Linear and nonlinear response of the Vlasov system with nonintegrable Hamiltonian
Shun Ogawa

To cite this version:

HAL Id: hal-01662966
https://hal.science/hal-01662966
Submitted on 18 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Linear and nonlinear response of Vlasov system with non-integrable Hamiltonian

Shun Ogawa1, *

1Aix Marseille Univ., Université de Toulon, CNRS, CPT, Marseille, France

Linear and nonlinear response formulae taking into account all Casimir invariants are derived without use of angle-action variables of a single particle (mean-field) Hamiltonian. This article deals mainly with the Vlasov system in a spatially inhomogeneous quasi-stationary state whose associating single particle Hamiltonian is not integrable and has only one integral of the motion, the Hamiltonian itself. The basic strategy is to restrict the form of perturbation so that it keeps Casimir invariants within a linear order, and the single particle’s probabilistic density function is smooth with respect to the single particle’s Hamiltonian. The theory is applied for a spatially two dimensional system and is confirmed by numerical simulations. A nonlinear response formula is also derived in the similar manner.

I. INTRODUCTION

Long range interaction systems show several phenomena which are out of scope of the equilibrium statistical mechanics [1, 2]. One of them is that such a system is often trapped in out-of-equilibrium quasi-stationary states (QSSs) whose duration gets to be longer as the number N of elements in a system and diverges when the population limit $N \rightarrow \infty$ is taken [1–5]. Then, if the system of interest is huge enough, the relaxation time is so long that one cannot see the thermal equilibrium state. It is hence interesting to investigate the non-equilibrium statistical mechanics or thermodynamics of QSSs. In particular, the topic of this article is effect of external forces in the QSSs.

When N is huge enough, temporal evolution of the long-range interaction system is well described by the Vlasov equation [6–8] (also called the collisionless Boltzmann equation [3]) which describes evolution of a density function defined on a μ-space, a single particle phase space. The QSSs are interpreted as stable stationary solutions to the Vlasov equation [4]. The Vlasov equation has unique solutions for each given initial state [7, 8], and thus the QSSs depend not only on macroscopic variables such as temperature and energy but also on mesoscopic things, details of the single particle density function. Thus the study on responses to external forces in QSSs should be based on the Vlasov equation.

The linear response theory for the Vlasov systems has been developed for stability analysis in self-gravitating systems [3], for looking into plasmas responses in magnetically confined plasmas [9], for computing time-asymptotic response to the external forces of long-range interaction systems in both spatially homogeneous [10] and inhomogeneous [11] QSSs and of a fluid systems [12]. By use of this theory, critical phenomena in QSSs [13] are investigated, and some informations of unforced systems are extracted by observing responses to oscillating external forces [11]. Further, the nonlinear response theory has been developed to investigate the response to the finite size external forces in QSSs near or on the critical point in which the linear response theory does not work [14, 15]. These response formulae have been derived only when the single particle effective Hamiltonian is integrable and the angle-action variables are used for solving test particle dynamics.

Analyzing the linearized equation with the non-integrable effective Hamiltonian is practically important, because systems in multi-dimensional spaces are more realistic (for example, self-gravitating systems in the three dimensional (3D) space, magnetically confined hot plasmas) and their effective Hamiltonians are non-integrable in general. To tackle this problem, one method to take into account constraints $a posteriori$ is proposed to obtain linear response formulae approximately [16]. This method provides canonical (taking into account the normalization) and micro-canonical (taking into account the normalization and the energy conservation) linear responses and other kinds of linear responses with a finite number of constraints systematically. However one cannot obtain isolated one with this method because it is practically impossible to take into account infinitely many Casimirs constraints with this method. The same problem lies in the stability analysis of the Vlasov equation [17]. If the effective Hamiltonian is not integrable, it was impossible to obtain the precise stability criterion with a finite time step procedure in general, since one should obtain an infinite number of Lagrangian multipliers associated with the Casimir’s constraints [18].

The above problems in the linearized equation should be solved as the first step to understand the dynamics around the QSSs with non-integrable effective Hamiltonian. After that, we will be able to continue tackling more difficult problems on nonlinear Landau damping, nonlinear stability, nonlinear response, critical phenomena and their universality, and finite N effects.

In this article, we firstly obtain the linear response of the Vlasov system in the multi-dimensional space without solving the linearized Vlasov equation and without using the angle-action variables. Let an initial state without external field be $f_0(q, p)$ and a final state $f_h(q, p)$ after exerting external field h. The linear response is obtained by restricting the form of accessible perturbation by assuming smoothness of f_h with respect to h, and by taking into account the
constraint conditions that the perturbation should be on a tangent “plane” of a constraint surface at f_0.

Further, we shall mention the nonlinear response formula [14] derived via the transient (T-) linearization method developed by Lecellotti and Dorning [19–21] to analyze the plasmas oscillation and nonlinear Landau damping. In this theory, the Vlasov equation is linearized around an “unknown” asymptotic stationary state. Solving this equation, we obtain a self-consistent equation determining the asymptotic state. The asymptotic solution is obtained by redistributing the initial density function along iso-asymptotic effective Hamiltonian sets, and this formula is called rearrangement formula [22]. The same formula is also derived for predicting the QSSs in a 1D system [23] and a 3D self-gravitating system [24] via another consideration when non-stationary initial states satisfy a (generalized) virial condition and there is no parametric resonance. It is derived the rearrangement formula keeps Casimir invariants at the order of T-linearization. Then, the nonlinear response formula is derived in a similar manner to derive the linear response formula in this article.

This article is organized as follows: The model and dynamics in a mean-field limit $N \to \infty$ are firstly introduced in Sec. II, and the explicit form of constraint condition coming from Casimir invariants is derived in Sec. III. Based on this constraint condition, the linear response formula is derived in Sec. IV and several examples are exhibited in Sec. V. We derive the nonlinear response formula and make a brief comment on problems in the T-linearized Vlasov equation for spatially multi-dimensional systems in Sec. VI, and summarize this article in Sec. VII.

II. MODEL AND ITS DYNAMICS

A. Model and Vlasov equation

Let us consider a system with long-range interaction whose Hamiltonian is

$$H_N = \frac{1}{2} \sum_{i=1}^{N} \|p_i\|^2 + \frac{1}{2N} \sum_{i,j=1}^{N} V(q_i - q_j) + h(t) \sum_{i=1}^{N} \Phi(q_i),$$

(1)

where q_i denotes configuration of the i-th particle, p_i its conjugate momentum, V the inter-particles (-cites) potential, and $h(t)\Phi(q_i)$ interaction between the external field h and the i-th particle. Taking the mean-field limit $N \to \infty$ [6–8], the temporal evolution of this system can be described in terms of the single-particle density function $f(q,p,t)$ which is a solution to the Vlasov equation,

$$\frac{\partial f}{\partial t} + \{\mathcal{H}(f), f\} = 0,$$

(2)

where $\mathcal{H}(f)$ is an effective single-particle Hamiltonian,

$$\mathcal{H}(f) = \|p\|^2/2 + \mathcal{V}(f)(q) + h(t)\Phi(q),$$

(3)

and (a,b) is the Poisson bracket given by

$$\{a,b\} = \frac{\partial a}{\partial p} \cdot \frac{\partial b}{\partial q} - \frac{\partial a}{\partial q} \cdot \frac{\partial b}{\partial p}.$$

(4)

The system is initially in a QSS, f_0, and the effective Hamiltonian

$$\mathcal{H}_0(q,p) = \mathcal{H}[f_0](q,p) = \|p\|^2/2 + \mathcal{V}[f_0](q)$$

(5)

has only one integral of motion, \mathcal{H}_0 itself. The f_0 is expressed as $f_0(q,p) = F_0(\mathcal{H}_0(q,p))$ by use of a monotonically decreasing function F_0. This assumption is reasonable when we are interested in the asymptotic behavior of perturbations around the formally stable solutions to the Vlasov equation [4, 5, 17, 25]. The formal stability is defined in terms of positive or negative definiteness of second variation of an invariant functional around f_0 which is a solution to the optimization problem:

$$\text{maximizing } \mathcal{J}(f) = \int \int s(t)dqdp,$$

subject to

$$1 = \mathcal{N}(f) = \int \int fpdqd\theta,$$

$$E = \mathcal{E}(f) = \int \int \|p\|^2/2 + \mathcal{V}(f) + h \int \mathcal{D}(f)dqdp,$$

(6)

where s is a convex function. A formally stable solution is linearly stable [25]. By solving the optimization problem, we have a solution,

$$f_0(q,p) = (s')^{-1}(\beta \mathcal{H}_0 + \alpha) \equiv F_0(\mathcal{H}_0),$$

(7)

where s' denotes $ds(x)/dx$, and α and β are Lagrangian multipliers with respect to the normalization and the energy conservation. Since s is convex, then the inverse of its first derivative $(s')^{-1}$ is a strictly decreasing function. The parameter β must be positive.

B. Linear response

The external field $h(t)$ is turned on and it converges to a constant $h(t) \to h$ as $t \to \infty$. In the previous studies [10–12] the asymptotic linear response δf is obtained by solving the linearized Vlasov equation around f_0,

$$\frac{\partial \delta g_0}{\partial t} + [\mathcal{H}_0, \delta g_0] + [\mathcal{V}[g_0] + h(t)\Phi, \delta f = 0,$$

(8)

where $g_0(t) \sim O(h)$ is a perturbation around f_0, and by taking the limit, $\delta f = \lim_{t \to \infty} \delta g_0(t)$. The angle-action variables of the Hamiltonian \mathcal{H}_0 is necessary to solve the linearized Vlasov equation, but it is impossible in general for multi-dimensional systems. To avoid this problem, we focus on constraint conditions restricting a form of perturbations, and we obtain the linear response δf without solving the linearized Vlasov equation.
\[\mathcal{C}[f] = \int c(f(q,p), t) \, dq \, dp, \]

(8)

for any smooth function \(c \). The linearized Casimir conservation condition is expressed as that the accessible perturbation \(\delta f \) satisfies

\[\iiint c'(f_0(q,p)) \delta f(q,p) \, dq \, dp = 0, \]

(9)

\[\begin{align*}
\int R(\mathcal{H}_0(q,p)) (\delta f) \mathcal{H}_0(q,p) \, dq \, dp &= \int R(\mathcal{H}_0(q,p)) \frac{\int \delta f(q',p') \delta (\mathcal{H}_0(q,p) - \mathcal{H}_0(q',p')) \, dq' \, dp'}{S(\mathcal{H}_0(q,p))} \\
&= \int R(\mathcal{H}_0(q,p)) \frac{\int \delta f(q',p') \delta (\mathcal{H}_0(q,p) - \mathcal{H}_0(q',p')) \, dq' \, dp'}{S(\mathcal{H}_0(q,p))} \\
&= \int \delta f(q',p') \frac{R(\mathcal{H}_0(q',p'))}{S(\mathcal{H}_0(q',p'))} \, dq' \, dp' \\
&= \int R(\mathcal{H}_0(q,p)) \delta f(q,p) \, dq \, dp,
\end{align*} \]

(11)

where \(S \) denotes a volume of iso-\(\mathcal{H}_0 \) set,

\[S(E) = \int \delta (E - \mathcal{H}_0(q',p')) \, dq' \, dp'. \]

(12)

More generally it is possible to show as in the 1D case [14] that

\[\langle a(\mathcal{H}_0 q, p) b(\mathcal{H}_0 q, p) \rangle_{\mathcal{H}_0} = \int a(q,p) \langle b(\mathcal{H}_0 q, p) \rangle_{\mathcal{H}_0} \, dq \, dp, \]

(13)

for the functions \(a \) and \(b \) when \(\langle a \rangle_{\mathcal{H}_0} \) and \(\langle b \rangle_{\mathcal{H}_0} \) are integrable. Thus it has been shown that the condition (10) is equivalent to

\[\langle \delta f \rangle_{\mathcal{H}_0} = 0, \quad \text{for almost every } (q,p). \]

(14)

\section{Linear Response Formula}

\subsection{Implicit form of linear response}

After that the external field is exerted and the limit \(t \to \infty \) is taken, the effective Hamiltonian becomes

\[\mathcal{H}_f(q,p) = \mathcal{H}_0(q,p) + \delta \mathcal{V}(q) + h \Phi(q) + O(h^2), \]

(15)

where \(c'(x) = dc/dx \) for any smooth function \(c \). Since \(f_0(q,p) = F_0(\mathcal{H}_0(q,p)) \), \(F_0 \) is a monotonically decreasing function, and \(c \) is chosen arbitrarily, the constraint condition (9) is equivalent to the condition

\[0 = \int R(\mathcal{H}_0(q,p)) \delta f(q,p) \, dq \, dp = \int R(\mathcal{H}_0(q,p)) (\delta f) \mathcal{H}_0(q,p) \, dq \, dp, \]

(10)

for any function \(R \) [17]. The second equality is shown as follows:

where the linear response \(\delta \mathcal{V} = \mathcal{V}[\delta f] \). Let the initial and final states be respectively as:

\[f_0(q,p) = F_0(\mathcal{H}_0(q,p)) = \frac{G_0(\mathcal{H}_0(q,p))}{\langle G_0 \rangle_{\mu}}, \]

\[f_h(q,p) = F_h(\mathcal{H}_h(q,p)) = \frac{G_h(\mathcal{H}_h(q,p))}{\langle G_h \rangle_{\mu}}, \]

(16)

where \(\langle a \rangle_{\mu} = \int adqdp \) and

\[G_h(\mathcal{H}_h) = G_0(\mathcal{H}_0) + h G_1(\mathcal{H}_0) + O(h^2), \]

\[= G_0(\mathcal{H}_0) + h G_1(\mathcal{H}_0) + h G_1(\mathcal{H}_0) + O(h^2). \]

(17)

Expanding \(f_h \) around \(f_0 \), we have

\[f_h = f_0 + \frac{G'_0(\mathcal{H}_0)(\delta \mathcal{V} + h \Phi) + G_1(\mathcal{H}_0)}{(G_0(\mathcal{H}_0))_{\mu}} \]

\[+ \frac{\langle G'_0(\mathcal{H}_0)(\delta \mathcal{V} + h \Phi) + G_1(\mathcal{H}_0) \rangle_{\mu} G_0(\mathcal{H}_0)}{(G_0(\mathcal{H}_0))_{\mu}} + O(h^2). \]

(18)
We then obtain the linear response,
\[\delta f = F_0(\mathcal{H}_0)(\delta V + h\Phi) + \frac{G_1(\mathcal{H}_0)}{(G_0(\mathcal{H}_0))_\mu} F_0(\mathcal{H}_0) - \frac{\langle G_1(\mathcal{H}_0) \rangle_\mu F_0(\mathcal{H}_0)}{(G_0(\mathcal{H}_0))_\mu} \]
(19)
by taking the linear order. The function \(G_1\) is determined so that \(\langle \delta f \rangle_{\mathcal{H}_0} = 0\), that is,
\[\frac{G_1}{(G_0)_\mu} = \frac{\langle G_1 \rangle_\mu}{(G_0)_\mu} F_0(\mathcal{H}_0) - \frac{\langle G_1(\mathcal{H}_0) \rangle_\mu F_0(\mathcal{H}_0)}{(G_0(\mathcal{H}_0))_\mu} + F_0(\mathcal{H}_0) \left(\frac{\langle G_1(\mathcal{H}_0) \rangle_\mu}{(G_0(\mathcal{H}_0))_\mu} \right),\]
(20)
where \(F'_0(\mathcal{H}_0) = G'_0(\mathcal{H}_0)/\langle G_0(\mathcal{H}_0) \rangle_\mu\). The response is therefore implicitly given by
\[\delta f = F_0(\mathcal{H}_0) \left(\langle \delta V \rangle_{\mathcal{H}_0} - \langle \delta V(q) \rangle_{\mathcal{H}_0} \right) + h F'_0(\mathcal{H}_0) \left(\langle \Phi(q) \rangle_{\mathcal{H}_0} - \langle \Phi(q) \rangle_{\mathcal{H}_0} \right).\]
(21)
Solving the implicit linear response formula (21) by using bi-orthogonal basis, we obtain explicitly the linear response taking into account the constraint conditions.

We make a comment on the case that there exist two integrals and \(f_0\) depends on both of them. Let \(\mathcal{L} = \int L(q,p) \right d\mathbf{q} d\mathbf{p}\) be an additional integral (the angular momentum density for example). We consider the optimization problem (6) and we add the additional constraint \(\mathcal{L} = \text{Const.}\) to Eq. (6). A solution \(f_0\) depends on \(\mathcal{H}_0\) and \(L\) as \(f_0 = F_0(\beta,\mathcal{H}_0 + vL)\) where \(\beta\) and \(v\) are Lagrangian multipliers. Thus the accessible perturbation satisfies
\[\langle \delta f(q,p) \rangle_{\mathcal{H}_0,\mathcal{L}} = 0,\]
(22)
where the bracket \(\langle \cdot \rangle_{\mathcal{H}_0,\mathcal{L}}\) means the average taken over iso-\((\beta,\mathcal{H}_0 + vL)\) set. It should be noted that a form of constrained perturbation depends on how \(f_0\) depends on \(\mathcal{H}_0\) and \(L\). We should find ways to restrict the form of perturbations for each stationary state.

If \(\mathcal{H}_0\) has three independent integrals of motion, we can use angle-action variables and can solve the linearized Vlasov equation.

B. Explicit form of linear response

We introduce the bi-orthogonal basis \([d_i(q)]_{i\in\mathbb{I}}\) and \([u_i(q)]_{i\in\mathbb{I}'}\), where the sets \(\mathbb{I}'\) and \(\mathbb{I}\) satisfy \(\mathbb{I}' \subset \mathbb{I} \subset \mathbb{Z}\). A perturbation of spatial density is spanned by the base \([d_i]\),
\[\delta \rho(q) = \int \delta f(q,p) d\mathbf{p} = \sum_{i\in\mathbb{I}} a_i(t) d_i(q).\]
(23)
The base \([u_i]_{i}\) is introduced as
\[u_i(q) = \left(V * d_i(q) \right) = \int V(q - q') d_i(q') d\mathbf{q}'.\]
(24)
and the orthogonal relation
\[\int d_i(q) \bar{u}_j(q) d\mathbf{q} = \lambda_j \delta_{ij}\]
holds, where \(\lambda_j \neq 0\) when \(i \in \mathbb{I}'\) and it vanishes otherwise, and \(\delta_{ij}\) is the Kronecker delta. The upper bar denotes complex conjugate. Integrating the terms including \(\delta f\) or \(\delta V\) in Eq. (21) with respect to \(p\), we have
\[\int \delta f d\mathbf{p} - \int F'_0(\mathcal{H}_0) \left(\delta V(q) - \langle \delta V(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p} = \sum_{i\in\mathbb{I}'} a_i \left[d_i - \int F'_0(\mathcal{H}_0) \left(u_i(q) - \langle u_i(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p} \right].\]
(26)
Multiplying \(\bar{u}_j\) to both sides and integrating them with respect to \(q\), we have,
\[\sum_{i\in\mathbb{I}'} \lambda_j \bar{u}_i \sum_{i\in\mathbb{I}'} a_i \left[\delta_{ij} - \int F'_0(\mathcal{H}_0) \left(u_i(q) - \langle u_i(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p} d\mathbf{q} \right] = \sum_{i\in\mathbb{I}'} \lambda_j \delta_{ij} - \int F'_0(\mathcal{H}_0) \left(\bar{u}_i u_i - \langle \bar{u}_i u_i \rangle_{\mathcal{H}_0} \langle u_i(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p} d\mathbf{q} a_i.\]
(27)
Let \(\mathbf{F} = [F_{ji}]_{(i,j)\in\mathbb{I}'x\mathbb{I}'}\) be a matrix whose elements are given by
\[F_{ji} = \int F'_0(\mathcal{H}_0) \left(\bar{u}_i u_i - \langle \bar{u}_i u_i \rangle_{\mathcal{H}_0} \langle u_i(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p} d\mathbf{q}.\]
(28)
We further assume that the term coupling with external force can be expanded as
\[\Phi(q) = \sum_{i\in\mathbb{I}'} b_i u_i(q).\]
(29)
We then have
\[h \int F'_0(\mathcal{H}_0) \left(\Phi(q) - \langle \Phi(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p} = h \sum_{i\in\mathbb{I}'} b_i \int F'_0(\mathcal{H}_0) \left(u_i(q) - \langle u_i(q) \rangle_{\mathcal{H}_0} \right) d\mathbf{p},\]
(30)
by integrating the term coming from external force in Eq. (21) with respect to \(p\). Multiplying \(\bar{u}_j\) to it and integrating with respect to \(q\), we have, (as we have already done)
\[h \sum_{i\in\mathbb{I}'} b_i F_{ji} b_i.\]
(31)
Combining Eqs. (27) and (31), we get the linear equation determining \([a_i]_{i\in\mathbb{I}'\prime}\),
\[\sum_{j\in\mathbb{I}'} (\lambda_j \delta_{ij} - F_{ij}) a_j = h \sum_{j\in\mathbb{I}'} F_{ij} b_j.\]
(32)
Introducing symbols \(\mathbf{x} = (x_i)_{i\in\mathbb{I}'}\) for \(x = a, b\) and \(\Lambda = \text{diag}(\lambda_i)_{i\in\mathbb{I}'}\), we can simplify the equation as follows:
\[(1 - \Lambda^{-1} \mathbf{F}) \mathbf{a} = h \Lambda^{-1} \mathbf{Fb},\]
(33)
and it is solved as

$$a = h(1 - F)^{-1}Fb = hD^{-1}(1 - D)b,$$ \hspace{1cm} (34)

where 1 denotes the unit matrix and $D = 1 - \Lambda^{-1}F$. The maximal-eigenvalue of D is zero when f_0 might be marginally stable, and corresponds to the critical point. When we apply Eq. (34) to 1D systems, This explicit response formula formally coincides with what is derived in Ref. [11].

V. EXAMPLES: HAMILTONIAN MEAN-FIELD MODELS

A. One dimensional case

Let us examine the proposed theory by use of the Hamiltonian mean-field (HMF) model whose Hamiltonian is

$$H = \sum_{i=1}^{N} p_i^2 - \frac{1}{2N} \sum_{i\neq j} \cos(q_i - q_j) - h \sum_{i=1}^{N} \cos q_i.$$ \hspace{1cm} (35)

where h is an external field, $p_i \in \mathbb{R}$, $q_i \in [-\pi, \pi]$ for $i = 1,2,\cdots,N$. In the equilibrium state, this model shows second order phase transition at the temperature $T = 0.5$, where the Boltzmann’s constant $k_B = 1$. By use of the linear and nonlinear response formulae, the critical phenomena in the equilibrium state and QSSs for the isolated HMF model are investigated and it is shown that the Casimir ena in the equilibrium state and QSSs for the isolated HMF model are investigated and it is shown that the Casimir phenomenon might be

$\mathcal{H} = \frac{p^2}{2} - \int \cos(q - q')f(q',p',t)dq'dp' - h\cos q.$ \hspace{1cm} (36)

Applying Eq. (21) for the HMF model, we can derive the linear response formula

$$\delta f = (-\delta M - h)F_0(\mathcal{H}_0)\cos\{\mathcal{H} - \langle \cos q \rangle_{\mathcal{H}_0}\},$$ \hspace{1cm} (37)

where $\delta M = \int \cos \delta f dq dp$. Multiplying $\cos q$ to both sides and integrating over the μ-space, we obtain the linear response as

$$\delta M = \frac{1-D}{D}h,$$ \hspace{1cm} (38)

where

$$D = 1 + \int F'(\mathcal{H}_0)\{\cos^2 q - \langle \cos q \rangle_{\mathcal{H}_0}^2\}dq dp.$$ \hspace{1cm} (39)

This is equivalent to the linear response formula obtained in Ref. [13].

For more general 1D systems it is obvious that Eq. (21) is equivalent to the linear order of the nonlinear response formula derived in Ref. [15].

B. Two dimensional case

We next examine our theory in the 2D system whose Hamiltonian is

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2} - \sum_{i=1}^{N} \cos x_i - \sum_{i=1}^{N} \cos y_i - \frac{1}{2N} \sum_{i\neq j} \left[\cos(x_i - x_j) + \cos(y_i - y_j) \right] + \cos(x_j - x_i) \cos(y_j - y_i),$$ \hspace{1cm} (40)

where $q_i = (x_i, y_i) \in [-\pi, \pi]^2$ for $i = 1,2,\cdots,N$ [28, 29]. Let us assume the initial QSS f_0 with $h_x = h_y = 0$ is even with respect to both x and y. Then, the effective Hamiltonian is

$$\mathcal{H}_0 = \frac{p_x^2 + p_y^2}{2} + \mathcal{V}(x,y),$$ \hspace{1cm} (41)

$$\mathcal{V}(x,y) = -M_x \cos x - M_y \cos y - P_{cc} \cos x \cos y,$$

where

$$M_x = \int \cos x \rho(q) dq, \quad M_y = \int \cos y \rho(q) dq,$$

$$P_{cc} = \int \cos x \cos y \rho(q) dq,$$

and where $\rho(q) = \int f(q,p)dp$. The effective potential is shown in Fig. 1.

To compute the linear response of the macroscopic observables M_x, M_y, and P_{cc} to the external field $h_x = h_y = h$, it is necessary to compute $\langle \cos x \rangle_{\mathcal{H}_0}$, $\langle \cos y \rangle_{\mathcal{H}_0}$, and $\langle \cos x \cos y \rangle_{\mathcal{H}_0}$. We here set $M_x = M_y = M$ and $P_{cc} = P$.

For any smooth function g depending only on q, $\langle g \rangle_{\mathcal{H}}$ is expressed as follows (see derivation for Appendix B.)

$$\langle g \rangle_{\mathcal{H}} = \int d^2p \int_{[-\pi,\pi]^2} g(q)\delta(\mathcal{H}(q,p) - E) dq$$

$$= 2\pi \int_{[-\pi,\pi]^2} g(q)\Theta(E - \mathcal{V}(x,y)) d\mathcal{H}(q,p).$$ \hspace{1cm} (43)
Since \mathcal{H}_0 is even with respect to both x and y, we have

$$\langle \sin x, \mathcal{H}_0 \rangle = \langle \sin y, \mathcal{H}_0 \rangle = \langle \sin x \cos y, \mathcal{H}_0 \rangle = 0.$$ \hspace{1cm} (44)

When $\mathcal{H}_0 > 2M - P = \max V(x, y)$, we have

$$\langle \cos x, \mathcal{H}_0 \rangle = \langle \cos y, \mathcal{H}_0 \rangle = \langle \cos x \cos y, \mathcal{H}_0 \rangle = 0.$$ \hspace{1cm} (45)

Then we have to compute $\langle \cos x, \mathcal{H}_0 \rangle$, $\langle \cos y, \mathcal{H}_0 \rangle$, and $\langle \cos x \cos y, \mathcal{H}_0 \rangle$ when $\mathcal{H}_0 < 2M - P$, and these are exhibited in Appendix C. We next derive an explicit form of linear responses,

$$\begin{align*}
\delta M_x &= \iint \cos x \delta f \, d\mathbf{q} \, d\mathbf{p}, \\
\delta M_y &= \iint \cos y \delta f \, d\mathbf{q} \, d\mathbf{p}, \\
\delta P_{cc} &= \iint \cos x \cos y \delta f \, d\mathbf{q} \, d\mathbf{p}.
\end{align*}$$ \hspace{1cm} (46)

The following notations are introduced for simplicity,

$$\begin{align*}
G_1 &= -\iint F_0(\mathcal{H}_0) \left[\cos^2 x - \langle \cos x \rangle^2 \right] \, d\mathbf{q} \, d\mathbf{p} = -\iint F_0(\mathcal{H}_0) \left[\cos^2 y - \langle \cos y \rangle^2 \right] \, d\mathbf{q} \, d\mathbf{p}, \\
G_2 &= -\iint F_0(\mathcal{H}_0) \left[\cos x \cos y - \langle \cos x \rangle \langle \cos y \rangle \right] \, d\mathbf{q} \, d\mathbf{p} = -\iint F_0(\mathcal{H}_0) \left[\cos x \cos y - \langle \cos x \rangle \langle \cos y \rangle \right] \, d\mathbf{q} \, d\mathbf{p}, \\
G_3 &= -\iint F_0(\mathcal{H}_0) \left[\cos^2 x \cos y - \langle \cos x \rangle \langle \cos x \rangle \right] \, d\mathbf{q} \, d\mathbf{p} = -\iint F_0(\mathcal{H}_0) \left[\cos^2 x \cos y - \langle \cos x \rangle \langle \cos x \rangle \right] \, d\mathbf{q} \, d\mathbf{p}, \\
G_4 &= -\iint F_0(\mathcal{H}_0) \left[\cos^2 x \cos^2 y - \langle \cos x \rangle \langle \cos x \rangle \right] \, d\mathbf{q} \, d\mathbf{p}.
\end{align*}$$ \hspace{1cm} (47)

By use of them and Eq. (21), we have

$$\begin{pmatrix}
1 - G_1 & -G_2 & -G_3 \\
-G_2 & 1 - G_1 & -G_3 \\
-G_3 & -G_3 & 1 - G_4
\end{pmatrix}
\begin{pmatrix}
\delta M_x \\
\delta M_y \\
\delta P_{cc}
\end{pmatrix}
= \begin{pmatrix}
h_x G_1 + h_y G_2 \\
h_x G_3 + h_y G_1 \\
h_x h_y G_3
\end{pmatrix}$$ \hspace{1cm} (48)

We therefore obtain the explicit linear response formula as follows:

$$\begin{align*}
\delta M_x &= \chi_1 h_x + \chi_2 h_y, \\
\delta M_y &= \chi_2 h_x + \chi_1 h_y, \\
\delta P_{cc} &= \chi_3 (h_x + h_y),
\end{align*}$$ \hspace{1cm} (49)

where explicit expressions of χ_1, χ_2, and χ_3 are

$$\chi_1 = \frac{1}{\text{det} \mathbf{G}} \left[(G_1 - G_1^2 - G_1 G_4 + G_2^2 + G_3^2) + G_2^2 G_4 - 2G_1 G_2 + 2G_2 G_3^2 - 2G_2 G_4 \right],$$ \hspace{1cm} (50)

$$\chi_2 = \frac{1}{\text{det} \mathbf{G}} \left[(G_2 + G_2 G_4 - G_2 G_4) \right],$$ \hspace{1cm} (51)

$$\chi_3 = \frac{1}{\text{det} \mathbf{G}} \frac{G_3 (1 - G_1 + G_2)}{1 - G_1 - G_2 - G_4 + G_1 G_4 + G_2 G_4 - 2G_2^2},$$ \hspace{1cm} (52)

respectively, where the determinant of \mathbf{G}, the matrix in the left hand side of Eq. (48), is

$$\text{det} \mathbf{G} = (1 - G_1 + G_2) \times (1 - G_1 - G_2 - G_4 + G_1 G_4 + G_2 G_4 - 2G_2^2).$$ \hspace{1cm} (53)

A way to compute terms including $\langle \cos x, \mathcal{H}_0 \rangle$, $\langle \cos y, \mathcal{H}_0 \rangle$, and $\langle \cos x \cos y, \mathcal{H}_0 \rangle$ is exhibited in Appendix D.

When $F_0(\mathcal{H}_0)$ is spatially homogeneous, that is, $M = P = 0$, we have $G_2 = G_3 = 0$ and G_1 and $G_4 (1 - G_1 < 1 - G_4$ when $M = P = 0$) do not vanish. Thus the susceptibilities are

$$\chi_1 = \frac{G_1}{1 - G_1}, \quad \chi_2 = \chi_3 = 0$$ \hspace{1cm} (54)

in the disordered phase.

We numerically confirm the linear response formula. The initial state is the Maxwell-Boltzmann type:

$$f_{\text{MB}}(\mathbf{q}, \mathbf{p}) = \frac{\exp(-\mathcal{H}_0/T)}{(\exp(-\mathcal{H}_0/T))^P}.$$ \hspace{1cm} (55)

This system shows the first order phase transition [28] and there is no (meta-)stable homogeneous state with $T < 0.5$. The initial values of order parameters for $T = 0.3$ and 0.4 are exhibited in Table I. The external field $h_x = h_y = h$ is exerted. Theoretically obtained susceptibilities are exhibited in Table I when the temperature $T = 0.3$ and 0.4, so that the initial equilibria are spatially inhomogeneous. We integrate an equation of motion derived from the Hamiltonian (40) by using a fourth order symplectic integrator (30), and compute the order parameters of N body systems, given respec-

| T | M | $\frac{d\delta M_x}{dh}|_{h=0}$ | $\frac{d\delta P_{cc}}{dh}|_{h=0}$ |
|-----|-----|-------------------------------|-------------------------------|
| 0.3 | 0.90223 | 0.81556 | 0.034428 | 0.059089 |
| 0.4 | 0.84269 | 0.71910 | 0.071298 | 0.099709 |
results confirm the theory.

For the 2D HMF model there is error between \(\bar{\mu}(0)\) and \(\bar{\mu}(0)\) which is a solution to the self-consistent equation. We assume that the asymptotic effective Hamiltonian

\[
\mathcal{H}_A = \| \mathbf{p} \|^2 / 2 + V_A + h \Phi, \quad V_A = V(f_A),
\]

have only one integral of a single particle motion and \(f_A\) depends only on \(\mathcal{H}_A\). Further \(f_A = F_A(\mathcal{H}_A)\) is assumed to be monotonically decreasing with respect to \(\mathcal{H}_A\). Under
FIG. 3. (Color online) δM_x, δM_y, and δP_{xy} as functions of h. The lines are the linear responses obtained theoretically and the crosses are responses obtained numerically. We set temperature of the initial states as $T = 0.3$ (Left column, panels (a, c, e)) and $T = 0.4$ (Right column, panels (b, d, f)), and a number of particles $N = 4 \times 10^6$ and the time step $\delta t = 0.05$.

these assumptions, expanding Eq. (8) around f_0 as done in Sec. III, the constraint condition coming from Casimir invariants within an order of T-linearization can be expressed as

$$\int \int R \left[\mathcal{H}_A(q,p) \right] \left(f_0(q,p) - f_A(q,p) \right) dqdp = 0,$$ \hspace{1cm} (62)

for any smooth function R on \mathbb{R}. By use of Eq. (13), it is shown that Eq. (62) holds true if and only if

$$f_A = \langle f_0 \rangle_{\mathcal{H}_A}.$$ \hspace{1cm} (63)
for almost every \((q, p)\) in the \(\mu\)-space. Deriving a self-consistent equation

\[
\mathcal{V}_A(q) = \iint V(q - q')f_0(q', p')dqd'p'
\]

from Eq. (63) and solving it, one can obtain \(\mathcal{H}_A\) and the non-linear response \(\delta f = f_A - f_0\).

Is it possible to derive Eq. (63) for the multi-dimensional systems as done in Refs. [14, 15]? There is some difficulty to derive the same formula from the T-linearization method for the multi-dimensional systems. To see this, let us exhibit a sketch of this T-linearization method (see Refs. [14, 20–22] for details.) We firstly divide \(f(q, p, t)\) in two ways: One is the naive perturbation decomposition,

\[
f = f_0 + g_0,
\]

where \(g_0\) is the perturbation around \(f_0\), and the other one is the asymptotic-transient (AT) decomposition

\[
f = f_A + g_T,
\]

where \(g_T\) is the T-term satisfying \(\lim_{t \to \infty} g_T = 0\). According to the AT decomposition, the potential is also decomposed as

\[
\mathcal{V}(f) + h(t)\mathcal{V} = \mathcal{V}_A + \mathcal{V}_T + h\Phi,
\]

\[
\mathcal{V}_T = \mathcal{V}(g_T) + (h(t) - h)\Phi.
\]

Substituting Eqs. (65) and (67) into the Vlasov equation, and omitting the nonlinear term coupling with the T-field \(V_T\), we have the T-linearized Vlasov equation

\[
\frac{\partial f}{\partial t} + \{\mathcal{H}_A, f\} + \{\mathcal{V}_T, f_0\} = 0.
\]

It should be noted that the nonlinearity still remains in the term \(\{\mathcal{H}_A, f\}\). A solution \(f_{TL}\) to the T-linearized equation is implicitly given by

\[
f_{TL}(q, p, t) = f_{ON}(q, p, t) + f_{LA}(q, p, t),
\]

\[
f_{ON}(q, p, t) = e^{-i(\mathcal{H}_A)t}f_0(q, p),
\]

\[
f_{LA}(q, p, t) = -i \int_0^t e^{-(s-t)\mathcal{H}_A} \left[F_T \cdot \frac{\partial f_0}{\partial p}\right] ds,
\]

where we introduce the operator \(\{\mathcal{H}_A, \cdot\} = \mathcal{H}_A a\) for any function \(a(q, p)\), and \(F_T = -\partial \mathcal{V}_T / \partial q\). The terms \(f_{ON}\) and \(f_{LA}\) are called O’Neil term and Landau term respectively [20, 21].

When the asymptotic stationary state \(f_A\) exists, it can be picked by taking the long-time average of \(f_{TL}\), and we have

\[
f_A(q, p) = \lim_{t \to \infty} \frac{1}{t} \int_0^t f_{TL}(q, p, t) dt
\]

within an order of the T-linearization method. Then, our next job is to compute the long-time average of \(f_{ON}\) and \(f_{LA}\), but there are several difficulties to this for the multi-dimensional systems.

In the 1D systems, it is shown that

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t e^{-t\mathcal{H}_A} a(q, p) dt = \mathcal{V}(a, \mathcal{H}_A(q, p)),
\]

by use of the angle-action variables of \(\mathcal{H}_A\) [20, 21]. However, in our case, the angle-action variables cannot be constructed, so that it is unclear that this ergodic like formula holds true or not.

There is another problem, slowly algebraic damping of T-force-field \(F_T\). In Ref. [14] we use the fact that \(F_T\) damps rapidly \((-t^{-\gamma}\) with \(\gamma \geq 2\) for the 1D systems [26] and

\[
\lim_{t \to \infty} \int_0^t F_T(t) dt = 0
\]

when we compute \(\lim_{t \to \infty} f_{LA}\). Meanwhile, in the multi-dimensional Vlasov systems [27] and the 2D Euler equations [31], the T-force-field \(F_T\) damps as or slower than \(t^{-1}\), so that the integral \(\int_0^\infty F_T(t) dt\) is not defined in the \(L^1\) meaning apparently. Sometimes, the transient part is asymptotically \(F_T = e^{-\Omega t} t^{-\gamma}\) \((\gamma \leq 1)\) with \(\Omega \neq 0\), and the integral \(\int_0^\infty F_T(t) dt\) exists in the Riemannian meaning. In this case, one should be more careful when one computes the integrals and takes the limit. It should be remarked that there exists a case that \(\Omega = 0\) [27], so that it should be checked for each system.

The relation between the nonlinear response formula obtained by considering the constraint conditions and a solution to the T-linearized Vlasov equation might be an interesting future problem.

VII. SUMMARY AND PERSPECTIVE

The linear response formula has been derived without use of the analytic solution of the single particle orbit or the angle-action variables of the effective Hamiltonian. The present method improves the generalized linear response formula obtained in Ref. [16] when the background density function is a monotonically decreasing function of the effective Hamiltonian \(\mathcal{H}_A\). The response formula [21] results in the one obtained in the previous studies for 1D systems [10, 11, 13, 15], and is numerically confirmed by use of the 2D HMF model. Further the nonlinear response formula [14] has been derived via the same strategy, when the asymptotic solution \(f_A\) to the T-linearized Vlasov equation is monotonically decreasing function of the effective Hamiltonian \(\mathcal{H}_A\).

The nonlinear response theory based on the T-linearization method deals with the nonlinearity of order \(O(h^n)\) with \(1 < n < 2\) [14]. It should be noted that it is difficult to obtain the nonlinear response of order higher than \(O(h^2)\) successively via the proposed method, so that the error \(O(h^n)\) is unavoidable up to now. Let \(\delta f_A\) be a response of order \(O(h^n)\) for \(n \in \mathbb{Z}\). The condition Eq. (10) in
the nonlinear regime $O(h^2)$ is written as

$$0 = \int (R_1(\mathcal{H}_0)\delta f_2 + R_2(\mathcal{H}_0)\delta f_1^2)\, dq dp$$

$$= \int (R_1(\mathcal{H}_0)\delta f_2 + R_2(\mathcal{H}_0)\delta f_1^2)\, dq dp,$$ \hspace{1cm} \text{(73)}

where $R_1 = c'(f_0)$ and $R_2 = c''(f_0)/2$. It is quite difficult to obtain explicitly δf_2 satisfying this equation for any c unlike the linear regime. Then, the error $O(h^2)$ is unavoidable in both naive perturbation and T-linearization methods.

In the present article, the form of perturbation is restricted so as to subject to the constraint conditions coming from Casimir invariants at the linear order. By use of the form of constraint conditions (14), it is possible to take into account on the Casimir constraints when we derive the formal stability criterion without use of angle-action variables and this is a topic of forthcoming paper [32].

In this article, we exert the uniform external force to the systems without integrability. We may also consider the case that unperturbed system is integrable but an external force breaks its integrability. It might be an interesting future work, how the local chaos induced by the static external field affects meso- or macroscopic properties of systems. Such a phenomenon is found in a toy-model with one charged particle confined in cylindrical or toroidal magnetic fields [33, 34].

ACKNOWLEDGMENTS

The author is grateful to Yoshiyuki Y. Yamaguchi and Xavier Leoncini for valuable discussions. He acknowledges the financial support of the A*MIDEX project (n°ANR-11-IDEX-0001-02) funded by the “investissements d’Avenir” French Government program, managed by the French National Research Agency (ANR).

Appendix A: Conservation of the Casimir functionals (8)

It is shown that the Casimir functional (8) is conserved in the Vlasov dynamics. Taking the time derivative of $\mathcal{E}[f]$, we have

$$\frac{d\mathcal{E}[f]}{dt} = \int \frac{\delta}{\delta t} c'(f)\, dq dp = - \int \left[\mathcal{H}[f], f \right] c'(f)\, dq dp.$$ \hspace{1cm} \text{(A1)}

Under the conditions asserted above Eq. (8), the boundary terms vanish and the left hand side of Eq. (A1) is

$$- \int \left[\mathcal{H}[f], f \right] c'(f)\, dq dp = \int \mathcal{H}[f] c'(f)\, dq dp = 0$$ \hspace{1cm} \text{(A2)}

because $\{ f, c'(f) \} = 0$. It is then shown that $d\mathcal{E}[f]/dt = 0$.

Appendix B: Derivation of Eq. (43)

We derive Eq. (43). The all we have to do is to perform integration with respect to p in the left hand side of Eq. (43);

$$\int_{\mathbb{R}^2} \delta \left(\mathcal{H}(q, p) - E \right) \, dq dp = \int_{-\pi}^{\pi} p\delta \left(\mathcal{H}(q, p) - E \right) \, dp$$

$$= 2\pi \int_{0}^{\infty} p\delta \left(\frac{P^2}{2} + V(x, y) - E \right) dp = 2\pi \Theta \left(E - V(x, y) \right),$$

where $\Theta(x) = 0$ (resp.1) when $x < 0$ (resp. $x \geq 0$) is the Heaviside step function, and we have used the relation,

$$\delta(f(x)) = \sum_{x = f^{-1}(0)} \delta(x - x^*) \neq 0.$$ \hspace{1cm} \text{(B1)}

Thus we have

$$\langle g(q) \rangle_E = \frac{\int_{[-\pi, \pi]^2} g(x, y)\Theta \left(E - V(x, y) \right) dx dy}{\int_{[-\pi, \pi]^2} \Theta \left(E - V(x, y) \right) dx dy}.$$ \hspace{1cm} \text{(B1)}

Appendix C: Computation of $(\cos x)_{\mathcal{H}_0}$ and $(\cos x \cos y)_{\mathcal{H}_0}$

On the iso-\mathcal{H}_0 curve, x and y satisfy

$$\cos x = -\frac{\mathcal{H}_0 + M \cos y}{M + P \cos y}, \quad \cos y = -\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}.$$ \hspace{1cm} \text{(C1)}

Thus

$$\int_{[-\pi, \pi]^2} g(x, y)\Theta \left(\mathcal{H}_0 - V(x, y) \right) dx dy$$

$$= 4 \int_{0}^{\pi} \arccos \left(\frac{\mathcal{H}_0 + M \cos y}{M + P \cos y} \right) dx \int_{0}^{\mathcal{H}_0} g(x, y) dy$$ \hspace{1cm} \text{(C2)}

$$= 4 \int_{0}^{\pi} \arccos \left(\frac{\mathcal{H}_0 + M \cos y}{M + P \cos y} \right) dy \int_{0}^{\mathcal{H}_0} g(x, y) dx$$

for $\mathcal{H}_0 \in [-2M - P, P]$ and

$$\int_{[-\pi, \pi]^2} g(x, y)\Theta \left(\mathcal{H}_0 - V(x, y) \right) dx dy$$

$$= 4 \int_{0}^{\pi} \arccos \left(\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x} \right) dx \int_{0}^{\mathcal{H}_0} g(x, y) dy$$

$$+ 4 \int_{0}^{\pi} \arccos \left(\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x} \right) dx \int_{0}^{\mathcal{H}_0} g(x, y) dy$$ \hspace{1cm} \text{(C3)}

$$= 4 \int_{0}^{\pi} \arccos \left(\frac{\mathcal{H}_0 + M \cos y}{M + P \cos y} \right) dy \int_{0}^{\mathcal{H}_0} g(x, y) dx$$

$$+ 4 \int_{0}^{\pi} \arccos \left(\frac{\mathcal{H}_0 + M \cos y}{M + P \cos y} \right) dy \int_{0}^{\mathcal{H}_0} g(x, y) dx,$$

for $\mathcal{H}_0 \in [P, 2M - P]$.

Let us compute $\langle \cos x \rangle_{\mathcal{H}_0} = \langle \cos y \rangle_{\mathcal{H}_0}$ and $\langle \cos x \cos y \rangle_{\mathcal{H}_0}$.
as follows respectively: When \(-2M - P < \mathcal{H}_0 < P\), we have

\[
\langle \cos x, \mathcal{H}_0 \rangle = \langle \cos y, \mathcal{H}_0 \rangle = \frac{8\pi}{\sigma(\mathcal{H}_0)} \int_0^{\arccos\left(-\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right)} \sqrt{1 - \left(\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right)^2} \, dx,
\]

where

\[
\sigma(\mathcal{H}_0) = 8\pi \int_0^{\arccos\left(-\frac{\mathcal{H}_0 + M}{M + P}\right)} \arccos\left(-\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right) \, dx,
\]

and where a range of the arccosine function is \([0, \pi]\]. When \(P < \mathcal{H}_0 < 2M - P\), we have

\[
\langle \cos x, \mathcal{H}_0 \rangle = \langle \cos y, \mathcal{H}_0 \rangle = \frac{8\pi}{\sigma(\mathcal{H}_0)} \int_0^\pi \sqrt{1 - \left(\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right)^2} \, dx,
\]

where

\[
\sigma(\mathcal{H}_0) = 8\pi \int_0^{\arccos\left(-\frac{\mathcal{H}_0 + M}{M + P}\right)} \arccos\left(-\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right) \, dx,
\]

and

\[
\langle \cos x \cos y, \mathcal{H}_0 \rangle = \frac{8\pi}{\sigma(\mathcal{H}_0)} \int_0^\pi \cos x \sqrt{1 - \left(\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right)^2} \, dx,
\]

where

\[
\sigma(\mathcal{H}_0) = 8\pi \int_0^{\arccos\left(-\frac{\mathcal{H}_0 + M}{M + P}\right)} \arccos\left(-\frac{\mathcal{H}_0 + M \cos x}{M + P \cos x}\right) \, dx.
\]

Appendix D: Integral in \(G_n (n = 1, 2, 3, 4)\)

The integral \(\iint F_0(\mathcal{H}_0)(\cos x)^2 d\mathcal{H}_0 d\mathbf{q} d\mathbf{p}\) included in \(G_1\) and \(G_2\) is computed as follows:

\[
\iint F_0(\mathcal{H}_0)(\cos x)^2 d\mathcal{H}_0 d\mathbf{q} d\mathbf{p} = 2\pi \int p \, dp \int F_0(\mathcal{H}_0)(\cos x)^2_{\mathcal{H}_0} d\mathcal{H}_0
d\mathbf{q} = 2\pi \int_{-2M-P}^{2M-P} d\mathcal{H}_0 F_0(\mathcal{H}_0)(\cos x)^2_{\mathcal{H}_0} \Theta(\mathcal{H}_0 + V(x, y)) \, d\mathbf{q}
\]

where \(p = \|\mathbf{p}\| = \sqrt{2(\mathcal{H}_0 + V(x, y))}\) and \(\sigma(\mathcal{H}_0)\) is defined in Eqs. (C6) and (C9). The similar terms in \(G_2\) and \(G_4\) are computed in the same manner.