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ABSTRACT
1
 

 
Structural Health Monitoring (SHM) system offers new approaches to interrogate 

the integrity of structures. The most critical step of such systems is the damage 
detection step since it is the first and because performances of the following steps 
(damage localization, severity estimation…) depend on it. Care has thus to be taken 
when designing the detector. The objective of this communication is to discuss issues 
related to the design of a detector for the structural health monitoring of composite 
structures. The structure under monitoring is a substructure of an aircraft nacelle. In 
the absence of damage, the detector principle is to statistically characterize the healthy 
behavior of the structure. This characterization is based on the availability of a 
decision statistics synthesized from a damage index. Airline business models rely on 
Probability of False Alarms (𝑃݂𝑎) as main performance criterion. In general, the 
requirement on 𝑃݂𝑎 is 10E-9 which is very small. To determine the decision 
threshold, the approach we consider, consists to model the tail of the decision statistics 
using the Peaks Over Threshold method extracted from the extreme value theory 
(EVT). This method has been applied for different configuration of learning sample 
and probability of false alarm. This approach of tail distribution estimation is 
interesting since it is not necessary to know the distribution of the decision statistic to 
develop a detector. However, its main drawback is that it is necessary to have very 
large databases to accurately estimate decision thresholds to then decide the presence 
or absence of damage. 

 
 

INTRODUCTION 

 
One of the major concerns of airlines is the availability of their equipment. The 

unavailability of a plane with passenger on board is among the worst situations. Many 
solutions are implemented to avoid this, like Structural Health Monitoring (SHM) 
systems [1]. The most critical step of such systems is the damage detection step since 
it is the first step of the process and because performances of the following steps 
(damage localization, severity estimation…) depend on it. The detector has thus to be 
well designed in order to ensure optimal system performances. 

In order to design a SHM detector, two issues have to be solved. The first one is 
the choice of the Damage Index (DI) to consider and the second one is the way to use 
it for detection purposes. A detector design thus does not reside solely in the DI choice 
and implementation but also includes the processing steps needed to compute a 
decision statistic using the DI estimations. The final step then consists in deciding the 
presence or absence of a damage. 

The performance of SHM detector depends on a decision threshold to be applied 
to the decision statistic [2]. The decision threshold has to be determined according to a 
tradeoff between errors of type I and errors of type II. The type I error represents the 
probability to detect a damage when the structure is healthy - P(Detection|Healthy) 
(probability of false alarm - pfa). The type II error represents the probability to detect a 
damage when the structure is faulty or damaged - P(Detection|Faulty) (probability of 
detection - PoD). 
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Airline business models rely on Probability of False Alarms (𝑝݂𝑎) [3], which is 
the type I error, as main performance criterion. In general, the requirement on 𝑃݂𝑎 is 
10E-9 which is very small. To determine the decision threshold, a first approach 
consists in estimating the probability density of the overall decision statistics and to 
work with this estimate. In this case, parametric and nonparametric density estimation 
methods can be used [4]. A second approach, that we consider, consists to only 
estimate the tail of the decision statistics. In this case, the extreme value theory (EVT) 
is used [5]. 

This paper is structured as follows: first, the structure under monitoring is 
presented in order to understand the experimental setup. Then the considered damage 
index is defined and the decision statistic computation is explained. After that, the 
Peaks Over Threshold method is introduced to estimate the decision statistic tail 
distribution. Finally, results are presented for several configurations of learning 
samples and probability of false alarm values before concluding. 

 

 

THE MONITORED STRUCTURE 

 
The structure under monitoring is an aircraft nacelle (Figure 1(a)). Aircraft 

nacelles represent a critical part of an aircraft as they perform multiple functions. They 
contribute to the braking of the plane on landing and reduce noise emissions in 
drastically severe conditions including extreme temperatures [-50°C +150°C], 
pressure and dimension constraints, whilst remaining as light as possible. 

Before working on the overall nacelle structure, we first work on representative 
specimens. The considered specimen is a laminate carbon epoxy plate, part of the 
structure, of dimension 400mm×300mm (Figure 1(b)). It represents the laboratory step 
of the implementation of a health monitoring process for the actual aircraft nacelle [6]. 
A network of actuators and sensors bonded on the surface is used to collect data. The 
monitoring of the structure is based on the comparison of the data recorded for a 
healthy state (baseline) and an unknown state. The data of the host structure are 
collected thanks to piezoelectric transducer (PZT) and a real-time diagnosis result is 
obtained. The PZT elements used were numbered 1 through 5 and mounted at specific 
positions on the composite plate’s surface [7]. The PZT elements have a diameter of 
20mm and a thickness of 0.1mm. Figure 1(c) shows the location of the 5 PZT discs 
and the coordinate values in x and y directions. 

 
 

   

(a) (b) (c) 

 
Figure 1. (a) The aircraft nacelle; (b) A flat view of Laminate Carbon epoxy with PZT elements; 

(c) PZT coordinates on the composite plate’s surface 

 

 

DAMAGE INDEX AND DECISION STATISTIC 

 
The damage index represents a crucial step for the design of the detector. It 

therefore must correctly reflect the effect of damage on the structure. The damage 
index chosen for this communication is obtained as follows: 

For one actuator - sensor path: 
1. A signal is sent from the PZT actuator (Act PZT) 
2. The received signal on the PZT sensor (Sens PZT) is then recorded  
3. This signal undergoes a denoising phase (wavelet denoising and time-

frequency filtering) 
4. Its envelope is computed thanks to a Hilbert transform. 

These steps have been performed for each actuator-sensor path 500 times in a 
healthy situation. In the absence of damage, the objective is to characterize the healthy 



behavior of the structure to define a detector without having to damage several 
structures. 

Subsequently, each of the signals for which the envelope was computed is 
considered as reference (sigref(i)) and is compared to the other signals that are 
considered as test signals (sigtest(j)) as follows: 

𝐼ሺ݅;݆ሻܦ  = ሺ݅ሻ݂݁ݎ݃݅ݏ‖ − ‖ሺ݅ሻ݂݁ݎ݃݅ݏ‖‖ሺ݆ሻݐݏ݁ݐ݃݅ݏ ݅ ℎݐ݅ݓ   ≠ ݆  (1) 

 
By rotating the reference signal and the test signals, a database of 124750 DI is 

obtained and allows characterizing the healthy behavior of the structure. Figure 2 
shows the histograms of the DI for each actuator-sensor path. These histograms 
represent the distributions for each actuator-sensor path when the structure is healthy. 
The diagonal is empty since the sent signal is the same as the received one because the 
actuator is the sensor. 

 
 

 
 

Figure 2. Histograms of the DI for each actuator-sensor path. 

 
 
As an example, Figure 3 represents the histogram of the DI for the actuator 1 – 

sensor 5 path. This figure represents the distribution of the decision statistic for this 
path. 

 
 

 
 

Figure 3. Decision statistic histogram for actuator 1 – sensor 5 path. 

 

 

ESTIMATION OF THE DECISION STATISTIC AND DECISION 

THRESHOLD 

 
The performance of a detector depends on a decision threshold to be applied to a 

decision statistics. This threshold has to be determined according to a requested 
probability which defines the first order error (probability of false alarm - 𝑝݂𝑎). To 
determine the decision threshold, a first approach consists in estimating the probability 
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density of the overall decision statistics and to work with this estimate [4]. In this case, 
parametric and nonparametric density estimation methods can be used. A second 
approach consists to only estimate the tail of the decision statistics. In this case, the 
extreme value theory is used [5]. 

Extreme value theory (EVT) is often applied when it is necessary to estimate rare 
events despite the fact that the distribution of the studied sample is unknown. The 
interest is credited on the asymptotic behavior of the extreme values of a sample. Thus 
by identifying the distribution family to which extreme values will converge [8] 
(domain of attraction of the maximum – DAM: Fréchet, Weibull or Gumbel) (Figure 
4), it is possible to use its distribution function.  

 
 

 
 

Figure 4. Domain of Attraction of the Maximum – DAM : Fréchet, Weibull or Gumbel 

 
 
To characterize the DAM of the extremes, two theorems are essential:  

 Fisher-Tippet theorem [5] 
 Balkema-Haan-Pickands theorem [9].  

These two theorems have resulted in two distribution tails estimation methods: 
 the method of the maxima per blocks (Block Maxima - BM) that models 

the distribution of standardized maxima by the generalized extreme value 
distribution (GEV), an adaptation of this method have been used in [10] 
and [11] 

 the method of excess (Peaks Over Threshold - POT) [12] that models the 
distribution of the excess beyond a learning threshold by the generalized 
Pareto distribution (GPD).  

Here we applied the POT method to estimate the distribution of the decision 
statistic for each actuator-sensor path and to then determine decision thresholds for 
each actuator-sensor path. 

 
PEAKS OVER THRESHOLD METHOD 

 

The Peaks Over Threshold (POT) method [12], also called method of excess, 
focuses on the distribution of the excess above a high learning threshold. This 
modeling of the distribution tail is based on the theorem of Balkema-Haan-Pickands 
[9] [13] which is the equivalent of the central limit theorem for the extreme value 
theory. 

This theorem states that if a decision statistic distribution ܨ belongs to one of the 
three domain of attraction (Fréchet, Weibull or Gumbel), then there exists a 
distribution function of the excess above a high learning threshold ݑ, denoted ݑܨ, 
which can be approximated by a generalized Pareto distribution (GPD) [5]. 

The generalized Pareto distribution of parameters ξ and β is defined by the 
following distribution function: 

 

 

(2) 

 
with 𝛽 > Ͳ. For 𝜉 ≥ Ͳ, the distribution support is [Ͳ; + ∞[. When 𝜉 < Ͳ, the 

distribution support is [Ͳ; − 𝛽/𝜉]. 
The generalized Pareto distribution comprises three types of distributions limits 

according to the values of the shape parameter 𝜉: 
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 > 0,  Frechet DAM

 < 0, Weibull DAM

 = 0, Gumbel DAM

𝜉ܩ ,𝛽ሺݔሻ =   
 1 −  1 +

𝜉ݔ𝛽  −1𝜉
𝜉 ݅ݏ  ≠ 0

1 − 𝑝ݔ݁ 𝛽ݔ−  𝜉 ݅ݏ     = 0

  



 if 𝜉 > Ͳ, standard Pareto distribution (Frechet DAM),  
 if 𝜉 < Ͳ, Pareto distribution of type II (Weibull DAM),  
 if 𝜉 = Ͳ, exponential distribution (Gumbel DAM). 

Before estimating the model, we must build a suitable excess sample. It is 
therefore necessary to find a learning threshold ݑ to select sufficient high extreme data 
and above which enough data are preserved for accurate estimates. If the learning 
threshold is too low, the estimates are biased and if the learning threshold is too high, 
the variance of the estimators is very important. 

 The method of excess (POT) consists in setting a learning threshold ݑ large 
enough to be applied to each learning sample (𝑁: the decision statistic) in order to 
define a sample of excess (𝑁ݑ) for each learning sample. The generalized Pareto 
distribution parameters are then estimated by maximum likelihood [14] from the 
sample of excess. 

What particularly interests us in this study concerns the estimation of extreme 
quantiles, which represent decision thresholds, from the parameter estimates of the 
GPD. To do this, it is possible to use a semi-parametric estimator of quantiles from the 
POT method which has been obtained by inverting the distribution function of the 
GPD [15]. This enables to determine the value of a quantile (wich is the decision 
threshold S) corresponding to a probability of false alarm (𝑝݂𝑎). This estimator is 
expressed as follows: 

 �̂�𝑝݂𝑎 = +ݑ �̂��̂� ቌ( 𝑁𝑁ݑ ሺͳ − 𝑝݂𝑎ሻ)−�̂� − ͳቍ (3) 

 
with 𝑁ݑ the number of excess beyond the learning threshold ݑ, N the learning 

sample size, �̂� and 𝜉 estimated values (by maximum likelihood) of the generalized 
Pareto distribution parameters. 

This estimator has been used to determine the decision thresholds for 𝑝݂𝑎 ={ͳͲܧ − Ͷ;  ͳͲܧ − ;  ͳͲܧ − ͻ}. The experiment has been conducted on the basis of 
the previously obtained DI. Different sizes of learning samples were tested: 𝑁 = {͵ͳͳͺͲ;  ʹ͵Ͳ;  ͻ͵ͷͲ;  ͳʹͶͷͲ} which corresponds respectively to 
approximately 0.25 * 124750, 0.5 * 124750, 0.75 * 124750 and 1 * 124750. As the 
learning threshold ݑ is unknown a priori, different values for which the size of the 
samples of excess ranging from 1% to 10% of the total size of the learning samples 𝑁 
were tested to determine the parameters of the generalized Pareto distribution. 
Subsequently, decision thresholds have been estimated. 

In order to compare the POT thresholds (estimated decision thresholds), we 
considered a nonparametric Parzen window estimator [16] as reference and determine 
decision thresholds that have to be considered as reference for the same configuration 
described before. Before showing results, the Parzen estimator is described below. 

 
PARZEN WINDOW ESTIMATOR 

 

The Parzen window [17] adjustment is a nonparametric mean to estimate the 
probability density function of a random variable 𝑌 (here, the decision statistic). It is 
commonly named kernel density estimator [13] because kernel functions are used to 
estimate the probability density function. The analytical expression of the 
nonparametric probability density function is [18]: 

 

 
(11) 

 
Where 𝐾 and  are the kernel function and the window width, respectively. The 

idea behind the Parzen window is to estimate the density probability function on each 
decision statistic value thanks to a kernel function 𝐾ሺ. ሻ which is most of the time a 
probability density function. The closer the observation ݕ is to training samples ݕ𝑖 the 

larger is the contribution to ݂̂ℎ the kernel function centered on ݕ𝑖. Conversely, training 

observations ݕ𝑖 that are far from ݕ have a negligible contribution to ݂̂ℎ. This estimator 
of the probability density function is formed by averaging of the kernel function 
values (Figure 5).  

 

 










 


N

i

i

h
h

yy
K

hN
yf

1*

1
)(ˆ



 

 
 

Figure 5. Probability density function of a random variable and some Gaussian kernels. 

 
This estimator is governed by a smoothing parameter ℎ which is named window 

width. The estimation of a probability density function, which depends on the 
smoothing parameter ℎ, presents good statistical properties. Under some non-binding 
restrictions on ℎ, the Parzen window estimator is consistent. It exist several kernel 
functions (Gaussian, box, triangle…) but the Parzen window performance depend 
principally on the choice of the window width ℎ [19]. A tradeoff between the bias and 
the variance of the estimator must be determined to choose ℎ. It exist several methods 
to choose ℎ. The window width can be chosen thanks to cross validation or by 
maximizing the likelihood of the kernel function for example. In this study, a Gaussian 
kernel has been used. Silverman [18] has determined the optimal smoothing parameter 
value called “rule of thumb” when the distribution is Gaussian. This window width 
depends on an estimation of the variance and the learning data set size. 

 
 

RESULTS 

 
In order to compare the results of estimates of distribution tails the non-parametric 

Parzen window estimation has been applied to the same learning samples. Then the 
difference between the Parzen thresholds (reference) and the POT thresholds (test) has 
been computed. This difference is then plotted for several 𝑝݂𝑎 and learning samples 
size (𝑁) values against the excess sample sizes (𝑁ݑ) as a percent of 𝑁. 

The following figures represent the difference of Parzen thresholds and POT 
thresholds for several different configurations for actuator 1 – sensor 5 path. The x-
axes represent the excess sample sizes (𝑁ݑ), used for the estimation of the generalized 
Pareto distribution parameters. The excess sample size is rounded to the integer of the 
actual theoretical size. 

Figure 6 shows that whichever the learning sample size N, when 𝑁ݑ decreases, the 
difference between Parzen thresholds and POT thresholds become close to zero. It can 
be explained by the fact that when the learning threshold ݑ increases, the DAM is well 
represented by the sample of the excess as explained in the POT description. This 
observation means that bigger the learning threshold ݑ better the estimation of the 
decision thresholds. However, when 𝑝݂𝑎 decreases, Figure 7 and Figure 8 show that 
this difference increases and depart from zero. It means that despite of the large size of 
the learning samples, when we look for a very small value of 𝑝݂𝑎, we need a much 
bigger learning sample than those available. Using the EVT needs thus a very large 
amount of data when looking for very low first order error. 

 
 

 
 

Figure 6. Parzen threshold – POT threshold estimated on excess sample size Nu of 1% to 10% of 
4 different learning sample sizes N for 𝑝݂𝑎 = ͳͲE − Ͷ. 
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Figure 7. Parzen threshold – POT threshold estimated on excess sample size Nu of 1% to 10% of 
4 different learning sample sizes N for  𝑝݂𝑎 = ͳͲܧ − . 

 
 

 
 

Figure 8. Parzen threshold – POT threshold estimated on excess sample size Nu of 1% to 10% of 
4 different learning sample sizes N for 𝑝݂𝑎 = ͳͲܧ − ͻ. 

 
 

CONCLUSION 

 
The objective of this communication is the design of a detector for the health 

monitoring of composite structures. The structure under monitoring is a substructure 
of an aircraft nacelle. In the absence of damage, the detector principle is to statistically 
characterize the healthy behavior of the structure. This characterization is based on the 
availability of a decision statistics synthesized from a damage index. 

Once the decision statistic is available, the POT method has been used to 
determine decision thresholds in only considering the tail of the decision statistic. This 
has been done for different configuration of learning sample and probability of false 
alarm for each actuator – sensor path. In addition, a Parzen window has been used and 
acts as a reference to compare the estimated POT thresholds to those obtained by 
Parzen. 

The results show that for a total sample size of 124750, only the thresholds 
estimated for 𝑝݂𝑎 =  ͳͲܧ − Ͷ are correctly estimated when the size of the excess 
sample represents 1% of the total size of the learning sample. More the 𝑝݂𝑎 decreases 
more the gap widens. This implies that it is necessary to increase the learning sample 
size when 𝑝݂𝑎 decreases. 

This approach of tail distribution estimation is interesting since it is not necessary 
to know the distribution of the decision statistic to develop a detector. This represents 
a real issue in the industry where the distribution of decision statistics is unknown due 
to the complexity of the studied systems and structures. On the other hand, the main 
drawback of this approach is that it is necessary to have very large databases to 
accurately estimate decision thresholds to then decide the presence or absence of 
damage. 
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