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On the reducibility of geometric constraint graphs

Geometric modeling by constraints, whose applications are of interest to communities from various fields such as mechanical engineering, computer aided design, symbolic computation or molecular chemistry, is now integrated into standard modeling tools. In this discipline, a geometric form is specified by the relations that the components of this form must verify instead of explicitly specifying these components. The purpose of the resolution is to deduce the form satisfying all these constraints. Various methods have been proposed to solve this problem. We will focus on the socalled graph-based or graph-based methods with application to the two-dimensional space.

I. INTRODUCTION

Geometry modeling by constraints allows users to specify geometric objects such as points, lines, and circles by constrained relations that these objects must comply with. Typical constraints are given by: distance between two points, angle between two lines, belonging to a point, a tangency between two circles. On the basis of these specifications and with appropriate modeling, a constraint solver analyzes the problem and produces a construction process in the case of well-defined problems. The term well defined refers to configurations having exactly the number of constraints required for their definitions and which can be solved by this solver. After the solver proposed by [START_REF] Owen | Algebraic solution for geometry from dimensional constraints[END_REF], the domain has experienced an abundance of works using different approaches to solve a system of constraints. We quote not exhaustively (Ait-Aoudia, Jegou, & [START_REF] Ait-Aoudia | Reduction of constraint systems[END_REF] [START_REF] Bouma | Geometric constraint solver[END_REF], [START_REF] Latham | Connectivity analysis: a tool for processing geometric constraints[END_REF], [START_REF] Lamure | Solving geometric constraints by homotopy[END_REF], [START_REF] Fudos | A Graph-Constructive approach to Solving Systems of Geometric Constraints[END_REF], [START_REF] Hoffman | Decomposition plans for geometric constraint problems, part II: new algorithms[END_REF], [START_REF] Michelucci | Using Cayley-Menger determinants for geometric constraint solving[END_REF] [START_REF] Owen | The non-solvability by radicals of generic 3-connected planar Laman graphs[END_REF], [START_REF] Ait-Aoudia | Modélisation géométrique par contraintes: quelques méthodes de résolution[END_REF], [START_REF] Cheng | An intelligent approach for dimensioning completeness inspection in 3D based on transient geometric elements[END_REF], [START_REF] Gao | 2D Geometric Constraint Optimum Solving Based on Problem Decomposition[END_REF].

In the graph-based methods, the geometric form to be found is modeled by a non-oriented graph G=(V, E) where |V|=n and |E|=m. The geometrical elements (i.e. the set V) are represented by the nodes of the graph and the constraints (relations that must be checked by the objects) are the edges of the graph (the set E). The class of configurations solved by these methods is typically a subset of ruler and compass constructible problems with the assumption that constraint values are themselves ruler and compass constructible. An example of geometric modeling by constraints is given by the geometric form given in figure and its corresponding constraint graph is shown in figure 2 (Moussaoui & Ait-Aoudia, 2016). The graph-based denomination used in this paper will designate methods that thus model a constraint problem. The resolution algorithms exploit the structural properties of the constraint graph to establish a resolution process. These algorithms identify in this graph the well-constrained, under-constrained and over-constrained sub-graphs. A graph is well-constrained if the number of constraints is such that it makes it possible to have finite realizations of the geometric form. A graph is underconstrained if the number of constraints is insufficient i.e. we can have an infinity of realizations of the geometric form. A graph is over-constrained if the constraints are given in excess i.e. one cannot have realization of the geometric form. A more concise definition comes from graph theory and the notion of rigid structures. This property is referred to as well-constrained graphs or structures in the domain of geometric constraints solving. We will use interchangeably well-constrained graphs and rigid structures. A characterization of rigid structures was given in 1911 by [START_REF] Henneberg | Die graphische Statik der starren Systeme[END_REF] for which any minimal rigid plane structure is obtained starting from an edge joining two vertices and adding one vertex at a time using one of the two following operations. Operation HI: add a new vertex v to G, then connect v to two chosen vertices u and w from G via two new edges (v, u) and (v, w). Operation HII: add a new vertex v to G, chose an edge (u, w) and another vertex z from G, then add three edges (v, u), (v, w) and (v, z) to G, finally delete the edge (u, w). The Moser spindle shown in figure 3 is an example of a rigid structure. Henneberg construction of the Moser spindle is shown in figure 4. Well after Henneberg's work, Gerard [START_REF] Laman | On graphs and rigidity of plane skeletal structures[END_REF] characterizes the minimally rigid plane structures composed of bars and joints by the so-called Laman graphs. Removing a bar leads to the non-rigidity or flexibility of the structure. Laman's theorem (1970), as set out below, describes these aspects. Theorem 2.

A graph of constraints G=(V,E) contains a structurally over-constrained part if there is an induced sub-graph G'=(V',E') having more than 2*n'-3 edges.

Theorem 3.

A graph of constraints G=(V,E) is structurally under-constrained if it is not over-constrained and the number of edges is less than 2*n-3. Remark 1.

In some special cases, the extension of Laman's theorem can lead to incorrect diagnostics. A typical example of such a case (Ait-Aoudia & Foufou, 2010) is given by a constrained triangle with three angles. In figure 4.a, a triangle is defined with three angular constraints (where ++=180°). This triangle is geometrically under-constrained but its constraint graph, shown in The intersection points of the newly drawn lines and circles are added to the points base B. This process can be repeated at infinity. This construction method is formalized by the definition of [START_REF] Carrega | Théorie des corps, la règle et le compas[END_REF] given hereinafter:

Definition :

Let P be a Euclidean plane and B a finite subset of P having at least two elements. The elements of B are called base points.

 A point M of P is said to be ruler and compass constructible from B if there exists a finite sequence of points of P, M 1 , M 2 , … M n ending with M such that for all i, 1≤i ≤n, Mi is a point of intersection either of:

 two straight lines  a line and a circle  two circles These straight lines and circles being obtained using the set E i =B  { M 1 , M 2 , … M n } as follows:

 each line passes through two distinct points of E i  each circle is centered at a point of E i and has as its radius the distance between two points of E i .

 A line passing through two constructible points is said to be constructible.

 A circle centered at a constructible point and having as radius the distance between two constructible points is constructible.

Drawing new points with the ruler and to the compass amounts to solving linear or degree 2 algebraic equations. Indeed, intersecting two straight lines amounts to solving a linear equation, and intersecting a line and a circle or intersecting two circles amounts to solving an equation of degree 2.

To characterize algebraically the constructions with the ruler and the compass, we consider the Euclidean plane P, with origin the point O of coordinates (0,0) and a second point I (1,0) on the abscissa axis. These two points constitute the starting point for any construction with the ruler and the compass. Construction problems are reduced to algebraic problems. We recall below some definitions and theorems.

Definition 1. A real number x  R is said to be constructible if the point of coordinates (x,0) on the abscissa axis can be constructed with ruler and compass.

Definition 2. A point M  P of coordinates (x,y) is constructible with rule and compass if and only if its two coordinates x  R and y  R are real constructible numbers.

Wantzel's theorem. A real number x is constructible if and only if there exist quadratic extensions

(K0 = Q)  K1  …  Kc such that x  Kc.
Each of the field extensions is quadratic i.e. [Ki + 1: Ki] = 2. In other words, each extension is a quadratic extension of the preceding one: Ki+1 = Ki( 𝑑𝑖) for some di  Ki.

Corollary of Wantzel's theorem. Any real constructible number is an algebraic number on Q whose algebraic degree is of the form 2 n , n ≥ 0.

III.RESOLUTION

The general principle of resolution of the graph-based methods is to find a process of incremental construction of the geometric figure using at each stage a drawing with the rule and the compass.

Various techniques have been proposed to achieve this goal. These methods for solving constrained geometric problems can be divided into two main categories, namely top-down methods and bottom-up methods.

Top-down methods proceed by a recursive decomposition of the initial constraint graph until we arrive at so-called elementary (soluble in one step) graphs whose resolution is trivial. The actual construction process proceeds in the opposite direction to the decomposition process.

Bottom-up methods identify the elementary graphs and proceed by successive groupings by elementary rules until obtaining the initial graph. By fixing for example two geometric entities in the 2D space, one proceeds by successive addition of entities attached to the figure fixed by a number of edges equivalent to their degree of freedom.

For example, a constrained design and its corresponding constraint graph is shown in figure 7. 

IV. SOLUBLE GRAPHS AND CONSTRUCTIONS WITH RULER AND COMPASS

The graph-based methods generally solve well geometric designs constructible with ruler and compass, but stumble on certain configurations whose constraint graph cannot be decomposed. We must, however, distinguish between decomposable constraints graphs and constructions which can be drawn with the rule and with the compass, two concepts often mistakenly assimilated. Indeed, some authors hastily assert, like [START_REF] Owen | Algebraic solution for geometry from dimensional constraints[END_REF] and [START_REF] Lee | A hybrid approach to geometric constraint solving with graph analysis and reduction[END_REF], that any configuration that cannot be solved by their respective solvers cannot be drawn with ruler and compass. The following example (Ait-Aoudia, 1994) gives a counter-example to this assertion. Let the quadrilateral ABCD given by its four distances and an angle between two opposite sides AD and BC (FIG. 7a). The corresponding constraint graph is given in To further illustrate this remark, we take two famous examples constructible with ruler and compass and whose corresponding constraint graphs are not resolved by the aforementioned methods.

The first example is the Cramer-Castillon problem illustrated in figure 9 and whose statement is "given a circle  of center O and of radius R and three points A, B and C, build, using only the ruler and the compass, a triangle MNP inscribed in the circle and whose sides pass respectively by the points A, B and C ". The corresponding constraint graph is given in Figure 10. Constraint solvers cannot solve these graphs and declare them non-constructible to rule and compass. This false observation comes from the fact that the non-trivial intermediate constructs indispensable to the rule and compass construction process are not materialized in the constraint graph.

V. REDUCIBILITY OF CONSTRAINT GRAPHS

This clarification being made, we will distinguish two classes of configurations that cannot be solved with graph-based methods: i. Partially reducible graphs: these configurations can be solved partially but not entirely. In this type of graph decomposable sub-graphs can be detected, but global recombination is impossible with basic construction rules. An example of such a graph is given by the following figure.

Vertices represent points and edges are distance constraints. We can detect both triangles but the overall resolution is impossible. ii. Irreducible graphs: these configurations are totally non decomposable. We will designate them by N-IR-Graph, N denoting the number of geometric entities or vertices of the graph. In this type of graph no decomposition is possible. A 6-IR-Graph, with vertices representing points and edges representing distance constraints, is given in FIG. 14. Irreducible graphs for N ranging from 6 to 100 and generated by Moussaoui et al. (2016) are given in (Moussaoui & Ait-Aoudia, 2016) . 

VI. CONCLUSION

The configurations solved by the graph-based methods are figures constructible with the ruler and the compass. These methods have the advantage of being able to provide a geometric explanation to the user during the resolution phase. On the other hand, they fail on configurations constructible with the ruler and the compass and whose intermediate stages of construction are not materialized in the constraint graph. The same goes for irreducible graphs where no decomposition is possible. It is then necessary to have an algorithm able to explain the failure of the resolution and to switch on a numerical resolution [START_REF] Ait-Aoudia | Numerical solving of geometric constraints by bisection: a distributed approach[END_REF]. Constructability tests on the rule and the compass of certain configurations are given by [START_REF] Gao | Solving geometric constraint systems. II. A symbolic approach and decision of Rc-constructibility[END_REF] and [START_REF] Schreck | Automatic Constructibility Checking of a Corpus of Geometric Construction Problems[END_REF].
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 56 Figure 5. An under-constrained design (a), with the corresponding constraint graph (b).
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