. The same argument of Theorem 3.2 holds for a general element in
H12,8, so that the above proof yields an alternative proof of the unirationality
of H12,8 proved in [ST16]. In this case, the Serre dual model is a curve of
genus 12 and degree 14 in P4. The liaison is taken with respect to 3 general
cubic hypersurfaces and yields a curve of genus 10 and degree 13, which can
be constructed from a curve of genus 10 and 5 marked points with the same
strategy as above. An implementation of this unirational parametrization of
H12,8 via linkage can be found in the package [KT17].

The package [KT17] including the implementation of the unirational parame-
trizations exhibited in the paper, together with all the necessary and supporting
documentation, is available online.
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