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Structural and Strongly Structural Input and State
Observability of Linear Network Systems

Sebin Gracy, Federica Garin and Alain Y. Kibangou.

Abstract—This paper studies linear network systems affected
by multiple unknown inputs with the objective of reconstructing
both the initial state and the unknown input with one time-
step delay. We state conditions under which both the whole
network state and the unknown input can be reconstructed
from output measurements, over every window of length N , N
being the dimension of the system, for all system matrices that
share a common zero/non-zero pattern (uniform N -step strongly
structural input and state observability) or at least for almost
all system matrices that share a common zero/non-zero pattern
(uniform N -step structural input and state observability). Based
on some specific assumptions on the structure of the interactions
between the unknown input and the network states, we show
that such a characterization depends only on strongly structural
(resp. structural) observability properties of a suitable subsystem.

Index Terms—Linear Network systems, Input and State Ob-
servability (ISO), Structural Observability, Strongly Structural
Observability, Cyber-Physical Security.

I. INTRODUCTION

The fields of application of network systems span from
critical infrastructure domains such as power networks, water
and gas distribution networks to healthcare systems, flight
control systems among others. Given the ubiquitous nature
of their usage, it is of paramount importance to ensure that
each individual subsystem functions as desired. The notion of
observability enables one to achieve this by expending as few
resources as possible.
However, such systems are quite likely to malfunction due
to local attacks by malicious agents modeled as external un-
known inputs [1] which could have significant consequences as
evidenced by the failure of wastewater management systems in
Marochy Australia in early 2000 [2], multiple power blackouts
in Brazil [3], to cite a few. Hence, in addition to being able
to observe the state in the presence of unknown inputs (also
known as strong observability [4], [5]) it is crucial that the
unknown input be observed as well. This notion is known as
Input and State Observability, which hereafter is referred to as
ISO. In the context of Linear Time Varying (LTV) systems, a
system being ISO over an interval does not necessarily mean
that the said system would be ISO over every sufficiently long
interval. The concept of uniform δ-step ISO (i.e., ISO over
every time window of length δ) gets rid of this drawback.
The notion of ISO is of particular importance in designing
unbiased minimum-variance filters that simultaneously esti-
mate both state and unknown input [6]–[8]. It is well-known
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that algebraic approaches towards characterizing ISO involve
the classic Kalman-like rank condition or a variant of the
Popov-Belevitch-Hautus (PBH) test (see e.g. [9], [8]). Both
tests require exact knowledge of entries in the matrices of
interest and are computationally heavy as the dimension of
the system grows, while the latter is not suitable for LTV
systems. This leads to the study of ISO based on the structure
of the underlying network (represented by a graph) and the
corresponding line of work is known as structured systems.
We say that a linear system is structured if the system matrices
have coefficients that are either a fixed zero or a free parameter
(i.e., the coefficients may take any value in R). Thus, one can
capture a family of systems that obey a certain rule. Under
such a setup, if a property holds for almost all choices of
entries in the non-zero positions of the system matrices it is
called structural [10], whereas if it holds for all non-zero
choices of entries in the non-zero positions of the system
matrices it is called strongly structural [11] (s-structural).
For linear time-invariant (LTI) systems, structural controllabil-
ity or the dual notion of observability has been studied since
[10] while graph-theoretic characterizations for s-structural
controllability were first provided in [11]. The survey paper
[12] revises some graph-theoretic characterizations for observ-
ability in addition to recalling similar conditions for solvability
issues like disturbance rejection, input-output decoupling, and
so on, while equivalent characterizations for s-structural con-
trollability have been provided in [13]. More recently, for s-
structural controllability, [14] provides necessary and sufficient
conditions in terms of uniquely restricted matching (precise
definition appears in Section VI) while [15] does so in terms
of zero forcing sets.
Notice that all the results mentioned as yet are for LTI systems,
where both parameters and the structure remain constant over
the time. In contrast, it is natural to assume that the parameters
can evolve over the time while the structure remains fixed
(LTV with fixed topology). Under such a scenario, necessary
and sufficient conditions for structural observability of LTV
systems are given in [16] while necessary and sufficient
conditions for s-structural observability are available in [17].
However, these results are not applicable for LTV systems with
unknown inputs.
To the best of our knowledge, for discrete-time linear struc-
tured systems, a graph-theoretic characterization for the more
general ISO problem encompassing multiple unknown inputs
and accounting for LTV dynamics, is missing. For continuous-
time LTI systems, [18] gives necessary and sufficient condi-
tions for structural ISO, which when translated into a discrete-
time setup yields structural ISO with some delay L. The



present paper deals with the notion of ISO with delay-1, a
notion that is essential for running input and state estimation
filters. For discrete-time LTV systems, [19] gives a character-
ization of s-structural ISO but not of structural ISO while an
earlier work from the authors gives characterizations of both
structural and s-structural ISO for LTI systems affected by a
single unknown input [20]. As such the main contributions
of this paper are threefold; under suitable assumptions on the
structure of the input and output matrices, first we show equiv-
alence between ISO of a linear system and observability of a
suitably defined subsystem. Second, we give a characterization
of uniform N -step structural (see Theorem 1) (resp. uniform
N -step strongly structural (see Theorem 2)) input and state
observability, i.e., the conditions under which both the whole
network state and the unknown input can be reconstructed for
almost all (resp. all) system matrices that share a common
zero/non-zero pattern, over every time window of length N .
This equivalence enables one to study structural (resp. s-
structural) ISO using the graph techniques given in [21], [14]
(resp. [14], [15]).
The organization of this paper is as follows: We state the
problem in Section II. Section III gives an algebraic charac-
terization of the ISO problem while Section IV, under suitable
assumptions on the input and output matrices, shows the
equivalence between ISO and observability of an appropriate
subsystem. Section V discusses structural ISO while Section
VI studies the stronger notion of s-structural ISO. Differently
from Section V and VI, Section VII explores structural and
s-structural ISO without assumptions on input and output
matrices, while Section VIII gives concluding remarks along
with discussing future lines of research.

Notations

R, R∗ and Z denote the set of real numbers, non-zero
real numbers and integers respectively. ej;N represents the jth

vector of the canonical basis of RN . Alternatively, assuming
that the length is clear from context, we would denote the
same as just ej . [A]i,j denotes the entry in matrix A that
corresponds to its ith row and jth column. IN denotes an
identity matrix of size N . Given two matrices A and B, let
A�B and A⊗B denote the entrywise product and Kronecker
product respectively. A = diag(A1, A2, . . . , AN ) denotes a
block diagonal matrix whose blocks along the diagonal are
A1, A2, . . . , An. In case A1 = A2 = . . . = AN , we get
diag(A1, A2, . . . , AN ) = IN ⊗A.

{
Ak}k1k0 denotes a sequence

of matrices Ak, k = k0, k0+1, · · · , k1. |X | denotes cardinality
of a set X .

⌈
a
⌉

denotes the smallest integer greater than or
equal to a.

II. PROBLEM STATEMENT

Consider a linear network system with N nodes, represented
by a graph G = {V, E} where V is the vertex set and E =
{(j, i) ∈ V×V | [AG ]i,j = 1}; AG being the adjacency matrix
of G. In this network, some states can be directly measured.
They define the set O = {j1, j2, · · · , jM} ⊆ V , M being the
number of observed states. From an analysis of the network,
we assume that V can also be partitioned into assailable nodes

and reliable ones. We define by A = {i1, i2, · · · , iR} the set
of the R assailable nodes that may be attacked by P external
malicious agents defining the set denoted by I, the attack
being modeled as a unknown input. An illustration is given
in Fig. 1 where three malicious nodes, namely, x, y, z can
attack the network with vertex set V through agents k, j and i.
A setup of this sort can be used as an abstraction to model
attacks on multiple nodes including deception attacks [22],
false data injection [23], fault diagnosis and detection [24],
input estimation in physiological systems [25].
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Fig. 1: Graph representation of a network system affected by
external agents where I, O and V are the sets of attackers,
observed nodes and state nodes respectively, while the set of
assailable nodes is A = {i, j, k}.

The dynamics of the linear network system described above
is given by the following equations:

xk+1 = Wkxk +ABuk
yk = ACxk

(1)

with state vector xk ∈ RN , unknown input vector uk ∈ RP
and output vector yk ∈ RM . Furthermore, Wk ∈ RN×N ,
AB ∈ RN×P and AC ∈ RM×N , where Wk, AB and AC
are state matrix at time instant k, input matrix and output
matrix respectively. For the rest of this paper, over a given
interval [k0, k1], we denote the dynamics of a LTV system as{
Wk, AB , AC}k1k0 while that of a LTI system is indicated by{
W,AB , AC}k1k0 .

In what follows we assume that for all k belonging to Z,
Wk ∈ W or in particular Wk ∈ W∗, where matrix set
W = {Z1 � AG | Z1 ∈ RN×N} and W∗ = {Z1 � AG |
Z1 ∈ RN×N∗ }. Both {W , AB , AC} and {W∗, AB , AC}
impose a fixed zero structure. The remaining coefficients (i.e.,
not fixed to zero positions) of the matrices are referred to as
free parameters. The free parameters of matrices belonging to
W can take any values while those belonging to W∗ strictly
take non-zero values. Notice that this assumption implies that
the topology of G remains fixed but the entries corresponding
to the free parameters of the system matrices may vary. For
the particular case of LTI systems, the said entries remain
constant.
We narrow our attention to the case wherein each unknown
input affects exactly one node of G and each node is at most
affected by a single unknown input. This leads to the following
assumption:

Assumption 1 (A1):

AB =
[
ei1;N ei2;N . . eiP ;N

]
,



ATC =
[
ej1;N ej2;N . . ejM ;N

]
. �

In the context of network systems, it is natural to think of
states as local variables that are in different physical locations,
whereas unknown inputs could be isolated entities that are at
best able to attack a single state. For instance, the topology of
a power distribution network can be considered as the connec-
tivity between the meters installed at the substation, feeders,
transformers, and consumer mains. An attack corresponds to
addition or draining of active power while the state at each
node can be measured using smart meters.
As a consequence of assumption A1, we rule out scenarios
wherein a linear combination of multiple unknown inputs
affects a single node in G. Therefore, we have R = P . On
the other hand, the unknown inputs are of arbitrary nature and
for the particular case in which some of the unknown inputs
are the same, we would have a single unknown input affecting
multiple nodes in G and as such we provide sufficient but not
necessary conditions for this setup as well.
In this paper, we first study conditions under which it is
possible to jointly estimate both the initial state and the
sequence of multiple unknown inputs for an LTV system{
Wk, AB , AC}k1k0 as well as the particular case of an LTI

system
{
W,AB , AC}k1k0 from measurements of a subset of state

vertices. Thereafter, based only on the structure of the graph
G, we will characterize ISO for i) almost all choices of entries
in W (see Section V) and ii) every choice of entries in W∗
(see Section VI), over all sufficiently long time windows.

III. ALGEBRAIC CHARACTERIZATION

In this section we describe some algebraic criteria for
observability and for ISO, reviewing the relevant classical
results together with some new variation of them concerning
ISO, see in particular Prop. 4.

A. Definitions

The concept of observability was first introduced by Kalman
in his seminal paper [26]. We recall it in the following
definition.

Definition 1: The system
{
Wk, AC}k1k0 is observable

on [k0, k1] if any initial state xk0 is uniquely deter-
mined by the corresponding measured output sequence
{yk0 , yk0+1, . . . , yk1}. �
It is worthwhile to notice here that Definition 1 explicitly
asks that the initial state xk0 be reconstructed, assuming that
the input is known. On the other hand, the notion of strong
observability asks that the initial state xk0 be reconstructed
even in the presence of an unknown input while that of left
invertibility with delay 1 requires that the inputs from uk0 up
to uk1−1 be reconstructed from the outputs up to yk1 . These
two notions, namely, strong observability and left invertibility
with delay 1, give rise to the definition of ISO.

Definition 2: The system
{
Wk, AB , AC}k1k0 is ISO, with de-

lay 1, on the interval [k0, k1] if the initial condition xk0 ∈ RN
and the unknown inputs sequence {uk0 , uk0+1, . . . , uk1−1}
can be uniquely determined from the measured output se-
quence {yk0 , yk0+1, . . . , yk1}. �

A stronger notion of observability is that of uniform δ-step
observability which requires that a system be observable over
every time window of length δ [27]. Analogously, we define
uniform δ-step ISO as follows:

Definition 3: The system
{
Wk, AB , AC}k∈Z is uniformly δ-

step ISO if ∀k0 ∈ Z
{
Wk, AB , AC}k0+δk0

is ISO over [k0, k0+
δ]. �

Remark 1: Notice that although uniform δ-step ISO (resp.
observability) is with respect to all intervals of length δ, it turns
out that it can be rephrased considering all intervals of length
at least δ. For observability, this is immediate: if a system is
observable over [k0, k0 + δ], then it is also observable over
[k0, k0 + η] for all η ≥ δ. For ISO, one needs to reconstruct
all inputs up to k0 +η−1 and not only those up to k0 +δ−1.
If the system is uniformly δ-step observable, it is possible to
use δ-step ISO over successive time windows of length δ to
ensure that all the required inputs are indeed reconstructed. �

Remark 2: It is well-known that either LTI systems are not
observable or are uniformly N -step observable in which case
we would simply call it as observable. �

B. Observability, Invertibility, Input and State Observability
Matrices

Let Θk0,k1 , Γk0,k1 and Ψk0,k1 represent the observability
matrix, invertibility matrix, and input and state observability
(ISO) matrix respectively over the interval [k0, k1]. These are
defined as follows:

Θk0,k1 =



AC
ACWk0

ACWk0+1Wk0

.

.

.
ACWk1−1 · · ·Wk0


,

Γk0,k1 =


0 . . . . . . 0

ACAB . . . . . . 0
ACWk0+1AB ACAB . . . 0

. . . . . .

. . . . . .
ACWk1−1 · · ·Wk0+1AB . . . . . . . ACAB

 ,

Ψk0,k1 = [Θk0,k1Γk0,k1 ]. (2)

This leads us to the following classical Kalman-like charac-
terization of ISO.

Proposition 1: The system
{
Wk, AB , AC}k1k0 is ISO over

[k0, k1] if and only if Ψk0,k1 is full column rank, i.e.
rank(Ψk0,k1) = N + (k1 − k0)P. �

Proof: Let yk0:k1 and uk0:k1−1 denote the vectors of concate-
nated outputs and unknown inputs over [k0, k1], respectively.
Therefore, from (1) and (2) the following can be readily
obtained

yk0:k1 = Θk0,k1xk0 + Γk0,k1uk0:k1−1 = Ψk0,k1

[
xk0

uk0:k1−1

]
.



Based on Definition 2 it is immediate that input and state
observability is equivalent to uniqueness of the above system
of linear equations. �
Prop. 1 enables one to exploit the structure of Ψk0,k1 so as to
find some simple necessary conditions for Ψk0,k1 to have full
column rank. The following proposition briefly summarizes
them.

Proposition 2: The following conditions are necessary for
the system

{
Wk, AB , AC}k1k0 to be ISO over [k0, k1]:

i) rank(Θk0,k1) = N ,
ii) rank (ACAB) = P ,
iii) M ≥ P .
iv) N ≥ P .
In case N > P , then the following conditions are also
necessary:
v) M > P ,
vi) k1 − k0 ≥

⌈
N−M
M−P

⌉
.

In case P = N then the following conditions are necessary
and sufficient:
M = N , ∀k ∈ [k0, k1] rank(AC) = N and ∀k ∈ [k0, k1 − 1]
rank(AB) = N . �
Proof: The proof is reported in the Appendix. �.
Notice that Prop. 2 fully characterizes the ISO problem for
the particular case of P = N where, under A1, the system is
ISO if and only if all nodes are observed (i.e., O = V). In
this paper we restrict our attention to the non-trivial case of
N > P i.e., not all the nodes are assailable. Therefore, from
Prop. 2, M > P is a necessary condition for ISO.
From Prop. 2 we know that the following are necessary
conditions for ISO:

1) all the assailable nodes are observed i.e., {i1, i2,.., iP } ⊂
{j1, j2, . . . , jM} and

2) all of the assailable nodes are distinct i.e., there does not
exist h, k belonging to {1, 2..., P} such that ih = ik.

We also assume that all of the observed nodes are distinct i.e.,
there does not exist h, k belonging to {1, 2...,M} such that
jh = jk. This ensures that there are no repeated or dependent
rows in C. Therefore, one can relabel the nodes in G in the
following manner: i1 = j1 = 1, i2 = j2 = 2, ..., iP = jP = P .
The aforesaid relabeling allows us to rewrite AB and AC as
follows:

Assumption 2 (A2):
AB =

[
e1;N e2;N . . . eP ;N

]
,

ATC =
[
e1;N e2;N . . . eP ;N ejP+1;N . . . ejM ;N

]
. �

C. Alternative Algebraic Characterization

Prop. 1 characterizes ISO in terms of rank of Ψk0,k1 . How-
ever, the elements in Ψk0,k1 are obtained by taking products of
the state matrices over the interval [k0, k1]. Consequently, the
zero/non-zero pattern is not preserved. In order to overcome
this drawback, in this subsection we provide an alternative
algebraic characterization for both observability and ISO.
Theorem 6.4.1 in [28] gives an alternative characterization of
controllability. The following proposition does the same for
observability.

Proposition 3: The system
{
Wk, AC}k1k0 is observable over

[k0, k1] if and only if rank(Qk0,k1) = (k1−k0 +1)N , where

Qk0,k1 =



AC 0 . . . . . . 0
0 AC . . . . . . 0
. . . . . . . . . . .
. . . . . . . . . . .
0 . . . . . . . . . AC

Wk0 −IN . . . . . . 0
0 Wk0+1 −IN . . . 0
. . . . . . . . . . .
. . . . . . . . . . .
0 . . . . . . Wk1−1 −IN


,

with Qk0,k1 ∈ R(k1 − k0 + 1)M + (k1 − k0)N × (k1 − k0 + 1)N . �
Proof: Notice that the problem of reconstructing xk0
from yk0:k1 is equivalent to the problem of reconstructing
xk0 , xk0+1, . . . , xk1 . The relationship between the states and
outputs can be expressed via a system of linear equations
as follows. From Eq. (1) and setting u(k) = 0P , we have:
∀k ∈ [k0, k1 − 1], Wkxk − xk+1 = 0N and ∀k ∈ [k0, k1]
Ckxk = yk.

This can be rewritten as: Qk0,k1xk0:k1 =
[

yk0:k1
0(k1−k0−1)N

]
.

Hence, the system
{
Wk, AB , AC}k1k0 is observable, over

[k0, k1], if and only if the above system of linear equations
has a unique solution. �
It turns out that similar arguments can be made for ISO as
well, and will be shown in Prop. 4. As a first step we define
the following matrix:

Jk0,k1 =

[
0

Bk0,k1
Qk0,k1

]
,

where Bk0,k1 = Ik1−k0 ⊗AB ∈ R(k1 − k0)N × (k1 − k0)P .
Proposition 4: The system

{
Wk, AB , AC}k1k0 is ISO over

[k0, k1] if and only if rank (Jk0,k1) = (k1 − k0)P + (k1 −
k0 + 1)N . �
Proof: The problem of reconstructing xk0 and uk0:k1−1
from yk0:k1 is equivalent to the problem of reconstruct-
ing xk0 , xk0+1, . . . , xk1 and uk0:k1−1. From (1), we have:
∀k ∈ [k0, k1 − 1], Wkxk + ABuk − xk+1 = 0N and
∀k ∈ [k0, k1] ACxk = yk. Hence, both the state equation
and output equation at each time instant can be expressed
as a linear combination of xk0 , xk0+1, . . . , xk1 as well as
uk0 , uk0+1, . . . , uk1−1, in the following manner:

Jk0,k1
[
uk0:k1−1
xk0:k1

]
=
[

yk0:k1
0(k1−k0)N

]
,

Hence, the system
{
Wk, AB , AC}k1k0 is ISO over [k0, k1] if

and only if the above system of linear equations has a unique
solution. �

IV. ISO AS OBSERVABILITY OF AN APPROPRIATE
SUBSYSTEM

The objective here is to decompose the system{
Wk, AB , AC}k1k0 into two subsystems and show that ISO is

equivalent to observability of one of the subsystems. It is
crucial to notice here that the identity of the nodes being



assailable remains fixed and, according to assumption A2,
equal to {1, 2, . . . , P}. Consequently, the nodes labeled from
iP+1, . . . , iN are not assailable. This enables us to decompose
the state vector in two blocks: x̂k denoting states that are
directly affected by the unknown inputs and x̃k for the
remaining states; a corresponding partitioning is also done for
the output vector, obtaining

xk =

[
x̂k
x̃k

]
, yk =

[
ŷk
ỹk

]
,

with x̂k ∈ RP, x̃k ∈ RN-P, ŷk ∈ RP, and ỹk ∈ RM-P. Moreover,
thanks to Assumption A2, the input and output matrices can
be rewritten as follows:

AB =

[
IP
0

]
, AC =

[
IP 0

0 ÃC

]
.

Therefore, the system
{
Wk, AB , AC}k1k0 can be decomposed

into two subsystems as follows:{
x̂k+1 = Ŵkx̂k + Λx̃k + uk
ŷk = x̂k

(3){
x̃k+1 = W̃kx̃k + Ωx̂k
ỹk = ÃC x̃k

(4)

where we use the notation

Wk =

[
Ŵk Λk
Ωk W̃k

]
.

From (3), it is clear that x̂k is directly observed. Hence,
(3) represents a system with known state but two unknown
inputs, namely, x̃k and uk, while (4) represents a system with
unknown state but known input. Hence, we have the following
proposition.

Proposition 5: Under A2, the system
{
Wk, AB , AC}k1k0 is

ISO over [k0, k1] if and only if the system
{
W̃k, ÃC}k1k0 is

observable over [k0, k1]. �
Proof: We define the matrices QN and Q̄N as follows:

QN =

[
Ip
0

]
, Q̄N =

[
0

IN−P

]
.

Let Π1 and Π2 represent row and column permutation matri-
ces respectively, defined as follows. For column permutations,
we put at the beginning the first P columns of each occurrence
of AC , obtaining

JΠ2 =

[
R1 0 R3

R2 Bk0,k1 R4

]
,

where R1 = Ik1−k0+1 ⊗ACQN ,

R2 =


Wk0QN −QN 0N×P . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

0N×P . . . . . . Wk1−1QN −QN

 ,
R3 = Ik1−k0+1 ⊗ACQ̄N , and

R4 =


Wk0Q̄N −Q̄N 0 . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . Wk1−1Q̄N −Q̄N

 .

For row permutations, consider the following steps: we first
arrange the (k1−k0 +1) row blocks corresponding to the first
P rows of each occurrence of AC , then the (k1 − k0) row
blocks corresponding to the first P rows of each occurrence
of AB , and finally the remaining rows , so as to obtain

Π1JΠ2 =


I(k1−k0+1)P 0 0

P1 I(k1−k0)P P2

0 0 C̃

P3 0 W̃

 ,
where

P1 =

Ŵk0 −IP 0 . . .

. . .
. . . . . . . . .

0 . . . Ŵk1−1 −IP

 ,

P2 =

Λk0 0 . . . . . .

. . .
. . . . . . . . .

0 . . . Λk1−1 0

 ,

P3 =

Ωk0 0 . . . . . .

. . .
. . . . . . . . .

0 . . . Ωk1−1 0

 ,
C̃ = Ik1−k0+1 ⊗AC , and

W̃ =


W̃k0 −IN−P . . . . . . 0

0 W̃k0+1 −IN−P . . . 0
. . . . . . . . . . .
. . . . . . . . . . .

0 . . . . . . W̃k1−1 −IN−P

 .
Let J̄ = Π1JΠ2,

Ĵ =

I(k1−k0)P P2

0 C̃

0 W̃

 ,
and

J̃ =

[
C̃

W̃

]
.

Notice that J̄ is block lower triangular with the blocks over
the diagonal I(k1−k0+1)P and Ĵ . This implies rank (J̄ ) =

(k1 − k0 + 1)P + rank (Ĵ ). Ĵ is block upper triangular
with blocks over the diagonal I(k1−k0)P and J̃ . Therefore,
the following holds:
rank (J̄ ) = (k1 − k0 + 1)P + (k1 − k0)P + rank (J̃ ).

From Prop. 4 we know that
{
Wk, AB , AC}k1k0 is ISO over

[k0, k1] if and only if rank (J̄ ) = (k1−k0)P+(k1−k0+1)N ,
which in turn is equivalent to rank (J̃ ) = (k1−k0 +1)(N −
P ). From Prop. 3, the latter corresponds to observability of{
W̃k, ÃC}k1k0 over [k0, k1]. �

The result in Prop. 5 can be interpreted as follows: when the
subsystem {W̃k, ÃC}k1k0 is observable over [k0, k1], one of the
two unknown inputs in (3), namely x̃k, is known and hence it
is possible to compute uk, since x̂k is directly measured.
For LTI systems, alternatively, the PBH rank test may also be
used to prove Prop. 5. The interested reader may be inspired
by Prop. 4 in [20] and proof therein.



As mentioned previously, Prop 1 and Prop. 4 characterize
ISO in terms of rank conditions of matrices, namely, Ψk0,k1

and Jk0,k1 respectively. These algebraic techniques work
well provided we have access to the exact values of all
the coefficients of the aforesaid matrices. Moreover, from a
computational standpoint this technique is rather limited since
the computational complexity increases as the size of the
network grows. Therefore, in the sequel we turn our attention
to structural (resp. s-structural) results, i.e., the focus is on
finding conditions such that the system is ISO for almost
all choices of free parameters (resp. every choice of free
parameters) of the system matrices.

V. STRUCTURAL ISO

The main objective of this section is to characterize ISO for
almost all choices of free parameters.
A. Definition and Implications

We denote by
{
W, AB , AC}LTV the family of all LTV systems

as given in (1) and having the same zero/non-zero pattern as
given by W, AB and AC while

{
W, AB , AC}LTI represents

the corresponding family of all LTI systems.
As mentioned previously, structured systems have fixed zero
positions and free parameters. Let |E| denote the number of
ones in AG . Under such a setup, the free parameters can
take values in R(|E|)(k1−k0), where [k0, k1] represents the time
window over which the system

{
W, AB , AC}LTV is being

observed. Notice that each element in R(|E|)(k1−k0) yields
a choice of free parameters. Structural ISO then asks that
there be at least one member in

{
W, AB , AC}LTV which is

observable. This leads us to the following definition.
Definition 4:

{
W, AB , AC}LTV is structurally ISO on

[k0, k1], k1 > k0 if there exists at least one system{
Wk, AB , AC}k1k0 with Wk ∈ W; such that

{
Wk, AB , AC}k1k0

is ISO. �
Analogously, one can define structural observability and uni-
form N -step structural observability for LTV systems. In
particular, definitions for structural ISO, structural observabil-
ity and uniform N -step structural observability can also be
obtained for LTI systems where the space of free parameters
is R|E| and the same free parameters are repeated at each time
instant.

It is well-known that observability (and controllability) is a
property (see [29], [12]) such that either there is no choice
of parameters that makes it true, or it is true for almost
all choices of parameters. Almost all choices of parameters
means all choices of parameter except those lying in some
proper algebraic variety of the space of free parameters.
This means there are some non-trivial polynomials (one or
more, but finitely many) such that the property is true for
all parameters except those which are zeros of this system
of polynomials. The polynomials being non-trivial (i.e., not
identically zero) ensures that the variety is proper (i.e., not the
whole space of free parameters) and therefore, has Lebesgue
measure zero. This can be interpreted as the property being
true with probability one, if the parameters are thrown at
random, according to any continuous probability distribution.
Furthermore, small variations in the parameter values would

not lead to loss of property. It turns out that the above
discussion also holds for ISO, as shown in the following:

Proposition 6: The set of parameters for which{
W, AB , AC}LTV is not ISO is either the whole parameter

space R(|E|)(k1−k0) or a proper variety of R(|E|)(k1−k0). �
Proof: The proof is based on standard tools and is reported in
Appendix. �
This means that over a given interval [k0, k1], if one member
of the family of systems

{
W, AB , AC}LTV is ISO then almost

all members of
{
W, AB , AC}LTV are ISO. On the other hand,

if
{
W, AB , AC}LTV is not structurally ISO, then none of the

members of
{
W, AB , AC}LTV is ISO. An analogous result to

Prop. 6 also holds for LTI systems wherein the space of free
parameters R|E|. Definition 4 needs to be seen against this
backdrop.

It turns out that structural ISO for a family of LTI systems
implies structural ISO for the corresponding family of LTV
systems, and is given by the following remark

Remark 3: If the LTI system {W, AB , AC}LTI is structurally
ISO, then the corresponding LTV system {W, AB , AC}LTV is
structurally ISO over all sufficiently long intervals. Indeed,
if the system {W, AB , AC}LTI is structurally ISO, then there
exists W ∈ W , such that the triplet (W,AB , AC) is ISO.
Therefore, over an interval [k0, k1] of length at least N ,
one can set Wk = W , ∀k ∈ [k0, k1], obtaining a system{
Wk, AB , AC}k1k0 that is ISO over [k0, k1], thereby exhibiting

a choice of entries for which {W, AB , AC}LTV is ISO. Con-
sequently, from Definition 4, the system {W, AB , AC}LTV is
structurally ISO over [k0, k1]. �
However, the converse of Remark 3 is open. In the rest of this
section we show that, under assumption A2, the conditions
given in Remark 3 are equivalent.

B. Uniform N -step structural ISO for LTV systems

From Proposition 5, we can study ISO by studying observ-
ability of a suitable sub-system. Here we apply this technique
to the family of systems {W, AB , AC}LTV, defining a suitable
family of subsystems. We define the set of matrices W̃ as
W̃ = {Q̄TNWQ̄N | W ∈ W}. Let

{
W̃, ÃC}LTV represent

the family of all LTV systems as given in (4) but without the
known input x̂k. We denote by

{
W̃, ÃC}LTI the counterpart

LTI subsystem (i.e., whose matrices have the same zero/non-
zero pattern as given by W̃). As a consequence of Prop. 5,
for LTI systems we have the following remark:

Remark 4: Under A2,
{
W, AB , AC}LTI is uniform N -

step structural ISO if and only if
{
W̃, ÃC}LTI is structurally

observable. �
It turns out that corresponding to Remark 4, conditions for
structural results can also be obtained for LTV systems, as
shall be evidenced in the rest of this subsection.
An immediate corollary of Prop. 5 is the following

Proposition 7: Under A2,
{
W, AB , AC}LTV is structurally

ISO over [k0, k1] if and only if
{
W̃, ÃC}LTV is structurally

observable over [k0, k1]. �
The advantage of Prop. 7 is that it breaks down the problem

of structural ISO into an equivalent problem in structural
observability. With this in hand, and rewriting Thm. 3 in [30]



(also see [16]) for observability we obtain equivalence between
structural observability for LTV and LTI systems, and is given
by the following proposition.

Proposition 8 (Thm. 3 in [30]): Under A2, over any interval
[k0, k1] of length at least N ,

{
W̃, ÃC}LTV is structurally

observable if and only if
{
W̃, ÃC}LTI is structurally observ-

able. �
Prop. 7 and Prop. 8 together break down the structural
ISO problem of LTV systems into a structural observability
problem of a corresponding suitably defined LTI subsystem.
Thanks to [21] it turns out that the structural observability
of an LTI subsystem can be determined by checking certain
graph-theoretical conditions. Before proceeding, we need a
few constructs on G. Let G̃ be the graph corresponding to
W̃ . Let S = {L1,L2, ES} be a bipartite graph associated with
G̃, with L1 = Ṽ \ Õ, L2 = Ṽ constructed in the following
manner, two vertices in L1 and L2 that correspond to the
same element v ∈ Ṽ are denoted as uv and wv respectively,
and ES = {(ui, wj) ∈ L1 × L2 | (i, j) ∈ Ẽ}. Similar to [31]
but without the introduction of additional output nodes in G̃
we state the following definitions.

Definition 5: The graph G̃ with observation set Õ is said to
be output-connected if for all v ∈ Ṽ , there exists a path from
v to w for some w ∈ Õ. �

Definition 6: A matching is a set of edges that do not share
any common vertices. �
With Definitions 5 and 6 in hand, we state the following result,
rephrased for observability

Lemma 1 (Thm. 1 [14]): The system
{
W̃, ÃC}LTI is struc-

turally observable if and only if:
1) G̃ is output-connected;
2) there exists a matching in S of size N − |Õ|. �

As an aside, the above result previously appeared in [21] and
[31]. With Lemma 1 in place we state our first main result.

Theorem 1: Under A2,
{
W, AB , AC}LTV is uniformly N -

step structurally ISO if and only if the following conditions
are satisfied:

1) G̃ is output-connected;
2) there exists a matching in S of size N − |Õ|. �

Proof: From Prop. 7, it can be seen that under A2, the system{
W, AB , AC}LTV is structurally ISO over [k0, k1] if and only

if the subsystem
{
W̃, ÃC}LTV is structurally observable over

[k0, k1], while from Prop. 8 it can be seen that the subsystem{
W̃, ÃC}LTV is structurally observable over [k0, k1] if and

only if the corresponding LTI subsystem
{
W̃, ÃC}LTI is

structurally observable. It is well-known that LTI systems are
either observable over every sufficiently long interval or not
observable at all. Thus, setting δ = N in Remark 1, and from
Prop. 7 and Prop. 8, it follows that under A2, the system{
W, AB , AC}LTV is structurally ISO over [k0, k1] if and only

if the subsystem
{
W̃, ÃC}LTI is uniform N-step structural ISO.

Thereafter, from Lemma 1, the proof is complete. �

Example 1: With reference to the system shown in Figure 1,
it can be seen from Figure 2 and Figure 4 that the subsystem is
output-connected and its bipartite graph S contains a matching
of size N − |Õ| and hence, the subsystem is structurally
observable [14]. Therefore, from Thm 1, the system given in
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Fig. 2: The subsystem G̃ for the system shown in Fig. 1
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Fig. 4: A Matching M in S

Figure 1 is uniformly N -step structurally ISO. �
Item i) or output-connectedness of G̃ can be checked by using
a variant of Tarjan’s algorithm and has complexity that is linear
in the number of edges and vertices of G̃ (i.e., O(|Ẽ |+ |Ṽ|))
[32]. On the other hand, Hopcroft-Karp maximum matching
algorithm can be used for checking item ii) and its complexity

is O((|Ẽ |+ |Ṽ|)
√
|Ṽ|) [33].

VI. S-STRUCTURAL ISO

The main objective of this section is to characterize ISO for
every choice of entry in W∗.

A. Definition

S-structural properties are those that hold for every non-zero
choice of free parameters of the system matrices. That is, s-
structural ISO (resp. observability) requires that every member
of the family of LTV systems given by

{
W∗, AB , AC}LTV,

be ISO (resp. observable). This leads us to the following
definition.

Definition 7: Let k1, k0 ∈ Z and k1 > k0,{
W∗, AB , AC}LTV is s-structurally ISO on [k0, k1] if

for every system
{
Wk, AB , AC}k1k0 with Wk ∈ W∗,{

Wk, AB , AC}k1k0 is ISO. �
Analogous to Definition 7, one can also define s-structural
observability and uniform N -step s-structural observability
for LTV systems. In particular, definitions for s-structural
ISO, s-structural observability and uniform N -step s-structural
observability can also be obtained for LTI systems.
It turns out that s-structural ISO for a family of LTV systems



implies s-structural ISO for the corresponding family of LTI
systems, and is given by the following remark

Remark 5: If the system {W∗, AB , AC}LTV is s-structurally
ISO over an interval [k0, k1], then the corresponding LTI
system {W∗, AB , AC}LTI is s-structurally ISO. Indeed, if
the system {W∗, AB , AC}LTI is not s-structurally ISO, then
from Definition 7 there exists a system {W1, AB , AC} with
W1 ∈ W∗ such that {W1, AB , AC} is not ISO. Over any
interval [k0, k1], we can set Wk = W1 ∀k ∈ [k0, k1] such that
the LTV system {Wk, AB , AC}k1k0 is not ISO. Consequently,
from Definition 7, the system {W∗, AB , AC}LTV is not s-
structurally ISO over any interval. �

Notice that for structural ISO the implication is in the other
direction (see Remark 3).
The converse of Remark 5 remains open. In the rest of this
section we show that, under assumption A2, over sufficiently
long intervals, the conditions given in Remark 5 are equivalent.

B. Uniform N -step s-structural ISO for LTV systems

The set of matrices W̃∗ is defined analogous to W̃ . One can
use Prop. 5 so as to obtain s-structural ISO results. We first
focus on LTI systems. As another consequence of Prop. 5, we
have the following:

Remark 6: Under A2,
{
W, AB , AC}LTI is uniform N -step

s-structural ISO if and only if
{
W̃, ÃC}LTI is s-structurally

observable. �
It turns out that one can obtain similar conditions for LTV
systems as well, as shall be seen in the rest of this subsection.
First notice that another immediate corollary of Prop. 5 can
be stated as follows

Proposition 9: Under A2,
{
W∗, AB , AC}LTV is s-

structurally ISO over [k0, k1] if and only if
{
W̃∗, ÃC}LTV is

s-structurally observable over [k0, k1]. �
Thanks to Prop. 9, we can now rephrase s-structural ISO of a
family of LTV systems as an equivalent problem in s-structural
observability of a suitable family of LTV systems. Against this
backdrop, it is indeed relevant to see if s-structural ISO of LTV
systems is equivalent to s-structural observability of a suitable
family of LTI systems. The following proposition is immediate
from Corollary IV.2 [17].

Proposition 10: Under A2, over any interval [k0, k1] of
length at least N ,

{
W̃∗, ÃC}LTV is s-structurally observable

if and only if
{
W̃∗, ÃC}LTI is s-structurally observable. �

Thus, from Prop. 9 and Prop. 10, it can be seen that under
assumption A2, the s-structural ISO problem for LTV systems
breaks down into an equivalent problem in s-structural
observability for a suitably defined LTI subsystem. This
equivalence allows us to exploit the literature on s-structural
observability, as we see in the following.

Thanks to [14], (also see [15]), it turns out that s-structural
observability of an LTI system can be assessed by checking
some graph-theoretical conditions. Here we would be focusing
on the notion of uniquely restricted matching (also known
as constrained matching) as in [14]. In order to proceed, a
few constructs on the graph G̃ are due. Eloop ⊂ ES denote
the edges of the form {ui, wi} if there exists any. Notice

that Eloop corresponds to self-loops in G̃. Let Enew denote the
set of newly added self-loops in G̃ i.e., adding self-loops for
those vertices i ∈ Ṽ that previously did not have one in G̃.
Let S× = {L1,L2, ES×}, where ES× = {ES ∪ Enew}, denote
another bipartite graph on G̃. We recall that a matching is said
to be uniquely restricted if there is no other matching involving
the same vertex set. Equivalent characterizations of uniquely
restricted matchings are discussed in [34]. The following result
is the same as Thm. 5 in [14] but rewritten for s-structural
observability.

Lemma 2 (Thm. 5 [14]): The system
{
W̃∗, ÃC}LTI is s-

structurally observable if and only if:

1) there exists a uniquely restricted matching M ⊆ ES of
size N − |Õ|;

2) there exists a uniquely restricted matching M× ⊆ ES×
of size N − |Õ| such that M× ∩ Eloop = ∅. �

With Lemma 2 in place we present our second main result in
the following theorem.

Theorem 2: Under A2,
{
W∗, AB , AC}LTV is uniformly

N -step s-structurally ISO if and only if the following two
conditions are satisfied:

1) there exists a uniquely restricted matching M ⊆ ES of
size N − |Õ|;

2) there exists a uniquely restricted matching M× ⊆ ES×
of size N − |Õ| such that M× ∩ Eloop = ∅. �

Proof: From Prop. 9 and Prop. 10, it can be seen that
under A2,

{
W∗, AB , AC}LTV is s-structurally ISO over any

interval of length at least N if and only if
{
W̃∗, ÃC}LTI is

s-structurally observable, while from Prop. 10, it can also
be seen that

{
W̃∗, ÃC}LTI is s-structurally observable if and

only if
{
W̃∗, ÃC}LTV is s-structurally observable over every

interval of length at least N . Thus, Prop. 9 and Prop. 10
together with setting δ = N in Remark 1, results in the
following: under A2,

{
W∗, AB , AC}LTV is s-structurally ISO

if and only if the LTI subsystem
{
W̃∗, ÃC}LTI is uniform N -

step s-structural ISO. Thereafter, from Lemma 2, the proof is
complete. �
The conditions in Theorem 2 can be checked using the
algorithm given in [14], with complexity O(|Ṽ|2), or with the
algorithm introduced in [35], which achives a linear complex-
ity O(|Ṽ| + |Ẽ |) by combining sophisticated data structures
and sparse matrix techniques.

Example 1 (continued): With respect to the
system given in Figure 1, first recall that M =
{(ua, wb), (ub, wc), (uc, wd), (ud, we)} (see Figure 4) is
a matching in S. Furthermore, there exists no other matching
M̃ ⊂ ES saturating the same vertices as M, and hence,
by definition M ⊂ ES is a uniquely restricted matching.
The second condition is checked with respect to the
bipartite graph S× given in Figure 5. It can be seen that
M× = {(ua, wa), (ub, wb), (uc, wc), (ud, we)} (see Figure 6)
is a matching in S× that satisfies M× ∩ Eloop = ∅. Notice
that there exists no other matching M̂× ⊂ ES× saturating the
same vertices as M×. Therefore, from Thm. 2, the system
given in Figure 1 is uniformly N -step s-structurally ISO. �
Now consider another example.
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Fig. 5: Bipartite graph S×, in solid red: S× ∩ S, in dashed
blue: Enew = {(ua, wa), (ub, wb), (uc, wc)} while Eloop =
{(ud, wd)}

ud

uc

ub

ua

wg

wf

we

wd

wc

wb

wa

Fig. 6: A matching M× in S×

Example 2: Consider the system given in Figure 7, whose
corresponding subsystem is given in Figure 8, while a bipartite
graph associated with the subsystem G̃1 is given in Figure 9.
It is immediate that the subsystem G̃1 is output-connected.
Furthermore, there also exists a matching of size N − |Õ|
on the bipartite graph S1. Therefore from Thm. 1 the system
given in Figure 7 is uniformly N -step structurally ISO. On
the other hand, from Figures 10(a) and 10(b) it can be seen
that there does not exist a uniquely restricted matching over the
choice of vertex sets {ua, ub, uc} and {wa, wb, wc}. The same
can be said with respect to the vertex sets {ua, ub, uc} and
{wa, wb, wd} (see Figures 10(c) and 10(d)), {ua, ub, uc} and
{wb, wc, wd} (see Figures 10(e) and 10(f)), {ua, ub, uc} and
{wa, wc, wd} (see Figures 10(g) and 10(h)). Thus, there does
not exist a uniquely restricted matching of size N−|Õ| on the
bipartite graph S1, and hence, from Thm. 2, the system given
in Figure 7 is not uniformly N -step s-structurally ISO. �
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Fig. 7: The system G1
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Fig. 8: Subsystem G̃1
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Fig. 9: Bipartite graph S1 as-
sociated with G̃1

VII. CONCLUSION

We have studied ISO with one time-step delay for linear
network systems with a fixed topology. Under the assumptions:
(i) each assailable node can be attacked by at most a single
unknown input, (ii) each unknown input affects exactly one
node, and (iii) direct measurements of certain states are
available, we provide a characterization of ISO in terms of
observability of a suitably defined subsystem. Moreover, we
have studied uniform N -step ISO for almost all choices of
free parameters in the W as well as for all non-zero choices
of free parameters in W , where W stands for the family of
systems sharing the same zero/non-zero pattern. A future line
of investigation would be to characterize ISO for more general
linear network systems by considering time-varying topology
and less a priori knowledge on the assailable nodes. A weaker
notion of ISO, wherein the focus is on the unique recovery of
just a subset of the states, for instance, only the states that are
not affected by an unknown input, could be another direction
of future works.

APPENDIX

Proof of Proposition 2

Item i) requires that the first N columns of Ψk0,k1 be
linearly independent. Item ii) requires that the last P columns
of Ψk0,k1 be linearly independent, while items iii) and iv) are
necessary conditions for item ii). To see the necessity of items
v) and vi), notice that, in order for Ψk0,k1 to be full column
rank, it is necessary that Ψk0,k1 has at least as many rows as
columns, i.e.,

M(k1 − k0 + 1) ≥ N + (k1 − k0)P.

From the above equation, since (k1 − k0 + 1) > 0, it follows
that M ≥ P+ N−P

(k1−k0+1) . If N > P , this implies that M > P .
Then, under M > P , item vi) immediately follows from the
above equation.
For the particular case of M = P = N , notice that Ψk0,k1 is
a block lower triangular matrix with each of the blocks being
square. Hence, a necessary and sufficient condition for full
column rank of Ψk0,k1 is that each of the diagonal blocks have
full column rank. This is equivalent to, i) rank(ACAB) = N
∀k ∈ [k0 + 1, k1] and ii) rank(AC) = N . Notice that ∀k ∈
[k0 + 1, k1], rank(ACAB) = N if and only if: i) rank(AC) =
N and ii) rank(AB) = N . �

Proof of Proposition 6

From Prop. 1, ISO is equivalent to Ψk0,k1 having rank N +
(k1 − k0)P . Hence, the system is not ISO if and only if all
the square submatrices of size N + (k1 − k0)P have zero
determinant. Notice that the entries of Ψk0,k1 are polynomials,
whose variables are the free parameters of Wk, AB and AC ;
the fixed values (zeros) can be interpreted as polynomials of
degree zero. For each submatrix of size N + (k1 − k0)P , the
determinant is obtained by multiplications and summations of
such polynomials, and hence is itself a polynomial. We have
found a finite set of polynomials, such that the system is not
ISO if and only if the parameters belong to the zero set of all



uc

ub

ua

wd

wc

wb

wa

(a) Matching M1 on S1

uc

ub

ua

wd

wc

wb

wa

(b) Matching M2 on S1

uc

ub

ua

wd

wc

wb

wa

(c) Matching M3 on S1

uc

ub

ua

wd

wc

wb

wa

(d) Matching M4 on S1

uc

ub

ua

wd

wc

wb

wa

(e) Matching M5 on S1

uc

ub

ua

wd

wc

wb

wa

(f) Matching M6 on S1

uc

ub

ua

wd

wc

wb

wa

(g) Matching M7 on S1

uc

ub

ua

wd

wc

wb

wa

(h) Matching M8 on S1

Fig. 10: All maximum matchings on S1

these polynomials. Either such polynomials are all trivial (i.e.,
constantly equal to zero) and hence all choices of parameters
result in a system not ISO, or at least one of the polynomials
is non-trivial, and hence the set of parameters for which the
system is not ISO is a proper variety of parameter space. �
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[32] L. Úbeda, C. Herrera, I. Barriales, P. J. Zufiria, and M. Congosto,
“A combined algorithm for analyzing structural controllability and
observability of complex networks,” in Proceedings of the International
Conference on Scientific Computing (CSC). The Steering Committee
of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2013, p. 112.

[33] J. E. Hopcroft and R. M. Karp, “A n5/2 algorithm for maximum
matchings in bipartite graphs,” in 12th Annual Symposium on Switching
and Automata Theory, 1971. IEEE, 1971, pp. 122–125.

[34] M. C. Golumbic, T. Hirst, and M. Lewenstein, “Uniquely restricted
matchings,” Algorithmica, vol. 31, no. 2, pp. 139–154, 2001.

[35] A. Weber, G. Reissig, and F. Svaricek, “A linear time algorithm to verify
strong structural controllability,” in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, 2014, pp. 5574–5580.


