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Abstract

We study integrals of the form
∫

Ω
f (dω1, . . . , dωm) , where m ≥ 1 is

a given integer, 1 ≤ ki ≤ n are integers and ωi is a (ki − 1)-form for all
1 ≤ i ≤ m and f :

∏m
i=1 Λki (Rn) → R is a continuous function. We

introduce the appropriate notions of convexity, namely vectorial ext. one
convexity, vectorial ext. quasiconvexity and vectorial ext. polyconvexity.
We prove weak lower semicontinuity theorems and weak continuity the-
orems and conclude with applications to minimization problems. These
results generalize the corresponding results in both classical vectorial cal-
culus of variations and the calculus of variations for a single differential
form.

Keywords: calculus of variations, quasiconvexity, polyconvexity, exterior con-
vexity, differential form, wedge products, weak lower semicontinuity, weak con-
tinuity, minimization.

2010 Mathematics Subject Classification: 49-XX.

1. Introduction

In this article, we study integrals of the form∫
Ω

f (dω1, . . . , dωm) ,

where Ω ⊂ Rn is open and bounded, m ≥ 1 is a given integer, 1 ≤ ki ≤ n are
integers and ωi is a (ki − 1)-form for all 1 ≤ i ≤ m and f :

∏m
i=1 Λki (Rn)→ R

is a continuous function. When m = 1, this problem reduces to the study of the
integrals ∫

Ω

f (dω) ,
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which was studied systematically in Bandyopadhyay-Dacorogna-Sil [4]. On the
other hand, when ki = 1 for all 1 ≤ i ≤ m, the problem can be identified with
the study of the integrals ∫

Ω

f (∇u) ,

when u : Ω ⊂ Rn → Rm is an Rm-valued function, which is the classical problem
of the calculus of variations, where m = 1 is called the scalar case and m > 1
is called the vectorial case. Thus the study of the integrals

∫
Ω
f (dω1, . . . , dωm)

unifies the classical calculus of variations and the calculus of variations for a
single differential form under a single framework.

The convexity properties of f plays a crucial role. Generalizing the notions
introduced in Bandyopadhyay-Dacorogna-Sil [4], here we introduce the follow-
ing terminology: vectorial ext. one convexity, vectorial ext. quasiconvexity and
vectorial ext. polyconvexity. These notions play analogous roles of the classical
notions of rank one convexity, quasiconvexity and polyconvexity (see, for ex-
ample Dacorogna [8]) respectively and reduce to precisely those notions in the
special case when ki = 1 for all 1 ≤ i ≤ m. The characterization theorem for
vectorially ext. quasiaffine functions, obtained for the first time in Sil [25], is
proved. As a corollary, this gives a new proof of the celebrated characterization
theorem of Ball [2] for quasiaffine functions in the classical case.

The necessity and sufficiency of vectorial ext. quasiconvexity of the map
(ξ1, . . . , ξm) 7→ f(x, ξ1, . . . , ξm), with usual power-type growth condition on f ,
for the sequential weak lower semicontinuity of integrals of the form∫

Ω

f (x, dω1, . . . , dωm) ,

in the larger space W d,p(Ω; Λk−1) is shown, with an additional assumption on
traces if pi = 1 but ki 6= 1 for some 1 ≤ i ≤ m. . Unlike the classical calculus
of variations, in general, W d,p, instead of W 1,p, is the relevant space from the
point of view of coercivity. A counterexample shows the result to be optimal in
the sense that the semicontinuity result is false if we allow explicit dependence
on ωis in general. This failure is essentially due to the lack of Sobolev inequality
in W d,p.

Equivalence of vectorial ext. quasiaffinity with sequential weak continuity
of the integrals ∫

Ω

f (dω1, . . . , dωm) ,

on W d,p(Ω; Λk−1) is proved. Sufficiency part of this result however has es-
sentially been obtained in Robbin-Rogers-Temple [23]. In the spirit of the dis-
tributional Jacobian determinant in the classical case, two distinct notions of
distributional wedge product of exact forms are introduced, one generalizing
Brezis-Nguyen [5] and the other following Iwaniec [15]. Distributional weak
convergence results for such products are proved.
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Existence theorems for minimization problems for vectorially ext. quasi-
convex and vectorially ext. polyconvex functions, with possible explicit x-
dependence are obtained. A counterexample is given to show that minimizer
might not exist in general if we allow the integrand to depend explicitly on ωi.

This achieved unification also both clarifies and raises a number of interesting
points, which merit further study.

• The so-called ‘divergence structure’ and cancellations of the determinants,
giving rise to improved integrability and weak continuity, is well-known in
the classical calculus of variations. It has been exploited in various con-
texts, namely nonlinear elasticity (beginning with Ball[2]), theory of ‘com-
pensated compactness’ (Coifman-Lions-Meyer-Semmes [6], DiPerna [10],
Murat[22], Tartar[26]), theory of quasiconformal maps and the associated
Beltrami fields (Iwaniec [14], Iwaniec-Sbordone [17]), very weak solutions
of PDEs (Sbordone [24]) etc. The unified framework views these ideas as
central to the calculus of variations as a whole and puts these ideas in
their most general and natural setting - the exterior algebra. By isolating
and clarifying the fundamental core of these ideas, which already proved
to be immensely powerful in myriad contexts, the unification can poten-
tially open doorways to new advances in nonlinear analysis, especially in
a geometric setting.

• On the other hand, from the unified perspective, our ability to settle min-
imization problems when the integrand have quite general explicit depen-
dence on the ωis is a feature specific to the classical calculus of variations
and does not extend beyond it. This failure, however, highlights another
very fundamental issue, the so-called ‘gauge invariance’ of the minimiza-
tion problem. Even when m = 1 but k > 1, the integrand and thus the

minimization problem for

∫
Ω

f(x, dω) is invariant under translation by

the infinite dimensional subspace of closed (k − 1)-forms with vanishing
boundary values. The lack of coercivity on W 1,p, unavailability of Sobolev
inequality in W d,p, the space on which the functional is coercive and the
counterexamples to both the semicontinuity and the existence results when
general explicit dependence on ω is allowed are all manifestations of this
invariance. Also, the crucial fact which allows us to derive existence of
minimizers in W 1,p is essentially a ‘gauge fixing procedure’ (see lemma
6.3). In the general setting of gauge field theories, Uhlenbeck [27] proved
a gauge fixing result to study Yang-Mills fields, where the energy func-
tional is convex. A better understanding of the interplay between gauge
invariance issues and the introduced convexity notions will likely serve as
a stepping stone to generalizations of gauge field theories with non-convex
energies.

The rest of the article is organized as follows. Section 2 collects all the
notations used throughout the article. Section 3 introduces the convexity no-
tions, derives some basic properties and proves the characterization theorem
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for vectorially quasiaffine functions. Section 4 and Section 5 discuss sequential
weak lower semicontinuity and sequential weak continuity results, respectively.
Section 6 discusses existence theorems for vectorially ext. quasiconvex and vec-
torially ext. polyconvex integrands.

2. Notations

We gather here the notations which we use throughout this article. We reserve
boldface english or greek letters to denote m-tuples of integers, real numbers,
exterior forms etc as explained below.

1. Let m,n ≥ 1 be integers.

• ∧, y , 〈 , 〉 and ∗ denote the exterior product, the interior product,
the scalar product and the Hodge star operator , respectively.

• k stands for an m-tuple of integers, k = (k1, . . . , km), where 1 ≤ ki ≤
n for all 1 ≤ i ≤ m, where m ≥ 1 is a positive integer. We write

Λk(Rn) ( or simply Λk) to denote the Cartesian product

m∏
i=1

Λki (Rn),

where Λki (Rn) denotes the vector space of all alternating ki-linear
maps f : Rn × · · · × Rn︸ ︷︷ ︸

ki-times

→ R. For any integer r, we also employ the

shorthand Λk+r to stand for the product

m∏
i=1

Λki+r (Rn) . We denote

elements of Λk by boldface greek letters, except α, which we reserve
for multiindices (see below). For example, we write ξ ∈ Λk to mean
ξ = (ξ1, . . . , ξm) is an m-tuple of exterior forms, with ξi ∈ Λki(Rn) for

all 1 ≤ i ≤ m. We also write |ξ| =

(
m∑
i=1

|ξi|2
) 1

2

. In general, boldface

greek letters always mean an m-tuple of the concerned objects.

• If k is an m-tuple as defined above, we reserve the boldface greek
letter α for a multiindex, i.e an m-tuple of integers (α1, . . . , αm)

with 0 ≤ αi ≤
[
n
ki

]
for all 1 ≤ i ≤ m. We write |α| and |kα| for the

sums

m∑
i=1

αi and

m∑
i=1

kiαi, respectively.

• For any k and α, as defined above, such that 1 ≤ |kα| ≤ n, we write
ξα for the wedge product

ξα1
1 ∧ . . . ∧ ξαmm = ξ1 ∧ · · · ∧ ξ1︸ ︷︷ ︸

α1-times

∧ . . . ∧ ξm ∧ · · · ∧ ξm︸ ︷︷ ︸
αm-times

∈ Λ|kα|(Rn).

Clearly, if αi = 0 for some 1 ≤ i ≤ m, ξi is absent from the product.
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• Let k and α be as defined above. Then for any ξ ∈ Λk and for any
integer 1 ≤ s ≤ n, Ts(ξ) stands for the vector with components ξα,
where α varies over all possible choices such that |α| = s, as long as
there is at least one such non-trivial wedge power. As an example, if
m = 3, then we immediately see that

T1(ξ) = (ξ1, ξ2, ξ3) ,

T2(ξ) =
(
ξ2
1 , ξ1 ∧ ξ2, ξ1 ∧ ξ3, ξ2

2 , ξ2 ∧ ξ3, ξ2
3

)
etc.

N(k) stands for the largest integer s for which there is at least one
such non-trivial wedge power, i.e

N(k) = max {s ∈ N : ∃α with |α | = s such that ξα 6= 0

for some ξ ∈ Λk
}
.

T (ξ) stands for the vector T (ξ) =
(
T1(ξ), . . . , TN(k)(ξ)

)
, whose num-

ber of components is denoted by τ(n,k), i.e T (ξ) ∈ Rτ(n,k).

2. Let p = (p1, . . . , pm) where 1 ≤ pi ≤ ∞ for all 1 ≤ i ≤ m. Let Ω ⊂ Rn
be open, bounded and smooth. Let ν = (ν1, . . . , νn) denote the outer

normal on ∂Ω, identified with the 1-form ν =

n∑
i=1

νie
i. Note that ν used as

a subscript or superscript still denotes just an index and not the normal.
There is little chance of confusion since the intended meaning is always
clear from the context.

• Let 0 ≤ k ≤ n− 1 be an integer and 1 ≤ p ≤ ∞. Then we define the
following spaces.

W d,p(Ω; Λk) =
{
ω ∈ Lp(Ω; Λk), dω ∈ Lp(Ω; Λk+1)

}
,

W d,p
T (Ω; Λk) =

{
ω ∈ Lp(Ω; Λk), dω ∈ Lp(Ω; Λk+1), ν ∧ ω = 0 on ∂Ω

}
,

W d,p
N (Ω; Λk) =

{
ω ∈ Lp(Ω; Λk), dω ∈ Lp(Ω; Λk+1), νyω = 0 on ∂Ω

}
,

and similarly the spaces W 1,p
T (Ω; Λk) and W 1,p

N (Ω; Λk). Also, we de-
fine,

W d,p
δ,T (Ω; Λk) =

{
ω ∈W d,p

T (Ω; Λk) : δω = 0 in Ω
}
,

and similarly W 1,p
δ,T (Ω; Λk). We also denote harmonic k-fields, har-

monic k-fields with vanishing tangential component on the bound-
ary and harmonic k-fields with vanishing normal component on the
boundary by the symbols H(Ω,Λk),HT (Ω,Λk) and HN (Ω,Λk), re-
spectively.

• We define the spaces Lp(Ω,Λk), W 1,p(Ω,Λk), W d,p(Ω,Λk), and also

the spacesW 1,p
0 (Ω,Λk),W d,p

T (Ω,Λk),W d,p
δ,T (Ω,Λk) etc, to be the cor-

responding product spaces. E.g.

W d,p(Ω,Λk) =

m∏
i=1

W d,pi(Ω,Λki).
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They are obviously also endowed with the corresponding product
norms. When pi =∞ for all 1 ≤ i ≤ m, we denote the corresponding
spaces by L∞ , W 1,∞ etc.

• In the same manner, ων ⇀ ω in W d,p
(
Ω; Λk−1

)
will stand for a

shorthand of

ωνi ⇀ ωi in W d,pi
(
Ω; Λki−1

)
(
∗
⇀ if pi =∞),

for all 1 ≤ i ≤ m, and f (dων) ⇀ f (dω) in D′(Ω) will mean

f (dων1 , . . . , dω
ν
m) ⇀ f (dω1, . . . , dωm) in D′(Ω).

3. Notions of Convexity

3.1. Definitions

We start with the different notions of convexity and affinity. From here onwards,
we are going to employ the boldface multiindex notations quite freely (Section
2 lists in detail all the notations that are employed).

Definition 3.1 Let 1 ≤ ki ≤ n for all 1 ≤ i ≤ m and f :

m∏
i=1

Λki (Rn)→ R.

(i) We say that f is vectorially ext. one convex, if the function

g : t 7→ g (t) = f (ξ1 + t α ∧ β1, ξ2 + t α ∧ β2, . . . , ξm + t α ∧ βm)

is convex for every collection of ξi ∈ Λki , 1 ≤ i ≤ m, α ∈ Λ1 and βi ∈ Λki−1

for all 1 ≤ i ≤ m. If the function g is affine we say that f is vectorially ext.
one affine.

(ii) A Borel measurable and locally bounded function f is said to be vectori-
ally ext. quasiconvex, if for every bounded open set Ω,

1

|Ω|

∫
Ω

f (ξ1 + dω1(x), ξ2 + dω2(x), . . . , ξm + dωm(x)) ≥ f (ξ1, ξ2, . . . , ξm)

for every collection of ξi ∈ Λki and ωi ∈ W 1,∞
0

(
Ω; Λki−1

)
with 1 ≤ i ≤ m. If

equality holds, we say that f is vectorially ext. quasiaffine.

(iii) We say that f is vectorially ext. polyconvex, if there exists a convex
function F such that

f (ξ) = F (T (ξ)) ,

where T (ξ) stands for the vector with components ξα, where α varies over all
possible choices such that 1 ≤ |kα| ≤ n. (see section 2 for the notations). If F
is affine, we say that f is vectorially ext. polyaffine.
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Remark 3.2 (i) The abbreviation ext. stands for exterior, which refers to the
exterior product in the first and third definitions and for the exterior derivative
for the second one.

(ii) When m = 1, the notions of vectorial ext. polyconvexity, vectorial ext.
quasiconvexity and vectorial ext. one convexity reduce to the ones introduced
in [4], namely, ext. polyconvexity, ext. quasiconvexity and ext. one convexity
respectively.

Remark 3.3 The definition of vectorial ext. quasiconvexity already appeared
in Iwaniec-Lutoborski [16], which the authors simply called quasiconvexity. In
the same article, the authors also introduce another convexity notion, which they
called polyconvexity. But the definition of polyconvexity introduced in Iwaniec-
Lutoborski [16] is not equivalent to vectorial ext. polyconvexity. See remark 3.8
for more on this.

Remark 3.4 When ki = 1 for all 1 ≤ i ≤ m, for each ξ ∈ Λk, by identifying
ξi ∈ Λ1 as the i-th row, ξ can be written as a m× n matrix. With this identifi-
cation, the notions of vectorial ext. polyconvexity, vectorial ext. quasiconvexity
and vectorial ext. one convexity are exactly the notions of polyconvexity, quasi-
convexity and rank one convexity, respectively.

By requiring these properties to hold for each factor while the others are
kept fixed, we can define the corresponding ‘separate convexity’ notions.

Definition 3.5 Let 1 ≤ ki ≤ n for all 1 ≤ i ≤ m and f :

m∏
i=1

Λki (Rn)→ R.

(i) We say that f is separately ext. one convex or ext. one convex with
respect to each factor, if for every 1 ≤ i ≤ m, the function gi : Λki → R, given
by,

gi(ξ) = f(η1, . . . , ηi−1, ξ, ηi+1, . . . , ηm)

is ext. one convex for every collection of ηj ∈ Λkj , 1 ≤ j ≤ m, j 6= i. We say f
is separately ext. one affine if gis are ext. one affine.

(ii) A Borel measurable and locally bounded function f is said to be sepa-
rately ext. quasiconvex or ext. quasiconvex with respect to each factor, if for
every 1 ≤ i ≤ m, the function gi : Λki → R, given by,

gi(ξ) = f(η1, . . . , ηi−1, ξ, ηi+1, . . . , ηm)

is ext. quasiconvex for every collection of ηj ∈ Λkj , 1 ≤ j ≤ m, j 6= i. We say
f is separately ext. quasiaffine if gis are ext. quasiaffine.

(iii) We say that f is separately ext. polyconvex or ext. polyconvex with
respect to each factor, if for every 1 ≤ i ≤ m, the function gi : Λki → R, given
by,

gi(ξ) = f(η1, . . . , ηi−1, ξ, ηi+1, . . . , ηm)

is ext. polyconvex for every collection of ηj ∈ Λkj , 1 ≤ j ≤ m, j 6= i. We say f
is separately ext. polyaffine if gis are ext. polyaffine.
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Note that the notions of separately ext. one affine, separately ext. quasiaffine
and separately ext. polyaffine are all equivalent. It is easy to see from the
definitions, using the relations between ext. polyconvexity, ext. quasiconvexity
and ext. one convexity (cf. Theorem 2.8(i) in [4]), that

• f vectorially ext. one convex ⇒ f separately ext. one convex.

• f vectorially ext. quasiconvex ⇒ f separately ext. quasiconvex

⇒ f separately ext. one convex.

• f vectorially ext. polyconvex ⇒ f separately ext. polyconvex

⇒ f separately ext. quasiconvex

⇒ f separately ext. one convex .

Note that the notion of a separately convex function is very different. For f to
be separately convex, we require convexity with respect to each component, not
each factor. All the convexity notions above implies separate convexity of f , but
none is implied by it. As an example, the function defined by the multiplication

of all the components of all the factors, i.e f(ξ1, . . . , ξm) =
m∏
i=1

∏
I∈T ki

ξIi , is clearly

separately convex, but not separately ext. one convex and thus none of the
others as well.

As in [4], we can use Hodge duality to extend these notions of convexity to
the ones related to interior product and δ-operator. We shall discuss vectorial
ext. convexity properties only. Vectorial int. convexity notions can be handled
analogously.

3.2. Basic Properties

The different notions of vectorial ext. convexity are related as follows.

Theorem 3.6 Let f : Λk → R. Then

fconvex⇒ f vectorially ext. polyconvex ⇒ f vectorially ext. quasiconvex

⇒ f vectorially ext. one convex.

Moreover if f : Λk (Rn) → R is vectorially ext. one convex, then f is locally
Lipschitz.

Proof The proof is very similar to the proof of theorem 2.8 in [4] (see [25] for
a more detailed proof). We only mention here the essential differences. The
implication that f convex implies f vectorially ext. polyconvex is trivial.

To prove the implication,

f vectorially ext. polyconvex ⇒ f vectorially ext. quasiconvex ,
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the argument using Jensen’s inequality is exactly the same as in theorem 2.8 in
[4], as soon as we show ∫

Ω

(ξ + dω)
α

= ξαmeas (Ω) ,

for any ξ ∈ Λk, for any ω ∈W 1,∞
0 (Ω,Λk) and for any multiindex α. We prove

this using induction over |α|. The case |α| = 1 easily follows from integration
by parts. So we assume |α| > 1. Thus, there exists i such that αi ≥ 2. Now, we
have,

(ξ + dω)
α

= ξi ∧ (ξ + dω)
β

+ dωi ∧ (ξ + dω)
β

= ξi ∧ (ξ + dω)
β

+ d
[
ωi ∧ (ξ + dω)

β
]
,

where β is a multiindex with βi = αi − 1 and βj = αj for all 1 ≤ j ≤ m, i 6= j.
Since |β| = |α| − 1, integrating the above and using induction for the first
integral and integration by parts along with the fact that ωi = 0 on ∂Ω for the
second, we obtain the result.

The implication

f vectorially ext. quasiconvex ⇒ f vectorially ext. one convex,

is proved by the same arguments as in theorem 2.8 in [4], using lemma 2.7 in
[4] for each factor.

The fact that f is locally Lipschitz follows once again from the observation that
any separately ext. one convex function is separately convex.

We can have another formulation of vectorial ext. polyconvexity. The proof of
which is similar to Proposition 2.14 in [4] and is omitted.

Proposition 3.7 Let f : Λk → R. Then, the function f is ext. polyconvex if
and only if, for every ξ ∈ Λk, there exist cα = cα(ξ) ∈ Λ|kα|(Rn), for every α
with 0 ≤ |kα| ≤ n, such that

f (η) ≥ f (ξ) +
∑
α

〈cs (ξ) ;ηα − ξα〉 , for every η ∈ Λk.

Remark 3.8 Comparison with the definition of polyconvexity introduced in
definition 10.1 in Iwaniec-Lutoborski [16], one easily sees that their definition
allows only the case αi ∈ {0, 1} for all 1 ≤ i ≤ m. We remark that unless kis
are all odd integers, these two classes of polyconvex functions do not coincide
and ours is strictly larger. For example, identifying R with Λn, the function
f1 : Λk1 × Λk2 → R given by,

f1(ξ1, ξ2) = 〈c; ξ1 ∧ ξ2〉 for every ξ1 ∈ Λk1 , ξ2 ∈ Λk2

where c ∈ Λ(k1+k2) is a constant form, is polyaffine in the sense of Iwaniec-
Lutoborski [16] and also vectorially ext. polyaffine. However, the function
f2 : Λk1 × Λk2 → R given by,

f2(ξ1, ξ2) = 〈c; ξ1 ∧ ξ1〉 for every ξ1 ∈ Λk1 , ξ2 ∈ Λk2
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where c ∈ Λ2k1 is a constant, is vectorially ext. polyaffine, but not polyaffine
in the sense of Iwaniec-Lutoborski [16], unless k1 is odd or 2k1 > n. Note that
the crucial point is the self-wedge product, not the fact that f2 is independent of
ξ2. f1 + f2 is also vectorially ext. polyaffine, but not polyaffine in the sense of
Iwaniec-Lutoborski [16]. Note also that it is easy to see, by integrating by parts
that f1, f2 and f1 + f2 are all vectorially ext. quasiaffine and hence are also
quasiaffine in the sense of Iwaniec-Lutoborski [16]. Also, when m = 1, i.e there
is only one differential form, reducing the problem to the functionals having the
form

∫
Ω
f(dω), their definition of polyconvexity coincide with usual convexity.

On the other hand, when m = 1, vectorial ext. polyconvexity reduces to ext.
polyconvexity, which is much weaker than convexity and has been discussed in
detail in [4].

3.3. The quasiaffine case

We now prove the basic characterization theorem for vectorially ext. quasiaffine
functions. In the special case when ki = 1 for all 1 ≤ i ≤ m, this immediately
implies classical theorem of Ball [2] with a new proof. In a sense, this theorem
also ‘explains’ the appearance of determinants and adjugates in the classical
theorem. Determinants and adjugates appear as they are precisely the ‘wedge
products’ in the classical case.

Theorem 3.9 Let f : Λk → R. The following statements are then equivalent.

(i) f is vectorially ext. polyaffine.

(ii) f is vectorially ext. quasiaffine.

(iii) f is vectorially ext. one affine.

(iv) There exist cα ∈ Λ|kα|(Rn), for every α = (α1, . . . , αm) such that

0 ≤ αi ≤
[
n
ki

]
for all 1 ≤ i ≤ m and 0 ≤ |kα| ≤ n, such that for every ξ ∈ Λk,

f (ξ) =
∑
α,

0≤|kα|≤n

〈cα; ξα〉 .

Remark 3.10 If ki = 1 for all 1 ≤ i ≤ m, then this theorem recovers the
characterization theorem for quasiaffine functions in classical vectorial calculus
of variation as a special case. Indeed, let X ∈ Rm×n be a matrix, then setting

ξi =

n∑
j=1

Xije
j for all 1 ≤ i ≤ m, we recover exactly the classical results (cf.

Theorem 5.20 in [8]).

Proof (i) ⇒ (ii) ⇒ (iii) follows from Theorem 3.6. (iv) ⇒ (i) is immediate
from the definition of vectorial ext. polyconvexity. So we only need to show
(iii)⇒ (iv).

We show this by induction on m. Clearly, for m = 1, this is just the charac-
terization theorem for ext. one affine functions, given in theorem 3.3 in [4]. We
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assume the result to be true for m ≤ p− 1 and show it for m = p. Now since f
is vectorially ext. one affine, it is separately ext. one affine and using ext. one
affinity with respect to ξp, keeping the other variables fixed, we obtain,

f (ξ) =

[ nkp ]∑
s=1

〈cs(ξ1, . . . , ξp−1); ξsp〉,

where for each 1 ≤ s ≤ [ nkp ], the functions cs :

p−1∏
i=1

Λki → Λskp are such that

the map (ξ1, . . . , ξp−1) 7→ f (ξ1, . . . , ξp−1, ξp) is vectorially ext. one affine for
any ξp ∈ Λkp . Arguing by degree of homogeneity, this implies that for each 1 ≤
s ≤ [ nkp ], every component cIS is vectorially ext. one affine, i.e (ξ1, . . . , ξp−1) 7→
cIs(ξ1, . . . , ξp−1) is vectorially ext. one affine for any I ∈ Tskp . Applying the
induction hypothesis to each of these components and multiplying out, we indeed
obtain the desired result.

Remark 3.11 Note that since the proof of Theorem 3.3 in [4] does not use the
classical result about quasiaffine functions, this really yields a new proof even in
the special case of ki = 1 for all 1 ≤ i ≤ m.

4. Weak lower semicontinuity

Now we investigate the relationship between vectorial ext. quasiconvexity of the
integrand and sequential weak lower semicontinuity of the integral functionals.

4.1. Necessary condition

Theorem 4.1 (Necessary condition) Let Ω ⊂ Rn be open, bounded. Let
f : Ω × Λk−1 × Λk → R be a Carathéodory function satisfying, for almost all
x ∈ Ω and for all (ω, ξ) ∈ Λk−1 ×Λk,

|f(x,ω, ξ)| 6 a(x) + b(ω, ξ), (1)

where a ∈ L1 (Rn), b ∈ C
(
Λk−1 ×Λk

)
is non-negative. Let the functional

I : W d,∞ (Ω; Λk−1
)
→ R, defined by

I(ω) :=

∫
Ω

f (x,ω(x),dω(x)) dx, for all ω ∈W d,∞ (Ω; Λk−1
)
,

be weak ∗ lower semicontinuous in W d,∞ (Ω; Λk−1
)
. Then, for almost all x0 ∈

Ω and for all ω0 ∈ Λk−1, ξ0 ∈ Λk and φ ∈W d,∞ (D; Λk
)
,∫

D

f (x0,ω0, ξ0 + dφ(x)) dx > f (x0,ω0, ξ0) ,

where D = (0, 1)n ⊂ Rn. In particular, ξ 7→ f (x,ω, ξ) is vectorially ext.
quasiconvex for a.e x ∈ Ω and for every ω ∈ Λk−1.
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Remark 4.2 Since I being weak ∗ lower semicontinuous in W d,∞ (Ω; Λk−1
)

is

a necessary condition for I to be weak lower semicontinuous in W d,p
(
Ω; Λk−1

)
for any p, f being vectorially ext. quasiconvex is a necessary condition for weak
lower semicontinuity in W d,p

(
Ω; Λk−1

)
as well.

The proof of this result is a long but straightforward adaptation of the classical
proof (due to Acerbi-Fusco [1]) for the gradient case (cf. Theorem 3.15 in [8])
and is omitted. See [25] for a detailed proof.

4.2. Lower semicontinuity for quasiconvex functions with-
out lower order terms

We now turn to sufficient conditions for sequential weak lower semicontinuity.
We begin by defining the appropriate growth conditions.

Definition 4.3 (Growth condition I) Let Ω ⊂ Rn be open, bounded and let
f : Λk → R. Let p be given.

f is said to be of growth (Cp), if for every ξ = (ξ1, . . . , ξm) ∈ Λk, f satisfies,

−α

(
1 +

m∑
i=1

Gli(ξi)

)
≤ f(ξ) ≤ α

(
1 +

m∑
i=1

Gui (ξi)

)
, (Cp)

where α > 0 is a constant and the functions Glis in the lower bound and the
functions Gui s in the upper bound has the following form:

• If pi = 1, then,

Gli(ξi) = Gui (ξi) = αi|ξi| for some constant αi ≥ 0.

• If 1 < pi <∞, then,

Gli(ξi) = αi|ξi|qi and Gui (ξi) = αi|ξi|pi ,

for some 1 ≤ qi < pi and for some constant αi ≥ 0.

• If pi =∞, then,

Gli(ξi) = Gui (ξi) = ηi (|ξi|) .

for some nonnegative, continuous, increasing function ηi.

Now we need a lemma which is essentially an analogue of the result relating
quasiconvexity with W 1,p-quasiconvexity in the classical case (see Ball-Murat
[3]) and is proved in a similar manner.

Lemma 4.4 (W d,p-quasiconvexity) Let Ω ⊂ Rn be open, bounded, smooth.
Let f : Λk → R satisfy, for every ξ = (ξ1, . . . , ξm) ∈ Λk,

f(ξ) ≤ α

(
1 +

m∑
i=1

Gui (ξi)

)
,

where α > 0 is a constant and the functions Gui s are as defined above, with a
given p. Then the following are equivalent.
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(i) f is vectorially ext. quasiconvex.

(ii) For every q such that pi ≤ qi ≤ ∞ for every i = 1, . . . ,m, we have,

1

meas(Ω)

∫
Ω

f(ξ + dφ) ≥ f(ξ),

for every φ ∈W d,q
T

(
Ω; Λk−1

)
.

Proof For any φ ∈ W d,q
T

(
Ω; Λk−1

)
, we find {φν} ⊂ C∞c

(
Ω; Λk−1

)
such that

{φν} is uniformly bounded in W d,p
(
Ω; Λk−1

)
and dφν → dφ for a.e x ∈ Ω.

Since f is continuous, applying Fatou’s lemma we obtain,

lim inf
ν→∞

∫
Ω

[
α

(
1 +

m∑
i=1

Gui (φνi )

)
− f(ξ + dφν)

]

≥
∫

Ω

[
α

(
1 +

m∑
i=1

Gui (φi)

)
− f(ξ + dφ)

]
.

Since lim
ν→∞

∫
Ω

(
1 +

m∑
i=1

Gui (φνi )

)
=

∫
Ω

(
1 +

m∑
i=1

Gui (φi)

)
, by dominated con-

vergence theorem, vectorial ext. quasiconvexity of f yields the result.

We now generalize an elementary proposition from convex analysis in this
setting. The proof is straightforward and is just a matter of iterating the argu-
ment in the proof of Proposition 2.32 in [8]. So we provide only a brief sketch.

Proposition 4.5 Let p = (p1, . . . , pm) with 1 ≤ pi <∞ for all 1 ≤ i ≤ m and
let Ω ⊂ Rn be open, bounded, smooth. Let f : Λk → R be separately convex and
satisfy, for every ξ = (ξ1, . . . , ξm) ∈ Λk,

|f(ξ)| ≤ α

(
1 +

m∑
i=1

|ξi|pi
)
,

where α > 0 is a constant. Then there exist constants βi > 0, i = 1, . . . ,m such
that

|f(ξ)− f(ζ)| ≤
m∑
i=1

βi

1 +

m∑
j=1

(
|ξj |

pj

p′
i + |ζj |

pj

p′
i

) |ξi − ζi|,
for every ξ = (ξ1, . . . , ξm), ζ = (ζ1, . . . , ζm) ∈ Λk, where p′i is the Hölder

conjugate of exponent of pi.

Proof We know that for any convex function g : R → R, we have, for every
λ > µ > 0 and for every t ∈ R,

g(t± µ)− g(t)

µ
≤ g(t± λ)− g(t)

λ
.

13



Now let

gIi (t) := f(t, ξ̃
i,I

),

where ξ̃
i,I

is the vector whose components are precisely all the components of

ξ except ξIi . Choosing µ = ζIi − ξIi and λ = 1 + |ξi|+ |ζi|+
∑
j 6=i

|ξj |
pj
pi , we obtain,

g(ζIi )− g(ξIi ) = g(ξIi + µ)− g(ξIi ) ≤ µg(ξIi + λ)− g(ξIi )

λ
.

The same can be done for g(ξIi )−g(ζIi ) as well. Now, using the growth conditions
and writing f(ξ)− f(ζ) as a sum of differences, the estimate follows.

Remark 4.6 A similar looking inequality was claimed in Iwaniec-Lutoborski
([16], (10.3)), which however is easily seen to be false. Take for example, the
function W : Λk ×Λn−k → Λn, defined by W (ξ, η) = ξ ∧ η. It is easy to see that

|W (ξ, η)| ≤ C̃
(
|ξ|2 + |η|2

)
, for some constant C̃ > 0. Now, choose ξ1, ξ2 ∈ Λk

and η ∈ Λn−k such that (ξ1 − ξ2) ∧ η 6= 0. Now, for any λ ∈ R, applying the
inequality for the points (ξ1, λη) and (ξ2, λη) gives

|λ| |(ξ1 − ξ2) ∧ η| ≤ C (|ξ1|+ |ξ2|)(2−1) |ξ1 − ξ2| .

Letting |λ| → ∞, it is clear that no such constant C > 0 can exist.

This proposition can be easily generalized to cover the case where some of the
pis can be ∞ as well.

Proposition 4.7 Let 0 ≤ r ≤ m be an integer. Let p = (p1, . . . , pm) where
1 ≤ pi < ∞ for all 1 ≤ i ≤ r and pr+1 = . . . = pm = ∞. Let Ω ⊂ Rn be open,
bounded, smooth. Let f : Λk → R be separately convex and satisfy, for every
ξ = (ξ1, . . . , ξm) ∈ Λk,

|f(ξ)| ≤ α

(
1 +

r∑
i=1

|ξi|pi +

m∑
i=r+1

ηi (|ξi|)

)
,

where α > 0 is a constant and ηis are some nonnegative, continuous, increasing
functions. Let

Q := [−C,C]

m∑
i=r+1

(nki) ⊂⊂
m∏

i=r+1

Λki

be a cube and define
K := Λk1 × . . .× Λkr ×Q.

Then there exist constants βi = βi(K) > 0, i = 1, . . . ,m such that

|f(ξ)− f(ζ)| ≤
r∑
i=1

βi

1 +

r∑
j=1

(
|ξj |

pj

p′
i + |ζj |

pj

p′
i

) |ξi − ζi|
+

m∑
i=r+1

βi

1 +

r∑
j=1

(|ξj |pj + |ζj |pj )

 |ξi − ζi|, (2)
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for every ξ = (ξ1, . . . , ξm), ζ = (ζ1, . . . , ζm) ∈ K, where p′i is the Hölder
conjugate of exponent of pi.

Remark 4.8 Clearly, when r = m, the last term and when r = 0, the first
term is not present in the inequality (2). Also the assumption on the naming
of the variable is clearly not a restriction at all, since we can always relabel the
variables.

Proof We split f(ξ) − f(ζ) as a sum of f(ξ) − f(ζ1, . . . , ζr, ξr+1, . . . , ξm) and
f(ζ1, . . . , ζr, ξr+1, . . . , ξm)− f(ζ). Now the first term is estimated using propo-
sition 4.5, using the fact that ηis are bounded on [−C,C] for r + 1 ≤ i ≤ m.
For the second term, we note that for any convex function g : R → R, for any

x, y ∈ [−C,C], we have the estimate |g(x) − g(y)| ≤ 2

(
max
|t|≤C+1

|g(t)|
)
|x − y|.

Using separate convexity along with this estimate, we obtain the result.

Now we need a decomposition lemma, which lets us replace a uniformly bounded
sequence of exterior derivatives in Lp by a sequence with equiintegrable one,
upto sets of small measure.

Lemma 4.9 Let p = (p1, . . . , pm) where 1 < pi < ∞ for all 1 ≤ i ≤ m. Let
Ω ⊂ Rn be open, bounded, smooth and

ωr ⇀ ω in W d,p
(
Ω; Λk−1

)
,

Then there exist a subsequence {ωs} and a sequence {vs} ⊂ Lp
(
Ω; Λk

)
such

that {|vsi |pi} is equiintegrable and

vsi ⇀ dωi in Lpi(Ω,Λki)

for all 1 ≤ i ≤ m and

lim
s→∞

meas Ωs = 0,

where
Ωs := {x ∈ Ω : vsi (x) 6= dωsi (x) for some i ∈ {1, . . . ,m}}.

Proof Since 1 < pi < ∞ for all 1 ≤ i ≤ m, for every r, we find βr ∈
W 1,p(Ω; Λk), such that,{

dβr = dωr and δβr = 0 in Ω,

νyβr = 0 on ∂Ω,

and there exists c1 > 0 such that

‖βr‖W 1,p ≤ c1‖dωr‖Lp .

Therefore, up to the extraction of a subsequence which we do not relabel, there
exists β ∈W 1,p

(
Ω; Λk−1

)
such that

βr ⇀ β in W 1,p
(
Ω; Λk−1

)
.
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Using a well-known decomposition lemma in calculus of variations (cf. Lemma
2.15 in [13]) to find a subsequence {βs} and a sequence {us} ⊂W 1,p

(
Ω; Λk−1

)
such that {|∇usi |pi} is equiintegrable for all 1 ≤ i ≤ m and

us ⇀ β in W 1,p(Ω,Λk−1)

and lim
ν→∞

meas Ω
′

s = 0 where Ω
′

s =
m⋃
i=1

Ωis with Ωis := {x ∈ Ω : usi (x) 6= βsi (x)} ∪

{x ∈ Ω : ∇usi (x) 6= ∇βsi (x)}, for all 1 ≤ i ≤ r. Setting vs = dus proves the
lemma.

Remark 4.10 (i) In contrast to the classical case, when ki > 1 for some i,
this lemma does not allow us to replace the sequence {ωs} up to a set of small
measure.

(ii) The hypothesis of the lemma can be weakened a bit. The conclusion of the
lemma still holds if we only require dωr ⇀ dω in Lp(Ω; Λk) with the same
proof.

With lemma 4.4 at hand, using De Giorgi’s slicing technique [9] (see also
[1],[20],[21]) as in the proof of its analogue in classical case (cf. Lemma 8.7
in [8]), we can deduce the following lemma.

Lemma 4.11 Let p = (p1, . . . , pm) where 1 ≤ pi ≤ ∞ for all 1 ≤ i ≤ m.
Let D ⊂ Rn be a cube parallel to the axes. Let ξ = (ξ1, . . . , ξm) ∈ Λk. Let
f : Λk → R be vectorially ext. quasiconvex satisfying the growth condition (Cp) .
Let

φν ⇀ 0 in W d,p
(
D; Λk−1

)
(
∗
⇀ if pi =∞),

together with
φνi → 0 in L1

(
D; Λki−1

)
if pi = 1.

Then

lim inf
ν→∞

∫
D

f(ξ + dφν) ≥ f(ξ) meas(D).

Proof Note that by solving a boundary value problem as in the previous lemma,
we can assume φνi ⇀ 0 in W 1,pi for all i with 1 < pi < ∞. By compactness
of the embedding, this implies φνi → 0 in Lpi

(
D; Λki−1

)
. If pi = ∞, then by

solving the same boundary value problem for some n < q <∞, we can assume
φνi ⇀ 0 in W 1,q

(
D; Λki−1

)
. Compact embedding result then implies φνi → 0 in

L∞
(
D; Λki−1

)
. Thus, we can assume that

dφν ⇀ 0 in Lp
(
D; Λk

)
(
∗
⇀ if pi =∞),

and

φν → 0 in Lp
(
D; Λk−1

)
.

Now we choose a nested sequence of cubes, each having sides parallel to the
axes and each being compactly contained in the next. More precisely, we write
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D0 ⊂ D1 ⊂ . . . ⊂ Dµ ⊂ . . . ⊂ DM ⊂ D, where M ≥ 1 is a positive integer,

R :=
1

2
dist(D0, ∂D) and dist(D0, ∂Dµ) =

µ

M
R, for all 1 ≤ µ ≤ M. Then we

choose θµ ∈ C∞c (D), 1 ≤ µ ≤M, such that

0 ≤ θµ ≤ 1, |∇θµ| ≤
aM

R
, θµ =

{
1 if x ∈ Dµ−1

0 if x ∈ D \Dµ,

where a > 0 is a constant. We now set ωνµ = θµφ
ν ∈ W d,p

T

(
Ω; Λk−1

)
and use

lemma 4.4 to obtain,∫
D

f(ξ) ≤
∫
D

f(ξ + dωνµ(x))

=

∫
D\Dµ

f(ξ) +

∫
Dµ\Dµ−1

f(ξ + dωνµ(x)) +

∫
Dµ−1

f(ξ + dφν(x)).

This implies,∫
Dµ

f(ξ) ≤
∫
D

f(ξ+dφν(x))−
∫
D\Dµ−1

f(ξ+dφν(x))+

∫
Dµ\Dµ−1

f(ξ+dωνµ(x))

Using the growth conditions and enlarging the domain of integration to D \D0,
it is easy to see that the integral over D\Dµ−1 can be made arbitrarily small by
choosing R small enough. Growth conditions, bounds for θµ,∇θµ and uniform
bounds for φνi in W d,∞ if pi =∞ gives,∣∣∣∣∣
∫
Dµ\Dµ−1

f(ξ + dωνµ(x))

∣∣∣∣∣
≤ α

′
∫
Dµ\Dµ−1

1 +
∑
i

pi 6=∞

(
γi|ξi|pi + γ

′

i |dφνi |pi + γ
′′

i

(
aM

R

)pi
|φνi |pi

) .

Now we sum over 1 ≤ µ ≤M and since the sum of the integrals over Dµ \Dµ−1

telescopes, we get, after dividing by M,∫
D

f(ξ + dφν(x))−

(
1

M

M∑
µ=1

meas(Dµ)

)
f(ξ)

≥ −ε− α
′′

M

∫
DM\D0

1 +
∑
i

pi 6=∞

(
γ
′

i |dφνi |pi + γ
′′

i

(
aM

R

)pi
|φνi |pi

) .

We let ν →∞. Using the fact that φνi → 0 in Lpi , choosing R small enough, we
get, ∫

D

f(ξ + dφν(x))−

(
1

M

M∑
µ=1

meas(Dµ)

)
f(ξ) ≥ −ε− α

′′′

M
.
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Since meas(D0) ≤ 1
M

∑M
µ=1 meas(Dµ) ≤ meas(D), letting M → ∞ proves the

lemma.

Remark 4.12 (i) Since the lemma is essentially about changing the boundary
values of a sequence up to a set of small measure, we can replace the additional
assumption of strong convergence φνi → 0 in L1

(
D; Λki−1

)
if pi = 1, by the

assumption that φνi ⊂ W d,1
T

(
D; Λki−1

)
for pi = 1, ki > 1. In that case, we set

ωνµ,i = φνi if pi = 1 and ki > 1 and ωνµ,i = θµφ
ν
i otherwise. Rest of the proof

remains exactly the same as above.

(ii) If both ki = pi = 1, then the extra assumption of strong convergence is
automatically satisfied, thanks to compactness of the embedding.

(iii) The strong convergence assumption in L1 or the assumption of the same
boundary values, is quite common already in the classical calculus of variations if
we weaken the assumption of weak convergence of the gradients, see for example
[11], [12], also [18], [19].

Theorem 4.13 Let 0 ≤ r ≤ m be an integer. p = (p1, . . . , pm) where 1 ≤ pi <
∞ for all 1 ≤ i ≤ r and pr+1 = . . . = pm = ∞. Let Ω ⊂ Rn be open, bounded,
smooth. Let f : Λk → R be vectorially ext. quasiconvex, satisfying the growth
condition (Cp) . Let

ων ⇀ ω in W d,p
(
D; Λk−1

)
(
∗
⇀ if pi =∞),

together with,

if pi = 1, but ki 6= 1,

{
either ωνi → ωi in L1

(
D; Λki−1

)
or ωνi − ωi ∈W

d,1
T

(
D; Λki−1

)
.

Then

lim inf
ν→∞

∫
Ω

f(dων) ≥
∫

Ω

f(dω).

Remark 4.14 The theorem allows pi = 1 for some (or all) i, with the men-
tioned additional assumption if ki > 1 as well. However, even for m = 1 and
k = 1, this is not enough for minimization problems in W 1,1, as in well-known
in the classical calculus of variations. Since W 1,1 is non-reflexive, minimizing
sequences, even if uniformly bounded in W 1,1 norm, need not weakly converge
to a weak limit in W 1,1.

Proof We need to show that

lim inf
ν→∞

I(ων) ≥ I(ω),

for any sequence

ων ⇀ ω in W d,p
(
Ω; Λk−1

)
(
∗
⇀ if pi =∞).
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We divide the proof into several steps.
Step 1 First we show that it is enough to prove the theorem under the

additional hypotheses that |dωνi |pj is equiintegrable for every 1 ≤ i ≤ r. Suppose
we have shown the theorem with this additional assumption. Then for any
sequence

ων ⇀ ω in W d,p
(
Ω; Λk−1

)
,

we first restrict our attention to a subsequence, still denoted by {ων} such that
the limit inferior is realized, i.e

L := lim inf
ν→∞

∫
Ω

f (dων(x)) dx = lim
ν→∞

∫
Ω

f (dων(x)) dx.

Now we use lemma 4.9 to find, passing to a subsequence if necessary, a
sequence {vνi } ⊂ Lpi such that {|vνi |pi} is equiintegrable and

vνi ⇀ dωi in Lpi(Ω,Λki)

and

lim
ν→∞

meas Ων = 0,

where
Ων := {x ∈ Ω : vνi (x) 6= dωνi (x)},

for all 1 ≤ i ≤ r with pi > 1. Note also that if pi = 1, we can take vνi = dωνi ,
since equiintegrability follows from the weak convergence.

Now, we have, using (Cp),∫
Ω

f (dων(x)) dx ≥
∫

Ω\Ων
f
(
vν1 (x), . . . , vνr (x), dωνr+1(x), . . . , dωνr+1(x)

)
dx

−α
∫

Ων

(
C +

r∑
i=1

|dωνi |q̃i
)
,

where C is a positive constant, depending on the uniform L∞ bounds of {dωνi }
and ηis in (Cp), for all r+ 1 ≤ i ≤ m and q̃i = qi, as given in (Cp), if pi > 1 and
q̃i = 1 if pi = 1 for any 1 ≤ i ≤ m.

Using (Cp) again, we obtain,∫
Ω

f (dων(x)) ≥
∫

Ω

f
(
vν1 , . . . , v

ν
r , dω

ν
r+1, . . . , dω

ν
r+1

)
−α

∫
Ων

(
C +

r∑
i=1

(
|dωνi |q̃i + |vνi |pi

))
.

Now we have limν→∞meas Ων = 0 , {|vνi |pi} is equiintegrable by construction
and {|dωνi |q̃i} is equiintegrable since q̃i = qi < pi if pi > 1 and q̃i = 1 if pi = 1.
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Using these facts, we obtain,

L = lim
ν→∞

∫
Ω

f (dων(x)) dx ≥ lim inf
ν→∞

∫
Ω

f
(
vν1 , . . . , v

ν
r , dω

ν
r+1, . . . , dω

ν
r+1

)
≥
∫

Ω

f (dω(x)) dx,

by hypotheses. This proves our claim.

Step 2 Now by Step 1, we can assume, in addition that |dωνi |pj is equiintegrable
for every 1 ≤ i ≤ r. Now we approximate Ω by a union of cubes Ds with sides
parallel to the axes and whose edge length is 1

h , where h is an integer. We
denote this union by Hh and choose h large enough such that

meas(Ω−Hh) ≤ δ where Hh :=
⋃
Ds.

Also, we define the average of dωi over each of the cubes Ds to be,

ξis :=
1

meas(Ds)

∫
Ds

dωi ∈ Λki .

Also, let ξs :=
(
ξ1
s , . . . , ξ

m
s

)
and ξ(x) := ξsχDs(x) for every x ∈ Hh. Since as

the size of the cubes shrink to zero, dωi converges to ξi in Lpi
(
Ω; Λki

)
for each

1 ≤ i ≤ r, we obtain, by choosing h large enough,(∑
s

∫
Ds

|dωi − ξis|pi
) 1
pi

≤ C1ε, (3)

for every 1 ≤ i ≤ r. Also, by the same argument, we obtain, by choosing h large
enough, ∑

s

∫
Ds

|dωi − ξis| ≤ C2ε, (4)

for every r + 1 ≤ i ≤ m.
Now consider

I(ων)− I(ω) =

∫
Ω

[f (dων(x))− f (dω(x))] dx

= I1 + I2 + I3 + I4,

where

I1 :=

∫
Ω−Hh

[f (dων(x))− f (dω(x))] dx,

I2 :=
∑
s

∫
Ds

[f (dω + (dων − dω))− f (ξs + (dων − dω))] dx,

I3 :=
∑
s

∫
Ds

[f (ξs + (dων − dω))− f (ξs)] dx,

I4 :=
∑
s

∫
Ds

[f (ξs)− f (dω)] dx.
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Now we need to estimate I1, I2 and I4. The estimate of I1 is similar to the
classical case using the growth condition (Cp). We only show the estimate on
I2, as the estimate of I4 can be proved similarly.

Estimation of I2: Since f is vectorially ext. quasiconvex, it is separately
convex and since both {dωi + (dωνi − dωi)} and

{
ξis + (dωνi − dωi)

}
is uniformly

bounded in L∞
(
Ω; Λki

)
for every r+1 ≤ i ≤ m, using proposition 4.7, we have,

|I2| ≤
∑
s

∫
Ds

r∑
i=1

βi

1 +

r∑
j=1

(
|dωνj |

pj

p′
i + |ξjs + (dωνj − dωj)|

pj

p′
i

) |dωi − ξis|
+
∑
s

∫
Ds

m∑
i=r+1

βi

1 +

r∑
j=1

(
|dωνj |pj + |ξjs + (dωνj − dωj)|pj

) |dωi − ξis|
The terms in the first sum can be easily estimated by using Hölder inequality
and the estimate (3). Note also that the exponents

pj
p′i

are the precise exponents

for this to work. For the second sum, we have, for some positive constants β̃is,

∑
s

∫
Ds

m∑
i=r+1

βi

1 +

r∑
j=1

(
|dωνj |pj + |ξjs + (dωνj − dωj)|pj

) |dωi − ξis|
≤
∑
s

∫
Ds

m∑
i=r+1

β̃i

1 +

r∑
j=1

(
|dωνj |pj + |dωj − ξjs |pj

) |dωi − ξis|.
Now the terms of the form∑

s

∫
Ds

β̃i|dωi − ξis|

can be easily estimated using estimate (4). For the other terms, for any i, j,
r + 1 ≤ i ≤ m and 1 ≤ j ≤ r, we have,∑

s

∫
Ds

β̃i|dωj − ξjs |pj |dωi − ξis| ≤ 2β̃i‖dωi‖L∞(Ω)

∑
s

∫
Ds

|dωj − ξjs |pj . (5)

Using the estimate (3), these terms can be made as small as we please by
choosing h large enough. Now we estimate the terms of the type∑

s

∫
Ds

β̃i|dωνj |pj |dωi − ξis|.

Since {|dωνj |pj} is uniformly bounded in L1 and is equiintegrable, we know,

lim
M→∞

sup
ν

∫
Ω∩{|dωνj |

pj>M}

|dωνj |pj = 0.
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This implies, for any ε > 0, there exists M = M(ε) such that∫
Ω∩{|dωνj |

pj>M}

|dωνj |pj <
ε

2β̃i‖dωi‖L∞(Ω)

for all ν.

Thus, we have, for any i, j, r + 1 ≤ i ≤ m and 1 ≤ j ≤ r,∑
s

∫
Ds

β̃i|dωνj |pj |dωi − ξis|

=

∫
Hh∩{|dωνj |

pj>M}

β̃i|dωνj |pj |dωi − ξis|+
∫

Hh∩{|dωνj |
pj≤M}

β̃i|dωνj |pj |dωi − ξis|

≤ ε+ β̃iM
∑
s

∫
Ds

|dωi − ξis|.

Estimate (4) concludes the argument.

Using all the estimates and taking the limit ν →∞, we obtain,

lim inf
ν→∞

I(ων)− I(ω) ≥ −(CI1 + CI3 + CI4)ε

+
∑
s

lim inf
ν→∞

∫
Ds

[f (ξs + (dων − dω))− f (ξs)] dx.

Since
dων − dω ⇀ 0 in W d,p

(
Ds; Λ

k−1
)

and either

ωνi → ωi in L1
(
D; Λki−1

)
or ωνi − ωi ∈W

d,1
T

(
D; Λki−1

)
,

if pi = 1, but ki 6= 1, for every s, using lemma 4.11, remark 4.12(i) and the fact
that ε is arbitrary, we have finished the proof of the theorem.

4.3. Lower semicontinuity for general quasiconvex functions

We first show that the explicit dependence on x, but no explicit dependence on
ω for a vectorially ext. quasiconvex functions can be handled in the standard
way. We start by defining the growth conditions that we need for this case.

Definition 4.15 (Growth conditions II) Let Ω ⊂ Rn be open, bounded. Let
f : Ω×Λk → R be a Carathéodory function.

f is said to be of growth
(
Cxp
)
, if , for almost every x ∈ Ω and for every ξ =

(ξ1, . . . , ξm) ∈ Λk, f satisfies,

−β(x)−
m∑
i=1

Gli(ξi) ≤ f(x, ξ) ≤ β(x) +

m∑
i=1

Gui (ξi), (Cxp)

where β ∈ L1(Ω) is nonnegative and the functions Glis in the lower bound and
the functions Gui s in the upper bound has the following form:
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• If pi = 1, then,

Gli(ξi) = Gui (ξi) = αi|ξi| for some constant αi ≥ 0.

• If 1 < pi <∞, then,

Gli(ξi) = αi|ξi|qi and Gui (ξi) = gi(x)|ξi|pi ,

for some 1 ≤ qi < pi and for some constant αi ≥ 0 and some non-negative
measurable function gi.

• If pi =∞, then,

Gli(ξi) = Gui (ξi) = ηi (|ξi|) .

for some nonnegative, continuous, increasing function ηi.

Under these growth conditions, we can prove the semicontinuity result for func-
tionals with explicit dependence on x. With theorem 4.13 in hand, the proof is
very similar to classical way to handle measurable dependence on x in semicon-
tinuity theorems (cf. theorem 8.8 and theorem 8.11 in [8]).

Theorem 4.16 (Sufficient condition) Let 0 ≤ r ≤ m be an integer. p =
(p1, . . . , pm) where 1 ≤ pi < ∞ for all 1 ≤ i ≤ r and pr+1 = . . . = pm = ∞.
Let Ω ⊂ Rn be open, bounded, smooth. Let f : Ω×Λk → R be a Carathéodory
function, satisfying the growth condition

(
Cxp
)

and ξ 7→ f(x, ξ) is vectorially ext.
quasiconvex for a.e x ∈ Ω. Let

ων ⇀ ω in W d,p
(
D; Λk−1

)
(
∗
⇀ if pi =∞),

together with,

if pi = 1, but ki 6= 1,

{
either ωνi → ωi in L1

(
D; Λki−1

)
or ωνi − ωi ∈W

d,1
T

(
D; Λki−1

)
.

Then

lim inf
ν→∞

∫
Ω

f(x,dων) ≥
∫

Ω

f(x,dω).

Proof The argument works in two stages. First we show that to prove the
theorem,

(A1) We can assume f satisfies a slightly more restrictive growth condition,
namely, for almost every x ∈ Ω and for every ξ ∈ Λk,

−
∑
i

pi=1

αi|ξi| ≤ f(x, ξ) ≤ β(x) +

r∑
i=1

αi|ξi|pi +

m∑
i=r+1

ηi (|ξi|) , (Cx′p )

for some nonnegative β ∈ L1(Ω), where αi ≥ 0 for all 1 ≤ i ≤ r are
constants and ηis are some nonnegative, continuous, increasing function
for each r + 1 ≤ i ≤ m.
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(A2) We can restrict our attention to sequences ων ⇀ ω in W d,p
(
Ω; Λk−1

)
with the property that {|dωνi |pi} is equiintegrable for all 1 ≤ i ≤ r.

(A3) We can assume Ω ⊂ Rn is an open cube with sides parallel to axes.

To show (A1), first note that for a sequence ων ⇀ ω in W d,p
(
Ω; Λk−1

)
, there

exist constants γi > 0 such that ‖dωνi ‖L∞ ≤ γi for every r + 1 ≤ i ≤ m. Also,
if 1 ≤ qi < pi, then for every ε > 0, there exists a constant ki = ki(ε) > 0 such

that ε|ξi|pi + ki ≤ αi|ξi|qi for all ξi ∈ Λki . Set k :=
∑
i

1<pi<∞

ki +

m∑
i=r+1

ηi (γi) .

and define

fε(x, ξ) = f(x, ξ) + β(x) + ε
∑
i

1<pi<∞

|ξ|pi + k.

It is easy to see that if f satisfies
(
Cxp
)
, then fε satisfies,

−
∑
i

pi=1

αi|ξi| ≤ f(x, ξ) ≤ β(x) +
∑
i

pi=1

αi|ξi|+
∑
i

1<pi<∞

gi(x)|ξi|+
m∑

i=r+1

ηi (|ξi|) .

(Cx′′p )
fε is clearly vectorially ext. quasiconvex and letting ε → 0, we can deduce the
semicontinuity result for f , along the sequence ων , from the one for fε. This
shows that we can replace the conditions

(
Cxp
)

by (Cx′′p ). To prove (A1), it only
remains to show that we can replace the functions gi(x) with constants. We
define, for every natural number µ,

φµ(x) :=


1 if max

i
1<pi<∞

gi(x) ≤ µ

µ

max
i

1<pi<∞

[gi(x)]
if otherwise .

Setting fµ(x, ξ) := φµ(x)f(x, ξ), we see that fµ satisfies Cx′p for every µ and
f(x, ξ) = supµ fµ(x, ξ) = limµ→∞ fµ(x, ξ). Thus, semicontinuity result for f
follows from that of fµ. This proves (A1). Proceeding as in Step 1 of the proof
of Theorem 4.13 above, we prove (A2). (A3) is shown by approximating Ω from
the inside by a finite union of disjoint open cubes with sides parallel to axes, up
to a set of small measure and using equiintegrability.

Next we show the theorem under the additional assumptions (A1),(A2),(A3).
The strategy is standard. We freeze the points and then use Theorem 4.13.

For any given ε > 0, for every 1 ≤ i ≤ r, there exist constants M i
ε ≥ 1,

independent of ν, such that the sets Ki
ε,ν :=

{
x ∈ Ω : |dωνi |pi or |dωi|pi > M i

ε

}
,

satisfy meas
(
Ki
ε,ν

)
< ε

r , for every ν. We set Ωε := Ω \
r⋃
i=1

Ki
ε,ν . Also, for every
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r + 1 ≤ i ≤ m, i.e there exist constants γi > 0 such that ‖dωνi ‖L∞ ≤ γi for all

ν. We define k :=

m∑
i=r+1

ηi(γi) and since β ∈ L1(Ω) and nonnegative, given any

ε > 0, we can find Mβ
ε ≤ 1 such that meas(Ω \ Eε) ≤ ε

k and
∫

Ω\Eε β(x)dx < ε,

where Eε := {x ∈ Ω : β(x) ≤ Mβ
ε }. Now by the Scorza-Dragoni theorem (cf.

theorem 3.8 in [8]), we find a compact set Kε ⊂ Ωε with meas(Ωε \ Kε) < ε
such that f : Kε × Sε → R is continuous, where

Sε := {ξ ∈ Λk : |ξ|pi ≤M i
ε for all 1 ≤ i ≤ r, |ξ| ≤ γi for all r + 1 ≤ i ≤ m}.

Now we subdivide Ω into a finite union of cubes Ds of side length 1
h such that

meas

(
Ω \

⋃
s
Ds

)
= 0. Fix xs ∈ Ds for all s. Now using the uniform continuity

of f on the sets Eε∩Kε∩Ds, the lower bound and the upper bound, respectively,
in (A1) and choosing h large enough, we can find the estimates∫

Ω

f (x,dων) ≥
∑
s

∫
Ds

f (xs,dω
ν)−R1 (ε) ,

∑
s

∫
Ds

f (xs,dω) ≥
∫

Ω

f (x,dω)−R2 (ε) ,

where R1 (ε) , R2 (ε)→ 0 as ε→ 0. In view of theorem 4.13, this concludes the
proof.

As was pointed out to the author by Kristensen (private communication), it
is also possible to give a different proof of both theorem 4.13 and theorem 4.16,
utilizing the blow-up argument of Fonseca-Müller [13].

4.4. Failure of semicontinuity in W d,p for general functional

Vectorial ext. quasiconvexity of the map ξ 7→ f(x,ω, ξ), along with usual
growth conditions, is not sufficient for weak lower semicontinuity in W d,p of
functionals with explicit dependence on ω, i.e for functionals of the form,∫

Ω

f (x,ω,dω) dx.

For example, even when m = 1, for k ≥ 2, we have the following.

Proposition 4.17 (Counterexample to semicontinuity) Let n ≥ 2. Also
let 2 ≤ k ≤ n, 1 ≤ p <∞ and let Ω ⊂ Rn. Let

I(ω) :=
1

p

∫
Ω

|dω|p − 1

p

∫
Ω

|ω|p, for all ω ∈W d,p
(
Ω; Λk−1

)
.

Then I is not weakly lower semicontinuous in W d,p
(
Ω; Λk−1

)
.
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Proof Consider a sequence of exact forms {dθν} ⊂ Lp
(
Ω; Λk−1

)
such that

dθν ⇀ dθ in Lp
(
Ω; Λk−1

)
but dθν 6→ dθ in Lp

(
Ω; Λk−1

)
,

for some dθ ∈ Lp
(
Ω; Λk−1

)
. Note that finding such a sequence is impossible if

k = 1 and always possible for 2 ≤ k ≤ n. But, then we have,

lim inf
ν→∞

I(dθν) = lim inf
ν→∞

(
−1

p

∫
Ω

|dθν |p
)

= −1

p
lim sup
ν→∞

∫
Ω

|dθν |p

≤ −1

p
lim inf
ν→∞

∫
Ω

|dθν |p ≤ −
1

p

∫
Ω

|dθ|p = I(dθ).

But if I is weakly lower semicontinuous, this implies lim inf
ν→∞

I(dθν) = I(dθ). But

this is impossible since that would imply,

lim sup
ν→∞

‖dθν‖pLp = lim inf
ν→∞

‖dθν‖pLp = lim
ν→∞

‖dθν‖pLp = ‖dθ‖pLp .

Since dθν ⇀ dθ in Lp, this implies the strong convergence in Lp, which contra-
dicts the fact that dθν 6→ dθ in Lp

(
Ω; Λk−1

)
.

However, if ki = 1 for all 1 ≤ i ≤ m, the functional
∫

Ω
f (x,ω,dω) dx is weakly

lower semicontinuous in W d,p, precisely because in this case W d,p and W 1,p are
the same space. Indeed, it is possible to show the more general result that the
functional

∫
Ω
f (x,ω,dω(x)) dx is always weakly lower semicontinuous in W 1,p

with appropriate growth conditions on f.

4.5. Semicontinuity in W 1,p for general functional

We first define the appropriate growth conditions in this setting.

Definition 4.18 (Growth condition III) Let Ω ⊂ Rn be open, bounded. Let
f : Ω×Λk−1 ×Λk → R be a Carathéodory function.

f is said to be of growth
(
Cx,up

)
, if , for almost every x ∈ Ω and for every

(u, ξ) ∈ Λk−1 ×Λk, f satisfies,

−β(x)−
m∑
i=1

Gli(ui, ξi) ≤ f(x,u, ξ) ≤ β(x) +

m∑
i=1

Gui (ui, ξi), (Cx,up )

where β ∈ L1(Ω) is nonnegative and the functions Glis in the lower bound and
the functions Gui s in the upper bound has the following form:

• If pi = 1, then,

Gli(ui, ξi) = Gui (ui, ξi) = αi|ξi| for some constant αi ≥ 0.

• If 1 < pi <∞, then,

Gli(ui, ξi) = αi (|ξi|qi + |ui|ri) and Gui (ui, ξi) = gi(x, ui)|ξi|pi ,

for some 1 ≤ qi < pi, 1 ≤ ri < npi/(n − pi) if pi < n and 1 ≤ ri < ∞ if
pi ≥ n, gi is a nonnegative Carathéodory function and for some constant
αi ≥ 0.
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• If pi =∞, then,

Gli(ui, ξi) = Gui (ui, ξi) = ηi (|ui|, |ξi|) .

for some nonnegative, continuous, increasing (in each argument) function
ηi.

With these growth conditions on f , it is possible to show that the functional∫
Ω
f (x,ω,dω(x)) dx is always weakly lower semicontinuous in W 1,p. The proof

is very similar to the proof of Theorem 4.16. In this case too, it is possible to de-
rive all the necessary estimates after freezing both x and ω. Some modifications
are required to handle the explicit dependence on ω, but these modifications
essentially use the Sobolev embedding and is quite standard (see theorem 8.8
and theorem 8.11 in [8] for the classical case). We state the theorem below and
omit the proof.

Theorem 4.19 Let Ω ⊂ Rn be open, bounded, smooth. Let f : Ω × Λk−1 ×
Λk → R be a Carathéodory function, satisfying the growth condition

(
Cx,up

)
and ξ 7→ f(x,u, ξ) is vectorially ext. quasiconvex for a.e x ∈ Ω and for every
u ∈ Λk−1. Let I : W 1,p

(
Ω; Λk−1

)
→ R defined by

I(ω) :=

∫
Ω

f (x,ω,dω) dx, for all ω ∈W 1,p
(
Ω; Λk−1

)
.

Then I is weakly lower semicontinuous in W 1,p
(
Ω; Λk−1

)
(weakly ∗ in i-th

factor if pi =∞).

Remark 4.20 In the special case when ki = 1 for all 1 ≤ i ≤ m, this theorem
recovers the classical result with the improvement that the pis are allowed to be
different from one another. If we take, pi = p for every 1 ≤ i ≤ m, as well,
then we obtain precisely the classical results, i.e theorem 8.8 or theorem 8.11 in
[8], depending on whether p =∞ or 1 ≤ p <∞.

5. Weak Continuity

We now turn our attention to characterizing all sequentially weakly continuous
functions in W d,p(Ω; Λk−1).

Definition 5.1 (Weak continuity) Let Ω ⊂ Rn be open and let f : Λk → R
be continuous. We say that f is weakly continuous on W d,p

(
Ω; Λk−1

)
, if for ev-

ery sequence {ων}∞ν=1 ⊂W
d,p
(
Ω; Λk−1

)
satisfying ων ⇀ ω in W d,p

(
Ω; Λk−1

)
for some ω ∈W d,p

(
Ω; Λk−1

)
, we have

f (dων) ⇀ f (dω) in D′(Ω).
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5.1. Necessary condition

Theorem 5.2 (Necessary condition) Let Ω ⊂ Rn be open, bounded and let
f : Λk → R be weakly continuous on W d,∞ (Ω; Λk

)
. Then, f is vectorially ext.

one affine, and hence, is of the form

f(ξ) =
∑
α,

0≤|kα|≤n

〈cα; ξα〉 for all ξ ∈ Λk, (6)

where cα ∈ Λ|kα|(Rn), for every α with 0 ≤ |kα| ≤ n.

Remark 5.3 As in remark 4.2, f being vectorially ext. one affine is a necessary
condition for weak continuity in W d,p

(
Ω; Λk−1

)
as well.

Proof Since f is weakly continuous on W d,∞ (Ω; Λk
)
, then for any φ ∈ C∞c (Ω),

the integrals
∫

Ω
φ(x)f(dω) and −

∫
Ω
φ(x)f(dω) are both weakly lower semicon-

tinuous in W d,∞ (Ω; Λk
)
. Using Theorem 4.1, we obtain that

ξ 7→ φ(x)f(ξ)

must be vectorially ext. quasiaffine. Since φ ∈ C∞c (Ω) is arbitrary, this implies
ξ 7→ f(ξ) must be vectorially ext. quasiaffine. This finishes the proof.

5.2. Weak continuity of wedge products

5.2.1. Weak wedge products for exact forms

Before moving on to results concerning sufficient condition for weak continuity,
we first develop the notion of weak or distributional wedge products in this
subsection. We start with some terminology for the integrability exponents.

Definition 5.4 (Admissible Sobolev and Hölder exponent) Given k,α,
we call p an admissible Sobolev exponent (with respect to α and k), if p =
(p1, . . . , pm), where 1 < pi <∞ for all 1 ≤ i ≤ m, satisfies

1 +
1

n
≥ 1

θ
=

m∑
i=1

αi
pi
, (7)

and

1 >
1

θ
− 1

pi
(8)

for all 1 ≤ i ≤ m. We call q an admissible Hölder exponent with respect to α
and k, if q = (q1, . . . , qm) where 1 < qi ≤ ∞ for all 1 ≤ i ≤ m, satisfies

1 ≥ 1

ρ
=

m∑
i=1

αi
qi
, (9)
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and

1 ≥ 1

ρ
− 1

qi
(10)

for all 1 ≤ i ≤ m.

Remark 5.5 Note that the assumed upper bound on
1

θ
− 1

pi
is only a restriction

if pi ≥ n. The last inequality just means that at most one of the qis can be ∞
and αi = 1 if qi =∞ for some i.

Definition 5.6 (Associated exponent pair) Let p be an admissible Sobolev
exponent and q be either an admissible Sobolev exponent or an admissible Hölder
exponent with respect to given α and k.
We call (p, q) an associated exponent pair if for all i = 1, . . . ,m, we have,

pi ≥
nqi
n+ qi

if qi <∞,

pi ≥ n if qi =∞.

Furthermore, if the inequalities are strict for all 1 ≤ i ≤ m, we call (p, q) an
associated compact exponent pair.

Remark 5.7 Note that if nqi
n+qi

≤ 1 for some i, then the condition pi ≥ nqi
n+qi

is
not a restriction since pi > 1 anyway.

Now we need a lemma which shows how a bound of the exterior derivative
implies improved regularity of the coexact part in the Hodge decomposition.

Lemma 5.8 Let Ω ⊂ Rn be open, bounded and smooth. Let 1 ≤ k ≤ n. Let
ω ∈ Lq(Ω; Λk−1), dω ∈ Lp(Ω; Λk) with 1 < p < ∞ and 1 < q ≤ ∞. Then there
exists a decomposition of ω such that

ω = ωexact + ωcoexact + ωhar in Ω,

such that ωexact is exact, ωhar is a harmonic field and ωcoexact ∈W 1,p(Ω; Λk−1).
In other words, ωexact = dϕ with ϕ ∈W 1,r(Ω; Λk−2) for all 1 < r ≤ q if q <∞
or 1 < r < ∞ if q = ∞ and dωhar = δωhar = 0 in Ω. Moreover, we have the
estimates

‖ϕ‖W 1,r ≤ c‖ω‖Lq , ‖ωhar‖C∞loc ≤ c‖ω‖Lq and ‖ωcoexact‖W 1,p ≤ c‖dω‖Lp .

Proof Fix 1 < r < ∞ such that r ≤ q. Then since ω ∈ Lq(Ω; Λk−1) implies
ω ∈ Lr(Ω; Λk−1), we use Theorem 6.9(iii) of [7] to obtain the decomposition{

ω = da+ δb+ h and δa = db = dh = δh = 0 in Ω,

ν ∧ a = νyb = 0 on ∂Ω.
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with a ∈ W 1,r
T (Ω; Λk−2), b ∈ W 1,r

N (Ω; Λk) and h ∈ H(Ω; Λk−1). Moreover, we
also have the estimates

‖a‖W 1,r ≤ c‖ω‖Lr , ‖h‖C∞loc ≤ c‖ω‖Lr .

Now since dω ∈ Lp(Ω,Λk), we see that d(δb) = dω ∈ Lp(Ω,Λk), δ(δb) = 0
in Ω and νyδb = 0 in ∂Ω, as νyb = 0 in ∂Ω. Regularity result for this first
order elliptic system implies δb ∈ W 1,p with the estimate. Setting ωexact = da,
ωhar = h and ωcoexact = δb concludes the proof.

Remark 5.9 If we assume ν ∧ ω = 0 on ∂Ω, it is possible to use Hodge de-
composition with vanishing tangential components (see Theorem 6.9(i) of [7])
to prove the lemma, in which case we would also have ωhar ∈ HT (Ω; Λk−1) and
ν ∧ ωcoexact = 0 on ∂Ω.

We call ωexact, ωhar and ωcoexact, respectively, the exact part, harmonic part and
the coexact part of ω. Now we are ready to define weak wedge products. We
start with the case of exact forms first.

Definition 5.10 (Weak wedge product for exact forms) Let Ω ⊂ Rn be
open, bounded and smooth. Let p be an admissible Sobolev exponent with respect
to α and k. Then for any componentwise exact k-form dω = (dω1, . . . , dωm) ∈
Lp(Ω; Λk), we define (dωα)weak ∈ D′(Ω; Λ|kα|(Rn)), by the actions

(dωα)weak (ψ)

:= −(−1)N
ji
i

∫
Ω

〈δψ; dωα1
1 ∧ . . . ∧ dω

ji−1
i ∧ ωi,coexact ∧ dωαi−jii ∧ . . . ∧ dωαmm 〉,

(11)

for all ψ ∈ C∞c (Ω; Λ|kα|(Rn)), where ωi,coexact stands for the coexact part of ωi

and N ji
i = ki(ji − 1) +

i−1∑
j=1

kjαj , for any i = 1, . . . ,m, ji = 1, . . . , αi.

Remark 5.11 Lemma 5.8, Sobolev embedding and the conditions (7) and (8)
together ensure that the integrals on the right hand side of (11) are all finite. It
is easy to see that they are also equal and if 1 ≥ 1

θ , then

(dωα)weak = dωα in D′(Ω; Λ|kα|(Rn)).

This is not the only possible definition of weak wedge products for exact forms.
We can require even less integrability on dω if we assume some integrability of
ω. The following definition is a generalization of the definition used by Brezis-
Nguyen [5] for the Jacobian determinant in the classical case.

Definition 5.12 (Very weak product) Let Ω ⊂ Rn be open, bounded and
smooth. Let p, q satisfy 1 < pi <∞, 1 < qi ≤ ∞ and

1 ≥ 1

qi
+

1

θ
− 1

pi
, for all 1 ≤ i ≤ m,
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where
1

θ
=

m∑
i=1

αi
pi
. Then for any ω ∈ Lq(Ω; Λk−1) with dω ∈ Lp(Ω; Λk), we

define (dωα)very weak ∈ D′(Ω; Λ|kα|(Rn)), by the actions

(dωα)very weak (ψ)

:= −(−1)N
ji
i

∫
Ω

〈δψ; dωα1
1 ∧ . . . ∧ dω

ji−1
i ∧ ωi ∧ dωαi−jii ∧ . . . ∧ dωαmm 〉, (12)

for all ψ ∈ C∞c (Ω; Λ|kα|(Rn)), where N ji
i = ki(ji − 1) +

i−1∑
j=1

kjαj , for any i =

1, . . . ,m, ji = 1, . . . , αi.

Note that there are integrability exponents for which only one of them is well-
defined. Even in the classical case, for the Jacobian determinant of a func-

tion u ∈ W 1, n
2

n+1 (Ω;Rn), only the first one is defined and for a function u ∈
W 1,n−1(Ω;Rn) ∩ L∞(Ω;Rn), only the second one is defined. However, it is not
difficult to show that when both are well-defined, we have,

(dωα)weak = (dωα)very weak in D′(Ω; Λ|kα|(Rn)).

We also have the following general telescopic estimate.

Lemma 5.13 Let Ω ⊂ Rn be open, bounded and smooth. Let k,α,p, q be given.
Let µ be given by,

1 =
1

µi
+

1

θ
− 1

pi
for all 1 ≤ i ≤ m.

(i) If p is an admissible Sobolev exponent, then for any two componentwise
exact k-form dξ,dζ ∈ Lp(Ω; Λk), there exists a constant C > 0 such that∣∣∣[ (dξα)weak − (dζα)weak

]
(ψ)
∣∣∣

≤ C
m∑
i=1

αi ‖δψ‖∞ ‖ξi,coexact − ζi,coexact‖µi
(
‖dξi‖pi + ‖dζi‖pi

)αi−1

m∏
j=1
j 6=i

(
‖dξj‖pj + ‖dζj‖pj

)αj
,

for all ψ ∈ C∞c (Ω; Λ|kα|(Rn)).

(ii) If p, q are as in definition 5.12, then for any ξ, ζ ∈ Lq(Ω; Λk−1) with
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dξ,dζ ∈ Lp(Ω; Λk), there exists a constant C > 0 such that∣∣∣[ (dξα)very weak − (dζα)very weak
]
(ψ)
∣∣∣

≤ C
m∑
i=1

αi ‖δψ‖∞ ‖ξi − ζi‖µi
(
‖dξi‖pi + ‖dζi‖pi

)αi−1

m∏
j=1
j 6=i

(
‖dξj‖pj + ‖dζj‖pj

)αj
,

for all ψ ∈ C∞c (Ω; Λ|kα|(Rn)).

Proof It is just a matter of rewriting as a telescopic sum. We show only one,
the other being similar. Note that we have,[

(dξα)weak − (dζα)weak
]
(ψ)

=

m∑
i=1

αi∑
j=1

(
dζα1

1 ∧ . . . ∧ dζ
j−1
i ∧ d(ξi − ζi) ∧ dξαi−ji ∧ . . . ∧ dξαmm

)
weak

(ψ).

Using the definition of weak wedge product, the estimate follows from Hölder
inequality.

This immediately implies the weak continuity results for wedge product of exact
forms.

Theorem 5.14 Let Ω ⊂ Rn be open, bounded and smooth. Let k,α be given.

(i) Let p be an admissible Sobolev exponent such that 1 +
1

n
>

1

θ
, and dξs⇀

dξ in Lp(Ω; Λk), then(
dξαs

)
weak

⇀ (dξα)weak in D′(Ω; Λ|kα|(Rn)).

Moreover, if 1 ≥ 1

θ
, then

dξαs ⇀ dξα in D′(Ω; Λ|kα|(Rn)).

If 1 >
1

θ
, then we also have,

dξαs ⇀ dξα in Lθ(Ω; Λ|kα|(Rn)).

(ii) Let p, q be as in definition 5.12 and dξs⇀ dξ in Lp(Ω; Λk) and ξs → ξ
in Lq(Ω; Λk−1), then(

dξαs
)
very weak

⇀ (dξα)very weak in D′(Ω; Λ|kα|(Rn)).
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Proof The second conclusion is immediate form the telescopic estimate. For the
first one, note that the hypotheses on p implies that the embeddings W 1,pi ↪→
Lµi are compact for all 1 ≤ i ≤ m. Thus dωs,i ⇀ dωi in Lpi implies

‖ωs,i,coexact − ωi,coexact‖µi → 0

for all 1 ≤ i ≤ m. The convergence in distribution follows. The weak conver-
gence in Lθ follows from the fact that in that case, {dξαs } is uniformly bounded
in Lθ and thus has a weak limit in Lθ. Uniqueness of the weak limit concludes
the proof.

5.2.2. Weak wedge product for general forms

The first definition, i.e the definition of weak wedge products for exact forms can
be used, together with Hodge decomposition to define weak wedge products for
general forms ω with some integrability of dω. To fix ideas, we start with two

forms v1 ∈W d,p1
(
Ω; Λk1(Rn)

)
, v2 ∈W d,p2

(
Ω; Λk2(Rn)

)
, with 1+

1

n
≥ 1

p1
+

1

p2
,

1 < p1, p2 <∞. Using Hodge decomposition, we have, formally,

v1 ∧ v2 = (da1 + δb1 + h1) ∧ (da2 + δb2 + h2)

= da1 ∧ da2 + da1 ∧ (δb2 + h2) + (δb1 + h1) ∧ (da2 + δb2 + h2). (13)

Note that by lemma 5.8, Sobolev embedding and Hölder inequality, every term
except the first in the right hand side of (13) is indeed in L1. But the first term
da1 ∧ da2 is a wedge product of exact forms and we can use the notion of weak
wedge product in such cases. Using that definition, we can now define

(v1 ∧ v2)weak := (da1 ∧ da2)weak+da1∧(δb2 +h2)+(δb1 +h1)∧(da2 +δb2 +h2).

Observe also that the regularity of dai depends on the regularity of vi, whereas
the improved regularity of δbi+hi comes from the regularity of dvi. Suppose v1 ∈
Lq1

(
Ω; Λk1(Rn)

)
with dv1 ∈ Lp1

(
Ω; Λk1+1(Rn)

)
and v2 ∈ Lq2

(
Ω; Λk2(Rn)

)
with dv2 ∈ Lp2

(
Ω; Λk2+1(Rn)

)
, where 1 < q1, q2, p1, p2 < ∞, 1

q1
+

1

q2
≤ 1,

1

p1
+

1

p2
≤ 1 +

1

n
, and pi ≥ nq1

n+qi
for i = 1, 2. Then we have da1 ∧ da2 ∈ L1 and

we obtain

(da1 ∧ da2)weak = da1 ∧ da2 in D′(Ω; Λk1+k2(Rn)).

But since
1

p1
+

1

p2
≤ 1+

1

n
, all other terms are in L1 as before. Thus, we obtain,

v1 ∧ v2 = (v1 ∧ v2)weak in D′(Ω; Λk1+k2(Rn)).

All of these can be done for the general case. If p is an admissible Sobolev
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exponent, then given ω ∈W d,p(Ω; Λk), we can define the distribution

(ωα)weak =
(
(ωexact)

α)
weak

+ all other terms in the

formal expansion of (ωexact +ωcoexact + ωhar)
α

in D′(Ω; Λ|kα|(Rn)).

Using this definition, we can prove the following result, due to Iwaniec [15],
which is a generalization of the classical ‘div-curl’ lemma or ‘compensated com-
pactness’ lemma of Murat [22] and Tartar [26].

Theorem 5.15 Let Ω ⊂ Rn be open, bounded and smooth. Let k,α be given.

Let p be an admissible Sobolev exponent such that 1 +
1

n
>

1

θ
.

(i) Let ξs⇀ ξ in W d,p(Ω; Λk). Then(
ξαs
)
weak

⇀ (ξα)weak in D′(Ω; Λ|kα|(Rn)).

Moreover, if 1 ≥ 1

θ
, then

ξαs ⇀ ξα in D′(Ω; Λ|kα|(Rn)).

If 1 >
1

θ
, then we also have,

ξαs ⇀ ξα in Lθ(Ω; Λ|kα|(Rn)).

(ii) Let q be an admissible Hölder exponent such that (p, q) is an associated
compact exponent pair. Let ξs ⇀ ξ in Lq(Ω; Λk) and dξs ⇀ dξ in
Lp(Ω; Λk+1). Then

ξαs ⇀ ξα in D′(Ω; Λ|kα|(Rn)).

If 1 >
1

ρ
, then we also have,

ξαs ⇀ ξα in Lρ(Ω; Λ|kα|(Rn)).

6. Existence of minimizers

In this section, we discuss existence theorems for minimization problems. But
first we begin by showing that unlike the classical calculus of variations, here in
general we can not always expect a minimizer to exist if the integrand depends
explicitly on ω.
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6.1. Nonexistence results

Even when the explicit dependence on ω is a convex, additive term, we have the
following counterexample already for m = 1, as soon as k ≥ 2.

Proposition 6.1 (Counterexample to existence of minimizer) Let n ≥
2. Also let 2 ≤ k ≤ n and let Ω ⊂ Rn be open, bounded and smooth and
contractible. Then for any ω0 ∈ W 1,2(Ω; Λk−1) with ν ∧ ω0 = 0 but ω0 6= 0 on
∂Ω, the problem

inf

{
I(ω) =

1

2

∫
Ω

|dω|2 +
1

2

∫
Ω

|ω|2 : ω ∈ ω0 +W 1,2
0

(
Ω; Λk−1

)}
= m,

does not admit a minimizer.

Proof Suppose the problem admits a minimizer α ∈ ω0+W 1,2
0

(
Ω; Λk−1

)
. Then

α satisfies the weak form of the Euler-Lagrange equation, i.e∫
Ω

〈dα, dφ〉+

∫
Ω

〈α, φ〉 = 0 for all φ ∈W 1,2
0

(
Ω; Λk−1

)
.

Choosing φ = dθ for some θ ∈ C∞c
(
Ω; Λk−2

)
, we see immediately that this

implies δα = 0 in distributions. Now for any ψ ∈ W d,2
T

(
Ω; Λk−1

)
, there exist

φ ∈W 1,2
0

(
Ω; Λk−1

)
and η ∈W 1,2

0

(
Ω; Λk−2

)
such that

ψ = φ+ dη.

Indeed, since Ω is contractible, we can solve the following two problems one
after another (see e.g Theorem 8.16 in [7]).{

dφ = dψ in Ω,

φ = 0 on ∂Ω.
and

{
dη = ψ − φ in Ω,

η = 0 on ∂Ω.

This gives the desired decomposition. Thus, we have,∫
Ω

〈dα, dψ〉+

∫
Ω

〈α,ψ〉 = 0 for all ψ ∈W d,2
T

(
Ω; Λk−1

)
.

But this implies α is also a minimizer of the problem

inf

{
I(ω) =

1

2

∫
Ω

|dω|2 +
1

2

∫
Ω

|ω|2 : ω ∈W d,2
δ,T

(
Ω; Λk−1

)}
= m.

But it is easy to show that the minimizer of this problem is unique and 0 is a
minimizer. Thus α = 0, which is impossible since ω0 6= 0 on ∂Ω. This concludes
the proof.

Remark 6.2 This counterexample can easily be generalized for any 1 < p <∞.
Also note that the term depending on dω is convex, thus ext. polyconvex and
ext. quasiconvex as well.
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6.2. Existence theorems

In view of the previous subsection, we can expect general existence theorems
to hold only when the explicit dependence on ω is rather special, if any. We
now show that an additive term which is linear in ω, still allows fairly general
existence results. We start with a lemma.

Lemma 6.3 Let p = (p1, . . . , pm) where 1 < pi < ∞ for all 1 ≤ i ≤ m.

Let ω0 ∈ W 1,p
(
Ω; Λk−1

)
be given. Let {ωs} ⊂ ω0 + W d,p

T

(
Ω; Λk−1

)
be a

sequence such that ‖dωs‖Lp(Ω;Λk) is uniformly bounded. Then there exist ω ∈
ω0 +W 1,p

0

(
Ω; Λk−1

)
, β ∈ ω0 +W 1,p

δ,T

(
Ω; Λk−1

)
satisfying

dβ = dω in Ω,

and a sequence {βs} ⊂ ω0 +W 1,p
δ,T

(
Ω; Λk−1

)
such that

dβs = dωs in Ω, for every s

and

βs ⇀ β in W d,p
(
Ω; Λk−1

)
.

Proof First for every s, we find βs ∈ ω0 +W 1,p
δ,T (Ω; Λk), such that,{

dβs = dωs and δβs = 0 in Ω,

ν ∧ βs = ν∧ωs = ν ∧ ω0 on ∂Ω,

and there exist constants c1, c2 > 0 such that

‖βs‖W 1,p ≤ c1 {‖dωs‖Lp + ‖ω0‖W 1,p} ≤ c2.

Therefore, up to the extraction of a subsequence which we do not relabel, there
exists β ∈ ω0 +W 1,p

δ,T

(
Ω; Λk−1

)
such that

βs ⇀ β in W 1,p
(
Ω; Λk−1

)
.

Since ν ∧ β = ν ∧ ω0 on ∂Ω, we can find ω ∈ ω0 +W 1,p
0

(
Ω; Λk−1

)
such that{

dω = dβ in Ω,

ω = α0 on ∂Ω.

This concludes the proof.

6.2.1. Existence theorem for quasiconvex functions

Theorem 6.4 Let p = (p1, . . . , pm) where 1 < pi < ∞ for all 1 ≤ i ≤ m. Let
Ω ⊂ Rn be open, bounded, smooth. Let f : Ω × Λk → R be a Carathéodory
function, satisfying for a.e x ∈ Ω, for every ξ = (ξ1, . . . , ξm) ∈ Λk,

ξ 7→ f(x, ξ) is vectorially ext. quasiconvex,

γ1(x) +

m∑
i=1

α1,i|ξi|pi ≤ f(x, ξ) ≤ γ2(x) +

m∑
i=1

α2,i|ξi|pi , (14)
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where α2,i ≥ α1,i > 0 for all 1 ≤ i ≤ m and γ1, γ2 ∈ L1(Ω). Let g ∈
Lp

′

(Ω; Λk−1) be such that δg = 0 in the sense of distributions and ω0 ∈
W 1,p

(
Ω; Λk−1

)
. Let

(P0) inf

{
I(ω) =

∫
Ω

[f (x,dω) + 〈g;ω〉] : ω ∈ ω0 +W 1,p
0

(
Ω; Λk−1

)}
= m.

Then the problem (P0) has a minimizer.

Remark 6.5 (i) If ki = 1 for some i ∈ {1, . . . ,m}, the condition δgi = 0
in the sense of distributions, is automatically satisfied for all gi ∈ Lp

′
i(Ω)

and hence is not a restriction.

(ii) However, as soon as ki ≥ 2 for some i ∈ {1, . . . ,m}, gi being coclosed
is a non-trivial restriction and the theorem does not hold without this
assumption. In fact, we can show that if (P0) admits a minimizer and
2 ≤ ki ≤ n for some i ∈ {1, . . . ,m}, then we must have δgi = 0 in
the sense of distributions. Indeed, suppose ω ∈ ω0 + W 1,p

0

(
Ω; Λk−1

)
is a minimizer for (P0). Now if δgi 6= 0, since ki ≥ 2, there exists a

θ ∈ C∞c (Ω; Λk−2) such that

∫
Ω

〈gi; dθ〉 < 0. Define θ = (θ1, . . . , θm) such

that for all 1 ≤ j ≤ m,

θj =

{
θ if i = j,

0 otherwise.

Then ω + dθ ∈ ω0 +W 1,p
0

(
Ω; Λk−1

)
and we have,

I(ω + dθ)) =

∫
Ω

[f (x,dω) + 〈g;ω〉] +

∫
Ω

〈gi; dθ〉 < m,

which is impossible since ω is a minimizer.

(iii) Note that if f : Ω × Λk → R satisfies the hypotheses of the theorem for
some p, then for any G ∈ Lp

′ (
Ω; Λk

)
, the function F : Ω × Λk → R,

defined by,

F (x, ξ) = f(x, ξ) + 〈G; ξ〉 for every ξ ∈ Λk,

also satisfies all the hypotheses with the same p.

Proof Step 1 First we show that we can assume g = 0. Since g ∈ Lp
′

(Ω; Λk−1)

satisfies δg = 0 in the sense of distributions, we can find G ∈ W 1,p
′

(Ω; Λk),
such that, {

dG = 0 and δG = g in Ω,

ν ∧G = 0 on ∂Ω.
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Thus, for any ω ∈ ω0 +W 1,p
0

(
Ω; Λk−1

)
, we have,∫

Ω

〈g;ω〉 =

∫
Ω

〈δG;ω〉 = −
∫

Ω

〈G;dω〉+

∫
∂Ω

〈νyG;ω0〉.

Given ω0 ∈W 1,p
(
Ω; Λk−1

)
and g ∈ Lp

′

(Ω; Λk−1),
∫
∂Ω
〈νyG;ω0〉 is just a real

number which does not matter for minimization. Now the claim follows from
remark 6.5(iii).

Step 2 By step 1, we assume from now on that g = 0. Let {ωs} be a
minimizing sequence of (P0). By the growth condition (14), there exists a
constant c > 0 such that

‖dωs‖Lp(Ω;Λk) ≤ c.

Hence by lemma 6.3, there exist maps ω ∈ ω0 + W 1,p
0

(
Ω; Λk−1

)
and β ∈

ω0 +W 1,p
T

(
Ω; Λk−1

)
satisfying

dβ = dω in Ω,

and a sequence {βs} ⊂ ω0 +W 1,p
T

(
Ω; Λk−1

)
such that

dωs = dβs in Ω, for every s

and

βs ⇀ β in W d,p
(
Ω; Λk−1

)
.

Using theorem 4.16, we obtain,

m = lim inf
s→∞

∫
Ω

f (x,dωs) = lim inf
s→∞

∫
Ω

f (x,dβs) ≥
∫

Ω

f (x,dβ)

=

∫
Ω

f (x,dω) ≥ m.

This concludes the proof of the theorem.

Remark 6.6 It is easy to see that β in the proof of theorem 6.4 is a minimizer
to the problem

(Pδ,T ) inf

{∫
Ω

[f (x,dω) + 〈g;ω〉] : ω ∈ ω0 +W d,p
δ,T

(
Ω; Λk−1

)}
= mδ,T ,

under the hypotheses of the theorem 6.4 and thus mδ,T = m.

6.2.2. Existence theorem for polyconvex functions

Theorem 6.7 Let Ω ⊂ Rn be open, bounded, smooth and let k be given. Let

p = (p1, . . . , pm) where 1 < pi < ∞ for all 1 ≤ i ≤ m be such that

m∑
i=1

αi
pi

< 1

for any α such that there exists ξ ∈ Λk with ξα 6= 0. Let F : Ω × Rτ (n,k) →
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R ∪ {+∞} be a Carathéodory function, satisfying for a.e x ∈ Ω, for every
Ξ ∈ Rτ (n,k),

Ξ 7→F (x,Ξ) is convex,

and

F (x,Ξ) ≥ a(x) + b‖Ξ1‖p, (15)

where Ξ = (Ξ1, . . . ,ΞN(k)) ∈ Rτ (n,k), a ∈ L1(Ω), b > 0 and

‖Ξ1‖p =

m∑
i=1

|Ξi1|pi , where Ξ1 = (Ξ1
1, . . . ,Ξ

m
1 ) ∈ Λk.

Let g ∈ Lp
′

(Ω; Λk−1) be such that δg = 0 in the sense of distributions and
ω0 ∈W 1,p

(
Ω; Λk−1

)
. Let

(P) inf

{
I(ω) =

∫
Ω

[F (x, T (dω)) + 〈g;ω〉] : ω ∈ ω0 +W 1,p
0

(
Ω; Λk−1

)}
= m.

Then the problem (P) has a minimizer.

Proof By the same argument as in the proof of theorem 6.4, Step 1, we can
assume that g = 0. Let {ωs} be a minimizing sequence of (P). By (15), there
exists a constant c > 0 such that

‖dωs‖Lp(Ω;Λk) ≤ c.

Thus we have
dωs ⇀ ζ in Lp

(
Ω; Λk

)
.

By the weak convergence, it also follows that dζ = 0 in the sense of distributions
and ν ∧ ζ = ν ∧ dω0 on ∂Ω. Thus, we can find ω ∈ ω0 +W 1,p

0

(
Ω; Λk−1

)
such

that {
dω = ζ in Ω,

ω = ω0 on ∂Ω.

Thus, we have,
dωs ⇀ dω in Lp

(
Ω; Λk

)
.

Then by the assumption on p, theorem 5.15 implies,

T (dωs) ⇀ T (dω) in L1
(

Ω;Rτ (n,k)
)
. (16)

Since Ξ 7→ F (x,Ξ) is convex, we obtain I(ω) = m.

Remark 6.8 The pointwise coercivity condition (15) used here can be unnec-
essarily strong in practice for applications. Indeed, any condition that ensures
the convergence (16) for all minimizing sequences is enough, as the proof shows.
As an example, the ‘mean coercivity’ condition introduced in Iwaniec-Lutoborski
([16], definition 9.1) works as well.
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