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Abstract—Caching popular content at the wireless edge is
recently proposed as a means to reduce congestion at the
backbone of cellular networks. The two main actors involved
are Mobile Network Operators (MNOs) and Content Providers
(CPs). In this work, we consider the following arrangement: an
MNO pre-installs memory on its wireless equipment (e.g. Base
Stations) and invites a unique CP to use them, with monetary
cost. The CP will lease memory space and place its content;
the MNO will associate network users to stations. For a given
association policy, the MNO may help (or not) the CP to offload
traffic, depending on whether the association takes into account
content placement.

We formulate an optimization problem from the CP perspec-
tive, which aims at maximizing traffic offloading with minimum
leasing costs. This is a joint optimization problem that can include
any association policy, and can also derive the optimal one. We
present a general exact solution using Benders decomposition. It
iteratively updates decisions of the two actors separately and
converges to the global optimum. We illustrate the optimal
CP leasing/placement strategy and hit probability gains under
different association policies. Performance is maximised when
the MNO association follows CP actions.

I. INTRODUCTION

By 2020, wireless data traffic is estimated to reach roughly
the 8-fold of its volume of 2015 [1]. Such increase is a
challenge to mobile network operators (MNOs) as well as to
the content providers (CPs). The MNOs and the CPs have
different strategies to cope with these high demands: The
MNOs, on the one hand, try to satisfy the increase in data
demand by densifying the network with new tiers and by
allowing cooperation among stations. However, this increase of
wireless traffic can pose new problems to the wireless backhaul
that are related to congestion. On the other hand, the CPs are
on the receiving end of the content requests. Large CPs such as
Youtube or Netflix store their data in huge data centers. For
such a CP, a steep increase in data demand can be handled
by massive infrastructure investments, i.e. upgrade of the data
center capacity as well as installation of higher capacity data
links to the surrounding network.

A recently studied alternative is to equip wireless nodes
with caches (see [2]–[6]). The main purpose of cache memory
installation is to ease backhaul traffic and its processing at the
data centers by handling content requests from intermediate
caches placed at the edge or inside the core network. This way,
the user Quality of Service (QoS) can be improved because
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cached content is downloaded with less delay from caches
closer to the user.

Caching can be both of interest to the MNOs and the CPs.
We consider a scenario in which an MNO has constructed and
physically maintains caching infrastructure at Cached Base
Stations (CBSs). The MNO makes three strategic decisions:
MNO-1) How much memory to install at each CBS?
MNO-2) Which price to set for the leasing of one cache unit?
MNO-3) Which user association policy to pursue?
The standard user association policy routes each user to its
closest station because of the strongest channel quality. More
involved policies allow load-balancing of users when these are
located in the overlap of coverage areas of two or more CBSs.

A central assumption we make in this work is that the MNO
puts the management of cache content into the hands of the
CP. There are two reasons for this. The first is that the CP
usually transfers data to wireless users via secure connections,
e.g. https [7], so that the intermediate MNO cannot recognize
requests and serve them from local caches. The second is that
content placement policies may depend on spatio-temporal
popularity data that the CP can gather and use. All content
related information is in the hands of the CP.

In what follows, we take the point of view of the CP, which
reacts to the MNO’s cache installation, pricing scheme, and
user association policy. The CP has to take two types of
decisions:
CP-1) How much cache space to lease from the MNO at each

CBS?
CP-2) Which content to place into the respective leased

caches?
The decisions are based on the estimated spatio-temporal
popularity of the CP’s content. They are taken for a time period
in which the system parameters are considered relatively static.
For example, updates can take place in off-peak hours [8].
The aim of the CP is to find a cache leasing and content
placement strategy which optimally weighs the total cache
leasing costs against the savings from a reduction of traffic
at the data centers: For every object stored in a cache, a price
for memory space and content delivery has to be paid. But, at
the same time, all users that are associated to the cache and ask
for the cached content generate savings for the CP by relieving
data centers [9]. To better understand the problem, consider
two examples. In each case, the MNO installs unlimited cache
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memory at all CBSs and sets a price per memory unit. Then
a user association policy is announced:

CLOSEST: The MNO associates each wireless user to the
geographically closest CBS. Based on offline estimates of con-
tent popularity in each association area, the CP can calculate
the potential savings per CBS when caching each content file.
The optimal strategy for the CP is to cache exactly those files
for which the savings exceed the corresponding cache leasing
costs. In this case the MNO associates users independently of
their requests and CP decisions. Note that, for zero costs and
unit file size, it is optimal to place the locally Most Popular
Content in each CBS.

OPT-h: A different MNO association policy allows for
more user requests to be served by the caches. If users
can be associated to any single wireless node among those
close enough (in contrast to a predetermined association, e.g.
CLOSEST) each user has potential access to the set of files
cached at all covering stations. It is then beneficial for the
CP to cache different sets of content in neighboring nodes.
To maximize those benefits, the MNO should associate users
to CBSs in such a way that content requests are matched to
the cached content. A special case for such user association
is used for FemtoCaching [2].

The contributions of this work are summarized as follows:
• We introduce a model whose elements include cache

leasing at CBSs, content placement decisions and user
association.

• We formulate a mixed integer Network Utility Maximiza-
tion (NUM) problem that aims to maximize the CP’s
benefits given the user association policy. The leasing and
caching decisions are discrete, taken by the CP. The MNO
association decision variables are fractional.

• As solution technique, we introduce Benders decomposi-
tion of the NUM which converges to the global optimum.
One of its main advantages, aside optimality, is that it
allows the separation of the user association problem
from the cache leasing and content placement problems
in the solution process. This separation of the solution
process into two subproblems solved iteratively by the
two actors is reminiscent of the work by Kelly [10]. Our
solution is completely original for solving NUM edge-
caching problems with non-linear utilities.

• We provide extensive evaluation of the optimal leasing,
placement and pricing strategies for linear and concave
objective functions. We further show the benefits in hit
probability, when the MNO makes optimal association
decisions taking content placement into account, com-
pared to content agnostic strategies, like the closest node
association policy.

The remainder of this paper is organized as follows: In
Section II, we survey relevant literature to our problem. The
system model is developed in Section III where we also state
the general mixed integer NUM problem. The general solution
based on Benders decomposition is provided in Section IV.
Special formulations of the problem with linear or separable
concave objective functions as well as different association

policies (CLOSEST, OPT-h) are presented in Section V. The
Section also includes a discussion on how to include wire-
less resource sharing in the problem formulation. Extensive
numerical evaluation of these problems and analysis of the
findings is given in Section VI. Finally, Section VII concludes
our work.

II. RELATED LITERATURE

There is extensive literature on the advantages of caching
in wireless networks. However, just few works treat the joint
leasing, placement and routing problem, none of which finds
the exact optimal solution until now.

Shanmugam et al. [2] place content into caches of small
cells to minimize the network delay. Decisions are taken based
on popularity data. The users are associated to any covering
station without taking resource constraints of the wireless
nodes into consideration. In [3], Błaszczyszyn and Giovanidis
develop a content placement policy which maximizes the
hit ratio. This general probabilistic solution is not tailored
to specific network topologies. According to Baştuğ, Bennis
and Debbah [4], the globally most popular files are stored
in wireless caches. Users are associated to the closest base
station, not knowing if the requested content is stored in the
cache or not. Poularakis, Iosifidis, and Tassiulas maximize in
[8] the hit ratio by means of integer optimization. They intro-
duce a bandwidth constraint limiting the number of users that
can be connected to each cellular station. A polynomial-time
approximation scheme is also provided. Deghan et al. [11]
develop an approximation algorithm for the joint content
placement and user association problem minimizing network
delay. Their model controls if users are routed through a
cached or an uncached path. The users on a cached path are
always associated to the closest cache storing the content.
Naveen et al. [12] provide an optimal placement and user
association scheme with fractional content placement. In [13],
the authors solve a NUM user association problem assuming
that content is already placed in caches.

Considering cache leasing, Poularakis et al. [5] propose a
business model where residential internet users lease part of
their wireless bandwidth and storage capacity to the MNO
in exchange for financial reimbursement. A joint optimization
of incentive, content placement and routing policies provides
offloading of backhaul traffic to local caches. However, their
Lagrangian based solution does not converge to the global
optimum due to weak duality (see p. 143 in [14]) and
other solution techniques are necessary to solve the problem
optimally. The idea of sharing backbone cache memory among
different CPs is introduced by Araldo, Dan and Rossi [7].
The partitioning of the caches remains under the control
of the internet service provider, while the CPs are allowed
to establish secure connections between caches and users.
Another work on the topic by Douros et al. is [6]. Paschos
et al. [15] discuss the roles of MNOs, CPs and users as well
as practical aspects of wireless caching such as the compilation
of popularity data and the limitations arising from transmission
encryption.



Related to the solution approach, Bektaş et al. [16] use Ben-
ders decomposition for joint placement and routing problems
that have linear utilities and binary variables in the context
of Content Delivery Networks. Their work uses a similar
technique as in our work. The main difference is that we
treat a wireless network and we use Generalised Benders’
decomposition for non-linear NUM problems. Our problem
here is mixed integer with continuous association variables.
The decomposition in our paper has a natural business inter-
pretation.

III. PROBLEM STATEMENT AND SYSTEM MODEL

A. Problem statement

The objective of the CP is to lease cache memory at the
CBSs and place content into it such that the relation of its
expected savings to the leasing cost is optimal. The savings
are given by the function h(·) that takes as input the user
association vector yΠ(x) where x is the content placement
action and Π is the MNO’s association policy. The leasing
costs at each CBS m are the product of leased units zm times
the price per unit qm that is set by the MNO. An additional fee
for the appropriate user association and content delivery can
be included. Formally, the CP seeks a feasible tuple of vectors
(x, z) ∈ X that maximizes the objective function h(yΠ(x))−∑
m∈M qmzm.
The CP’s Cache Leasing and Content Placement problem

(CLCP) can be formulated as the Non-Linear Mixed-Integer
Problem (NLMIP)

(CLCP) max
(x,z)∈X
y∈YΠ

h(y)−
∑
m∈M

qmzm

s. t. ym,s,f ≤ Ns,fxm,f , ∀m, s, f,

where m is a CBS, s is a planar network region and f is
a data file. All components of this problem will be formally
presented and explained in this section.

B. Cache Leasing and Content Placement

We consider a cellular communications network with a finite
set M of CBSs. Each CBS m is equipped with km memory
units of size bMU (in MBytes, e.g. 1000) which the CP can
lease. Denoting the decision variable of how many cache units
to lease (CP-1) at m by zm ∈ Z≥0, the bounded availability
of memory gives the constraint set

zm ≤ km ∀m ∈M. (1)

The vector of the cache leasing variables is z = (zm)m∈M.
Having leased cache space at the CBSs, the CP places

content from a finite object catalog F into the caches (CP-
2). The decision to store content f in the cache of m will
set the variable xm,f to 1, otherwise xm,f = 0. The vector of
content placement variables is x = (xm,f )m∈M,f∈F . Each file
f ∈ F has a given file size bf (in MBytes), and all file-sizes

are known. The limited capacity of the leased cache space
gives the second constraint set∑

f∈F

bfxm,f ≤ bMUzm ∀m ∈M. (2)

For convenience, we define the set of feasible tuples of leasing
and placement vectors as

X :=
{

(x, z) ∈ {0, 1}|M||F| × Z|M|≥0

∣∣ (1), (2)
}
.

C. Wireless Environment and User Association

Coverage Cells: Our communications model is the follow-
ing: Each CBS has a planar 2D coverage cell. Users covered
by a CBS receive a radio signal strong enough to be potentially
associated to it. Coverage cells may overlap, thus offering
the users multiple options for service from covering CBSs.
However, we do not allow simultaneous service by more than
one station, i.e. cooperative service is not possible.

Network Regions: The network area is partitioned into a
set of regions. All positions in each region are assumed to
experience the same radio conditions with respect to fading
and interference. Furthermore, the MNO has a user association
policy Π that allows for users in region s to potentially be
associated to any CBS in M(s) ⊆M, |M(s)| ≥ 1. (a) With
the traditional policy that associates users to the closest station,
there can be several covering CBSs for region s, but M(s)
is the set consisting of only the closest station. (b) For the
OPT-h policy, to be defined later,M(s) is the set of covering
CBSs. In general, for policy Π, the set of regions is denoted
by SΠ (see Figure 1 for an example).

Content Popularity: For each region s ∈ SΠ and each
content f ∈ F , the expected number of users in s requesting
f is considered to be known, measured or estimated by some
process we do not consider here. It is denoted by Ns,f . The
content popularity vector is N = (Ns,f )s∈SΠ,f∈F .

User Association Variables and Constraints: In order to
make optimal decisions, the CP has two types of information
at its disposal: the popularity vector N and the MNO’s user
association policy Π. Knowledge of N and Π allows the
CP to take decisions based on the expected association of
users with CBSs. In the context of this work, we are only
interested in cache-hit traffic, i.e. the traffic of users who
find their request cached at the CBS they are associated to.
The association vector of cache-hit users to the CBSs is
y = (ym,s,f )m∈M,s∈SΠ(m),f∈F , where ym,s,f represents the
expected user traffic from region s requesting content f and
associated with CBS m. SΠ(m) is the subset of regions whose
users can potentially be associated to m according to Π. The
vector y has fractional non-negative entries.

User assignment is unique in the sense that an association
to two or more CBSs is not allowed. The total population
Ns,f is distributed among the CBSs M(s), and some of it is
potentially not associated to any CBS at all. Thus,∑

m∈M(s)

ym,s,f ≤ Ns,f , ∀ s ∈ SΠ, f ∈ F . (3)



This constraint allows for possible splitting of the population
Ns,f among the CBSs inM(s). The set of assignment vectors
feasible to this constraint set is denoted by

YΠ :=
{
y ∈ R

∑
m∈M|S

Π(m)||F|
≥0

∣∣ (3)
}
.

Since we are only interested in cache-hit traffic, ym,s,f can
only be nonzero if xm,f = 1, i.e. if object f is cached in station
m. Since no more than the total population requesting content
f in s can be included in ym,s,f , the following constraint set
is valid:

ym,s,f ≤ Ns,fxm,f , ∀m ∈M, s ∈ SΠ(m), f ∈ F . (4)

This constraint set is very important since it couples MNO
association variables with CP cache placement decisions.

D. CP savings

The CP uses the general savings function h(·) to measure
user association y. This function represents the savings (in e)
obtained when users are associated with caches that store the
requested content, thus avoiding use of its data centers.

In this paper, we solve CLCP for any monotonously increas-
ing, continuously differentiable and concave savings function.
Two choices for h(·) are particularly of interest:

i) In case that the CP is solely interested in maximizing the
hit ratio, it can choose h(·) as a linear function.

ii) Choosing h(·) as the sum of strictly concave functions
(one function per CBS), the CP can include aspects
such as soft resource requirements and load-balancing.
Additional communication conditions (e.g. fading and
interference) can also be included in h.

The discussion over particular choices of h(·), which result in
problems with different objectives, is postponed to Section V.

E. MNO policy

The way the MNO associates users to CBSs determines
the association vector y, and depends on the MNO’s user
association policy Π. The policies considered in this work are:
1) CLOSEST: Association to the closest covering CBS.
2) OPT- h: Association maximizing the CP’s savings function.
Observe that (4) implies that cache-hits (vector y) depend on
the placement x in all cases. The resulting association vector
is denoted by yΠ(x). If Π = CLOSEST, the association entry
ym,s,f is positive only for users that find their content cached.
However, association actions do not depend on placement x.

On the other hand, if Π = OPT- h, the MNO fully co-
operates with the CP in the sense that it always adapts its
association vector y to the placement x such that the CP’s
savings function h is maximized. This is achieved by splitting
traffic among CBSs given multi-coverage.

For the two policies Π = OPT- h and Π = CLOSEST, the
set of association regions SΠ is different as explained in III-C
(User Association). We illustrate this difference in the example

A B

AB

Fig. 1: In case Π = OPT- h, there are three regions A, B and AB. Users
in region A and B can only be associated to their uniquely covering CBSs,
respecively. Users in region AB can potentially be associated to any of the
two CBSs. If Π = CLOSEST (dashed line), there are two regions: A and the
left part of AB contain traffic entirely associated to the left CBS, B and the
right part of AB contain traffic belonging to the right CBS.

of Figure 1. For both policies, the association vector is the
optimal solution to the User Association problem

(UA-Π) yΠ(x) = arg max
y∈YΠ

h(y)

s.t. (4).

This problem is convex, thus always tractable.
For CLOSEST, the association vector yCLOSEST(x) follows

immediately since ym,s,f = Ns,f if xm,f = 1 and ym,s,f =
0 otherwise. These values also are the optimum of UA-
CLOSEST, since h is strictly increasing. For OPT- h, the
solution of UA-OPT- h can be found by convex programming
methods.

IV. SOLUTION

The high complexity of CLCP arises from the fact that
it is a mixed-integer problem with non-linear objective. The
solution technique that resolves this problem is Generalized
Benders decomposition by Schrijver [17] and Geoffrion [18]
which converges to the global optimum. As in the work of
Elwalid, Mitra and Wang [19] who also use this technique
in a different setting, we solve the non-linear part and the
integer part separately. CLCP is a generalization of the Helper
Decision Problem proved to be NP-complete in [2] even in the
case of a linear savings function. Thus, our solution algorithm
cannot be polynomial unless P = NP. However, a state-of-the-
art MIP solver can be used for the solution. Its performance
is shown in Section VI. In what follows, we give an overview
over Benders decomposition applied to CLCP.

CLCP can be decomposed into two problems called Master
and Slave. Master decides about cache leasing and content
placement. Slave computes the optimal user association for a
fixed content placement. We obtain

(Master) max
(x,z)∈X

h(y(x))−
∑
m∈M

qmzm,

where h(y(x)) is the objective value of

(Slave) y(x) = arg max
y∈YΠ

h(y)

s. t. (4).



Note that the Master problem can be treated by the CP, the
Slave by the MNO. X is discrete and finite and YΠ is compact
and convex. Slave is the UA-Π problem from Section III-E
which is generally non-linear. Thus, Master cannot be solved
directly. Generalized Benders decomposition deals with this
problem by solving a sequence of Slave problems for different
values of x (and z). The solutions to Slave are used to
construct (linear) Benders cuts that define approximations to
Slave, thus linearizing the problem.

Let {(xt, zt) ∈ X | t = 1, . . . , T} be a set of vector tuples
feasible to Master for some T ≥ 0. Let yt := y(xt) denote
a corresponding vector that optimizes Slave for given xt, and
λt = (λtm,s,f )m∈M,s∈SΠ(m),f∈F be the vector of Lagrangian
multipliers corresponding to the constraints (4). The existence
of such vector yt follows from the fact that Ns,f ≥ 0 holds
true for all s ∈ SΠ, f ∈ F . The computability of yt and λt are
assumed here, and discussed for special cases in Section V.

Slave is a convex problem. Thus, the duality theorem of
convex programming implies

h(y(x)) ≤ h(yt) +∑
m∈M

∑
s∈SΠ(m)

∑
f∈F

λtm,s,f (Ns,fxm,f − ytm,s,f )

for all feasible vectors x. This upper bound to Slave is called
Benders cut. Reformulated, we get

h(y(x)) ≤ Γt + (vt)′x, (5)

where

Γt := h(yt)−
∑
m∈M

∑
s∈SΠ(m)

∑
f∈F

λtm,s,fy
t
m,s,f

and (vt)′ is the transpose of vt = (vtm,f )m∈M,f∈F with
vtm,f =

∑
s∈SΠ(m) λ

t
m,s,fNs,f .

For a set of T Benders cuts (for some T ≥ 1), we obtain
an upper bound to the original problem CLCP by solving the
surrogate IP

(SUR-T ) max
(x,z)∈X
γ∈R≥0

γ −
∑
m∈M

qmzm

s. t. γ ≤ Γt + (vt)′x t = 1, . . . , T.

Note that the auxiliary variable γ, together with the Benders
cuts, approximates Slave linearly. This way, SUR-T avoids the
non-linearity which creates the difficulty for solving Master.
The optimal objective value to the surrogate problem is
denoted by SURT . The optimal solution consists of xT+1,
zT+1 and γT+1.

Generalized Benders decomposition is an iterative process.
We start in step 0 with an initial feasible tuple of leasing and
placement vectors (x0, z0) ∈ X and without any Benders cuts.
At the start of step T ≥ 0, we have the current leasing and
placement (xT , zT ) ∈ X and T Benders cuts. We solve Slave
with input xT to obtain the optimal association vector yT .
Clearly, since the triple xT , zT and yT are feasible to the orig-
inal problem CLCP, its corresponding objective value provides
a lower bound to the optimal value of CLCP. Additionally, we

compute the Lagrangian multipliers λT and the corresponding
(T + 1)th Benders cut (5). With the Benders cut we obtain
the surrogate MIP SUR-(T + 1). Its optimal solution is the
feasible leasing and placement vectors (xT+1, zT+1) ∈ X .
The objective value SURT+1 is an upper bound to CLCP. This
process iterates. At any step T , SURT is the current upper
bound (note that SURT+1 ≤ SURT after every step T ), while
the current lower bound is provided by the best found solution
maxt∈{0,...,T} h(yt)−

∑
m∈M qmz

t
m. The process terminates

in the globally optimal cache leasing and content placement
vectors z∗ and x∗ when the upper and lower bounds coincide.
Convergence is guaranteed from the proof of Theorem 2.4 in
[18] and the fact that the domain X of the Master is finite. In
every step T , an instance of Master needs to be solved.

For general parameters Γt and vt, T = 1, . . . , T , it is
NP-complete. This can be shown with a reduction from the
classic SET COVER problem. State of the art MIP solvers
such as CPLEX are, however, capable of solving SUR-T in
reasonable runtime. We state without proof (due to space limi-
tations) that the SUR-T problem has an infinite integrality gap
(gap between linear relaxation and optimal discrete solution).
Approximation algorithms for SUR-T are a topic for future
research.

V. SPECIAL CASES

The savings function h introduced in Section III-D maps
the user association vector y onto the savings h(y) (in e). In
the following, we give examples of specific expressions for
h(·) and explain what each example implies for the solution.
We denote the cache-hit traffic volume associated to CBS m
through vector y by

vm(y) =
∑

s∈SΠ(m)

∑
f∈F

ym,s,f .

A. Linear Savings (case i)

As a first case, the cache-hit user traffic of CBSs is linearly
mapped onto monetary benefits for the CP, i.e.

hL(y) = c
∑
m∈M

vm(y), (6)

where c is the savings (in e) per cache hit. Since the
popularity vector is constant, the savings value is propor-
tional to the hit ratio. The latter is simply calculated by
hL(y)/(c

∑
s∈SΠ

∑
f∈F Ns,f ).

With a linear savings function, the slave problem becomes
easily tractable for any association policy Π, including CLOS-
EST and OPT-h: Given a CP vector x, the MNO can freely
distribute users among the covering CBSsM(s) which have f
cached. The association to any CBS contributes equally to the
savings. If no m ∈ M(s) caches f , then ym,s,f = 0, hence
no cache hit from region s for file f .

B. Separable Concave Savings (case ii)

As a second case, we introduce the sum of strictly concave
functions, one per CBS, taking as argument the associated
traffic volume. The strict concavity of the utility functions



implies diminishing returns for user traffic in every CBS.
This way, the MNO has the incentive to associate users with
underused CBSs while the overuse of CBSs is disincentivized.
This choice for h can model physical resource limitations
on each CBS that prohibit the good service of users when
their volume becomes very high. As a result, a type of load
balancing among CBSs is enforced. Observe that in this way,
we do not impose a hard constraint on the user traffic but
introduce a soft constraint in the objective function instead.

Formally, we define utility functions Um(·) for every m ∈
M which are monotonously increasing, strictly concave and
continuously increasing. The input of the utility functions is
the cache-hit traffic volume at the CBS. The savings function
is the sum of all utility functions. We obtain

hC(y) =
∑
m∈M

Um(vm(y)). (7)

The load can be balanced among the CBSs by guaranteeing
fairness with regards to associated volume. Some notions of
fairness are max-min, α− and proportional fairness. Each of
them is achieved by appropriate choice of the utility functions
(see [10], [20]). E.g. for proportional fairness, utilities are
chosen as (weighted) logarithms.

For any association policy Π, the slave problem with savings
function as in (7) is a convex problem. Particulary the case
Π = OPT- h was solved in [13] using Lagrangian duality. The
same method can be applied for CLOSEST as well.

C. Weighted Savings

In the previous section, there was no differentiation between
wireless users in the objective function. Here, we introduce
weights wm,s,f ≥ 0 that are specific to users from region s
requesting content f associated to CBS m. This generalization
allows to include costs and benefits from associating certain
user groups to particular stations. The weighted traffic volume
at CBS m is

vwm(y) =
∑

s∈SΠ(m)

∑
f∈F

wm,s,fym,s,f ,

where w is the vector of weights. This volume can be used as
argument of the weighted savings function (linear or concave)

hC,w(y) =
∑
m∈M

Um(vwm(y)) (8)

where c is the savings (in e) per weighted cache hit.
i) Prioritized Caching: If the weights wm,s,f are propor-

tional to the file sizes bf , files of larger size that create more
burden to the backbone are favorized to be cached. Such cases
are also treated in [21].

ii) Network Throughput: The weights can represent the
downlink throughput between a user and a CBS. For such
a weights choice, the channel quality between m and s is
a constant value hm,s that depends on a reference distance
and the path loss exponent. The emitted power level of m is

denoted by pm and the noise level by σ2. Then, the signal-to-
interference-plus-noise ratio (SINR) of users in region s when
associated to covering CBS m is

SINRs(m) = pmhm,s

( ∑
m̃ covers s
m̃6=m

pm̃hm̃,s + σ2

)−1

, (9)

where we assume that the interference from CBSs not cov-
ering s is negligible. For the downlink transmission from
CBS m to region s, the throughput is equal to wm,s,f =
B log2(1+SINRs(m)) [in bits/sec] where B [Hz] is a chunk
of bandwidth allocated to each served user. The total service
bandwidth per CBS is equal to the product of B times the
users routed to the CBS. Using these weights, CLCP takes
into account that it is favorable for a CBS to serve users with
good radio conditions in order to use its resources effectively.
Such cases are also treated in [22].

We would like to emphasize that the arbitrarily many levels
of channel quality on the coverage area of each station can be
introduced by appropriately redefining the region set S that
partitions the network area. The modelling tradeoff is between
the precision of communications aspects and the runtime of
the optimization process.

VI. EXPERIMENTS AND NUMERICAL EVALUATION

A. Environment

We simulate cellular networks in an urban environment and
calculate the optimal cache leasing and content placement
for 4 cases: The savings function h is i) linear as in (6) or
ii) the sum of utility functions as in (7). In the latter case
all utility functions Um are chosen as the natural logarithm
to achieve proportional fairness for the user traffic at the
CBSs. For each of the two cases, the MNO’s user association
policy is a) the MNO-CP cooperative policy OPT-h or b) the
conventional policy CLOSEST. In each case, we simulated 100
random sets of CBS positions as a Poisson Point Process
(PPP). This means that their total number in each run is a
random Poisson realization, and their positions are uniformly
distributed in the simulation window. The density of the PPP is
80 CBS

km2 for the cases i.a) and i.b) (linear savings) and 60 CBS
km2 for

the cases ii.a) and ii.b) (log-savings). This implies an average
minimal distance of 56m and 65m between the CBS positions,
respectively. For the cases i.a) and i.b), the evaluation window
has size 500×500m2, while the cases ii.a) and ii.b) were
evaluated in a 300×300m2 window. The expected number of
CBSs in the evaluated windows is 20 for case i) and 5.4 for
case ii). In both cases, a larger area was simulated to avoid
edge effects. The CBSs’s coverage radius varies from 40m
to 120m. The MNO price per unit size cache memory at all
CBSs varies (0.01e-2.00e). The user population is distributed
uniformly over the network with a density of 30 users per
km2. The total simulated file catalog contains 100 objects. The
content popularity follows the Zipf distribution with parameter
0.6 unless explicitly stated otherwise. The available cache size
from the MNO is set to the catalog size so that only the pricing
influences cache leasing decisions.



B. Implementation

All simulations have been performed using a native JAVA
simulation environment. User association corresponding to the
solution of the slave problem in Section IV is entirely done by
optimization algorithms that we developped in the lab, outlined
in Section V. The surrogate problem SUR-T in Section IV is
solved using the state of the art mixed-integer problem solver
IBM CPLEX 12.7.0 in combination with IBM ILOG CPLEX
Optimization Studio. The experiments have been performed
on a machine with a 2.40 GHz 16-core processor and 48 GB
RAM.

C. Results for Linear Savings Function (case i)

At first, we present the simulation results for linear savings
function. We emphasize case i.a) which performs OPT user as-
sociation and compare it with case i.b) CLOSEST. Figure 2(a)
illustrates how the hit ratio in case i.a) depends on the price
per cache unit for different coverage radii. For all radii, the
hit ratio decreases with increasing prices. With lowest price
(0.01e/Unit), the CP leases in each CBS the entire memory
available, so the hit ratio is 100%. As the price increases,
the CP leases less units, and the hit ratio is reduced. This
happens more quickly in networks with smaller coverage areas
because there are less users covered by each CBS and also
less coverage overlap area. When the price reaches a high
level (2e), the cost from leasing cache memory exceeds the
benefit from cache hits and the hit ratio drops to 0% for
all coverage radii. The differences between the curves in
Figure2(a) diminish with higher radii where multi-coverage
is already high enough.

The CP’s leasing and placement decisions for networks
with coverage radius 100m for the policies OPT-h (i.a) and
CLOSEST (i.b) are shown in Figure 2(b). For each price, there
are two columns: The lefthand-side column represents the
i.a) case, the righthand-side column i.b). The height of each
column is the average amount of cache units per CBS which
are leased for the respective price. The subdivisions of each
column represent the popularity of the files stored in the leased
memory space: The bottom part are the ten most popular files,
the second-to-bottom part are the files of popularity rank 11
to 20 and so on. For the lowest cache price (0.01e), all 100
available units are leased: For both assignment policies, the
amount of leased cache memory decreases with increasing
price. For the price interval 0.03-0.07e, OPT uses fewer cache
units than CLOSEST. But, as the next Figure 2(c) shows, the
hit probability by using OPT when the coverage radius is
100m and for the same price interval is 5-15% higher than
the one achieved by CLOSEST even with less cached objects.
Between 0.1 and 0.25e, OPT uses more cache memory than
CLOSEST. However, the corresponding hit ratio is between 20-
50% higher as well. For all prices, Figure 2(b) shows that the
less popular files are represented more frequently with OPT
than with CLOSEST, especially for prices ≥ 0.1e. There is
more diversity of visible content with the OPT placement.

Figure 2(c) directly compares OPT with CLOSEST. For all
prices the hit ratio achieved by OPT (case i.a) is higher than

the one achieved by the CLOSEST policy (case i.b). In the price
interval 0.06-0.50e, the relative hit ratio differences are higher
when the coverage area of the CBSs is higher. For higher
coverage radii (from 80m on) a hit ratio gap of 15%-50% can
be seen. For higher prices, the CLOSEST hit ratio is close to
0, therefore the relative differences can become very high.

While Figure 2 shows the caching benefits for the CP, the
costs it has to pay in return to the MNO (in case i.a) are
depicted in Figure 3(a). The CP costs equal the MNO income.
This amount can be calculated by multiplying the number of
leased cache units with the price per unit. The maximum of
the curve can be clearly identified for each radius. This is
the operational point for the MNO when the latter aims for
maximum income. The maxima are higher for larger coverage
areas, while the difference in income decreases with increasing
radius. Furthermore, the higher the coverage radius, the higher
the cache leasing price at which the maximum is achieved.

The relation between hit ratio and MNO income can be
seen in Figure 3(b): The x-axis displays the hit ratio achieved,
the y-axis shows the income the MNO earns. Again, the
income is higher in networks with larger coverage area. The
maximum income for all simulated networks can be found
for an achieved hit ratio between 80-90%. Conversely, if the
CP decides to invest a certain sum, it can maximally achieve
the rightmost of the two corresponding hit ratio values under
the condition that the MNO chooses the pricing strategy most
favorable to the CP.

The experimental results presented until now are based on
a Zipf parameter of 0.6. However, a varying Zipf parameter
influences the results: Figure 3(c) shows that the higher the
price, the lower the hit ratio for any Zipf parameter in case
i.a). This is due to the fact that lower price implies more leased
units for the CP. For all prices (except the lowest one which
achieves a hit ratio of near 100% throughout), the hit ratio
increases with increasing Zipf parameter: With higher Zipf
parameter, the population share requesting the most popular
files becomes higher, thus caching popular files becomes more
profitable and a higher hit ratio is achieved. Also, for the
same price, the leased cache memory is more effective with
higher Zipf parameters. The relative difference on hit ratio
between cases i.a) (OPT) and i.b) (CLOSEST) depend on the
Zipf parameter as well (not included in the paper). The lower
the Zipf parameter, the more pronounced the differences in hit
ratio between different cache prices since the benefits from
overlapping coverage are bigger when content popularity is
more even.

D. Results for Log Savings Function per CBS (case ii)

Here, we present the experimental results of case ii) in
which the savings function is the sum of logarithms. Fig-
ure 4(a) shows the hit ratio for varying cache unit price
both for the OPT (different coverage radii) and the CLOSEST
policies. Due to the specific choice of the logarithmic savings
function of case ii) the CLOSEST association gives identical
cache leasing and content placement results for all coverage
radii. For every coverage radius and every cache unit price,
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the OPT policy achieves a higher hit ratio than the CLOSEST
policy. Furthermore, the higher the coverage radius in case
ii.a), the higher the hit ratio. The hit ratio improvement can
reach over 15 percentage points using OPT. With increasing
prices, caching becomes less profitable and the hit ratio
decreases.

The advantage to the hit ratio of the OPT policy (ii.a)
can be explained by the optimal content placement shown in
Figure 4(b). Each pair of columns represents cache leasing and
content placement for a certain unit price. Each left column
represents the decisions according to OPT, each right column
the decisions according to CLOSEST. The height is the average
amount of cache units leased per CBS. The inner sections
of the columns represent the content placement in all of the
CBSs: The lowest section are the 10 most popular files, the
second lowest the files ranked 11 to 20 and so on. It can be
seen that particularly for low cache unit prices, the diversity
of cached content is higher in case ii.a) than in case ii.b).
For the lowest price (0.01e), CLOSEST provides only content
from the more popular half of the catalog, while OPT-h places
content from the tail of the catalog as well.

The main purpose of choosing the specific savings function
in ii.a) is, however, the balancing of traffic load among
the CBSs in order to avoid excess of resources by user

overflow which will lead to service dissatisfaction. Figure 4(c)
shows that the additional load (from the increase in hit ratio
using OPT, see Figure 4(a)) is distributed to the less loaded
CBSs. The two upper (solid) lines in the graph represent the
maximum load of a CBS in relation to the overall covered
population per CBS both in the cases ii.a) and ii.b). The
two lower (dashed) lines are the minium loaded CBS. The
maximum loaded CBSs in both ii.a) and ii.b) coincide as the
figure shows. The minimum loaded CBS of ii.a) is higher than
the ii.b), showing that excess users coming from the higher hit
ratio are associated to the less loaded stations.

The three plots show that the OPT policy achieves an
increase in hit ratio (good for both the CP and the MNO)
while at the same time diversifying the cached content (good
for the user) and avoiding an overload of CBSs (good for
everybody).

VII. CONCLUSIONS

In this work, we propose a business model in which an
MNO leases edge caches to a CP. The CP’s objective is to
maximize its savings through offloading of traffic from its
data centers to the wireless caches while limiting the cache
leasing costs. The optimality of the CP decisions depends
on the MNO’s user association policy as well as its pricing
strategy.
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The problem is modelled as a NLMIP taking the perspective
of the CP. Network topology, association policy, pricing as
well as CP savings function are general. Radio conditions
and wireless node resource constraints can be included as
soft constraints. An optimal solution to the general problem
is found by applying Benders decomposition. The solution
method converges to the global optimum and allows for each
of the players to take separate actions iteratively.

Extensive experiments for random network topologies allow
to compare the optimal CP decisions for different MNO
association policies, cache prices, as well as CP savings
functions. In all versions of the problem, we have identified
a unique price that maximizes the MNO revenue. It depends
on how much the CP valorizes traffic offloading achieved by
the edge caches. This information is included in the CP’s
choice of the savings function. Another main conclusion is
that MNO association policies that adhere to CP actions and
exploit multi-coverage opportunities achieve higher offloading
benefits for a given monetary investment. All these results
suggest that the CP and MNO can jointly develop cooperative
business models related to caching, that lead to considerable
economic as well as operational benefits for both parties.

REFERENCES

[1] Cisco visual networking index: Global mobile data traffic forecast
update, 2015–2020 white paper. White Paper, 2 2016.

[2] K. Shanmugam, N. Golrezaei, A.G. Dimakis, A.F. Molisch, and
G. Caire. Femtocaching: Wireless content delivery through dis-
tributed caching helpers. Information Theory, IEEE Transactions on,
59(12):8402–8413, Dec 2013.

[3] B. Błaszczyszyn and A. Giovanidis. Optimal geographic caching in
cellular networks. In Communications (ICC), 2015 IEEE International
Conference on, pages 3358–3363. IEEE, 2015.
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