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Abstract: This work is concerned with the study of the inverse problem of determining two coefficients in
a hyperbolic-parabolic system using the following observation data: an interior measurement of only one
component and data of two components at a fixed time over the whole spatial domain. A Lipschitz stability
result is proved using Carleman estimates.
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1 Introduction

Let Q be a simply connected bounded domain of RN with C? boundary Q. We denote I' the boundary of Q
which consists ofaninflow partI'_ = {x € 0Q : A(x) - v(x) < 0}, anoutflowpartT', = {x € 0Q : A(x) - v(x) > 0}
and a solid wall Ty = {x € 0Q : A(x) - v(x) = 0}, where A(x) is a given vector field in RN and v(x) is the outer
normal to 0Q at x € 0Q. Let w ¢ Q be a nonempty subdomain such that ow > I';.

We shall use the following notations: for any fixed T > 0, we set

Qr=0x(0,7), Zr=0Qx(0,T), X;=T_x(0,7), wr=wx(,1)

and we consider the following hyperbolic-parabolic system:

(0w + A0 - Vu = F(u, v) in Qr,
ov — Av = G(u, v) inQr,
ulx, t) = h(x, t) onZXy, (1.1)
v(x, t) = g(x, t) onZXr,
u(x,0) = up(x), v(x,0)=vo(x) inQ.

System (1.1) is a modified version of the system studied in [17] which arises from mathematical biology.
It describes the process of tumour-induced angiogenesis. This process allows the tumour to progress from
the avascular (lacking blood vessels) to the vascular (possessing a blood supply) state and is initiated and
controlled by a diffusive chemical compound, known as tumour-angiogenesis factor (TAF) which is released
by the tumour cells into the surrounding tissue.

We consider here a simplified of tumour-induced angiogenesis developed by Chaplain-Stuart [9]. Here
u(x, t) represents the cells density of the blood vessels and v(x, t) is the TAF concentration. The reaction
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terms F and G are given by
F(u,v) = u(x)v-y@u, G(u,v)==~6x)u-kx)v,

where u, y, 8, k are time-independent coefficients.

The cells grow by feeding on nutrient (TAF). The nutrients are consumed at a rate k. The coefficient u
denotes the influence of TAF on cell division. Cells grow rate is § and linear loss of cells with rate y is assumed.
The aim of this work is to reconstruct the two coefficients y and 6 from an interior measurement of only one
component and data of two components at a fixed time 6 € (0, T), that is, v|yxo,r) and (u, v)laxie;. More
precisely, see Theorem 5.1.

Note that it would be possible to recover all four coefficients if we repeat the observations. Nevertheless,
recover the coefficients from boundary data with the observation of only one component is impossible with
this method. Indeed, we could use Lemmata 4.1, 4.2 and 4.4 to obtain a Carleman estimate for our system
with the observation of the two components g; and g,. But there is no way to explain the L2-norm of the
normal derivative of g; on T’ in terms of he L2-norm of the normal derivative of g, on T,.

The key ingredient to obtain such a result is Carleman estimates. The use of these estimates to achieve
uniqueness and stability results in inverse problems is now well-established. They have been introduced by
Bukhgeim and Klibanov in [8], Klibanov in [21, 22] and Fursikov and Imanuvilov in [15]. We can cite recent
survey papers about Carleman estimates of Yamamoto [30] and Klibanov [23].

For parabolic equations, we refer to some works. Benabdallah, Gaitan and Le Rousseau in [7] consider
the heat equation with a discontinuous diffusion coefficient and give uniqueness and stability results for
both diffusion coefficient and initial condition from a measurement of the solution on an arbitrary part of
the boundary and at some arbitrary positive time. Imanuvilov and Yamamoto in [19] prove global Lipschitz
stability for a source term of a parabolic equation with Fourier boundary conditions using observations on an
arbitrarily small sub-domain. Yuan and Yamamoto in [31] determine some coefficients of the principal part
of a parabolic equation by boundary observations.

For transport equations, we can cite Machida and Yamamoto, in [27], the authors give a Lipschitz stability
result on determining a time independent scattering coefficient by boundary data. Klibanov and Pamyatnykh
in [24, 25], prove the Lipschitz stability estimate for the non-stationary single-speed transport equation with
lateral boundary data. Gaitan and Ouzzane in [16] prove a stability result for an absorption coefficient with
only one observation on a part of the boundary.

Furthermore, there are some papers devoted to inverse problems for coupled parabolic systems, we can
refer to Cristofol, Gaitan and Ramoul [11], where the authors give a simultaneous stability result for one coeffi-
cient and for the initial conditions with a single observation acting on a subdomain. In [12], Cristofol, Gaitan,
Ramoul and Yamamoto consider a nonlinear parabolic system with two components and prove a Lipschitz
stability estimate to determine two coefficients of the system by data of only one component. Benabdallah,
Cristofol, Gaitan and Yamamoto [6] give a Lipschitz stability result on determining some of the coefficients in
a2 x 2 and a 3 x 3 reaction-diffusion-convection systems.

For hyperbolic-parabolic systems, for example arising in the thermoelasticity, we can refer to Bellassoued
and Yamamoto in [5]. Wu and Liu in [29], Albano and Tataru in [1].

For elasticity, we refer to Isakov and Kim in [20] and Imanuvilov, Isakov and Yamamoto in [18].

However, to our knowledge there are no results on hyperbolic-parabolic systems where the hyperbolic
equation is a first order PDE. This kind of model is of interest in a lot of models arising in mathematical
biology. This paper is the first step in the study of inverse problems linked to angiogenesis process.

In this work, we first establish Carleman inequalities for the system with regular weight functions. The
choice of such weight functions is imposed by the transport equation. Next, we prove the stability result
including energy estimates that will require a Carleman estimate for the backward system.

The outline of this paper is as follows: In Section 2, we recall some existence, uniqueness and regularity
results for system (1.1). In Section 3, we give the Carleman estimates for the forward and backward system
with suitable weight functions. These Carleman estimates are proved in Section 4. In Section 5, we establish
the stability result through several steps.



DE GRUYTER P. Gaitan and H. Ouzzane, Stability result in a coupled hyperbolic-parabolic system =— 3

2 Direct problem

In this section we give some existence, uniqueness and regularity results for solutions of system (1.1).

2.1 Existence and regularity

Let us first introduce the following spaces:
Wy ={uelL?(Qx(0,T):u+A -VueL*>(Qx(0,T), u(-,0) € L*(Q), ulr_xo,1) € L*(T- x (0, )}
and
H>'(Qr) = L*(0, T; H*(Q)) n H(0, T; L*(Q)),
H?4(Sr) = LX(0, T; H3(T)) 0 H# (0, T; LA(T)).
The first regularity result we prove is the following:

Theorem 2.1. We assume that
(i) AeWhe@)V,
(i) uo € L2(Q), vo € HL(Q),
(iii) h € L2(Z7), g € H? 7 (Zp),
(iv) k, 8, y, u € L°(Q),
where the compatibility condition g(x, 0) = vor is checked. Then (1.1) admits an unique solution (u, v) such
that
ueW, and uecC(0,T];L*(Q), veH* (Qr).

For the proof of the theorem see [28].
We need to improve the regularity of the solutions of (1.1). For this, we consider the following.

Assumption 2.2. Assume that

(i) AeWhH@)N nH2(Q)Y,

(i) k,6 € H>(Q)NL®(Q),y, u € H3(Q)nL®(Q),
(iil) up € H>(Q), vo € H'(Q),

(iv) 0’h € L2(5;), 9}g € H# (27).

Compatibility Conditions 2.3. Assume that
() othli=o + A -Vug + yug — pvo =0onT_ x {t = 0},
(ii) 0¢gli=0 — Avg + kvg — 6ug =0onT x {t = 0},
(iii) O¢hle=o + A - V(=A - Vug — yug + uvo) + y(=A - Vug — yuo + uvo) — u(Avg — kvg + 6ug) =0onT_ x {t = 0},
(iv) 0¢8le=0 — A(Avg — kvg + Sug) + k(Avg — kvg + Sug) — 8(=A - Vug — yup + uvp) = 0on T x {t = 0},
(v) Othle=0 +A -V +y{1 —u{a =0onT_x{t =0},
(vi) 0¢8l=0 — AL + k{, —6{1 =0onT x {t =0},
where
{1:=—-A-V(-A-Vug - yup + uvo) — y(=A - Vug — yuo + uvo) + u(Avg — kvo + 8uyo)

and
& = A(Avg — kv + 6ug) — k(Avg — kv + Sug) + 6(=A - Vug — yuo + Uvo).

Indeed, by a mixture of parabolic and transport results that can be found in [2, 13, 14], and by means of an
adapted Banach fixed point approach and the Gronwall Lemma, we can prove that under Assumption 2.2
and Compatibility Conditions 2.3, the solutions u, v are such that

u, o, 0fu, ju € Wa, v, 0¢v, 07v, 03v € H>1(Qr).

The details of the proof of these regularity results for the solutions are given in [28].
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2.2 Positivity of the solution

Assumption 2.4. Assume that

(i) upo=0,h>0andF(0,n)=0forall (0,n) e V,n=>0,

(ii) vo =20,g>0and G(&0) > 0forall (£,0) € V,¢& >0,

where V is an open set in R? such that {(uq(x), vo(x)) : x € ﬁ} cV.

Lemma 2.5. Under the hypothesis of Theorem 2.1, suppose that additional Assumptions 2.4 are fulfilled. Then
the solutions u, v are such that u > 0 and v > 0in Q x (0, T).

Note that these assumptions lead to sign conditions for the coefficients in the reaction terms F and G. For the
proof we refer to [17].

3 Carleman estimates

In this section, we give the Carleman estimates for system (1.1). For this purpose, we shall first introduce
suitable weight functions.

Assumption 3.1. Let i) bea C? (Qr) function that verifies the following properties:
(i) Y(x,t)>0forall (x,t) e Qx (0, T),

(i) |V|=c>0forallxeQ,

(iii) oyyp < OonT_ x (0, T),

(iv) orp + A(x) - Vip < Oforall (x,t) € Q x (0, T),

(V) op(x,t) <0on Q x (0, T).

An example of such a function ¥ is
Px, t) = a(x) - B(t) + M, (3.1
where M is a positive constant such that ) > 0in Q x (0, T) and ) verifies

supa(x) < inf B(¢).
XEg () tE(O’T)B()

Note that this assumption leads to a geometrical condition. For example, if A(x) = x, a(x) = |x — xo|> with
xo € RV \ Q, then we can take f(t) = ed“‘g), d > 0 and the geometrical condition is

2
T > = supln|x - xo|?.
xeQ

Let A > 0 be a parameter; we then define the weight function ¢(x, t) by
P(x, t) = M0, (3.2)

We point out that the choice of such a weight function leads to an observation acting on a part I'; of the
boundary I' on the right-hand side of the estimate. We then derive estimates with observations in a subdomain
w of Q such that ow > T,

Throughout this paper, we shall use the following notations:

Ii(q, Qr) = J sA2p|q|*e®*? dx dt,

Qr
L(q, Qr) = J(S(p)‘l(latql2 +|Aq|?)e*s? dx dt + I sA2|Vq|?e®s? dx dt + J SPA4p3|ql?e?s? dx dt.
Qr Qr Qr

Now, let us state our Carleman estimates for both forward and backward system.



DE GRUYTER P. Gaitan and H. Ouzzane, Stability result in a coupled hyperbolic-parabolic system = 5

Theorem 3.2. Let Y and ¢ be defined by (3.1) and (3.2), respectively. There exist so, Ao and a positive constant
C = C(sg, Ao, Q, T, w) such that

L1(qy, Q1) + Ir(g2, Qp) < C j ILqy12e*? dxdt + C j P26 dx dt
QT QT
+ Cs*A* J ©*|q2)?e*? dxdt + C J 10¢q212e*5? dx dt
wT wr

foralls > sg, A > Ag and all q1, q, satisfying

{ Lq1 :=0¢q1 +A(X)- Vg1 € L*(Qx (0, T)), ¢1€L*(Qx(0,T), qilr. =0, ¢1(-,0)=q1(-,T) =0,
Pq := 9:q> - Aqz € L*(Q x (0, T)), g2 € L*((0, T); H3(Q) n H*(Q)), qa(-,0) = qa2(-, T) = 0.

Theorem 3.3. Let i and ¢ defined by (3.1) and (3.2), respectively. There exist so, Ay and a positive constant
C = C(sg, Ao, Q, T, w) such that

11(q1, Q1) + (g2, Qp) < C j |Lpw q112€2% dx dt + C j |Pow q21%€25% dx dt
QT QT

+Cs*2* J ©*|q21%e**? dxdt + C J 10:q2|%€25? dx dt
wT wT

+ Cs? 2 J ©?|q11%e**? dxdt + C I PlAX) - Vq1]?e*s? dx dt,
wT wr

foralls > sp, A > Ag and all q1, q, satisfying

{ Lpwqi = —0¢q1 + A(X)-Vq1 € L*(Qx (0, 7)), q1 € L*(Qx(0,T), qilr. =0, ¢i1(-,0)=q1(-,T) =0,
Powqa = -0¢q> — Aga € L*(Q x (0, T)), g2 € L*((0, T); H{(Q) N H*(Q)), ¢2(+,0) =qa(-, T) =0.

4 Proof of Theorem 3.2 and Theorem 3.3

To prove Theorem 3.2, we first derive two Carleman estimates, one associated to the transport operator
and the other one to the parabolic operator using the same weight function. Note that we obtain Carleman
estimates with observations acting on I';.. Then we derive from the previous inequalities Carleman estimates
with localized observations on a subdomain w. These two previous estimates allow us to obtain a Carleman
inequality for the system with the observation of only one component on w. The proof of Theorem 3.3 is
similar to the proof of Theorem 3.2.

4.1 Carleman inequalities associated to the transport operator

In the two following lemmata, we state Carleman estimates for both forward and backward transport opera-
tors.

Lemma 4.1. Let Y and ¢ be defined by (3.1) and (3.2), respectively. There exist so, Ao and a positive constant
C = C(sg, Ao, Q, T, T') such that

Ii(q1, Q) < C j Lg1 |29 dx dt
Qr

foralls > sg, A > Ag and all g, satisfying

Lgi :=0tq1 +A(X0) - Vg1 € L* (@ x (0, T), g1 €L*(Qx(0,M), qilr =0, q1(-,0) =q1(-, T) =0.
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Lemma 4.2. Let i and ¢ be defined by (3.1) and (3.2), respectively. There exist so, Ao and a positive constant
C = C(sg, Ao, Q, T, T') such that

T
Ii(q1, Q1)< C J |Lbwqi]?e®*? dx dt + CS/\J J Plq11?A(x) - ve*s? do dt (4.1)
0

Qr T,

foralls > sg, A > Ag and all q; satisfying
Lowqi := =0¢q1 + A(X) - Vg1 € L*(Qx (0, 7)), g1 € L*(@x(0,T)), qilr_ =0, q1(-,0) = q1(-, T) = 0.

For the proof of these lemmata, we use the same ideas as in [16].
Next, using Lemma 4.2, we prove for the backward operator a Carleman estimate with a single observa-
tion acting on a subdomain w such that ow > T';.

Lemma 4.3. Let Y and ¢ be defined by (3.1) and (3.2), respectively. There exist so, Ao and a positive constant
C = C(sg, Ag, Q, T, w) such that

Ii(q1, Q1)< C j |Lbw 11225 dx dt + Cs*A? J ©?|q11%e**? dxdt + C J PlA(X) - Vq1|*e®? dx dt

Qr wr wr

foralls > sg, A > Ag and all q; satisfying
Low g1 := =0¢q1 + A(x) - Vg1 € L*(Q@% (0, T)), ¢1 € L*(Qx(0, 7)), qilr. =0, q1(-,0) = q1(-, T) = 0.
Proof of Lemma 4.3. We choose a function p € C2(Q; [0, 1]) satisfying

<|p(x) =1, xew, (4.2)

p(x):O, xeﬁ\w,

where w' ¢ w and 0w’ > T',. An integration by parts gives

T
s/lj jp(plqlle(x) -ve*? do dt = sA I PPAX) - V(lq11?)e**? dx dt + sA J V- (Ax)ppe®?)|q.|? dx dt
0

I, wr wr
=: Q1 + Q.
Using (4.2), an integration by parts and Young’s inequality, we obtain
Q, < Cs2A I oplqi2e®? dx dt + C J PplAGX) - Vg1 2e? dx dt, (4.3)
wT wr

and
Q1 =sA J(/\/NPVIIJ A + Vp - A(X) + poV - A(X))|q1|>e**? dx dt
wr

+ 25272 J O2AX) - Viblga2e?? dx dt

wr

< Cs?A? J @%|q11%e*s? dx dt. (4.4)

wr

Therefore, from (4.3) and (4.4), it follows

T
S/\j J 0lq11?A(x) - ve*s? do dt < Cs*A? J ©?|q11%e**? dxdt + C J PlA(X) - Vq1|?e®? dx dt.
0

T, wr wr

Using this last inequality in (4.1) and the definition of Lg,, the proof of Lemma 4.3 is completed. O
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4.2 Carleman inequalities associated to the parabolic operator

In this subsection, we recall the general form of the Carleman estimate associated to the operator
Pq = +0.q - Aq,
see [30, 31].

Lemma 4.4. Let Y and ¢ be defined by (3.1) and (3.2), respectively. There exist sy, Ao and a positive constant
C = C(sg, Ao, Q, T, T') such that

T
L(ga, Q1) < C j Pga|2e2? dx dt + cj j sA@|dyqal2e?? do dt (4.5)
0

Qr T,

foralls > sg, A > Ag and all q, satisfying
Pq; = £0:q> - Mgy € L*(Q % (0, T)), ¢ € L*((0, T); Hy(Q) n H*(Q)), ¢2(+,0) = g2(+, T) = 0.

Now, using the previous lemma, we prove a Carleman estimate with a single observation acting on a subdo-
main w, such that ow > T,.

Lemma 4.5. Let Y and ¢ be defined by (3.1) and (3.2), respectively. There exist sy, Ao and a positive constant
C = C(sg, Ao, Q, T, w) such that
L(gs, Q1) < C J P g>12e®9 dx dt + C j 1Aga12€25% dx dt + Cs*22 J 02|V, 2> dx dt
Qr ar oy
foralls > sp, A > Ag and all q, satisfying
Pgy =40t — Mgy € L*(Q%x (0, 7)), g2 € L*((0, T); Hy(Q) N H*(Q)), ¢2(+,0) =¢a(-, T) = 0.

The idea of the proof is taken from [29].
Proof of Lemma 4.5. Let us consider the function gg € C? (Q; R™) such that

So(x) =v(x) onT, (4.6)

and the function p defined in (4.2). We have

T
SAJ I Pplovg>|*e*? dodt = sA j 9p(Vq2 - 80)e*?Aq, dxdt + sA I V(pp(Vq: - 80)e**?) - Vg, dx dt
0

Ty wr wr
=: Q1 +Q>.
Using the properties of the cut-off function p (see (4.2)), the definition (4.6) of gy with Young’s inequality, we
estimate Q; and Q,. Note that we have

ISAp@(Vqs - 80)e%?| - |€5PAq,| < Cs?A%?|Vq,|?e®s? + C|Aq,|?es?.

Then
Q1 < Cs?A? I ©%|Vq,|?e®? dxdt + C J |Ag,|2e?s? dx dt (4.7)
wT wr

and

Q=51 [ (Va2 - g0)(pApVY + 9Vp + 254997 V) - Vs> dxdt

wr

+5sA I PpV(Vqs - 8o) - Vq2e%5? dx dt
wr

< Cs?A? J ©*|Vq,|?e*s? dx dt. (4.8)

wr



8 —— P Gaitan and H. Ouzzane, Stability result in a coupled hyperbolic-parabolic system DE GRUYTER

Thus, from (4.7) and (4.8), we obtain

T
SAJ J ®10,q21?e*? do dt < Cs*A? J ©?|Vq,|?e®? dxdt + C J |Ag>|?e?? dx dt.
or, wr wr
So, using this last inequality in (4.5), we conclude the proof. O

The result of Lemma 4.5 can be improved.

Lemma 4.6. Let i and ¢ be defined by (3.1) and (3.2), respectively. There exist so, Ay and a positive constant
C = C(sg, Ao, Q, T, w) such that

(g2, Q1) < C I 1P q> 2% dxdt + C J 10¢qa12€%¢ dx dt + Cs“2* J 0*1q212€25? dx dt

Qr wr wr
forall s > sp, A > Ag and all q, satisfying
Pqy =20¢q2 —Ag2 € L*(Q x (0, 7)), g2 € L*((0, T); Hy(Q) N H*(Q)), q2(+,0) =g2(-, T) = 0.

Proof of Lemma 4.6. The idea are the same as those given in [15]. The argument is a local regularity of the
parabolic equation. Explicit computation using integrations by parts leads to the following estimates:

s2A? J P%|Vq,|?e*? dxdt < C J |P q21%e?5? dx dt + Cs*A* j ©*|q21?e*? dx dt

wr Qr wr
and
I ©*|Aq2|?e*? dx dt < C J |P q,|%e*? dxdt + C J 10¢q2|2e*5% dx dt.
wr Qr wr
Then by Lemma 4.5 and the two previous estimates, the proof is completed. O

Finally, to prove Theorem 3.2 (respectively Theorem 3.3), we add up the estimates of Lemma 4.1 and
Lemma 4.6 (respectively the estimates of Lemma 4.3 and 4.6).

5 The stability result

In this section, we apply the Carleman inequality of Theorem 3.2 in order to prove the following stability
result.

Theorem 5.1. Let w be a subdomain in Q satisfying ow > I',.. We assume that Assumption 2.2, Compatibility
Conditions 2.3, Assumption 2.4 and Assumption 3.1 are checked. Let (u, v) (respectively (i1, V)) be a solution
of system (1.1) associated to (u, y, 8, k, uo, vo, h, g) (respectively (i, y, 8, k, uo, vo, h, g)). Then, there exists
a positive constant C = C(So, Ao, Q, T, w) such that
"H - ﬂ"%Z(Q) + ”6 - gll%Z(Q) < C”V - V"?‘IZ((O,T);LZ((U)) + C(”A(V - V)(X, 9)"%2(0) + ”(V - V)(X, 9)"%2(9)
I =), )12 ) + IAR) - V(u ~ D)X, O)I2: ) + 10 = D)X, O)l25,,))-
Proof. The proof will be done in several steps.

Step 1: Linearization and differentiationintime. LetussetU=u-u4,V=v-V,Y=0,UandZ = 0;V.ThenY
and Z are solutions of

(0:Y + A(x)-VY = (U — )0V + uZ - yY in Qr,
0Z-NZ=(5-06)0ii+6Y-kZ inQr,
Y(x,t)=0 on X7, (5.1)
Z(x,t)=0 onZXr,
Y(x,0) = (- W)vo(x), Z(x,0) = (6 - Huo(x) inQ.
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Step 2: Application of the Carleman estimate of Theorem 3.2. We choose n € (0, T) and we introduce a cut-off
function y € CX(R) such that 0 < y < 1. we define

1 ifn<t<T-n,
X = )
0 ift<Oort>T

WesetY = yYand Z = yZin Q x (0, T). Thus, Y and Z satisfy the hypothesis
Y(-,00=Y(,T)=2(-,00=2Z(-,T)=0 inQ.
Therefore, we can apply the Carleman inequality of Theorem 3.2 to ¥ and Z; it follows that

LT, Q1) + L(Z. Qp) < C J ILY12e29 dx dt + C J IPZ122% dx dt

Qr Qr
+Cs*2* J ©*|Z|*e*? dx dt + C J 10:Z|%e%5? dx dt, (5.2)
ot ar
where
LY =xLY + Yoy and PZ=yPZ+ Zoy,
inQx(0,T7).

We set Q, = Q x (n, T - n). Since 0ty has a compact support in (0, 1) U (T - 1, T), we deduce from (5.2)
the following inequality:

n
L(Y, Q) +L(Z,Qy)<C J ILY|*e*? dx dt + C J |PZ|?e*? dx dt + cj J |Y|2e*? dx dt
QT QT 0Q

T n T
+C J j Y12e25 dx dt + cj j 1Z12e25 dx dt + C j J 1Z12e25 dx dt
T-n Q 00 T2 O
+ Cs A J 041212e%% dx dt + C I 10:21225¢ dx dt. (5.3)

wrt wr

In the sequel, we fix A = 1y and use the fact that ¢ is bounded from below by 1 and from above by a constant
depending on A. We use the following notations:

J1(q, Qr) = j slgl2e?? dx dt,
Qr

J2(q, Qr) = J(S)"l(latql2 +|Aq|?)e*s? dx dt + j s|Vgl?e®s? dx dt + J s3|q|%e?s? dx dt.
QT QT QT

Then, from (5.3), we obtain

Ji(Y, Qy) +J2(Z, Q) < C J ILY|?e*? dx dt + C J |PZ|*e*5¢ dx dt + Cs* J |Z|2e*S? dx dt

Qr Qr wr
n T
+C [ 10,2229 axdt + cj j Y229 dx dt + C J j Y229 dx dt
wr 0Q T-n Q
n T
N cj J \Z2e2% dx dt + C J J Z12e25 dx dt. (5.4)
00 )
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Step 3: Energy estimates. We want to give an estimation of the last fourth integrals of the right-hand side
of (5.4). Let us denote

n T
M, = ”|Y|2e2w dxdt, M, = j jmzezw dxdt,

00 T-n Q

n ’ (5.5)
M; = ”|Z|2e25<ﬂ dxdt, M = J JIZIZeZS‘P dx dt.

00 T=n Q

The aim is to absorb My, M>, M3 and My by the terms of the left-hand side in inequality (5.4). For this
purpose, we introduce the following weighted energies:

1
Ex() = 5 j Y1229 dx,
Q

1
E5(t) = 5 J |Z]2e%5? dx.
Q

The following lemma gives an estimation of M, and Mj:

Lemma 5.2. Let M, and M, be defined by (5.5). Then, we have the following estimates:

v
~

M, < C j Y225 dx dt +
Q
n

j 21225 dx dt +
Q

g j ILY|?e%5? dx dt,

Q

My<C E
S

ST e
Oty O—

J \PZ|2e%? dx dt.
Q

Proof. The proof is based on weighted energy estimates. Such estimates have been introduced in [3] for the
wave equation in a bounded domain. It is given in Appendix A. The main tools are integration by parts, the
Gronwall Lemma and Young’s inequality. O

Let t € (0, 7). We make the change of variables t — T — t and we introduce
YbW(X’ t) = Y(X7 T - t)’
Zhw(x, t) = Z(x, T - t).
Note that Yy, and Zy,, satisfy the backward system associated to (5.1), where
LywYbw 1= =0t Ypw + A(X) - VYby
PowZiw := —0tZpw — Ay
Lemma 5.3. Let My and M, be defined by (5.5). Then, we have the following estimates:
T-n c
Mi<C J j Yo 26250 dxdt + j |Lipw Yo 2259 dx dt,
n Q Qr
T-n c
M <C J j Zona 2% dxdt + < J |Pow Zow|2€25% dx dit.
n Q Qr

Proof. We set

?bw = Xwa’
wa = XZbw

in Q x (0, T) and we apply the Carleman estimate of Theorem 3.3 to Yow and Zyy. As for Y and Z, we will
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obtain the following estimate:

T2 (Yows Q) + J2(Zows Q) < C j | L Vo262 dx dt + C j |PowZowl2€2¢ dx dt + C
QT QT

Ot

J|wa|2e25¢ dx dt
Q

n
i C J|wa|2e25<° dxdt+CJ J \Zow|2€25% dx dt
T Q 0Q

+C | Zow|2e25¢ dx dt

— ,:Is'—"‘]

J | Zowl2e25¢ dx dt + Cs*
Q

+C | 10:Zpwl?€®? dx dt + Cs* | |Ypwl?e>? dx dt

— S—

g
3

+C

|A(X) - VY 2e25? dx dt. (5.6)

S

T

Let us define M1 bw, M2,bw, M3, bw, Ma,bw as follows:

n T

Mi = [ [ [VouPe™ dxdt, Mopu= | [ 1Vonle?? dxat,
00 =3 Q
n

M = J j Zowl2€?? dx dt, Mapw = j J | Zowl?€2? dx dt.

00 T-n Q

If we set Eq,pw(t) = 3 IQ | Ypwl|2e25® dx, then as for E; we find

dE 1
;i_bw =S j(at(p +Vo- A(X))|wa|2e25(p dx + 5 J A(x) - V|wa|2625<p do
Q g
1
= J YowLbw Yowe?? dx + 5 jv A Ypul?e25 dx.
o Q

From (iv) of Assumption 3.1, for all s > O large enough, we obtain

dEl,bw
dt

+sC I | Yiwl2e25? dx < I YowLbw Yowe>s? dx.

Q Q
Remark 5.4. Note that, in fact, the change of variables t — T -t requires to do all the estimations with
(p( ) T- t)'

First, we estimate M py (resp. My bw) in the same way as for M, (resp. M) and we find

T-n
c
N, < C j j [YouPe# dxdt + J Lipw Yowl262% dx dt,
nQ Qr
T-n c
M < C J j|zbw|2e23¢’ dxdt+ j |Pouw Zow|2€2% dx dt.
n Q Qr

Note that My = M, pw and M, = My pw, S0 we deduce the following estimates:
T-n c
Mi<C j J Youl2e250 dxdt + J L Voul| 2629 dx dt,

n Q Qr
T-n c

M; < C j J|zbw|2e25¢ dxdt+ j PowZow|2€25 dx dt. 0
n Q Qr
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Step 4: Carleman estimate with two observations. In this step, we will prove the following Carleman estimate
with two observations by means of Lemma 5.2 and Lemma 5.3.

Proposition 5.5. Let w be a subdomain of Q such that ow > T,. Suppose that Assumptions 2.2, 3.1 and Com-
patibility Conditions 2.3 are checked. Then there exist sy and a positive constant C = C(sg, Ao, Q, T, w) such
that for all s > s,

s j Y2629 dx dt + s j 1Z1%e25% dx dt < C j I = 210722 dx dt + C J 16 - 81210122 dx dt
QT QT QT QT

+Cs* [ |Z]2e*? dx dt + C I 10:Z]2e%5? dx dt

wr wr

+Cs? j Y1225 dx df + C J AG) - VY2eX? dxdt, (5.7)

wr wr

where Y and Z are solutions of system (5.1).
Proof. Thanks to (5.4) and (5.6), for all s > 0 large enough, we obtain
J1(Y, Qp) + J1(Yow, Qp) +J2(Z, Qp) + J2(Zbw, Qy)
<C J ILY[2e?¢ dxdt + C J L Youl2€2% dx dt + C J IPZPe?5% dx dt + C J |Pow Zw 26257 dx dt

QT QT QT QT
+Cs J 1Z12e259 dx dt + C J 10,2225 dx dt + C J IAGO) - VY22 dx dt
wrT wTr wr
4 Cs? J Y1225 dx df + Cs" J Zow|2€25 dx dt + C J 100 Zou 229 dx dt
wr wr wr
4 Cs2 J Ypu|2625% dx df + C I IAGY) - VY262 dx dt.
wr wr

Since Ypw(x,t) = Y(x, T—t) forall t € (0, T) and ¢! < Ce, we deduce the following inequality:

T1(Y, Q) +J2(Z, Q) < C J ILY|2e?¢ dx dt + C j PZ|2e25% dx dt + Cs" J 12126259 dx dt
QT QT wr
iC j 10,2122 dx dt + Cs? J Y225 dx dt + C j IAGY) - VY2629 dx dt.
wr wr wr
Using the estimations of M; and M; p,, fori =1, ..., 4, we obtain the following Carleman estimate:
s j Y12e29 dxdt + s j 1Z12e25 dx dt < C j ILY]2e%9 dx dt + C j IPZ|2e%9 dx dt
QT QT QT QT

+Cs j 1Z12e25 dx dt + C j 10,Z12%% dx dt

wT wr

+Cs? J |Y|?e?? dx dt + C J JA(X) - VY|?e*? dxdt. (5.8)

wT wr
Note that we have
j LY€% dx dt < C j I = 210722 dx dt + C J 12269 dx dt + C I Y220 dxdt,  (5.9)
Qr Qr Qr Qr
J \PZ2e? dx dt < C j 16 — 81210,T1[2e%% dx dt + C J Y12e2% dx dt + C j 1Z2eX% dxdt.  (5.10)
QT QT QT QT

Substituting inequalities (5.9) and (5.10) into (5.8), we conclude the proof of Proposition 5.5 for s > 0 large
enough. O
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Remark 5.6. In (5.7), we obtain a lower bound of |e5? L Y||f2(QX(
In fact, we have

0.T-n) but we can obtain it in (Q x (0, T)).

s J |Y|2e?5? dx dt + J |L1Y]?e?5? dxdt + s J |Z|2e25¢ dx dt

Qr Qr Qr
<C J = AP1372e?5? dx dt + C j 16— 5210,7l2e2? dx dt + Cs* J 1Z12€25% dx dt
Qr Qr wr
iC j 10:Z1265% dx dt + Cs> J Y2625 dxdt + C j IA(X) - VY1225 dx dt. (5.11)
wr wr wr

Step 5: Carleman estimate with one observation. In this step, we will derive a Carleman estimate with only
one observation of Z acting on w and the data of Y at a fixed time 6 € (0, T). We will need the following lemma:

Lemma 5.7. Forq € L2(Q x (0, T)) and s > O we have

|

Qr

2
C
e dx dt < = J lg(x, t)|?e*5? dx dt.
Qr

t
J q(x, T)dt
0

The proof is given in [10, 26].

Proposition 5.8. Let w be a subdomain of Q such that ow > T',. Suppose that Assumptions 2.2, 3.1 and
Compatibility Conditions 2.3 are checked. There exist so and a positive constant C = C(sg, Q, T, w) such that
forall s > sg,

s j Y1225 dx dt + j Ly Y2e®% dx dt + s j 1Z2e%% dx dt

Qr Qr Q
<C j = 71210712259 dx dt + C J 16— 812(10c1 + 1925[2)e?? dx dt
Qr Qr
iC j (Y1217 + 102212 + 10,:21)e*? dx dt + Cs> J IY(x, 6)%€2? dx dt, (5.12)
wr wr

where Y and Z are solutions of (5.1).

Proof. We set
% = §2 j IY12e%¢ dxdt and %' = J IAG) - VY225 dx dt.

wr wr

The aim is to estimate K and K’ in terms of distributed observations of Z on w x (0, T). On the one hand,
applying Lemma 5.7 to 0;Y in w x (0, T), we find
2

t
J JatY(x, 7)dt| e*? dx dt < s£2 J 10:Y(x, t)|>e>*? dx dt,

wr g wr

which gives

J [Y(x, )[2e29 dx dt < s£2 j 10, Y(x, 0225 dx dt + j [Y(x, )[2e2? dx dt.
wT

wT wr

Hence, we get

§2 J Y12e25% dx dt < C j 10, Y2629 dx dt + Cs? J IY(x, )[2e2? dx dt.

wT wrt wr

On the other hand, we have
80:Y = 07Z — N0¢Z) - (6 - 8)071 + ko, Z.
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Therefore,
j 10: Y122 dx dt < C J 10221225 dxdt + C J 10:Z12e25% dx dt + C J 16 - 512102T%e?? dx dt.
wr wT wr wr
Consequently,
K<C J 10222€%% dx dt + C j 10:Z17€% dxdt + C j 16 - 37102T% e dx dt
wrT wT wTr
+Cs? J 1Y(x, 0)12€2? dx dt. (5.13)
wr
Moreover, we have A(x) - VY = (u - §)0:v + uZ - yY — 0;Y. Using Young’s inequality, we obtain
X' = j (U - 1)0¢V + uZ — yY — 0,Y|*e*5? dx dt
wr
<C J 10,Y12e25% dx dt + C j I = 7121071225 dx dt + C J 12269 dx dt + C J Y1229 dx dt. (5.14)
wTr wr wT wTr

Finally, thanks to (5.13) and (5.14), we find

5+ %' < Cs? J 1Y(x, 0)[2€2¢ dxdt + C j 1022)2e25¢ dx dt + C J 1002172 dx dt

wr wr wTr
+Cs* J 1Z12e%5 dx dt + C J 16— 31210272 dx dt + C J I — 21071229 dx dt.
wr wTr wTr
Substituting this into inequality (5.11), we conclude the proof of Proposition 5.8. O
Step 6: Stability result. This can be done in two parts. In Part 1, we prove a stability inequality for u using

the method introduced in [4]. In Part 2, we establish a stability inequality for § using the method introduced
in [31]. Finally, we will combine these two inequalities to obtain our stability result.

Part1. Let@in(n, T-n)and W = eS?Y. We define L, as
LiW=0W+AX)-VW

and consider the integral
]

J:”lev.vvdxdt.
0Q
e

We give an upper bound of J using the Carleman estimate (5.12). We have

0 1

0 1
2 2
< s‘i([ j |L, W) dxdt) (s J J |Y|?e?5% dx dt) .
00 00

9] = JL1W.dedt

Ot
o

Applying Young’s inequality, we find
9] < s%< j Ly WP dxdt + s J Y1262 dx dt).
QT QT
Using (5.12), we obtain

9] < CS—%( J lu - fil*10:V]>e%5? dx dt + J 16 - 812(101]? +107T|%)e*? dx dt
QT QT

+ J (s*1Z1% + 1072 + 10:Z|*)e*? dx dt + s* j |Y(x, 6)|%e*% dx dt).

wr wT



DE GRUYTER P. Gaitan and H. Ouzzane, Stability result in a coupled hyperbolic-parabolic system = 15
Now, let us compute J. An integration by parts leads to

0 0
— 1 —
J JA(X) VTR do dt + % J Y0, O)Pe?00 dx =7+ 2 J J V. AO|T2e% dx dt.
or, Q 0Q

Since A(x)-v > 0onT,, we have
J [Y(x, )]2e*¢%9 dx < T+ C J |Y|?e25% dx dt.
Q Qr

Using again (5.12) and the estimation of J, we find

j IY(x, 6)[2e257%0 gy < 52 I Y(x, 0)[2e25? dx dt + C(s ™% + sl)( j I = 1210712259 dx dt
Q wr Qr
+ j 16 — 8|2 (|0¢1|? + |021|%)e?s? dx dt
Qr
" J(s‘*lle £10221 +10:212)e>? dx dt).
wr

Moreover, we have
Y(x,0) = 0:U(x, ) = —-A(x) - VU(x, 0) + (u — p)(x)V(x, 8) + u(x)V(x, 0) — y(x)U(x, 6).

Substituting Y into the last inequality, we obtain

[ 160~ v, By2e2s0 ax
Q
<Csh+ s-l)( J I = 71210712259 dx dt + J 16— 812(10c1 + 1927[2)e?? dx dt
Qr Qr
+ j (s*1Z)% +102Z|% +10:Z|%)e*s? dx dt + s* j |Y(x, 0)>e%? dx dt)
wr wr
i C J IAG) - VU(x, 6)2e259%0 dx + C J [U(x, )220 dx + C I IV(x, )220 dx. (5.15)
Q Q Q
Part2. Let@in(n, T - n)and
9= [ 120 0)es0 0 dx.
Q

We have

J 1201, 022590 dx = [ 1y(0)2(x, 0)[2e252%0 dx

Q

a[<j X(DZ(x, t)|?e?s?*:0 dx> dt
Q

E’H—, Ot Oy

< | 2x0.x1Z|2e%5? dx dt + J 2(x12Z0:Ze*? dx dt + J 250,plxZ|?e*s? dx dt
QT QT
<C j X9 Z1%€?5 dx dt + C(1 +5) J Z12e? dx dt. (5.16)
QT QT

The following lemma gives Carleman estimates for yZ and yo0.Z.
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Lemma 5.9. Let Z be the solution of system (5.1). We have the following Carleman estimates:

J 3 ZI%e? dx dt < Cs™3 J (4 - )O2T2e?5% dx dt + Cs™3 J (6 - 8)02e?? dx dt

Qr Qr Qr
+Cs J ((0:2)12€25? dx dt + Cs™3 J (2 2)Pe?? dx dt
wr wr

and
s J XZ12e2? dx dt < Cs™ J (1 - J)OTI2e® dx dt + Cs™ j (6 - B)0,2e>? dx dt

Qr Qr Qr
+Cs? J ((2)12e29 dx dt + Cs™ J ((0:2)2e2? dx dt.
wT wr

Proof. Firstly, we have
L(Y0cY) = X(u = B)OFV + ux0cZ - yxOY + 0rx0.Y,
P(x0¢Z) = xP(0tZ) + 0¢x0¢Z = x(6 — 3)6%& +X60:Y — xko¢Z + 0¢x0¢Z.
Moreover, we have
X0:Y(x, 0) = x0:Y(x, T) = x0:Z(x,0) = x3:Z(x, T) =0 in Q.
Thus, we can apply Theorem 3.2 to x0:Y and yo0Z, we find
I1(x0:Y, Q1) + [(x0:Z, Q1) < C J IL(x0:Y)|?e*? dx dt + C J [P(x0:Z)|?e*5? dx dt
QT QT
+ Cs* A4 j 0“1((3.:2)2e>? dx dt + C j (02 2)Pe?? dx dt.
wT wr
We fix A = Ao and we bound ¢ from below and from above, we obtain
J slyo.Y|?e?s? dx dt + J S |(x0¢Z)|%e*? dx dt
QT QT
<C J IL(0:V)2e>? dx dt + C J IP((9:2)%e dx dt + Cs" J (0:2)12e2? dx dt
QT QT wr
iC J (2 2)Pe?? dx dt.
wr

Then, for all s large enough, we obtain

s j [xo:Y|?e**? dx dt + s> J [x0:Z|?e*s? dx dt

QT QT
<C J (4 - 7927122 dx dt + C J (6 - 8)0272e?% dx dt + Cs" J (O 2) 2> dx dt
QT QT wr
iC J (((22)Pe?? dx dt. (5.17)
wr

Now, let us establish a Carleman inequality for yZ. Similarly to yo.Z, we obtain

s j [xY|?e?? dx dt + s> J IxZ|>e?s? dx dt

QT QT
<C J (1 - J)OTI2e® dx dt + C J (6 - 8)0.@i>e?? dx dt + Cs" j ((2)12€25¢ dx dt
QT QT wr
+C J (0:2)I2€2? dx dt. (5.18)
wr

From (5.17) and (5.18), we conclude the proof of Lemma 5.9. O



DE GRUYTER P. Gaitan and H. Ouzzane, Stability result in a coupled hyperbolic-parabolic system = 17

Thanks to Lemma 5.9, inequality (5.16) becomes

J 1Z(x, 6)2e*59%9 dx < 573 J |(u - )0371%e dx dt + Cs™> I (6 - 8)o7ule>” dx dt
Q Or or
+Cs7? J (4~ )0 VI*e**? dx dt + Cs™2 J (6 - 8)otil*e* dx dt
Or Or

+ Cs j (0 2)2e®9 dx dt + Cs™3 J ((022)12€% dx dt

wT wr
+Cs? I ((2)12e® dx dt + Cs™ I ((0:2)2€>? dx dt.
wr wr

Moreover, we have
Z(x, 0) = 0,V(x, 0) = AV(x, ) + (6 — 8)Ti(x, ) + 6(x)U(x, ) — k(x)V(x, 6).
Substituting Z into the last inequality, we find

[ 18- Bk, e e O ax< cs [ 1u- oyt dxde s cs [ 15 - B)o7ure?” dx e
Q Or or
+Cs2 j (1 - F)OVI? e dx dt + Cs™ j (6 - 8)octi|*e*” dx dt
Or Or

+ Cs j (0 2)2e%9 dx dt + Cs™3 J ((022)12€% dx dt

wr wr

+ Cs? j |(xZ)|*e*? dx dt + Cs™? I |((2)|2e?5¢ dx dt
wr

[AV(x, 9)|2 2s¢(x,0) dx + Cj |U(x, 9)|2625(p(x,0) dx
Q

+C | |V(x, 9))2e259%0) gx. (5.19)

O —_— .’O'—,

By gathering (5.15) and (5.19), we obtain

[ b= mP 1O, O e ® ax v [ 16 - SR cx, O)7e20® dx
) Q
<C(s7? + s‘l)( J |l — fil*10,VI>e* dx dt + J 16 - 81*(10:1|* + 07 ul*)e*** dx dt
Or Or
+ J (5?1212 + 107212 + 10:Z1?)e*? dx dt + 52 j 1Y(x, 0)”e?* dx dt)
wrT wr
+Cs73 J (1 - {)OFVIe*? dx dt + Cs™ I (6 - )o7ul*e*? dxdt
Or Or
+Cs2 J (- )OI dxdt + s~ J (6 - 8)oiil*e* dx dt
Qr

+C | |AV(x, 0)|2 250(%.0) gy + CI |A(x) - VU(x, 9)|2625<p(x,9) dx
Q

Q
+ CJ |U(x, 0)|2e*9%9 dx + CJ |V(x, 0)]2e52%0) dx.
Q Q
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Since V(xZ) = xVZ and A(x0:Z) = xAo¢Z, we obtain for all s large enough that

[ b= mP 1O O €0 dx v [ 16 - B cx, O)e20® dx
Q Q
< c5—5< J |l — il*19,7I>e* dx dt + j |6 - 817 (10¢H|*e**% dx dt)
Qr Or
v Csh [ 18-8P107a% e dxde+ s [ - FPN0F7Re dx e
Qr Or

4 (:s%( I (s*1Z1% + 107 Z)% +|0:Z1%)e* dx dt) +Cs? j |Z|?e** dx dt

wr wr

" Csl( j (1212 + 521(3:2)[2)e>® dx dt) " CI IAV(x, 0)2e29%0 gy

wr Q

+C J [V(x, 0)]2e*¢*9) dx 1 C J |A(x) - VU(x, 0)[>e*5¢%9) dx
Q

|U(x, 0)]2e*9%0 gy 4 Cs? J |Y(x, 0)|%e?5? dx dt. (5.20)

wr

+C

D ©

Remark 5.10. For R € W12(0, T; L°°(Q)) and |R(x, 0)| > ro > O a.e. in Q, there exists go € L2(0, T) such that
[0¢R(x, t)| < go(t)|R(x, 0)| forall x € Q and t € (0, T) (see [4, 30]).

The previous remark applied to (5.20) leads to

j I~ AR (T(x, O)2e259%0) dx ¢ j 16 - 312 (x, 0)|2e259%9 dx

Q Q
<csh (j 1= BP0 d v [ 18 - 8P, ) €00 d")
Q Q
+Csd J(|a$Z|2 +10.Z1?)e?? dx dt + Cs? J |Z|?e?*¢ dx dt
wT wr

+C [(1AV(x, 0)% + |V(x, )] + |A(x) - VU(x, 0)?)e??%9) dx

+ ¢ [ 1o, 0)12e259%9 gy + ¢ j Y(x, 0)|2e% dx dt.

wr

D, D —

Finally, for all large s, we deduce the following result:

J u = 7 1%(x, 0)|2e*5°%9 dx + j 16 - 817 [7(x, )[2e*?™® dx
Q Q
<Cs? J(|(at2)|2 +107Z)*)e*s? dx dt + Cs? I |Z)?e5? dx dt

wTt wr

+C J(lAV(X, 0)1? + |V(x, 0)1> + |A(x) - VU(x, 0)|?)e?¢*:9 dx

i C J [Ux, 0)[2e259%0) gy 4 Cs j Y(x, 0)|2e% dx dt.

Q wr

From Assumption 2.4, there exists 6 such that [ii(x, 8)| > r1 > 0 and |V(x, 8)| > r, > 0. Since e25¢®:9) ig
bounded in Q x (0, T) and e25¢*:0 > ¢ > 0 for all x € Q, we conclude the proof. O
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A Appendix

Proof of Lemma 5.2. Let us start with the estimation of M,. We have

% =S j Oepl V|2 dx + J |Y|0, Ye*? dx
Q Q

=s I 0rp|Y[>e®5? dx + J(LY —A(x) - VY)Ye?? dx.
Q Q

Then, we obtain

dEq

Tl J 0¢p|Y|>e? dx + % J e’ A(x) - V(|Y)?) dx = J YLYe?? dx.

0 ) 0
After an integration by parts, we get
dE;

At —SJ(at(p+V(p A(X))|Y|2 250 dx + = JA(X) V|Y|2 259 4o

Q I,
1
= j YLYe?S? dx + 5 Jv -A(X)|Y)?e5? dx.
Q Q
Moreover, for all s > 0 large enough, from Assumption 3.1 (iv) we obtain

dEq

T sC J Y225 dx < J YLYe?? dx.

Q Q
Using the formula 2ab < €a? + b?z with € = sC, we estimate the right-hand side as follows:

1

JYLYeZS"’ dx| < = Jm2 €% dx + CJlLle 259 dx.
Q

Q

2

Substituting this estimate into (A.2), we have

dE 1
o SCEL0) < 5 J ILY[2e259 dx.
Q

On the other hand, for t € (T — n, T), using the Gronwall Lemma, we obtain

esC(T—t-n) |
Eqi(t) < e SCET-E (T — ) + Ssc J j e2S?M|LY(1)|? dx dt
T-n Q
T
< e SUE=I=ME (T - ) + 21C J jezs‘*’(”lLY(T)l2 dxdr.
T-nQ
Integrating this inequality for ¢t between T —n et T, we get
T T T T
J Ei(t)dt < E(T - 1) J e SC=T=1) ge 4 J 5sC J j e2S?M|LY(1)|? dx dt dt
T-n T-n T-n T-nQ
T-n T
<E(T-1) J e=se=(T-1) gy 4 % J j 252 |LY)? dx dt.
T 00

Finally, we have
T

J- Eq(t)dt < gEl(T— n)+
-

wlo

T
J j 29 |LY[2 dx dt.
0Q

—_— 19

(A.1)

(A.2)

(A.3)
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Now, we want to estimate E1(T - n) by E1(t) for T € (n, T — 7). We use (A.1) and we integrate between T
and T - 7 to obtain

T-n T-n
j dfl dt + % j JA(X) VY26 do di = J s J(at<p + V@ - )| Y22 dx dt
T T T, T Q
T-n
% jv AGO Y22 dx dt + j J YLYe2? dx dt.
Q T Q
Thus we have
T-n T-n T-n
J %dt <Cs J j Y1225 dx dt + g I J ILYP2e®? dx dt,
T T Q T QO
which gives
T-n T
Ei(T-n)-Ei(1) <Cs j J |Y[>e?5% dx dt + g J J ILY|?e?5? dx dt.
n Q 0Q

Integrating between n and T — 1, we obtain, for s > 0 sufficiently large,

T-n T
Ei(T-n)<Cs J E1(t)dt + g j J ILY2e5% dx dt. (A.4)
00
Finally, thanks to (A.4) and (A.3), we obtain

T T-n

J Ei(t)ydt<C J E{(t)dt +
-n

wlo

T
I J 29| LY[2 dx dt.
T 0Q

That is
T-n

M, < C J IIledxdt+
n Q

C
S

o

I e*?|LY|? dx dt.
Q

Next, we will estimate M,. We will need the following auxiliary lemma (we refer to [3, 10, 26] for
the proof):
LemmaA.1. Let ¢ € C>(Q)suchthat1 > |Vg| > § > 0. There exist so > 0 and C > 0 such that, for all s > so and
allZ € H(Q),

s? j e??|Z1?dx < C j e??|\vz|? dx.

Q Q

We have
E
% s j 301Z12e2? dx + j 1Z10:26%9 dx
Q Q
=s J 0¢p|Z)?e*5? dx + J(PZ +AZ)Ze**? dx.

Q Q

Then
dE,

il J 0:p|Z)?e*S? dx - j ZNZe*S? dx = j ZPZe?s? dx.
Q Q Q

An integration by parts leads to

% -s J 0¢@|Z|?e?? dx + J IVZ|2e?5? dx + 2s J e?*YZVZ -V dx = JZPZeZS‘/’ dx.
Q Q Q Q
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On the other hand, we have

2s | e*%2ZvZ -Vopdx=s I e’*?VV|Z|> dx = -s J e?%(2s|Ve|? + Ag)|Z|? dx.

Q Q

O

Thus

E
% ~¢s? j IVoI?1Z1%e2% dx + j IVZP2e?5% dx < Cs j(|at<p| +1A@DIZI?e? dx + j ZPZe> dx.
Q Q

Q Q

Applying Lemma A.1 to the last inequality, we obtain

dE;

FTa Cs? J [Vop|?e?$?|Z|? dx + Cs? J |Z|2e%%¢ dx < jZPZeZS“’ dx + Cs J |Z|2e5 dx.

Q Q Q Q

For s large enough, the last term of the right hand side is absorbed by the last term of the left hand side, so

we have
dE,

T Cs? I IVp|>e5?|Z|% dx + Cs? J |Z)?e*5? dx < jZPZeZS"’ dx.

Q Q Q

This leads, for s large, to the following inequality:

% +Cs? J(1 - [Vp|?))e*?|Z|* dx < JZPZeZS‘/’ dx.

Q Q
According to the assumption of Lemma 5.2 we obtain

% +Cs j e??|Z)% dx < JZPZeZS‘/’ dx.
Q Q

In the same way as for E;, we obtain

T-n
My <C J J|Z|2e23¢ dx dt +
n Q

wlo

T
J J |PZ|>e?5? dx dt. O
0Q
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