
HAL Id: hal-01662912
https://hal.science/hal-01662912

Submitted on 26 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction effects in a multi-channel Fabry-Pérot
interferometer in the Aharonov-Bohm regime

Dario Ferraro, Eugene Sukhorukov

To cite this version:
Dario Ferraro, Eugene Sukhorukov. Interaction effects in a multi-channel Fabry-Pérot interferometer
in the Aharonov-Bohm regime. SciPost Physics, 2017, 3 (2), pp.14. �10.21468/SciPostPhys.3.2.014�.
�hal-01662912�

https://hal.science/hal-01662912
https://hal.archives-ouvertes.fr


ar
X

iv
:1

60
8.

08
88

9v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
8 

A
pr

 2
01

7

SciPost Physics Submission

Interaction effects in a multi-channel Fabry-Pérot
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Abstract

We investigate a Fabry-Pérot interferometer in the integer Hall regime in which

only one edge channel is transmitted and n channels are trapped into the in-

terferometer loop. Addressing recent experimental observations, we assume that

Coulomb blockade effects are completely suppressed due to screening, while keep-

ing track of a residual strong short range electron-electron interaction between

the co-propagating edge channels trapped into the interferometer loop. This

kind of interaction can be completely described in the framework of the edge-

magnetoplasmon scattering matrix theory allowing us to evaluate the backscat-

tering current and the associated differential conductance as a function of the bias

voltage. The remarkable features of these quantities are discussed as a function of

the number of trapped channels. The developed formalism reveals very general

and provides also a simple way to model the experimentally relevant geometry in

which some of the trapped channels are absorbed into an Ohmic contact, leading

to energy dissipation.
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1 Introduction

In the last few years various accurate experimental observations shed new light on the re-
markable physics associated to the Fabry-Pérot interferometer (FPI) of integer and fractional
quantum Hall edge channels [1, 2, 3]. Depending on the size of the interference loop two dis-
tinct regimes have been achieved. For a small enough loop area, intra-edge interaction plays
an essential role and features related to Coulomb blockade occur. In the opposite regime
of large central area, the expected Aharonov-Bohm physics of free electrons is recovered in
the integer quantum Hall regime. A consistent theoretical interpretation of these results as
well as a characterization of the crossover between these two limits has been proposed [4, 5].
Various experimental techniques, including gates and ohmic contacts, have been introduced
in order to enhance the screening of interaction extending as much as possible the domain of
validity of the Aharonov-Bohm regime, where the interaction is negligible and the simple free
particles picture seems adequate to properly explain the experimental observations.

However, very recently, new measurements carried out by Choi et al. [6] have suggested
that a richer phenomenology occurs also in this apparently trivial case. In particular, when
only one channel is transmitted throughout the FPI, by increasing the number of channels
trapped in the loop (namely the integer filling factor of the system), one moves from the
standard Aharonov-Bohm effect of electrons (at filling factor 1 ≤ ν ≤ 2) to a more puzzling
situation in which a pair of electrons seems to interfere (at filling factor 3 ≤ ν ≤ 4). This
phenomenology has been deduced from both the halving of the periodicity of the conductance
with respect to the Aharonov-Bohm flux and the doubling of the effective outgoing charge
measured through shot noise. These two independent measurements seem to confirm the
robustness of the result, moreover various experimental checks have been carried out in order
to rule out other possible effects leading to similar phenomenology like the suppression of odd
winding of the interferometer with respect to the even ones, leaving the mutual interaction
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among the channels as the principal responsible of this peculiar pairing effect.
The aim of this paper is to provide the proper theoretical background for the description

of the experimental setup in Ref. [6] in the framework of the edge-magnetoplasmon scattering
matrix formalism [7, 8, 9, 10, 11, 12] where the two points electron Green’s function (first
order electron coherence [13, 14]), crucial ingredient to calculate transport properties like
conductance and noise, explicitly depends on the transmission of the bosonic mode across
the interferometer. As simplest possible case we will assume a strong screened Coulomb
interaction and we will investigate carefully the functional form of the scattering matrix as a
function of the number of channels trapped into the FPI loop. We will discuss in detail the
case of one trapped channel extrapolating then the behavior in case of more channels into the
interfering loop. The consequences of the form of these scattering matrices on the current and
the conductance will be then investigated. We derive a very powerful and general formalism.
On the one hand it allows us to rule out the simplest academic model of short range strong
interaction as a possible way to explain what is observed in experiments, on the other hand
it appears suitable to extensions towards more realistic models in which finite length of the
interaction and dissipations have been taken into account [15].

The paper is organized as follows. In Section 2 we discuss the edge-magnetoplasmon
scattering matrix theory for a FPI as a function of the number of integer Hall edge chan-
nels trapped into the loop. We focus in particular on a strong short range (δ-like) screened
Coulomb potential. The classical and quantum contributions to the current and the associ-
ated differential conductance are derived in Section 3 by means of the Kubo formula. The
plots of these quantities, as well as the relevant comments concerning the behavior of the
system as a function of the number of trapped channels are reported in Section 4, also in view
of a possible interpretation of the experimental observations. In Section 5 we investigate the
role played by an ohmic contact absorbing some of the channels, analogous to the one used
in realistic setup, in terms of a simple model based only on the energy conservation. Section
6 is devoted to the conclusions, while some technical details of the calculation are discussed
in Appendix A.

2 Model

2.1 Edge-magnetoplasmon description of two interacting channels

Let us start by discussing the physics of two edge channels capacitively coupled along a finite
region of length L. This problem will be investigated in the framework of the bosonization
formalism [16, 17]. Due to the chirality of the two channels we can identify the incoming

region (1), the interacting region (2) and the outgoing region (3) (see Fig. 1). We will analyze
them in detail in the following.

2.1.1 Incoming region (1)

In this region the interaction is absent and the Hamiltonian density can be written in term
of the Wen’s hydrodynamical model [18] (~ = 1)

H(1) =
v1
4π

(∂xφ1)
2 +

v2
4π

(∂xφ2)
2 . (1)
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(1) (2) (3)
φ̃1,in(x,ω)

φ̃2,in(x,ω) φ̃2,out(x,ω)

φ̃1,out(x,ω)

Ŝ(L,ω)

Figure 1: Color on-line. Schematic view of a two integer quantum Hall channels system (filling
factor ν = 2). According to the chirality one can easily identify the incoming region (1), the
interacting region (2) (shaded area) and the outgoing region (3). In regions (1) and (3) the
dynamics of the bosonic fields is well described in terms of free equations of motion, while the
outgoing fields are connected to the incoming ones through the edge-magnetoplasmon scatter-
ing matrix Ŝ(L,ω) which encodes the information of the inter-channel interaction (assumed
as strong and short ranged in the main text).

Therefore, one can easily associate a chiral bosonic field to the charge density along each
channel according to the conventional prescription [16, 17]

ρi =
1

2π
∂xφi i = 1, 2. (2)

These bosonic fields propagate freely according to the equations of motion

∂tφi(x, t) = −vi∂xφi(x, t) i = 1, 2 (3)

and we have considered different propagation velocities v1 and v2 along the two channels.

2.1.2 Interacting region (2)

In this region we assume a density-density short range (δ-like) interaction in such a way that
the Hamiltonian density becomes

H(2) =
v1
4π

(∂xφ1)
2 +

v2
4π

(∂xφ2)
2 +

v12
2π

∂xφ1∂xφ2 (4)

with v12 interaction strength. Notice that, in spite of the fact that high frequency measure-
ments suggest a relevant role played by a finite range of interaction and dissipation, this
approximation reveals good at low enough frequencies [15]. According to this, the bosonic
fields φ1 and φ2 are no longer eigenstates of the Hamiltonian of the system. The equations of
motion are then decoupled in terms of a charged and a neutral mode, indicated respectively
with φρ and φσ. They diagonalize the Hamiltonian with associated eigenvelocities vρ and vσ
in such a way that the new equations of motion become

∂tφη(x, t) = −vη∂xφη(x, t) η = ρ, σ. (5)

Due to the fact that the incoming fields are co-propagating, the above diagonalizing fields are
related to φ1 and φ2 through a simple rotation of an angle θ in the field space1. This becomes
more transparent in the frequency space, namely through a partial Fourier transform with
respect to time. Here, one has

φ̃ρ(x, ω) = cos θφ̃1(x, ω) + sin θφ̃2(x, ω)

φ̃σ(x, ω) = − sin θφ̃1(x, ω) + cos θφ̃2(x, ω). (6)

1Notice that the velocities vρ and vσ are functions of v1, v2 and v12 [19]. However, in what follows we are
not interested in their explicit functional form, but only in the fact that typically on has vρ ≫ vσ [8, 9].
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It is worth to note that the angle θ (0 ≤ θ ≤ π/4) provides a direct measurement of the
strength of the interaction. In particular, θ = 0 corresponds to the non-interacting case,
while for θ = π/4 one recovers the strong interacting limit.

2.1.3 Outgoing region (3)

Analogously to region (1), also in this case inter-channel interaction is negligible and the
equations of motion write as in Eq. (3) (H(1) = H(3)).

The general solution of the above systems of equations can be easily found in the frequency
domain and reads

φ̃α(x, ω) = ei
ω
vα

(x−x0)φ̃α(x0, ω) (7)

φ̃α(x0, ω) being the (possibly frequency dependent) amplitude at the initial condition x0 and
where α = 1, 2 in regions (1) and (3) or α = ρ, σ in region (2) respectively.

To completely solve the system we need now to impose the continuity of the fields at the
boundaries of the three regions, namely at x = 0 and at x = L. Notice that, in the Fourier
representation we are considering, this is equivalent to impose the conservation of the current
across the boundaries.

2.2 Open channels

Before investigating the FPI geometry we are interested in, it is useful to recall the ex-
pected results in the case of open channels. Here, after some algebra, we obtain the edge-
magnetoplasmon scattering matrix representation

(

φ̃1(L,ω)

φ̃2(L,ω)

)

= Ŝ(L,ω)

(

φ̃1(0, ω)

φ̃2(0, ω)

)

(8)

with

Ŝ =

(

cos2 θeiωτρ + sin2 θeiωτσ sin θ cos θ
(

eiωτρ − eiωτσ
)

sin θ cos θ
(

eiωτρ − eiωτσ
)

sin2 θeiωτρ + cos2 θeiωτσ

)

(9)

and where we have introduced the short-hand notation τα = L/vα (α = ρ, σ).
Notice that this result is in full agreement with what is discussed in literature [7, 8, 10,

11, 12] and satisfies the unitarity condition Ŝ · Ŝ† = I as expected.

2.3 One channel trapped in the Fabry-Pérot loop

Thanks to the above results it is now easy to investigate the simplest possible example of
the geometry described in Fig. 2, where only one edge channel is trapped into the FPI loop
(n = 1, k = 0). At filling factor ν = 2 (only blue and red channels in Fig. 2) this system
represents the natural starting point to model the Choi’s experiment of Ref. [6], when only
one channel is trapped into the interferometer loop, while the other is transmitted with a
tunable amplitude. For sake of generality we will assume two different scattering matrices
for the upper (Ŝ(u)) and the lower (Ŝ(d)) part of the interferometer. By properly taking into

5
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Σ̂
(n)

x1

Φ

x2

φ̃in

a

φ̃in

b
φ̃out

b

φ̃out

a

Λ1 Λ2

Figure 2: Color on-line. Schematic view of a FPI with n trapped channels in the interfering
loop. The action of the interferometer in presence of interaction (assumed strong and short
ranged in main text) can be described in terms of the edge-magnetoplasmon scattering matrix
Σ̂(n). Tunneling of electrons occurs at two quantum point contacts in x1 and x2, respectively
with tunneling amplitude Λ1 and Λ2. The interferometer is also pierced by a flux Φ of magnetic
field which is responsible of the Aharonov-Bohm effect. Moreover, in order to be closer to
what is done in experiments, we can consider the presence of an ohmic contact which on the
one hand further enhances the screening of the interaction, on the other absorbs the energy
of k ≤ n trapped channels inducing dephasing.

account the periodic boundary conditions associated to this closed channel one can derive the
scattering matrix Σ̂(1) for the whole interferometer in the form

(

φ̃out
a

φ̃out
b

)

= Σ̂(1)

(

φ̃in
a

φ̃in
b

)

(10)

with

Σ̂(1) =







S
(u)
11 −S

(d)
22 f(u)

1−S
(u)
22 S

(d)
22

S
(u)
12 S

(d)
12

1−S
(u)
22 S

(d)
22

S
(u)
12 S

(d)
12

1−S
(u)
22 S

(d)
22

S
(d)
11 −S

(u)
22 f(d)

1−S
(u)
22 S

(d)
22






, (11)

where we have introduced the phase factor

f(ω) = eiω(τρ+τσ). (12)

Notice that the frequency dependence has been omitted for notational convenience.
It is worth to note that the edge-magnetoplasmon scattering matrix Σ̂(1) inherits the

properties of matrices Ŝ(u) and Ŝ(d) and is therefore unitary as expected.

2.3.1 Strong interaction limit

In this limit (θ = π/4) the expression in Eq. (11) strongly simplifies and one recovers
a symmetric configuration Ŝ(u) = Ŝ(d) = Ŝ. Moreover, we can safely consider the limit
vρ → +∞ (τρ → 0) for the charged mode.

We then obtain the simple matrix elements

6
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S11 = S22 ≈ 1

2

(

1 + eiξ
)

(13)

S12 = S21 ≈ 1

2

(

1− eiξ
)

(14)

with ξ = ωτσ.
Under this approximation, we can then write

Σ̂(1)(ξ) ≈
(

2− 4
3h

(1)(ξ) −1 + 4
3h

(1)(ξ)

−1 + 4
3h

(1)(ξ) 2− 4
3h

(1)(ξ)

)

, (15)

where we have defined

h(1)(ξ) =

+∞
∑

n=0

(

−eiξ

3

)n

=
3

3 + eiξ
. (16)

Notice that Eq. (16) calls for the possibility of a simple harmonics expansion of the matrix
elements of Σ̂(1) suitable, as will be clearer in the following, for numerics and useful to easily
derive asymptotic behaviors. Moreover, in the zero frequency limit (ξ = 0), one directly
obtain Σ̂(1)(0) = I as required for a purely capacitive coupling.

2.4 Two channels trapped in the Fabry-Pérot loop

In the strong interaction limit discussed above also the case at filling factor ν = 3, where
two channels are trapped in the interferometer loop and the last one is transmitted with a
tunable amplitude (see Fig. 2), can be easily handled. Without entering into the details of
the calculation, also in this case we have a charge mode with a velocity vρ that is greater with
respect to the one of the two neutral modes (assumed vσ for both2).

Proceeding exactly on the same way as before, after some quite tedious algebra, one
obtains the edge-magnetoplasmon scattering matrix

Σ̂(2)(ξ) ≈
(

3− 12
5 h

(2)(ξ) −2 + 12
5 h

(2)(ξ)

−2 + 12
5 h

(2)(ξ) 3− 12
5 h

(2)(ξ)

)

(17)

with

h(2)(ξ) =

+∞
∑

n=0

(

−eiξ

5

)n

=
5

5 + eiξ
. (18)

Also in this case the zero frequency limit (ξ = 0) leads to Σ̂(2)(0) = I.

3 Current and conductance

We can now discuss the general expression for the current flowing through the system in the
framework of the edge-magnetoplasmon scattering matrix formalism and focusing on the weak

2Notice that this symmetry is reminiscent of the analogous hidden symmetry observed for the states be-
longing to the Jain’s sequence of the fractional quantum Hall effect [20].
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backscattering regime for both the QPCs in Fig. 2. We will consider the first perturbative
order in the backscattering Hamiltonian

HBS =
∑

j=1,2

ΛjΨ
†
b(xj)Ψa(xj) +H.c. (19)

with Ψa and Ψb electronic annihilation operators associated to the two edges and Λj (j = 1, 2)
tunneling amplitudes associated to the two QPCs. Under this assumption the backscattering
current represents a small correction with respect to the quantized Hall current between source
and drain. Moreover, this allows us to neglect multiple reflections which could complicates
the description of the interferometer. For sake of simplicity the tunneling contributions are
assumed to be local, even if more general extended tunneling can be also investigated [21, 22].

The associated backscattering current operator is given by

IB = −e
∑

j=1,2

iΛjΨ
†
b(xj)Ψa(xj) +H.c. (20)

In order to evaluate the average value of the backscattering current we can use, as usual,
the Kubo formula [23]

〈IB〉 = −i

∫ t

−∞
dt′〈
[

IB(t),HBS(t
′)
]

〉 (21)

where operators are written in the interaction picture, namely evolved in time according to
the free edge Hamiltonian only. Notice that all the averages discussed above are taken with
respect to the ground state of the free bosonic systems in absence of backscattering.

In order to evaluate the backscattering current in Eq. (21) as a function of the elements
of the edge-magnetoplasmon scattering matrices derived in the previous section we need to
recall the fact that the fermionic annihilation operator can be seen as a coherent state of
edge-magnetoplasmon in the form

Ψ(x) =
1√
2πα

eiφ(x), (22)

α a finite-length cut-off. [16]
Because the calculation of the averaged backscattering current naturally involves four-

vertex operators it is useful to introduce the general correlator

〈e−iAeiBe−iCeiD〉

= exp

{

−1

2

[

〈A2〉+ 〈B2〉+ 〈C2〉+ 〈D2〉
]

+ 〈AB〉 − 〈AC〉+ 〈AD〉+ 〈BC〉 − 〈BD〉+ 〈CD〉} (23)

based on the Baker-Campbel-Hausdorff formula and the Wick theorem applied to the bosonic
fields and valid for arbitrary gaussian fields A, B, C and D those commutation relations lead
to complex functions.

By properly taking into account the action of the edge-magnetoplasmon scattering matrix
and assuming the same propagation velocity for both free channels (v1 = v2 = v) we can eval-
uate explicitly all the contributions to the current. Notice that the effect of a bias difference
between the edge b (at voltage V ) and the edge a (grounded) is taken into account through

8
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the standard Peierls substitution [24] Ψb(x, t) → e−iω0tΨb(x, t) with ω0 = eV/~ and where the
field Ψa(x, t) is left untouched.

The averaged current can be naturally separated into a classical contribution, diagonal in
the QPCs action, and a quantum contribution, which is the off diagonal interference term. In
the following we will discuss these terms in detail mainly focusing on the zero temperature
limit.

3.1 Classical contributions to the current

For what it concerns the classical contributions to the current, namely the one diagonal in
the QPCs tunneling amplitudes, one obtains

IclB =
e

2π2α2

[

|Λ1|2 + |Λ2|2
]

∫ +∞

−∞
dz sin (ω0z)ℑ

[

J (l)(z)
]

(24)

with

J (l)(z) = exp

{

−2

∫ +∞

0

dω

ω

{

1−ℜ
[

Σ
(l)
ab (ω)

]}

[

1− e−iωz
]

}

(25)

and where ℜ[...] and ℑ[...] indicate respectively the real and the imaginary part. Notice that
the above formula can be applied to both the case of one (l = 1) and two (l = 2) trapped
channels in the FPI. The conventional non interacting case is easily recovered by neglecting

the term associated to the edge-magnetoplasmon scattering matrix (Σ
(0)
ab = 0). It is worth to

point out the fact that, due to translational invariance in the time domain, the expression in
Eq. (24) is indeed independent of time.

As expected, the above term does not depend on the position of the QPCs and on the flux
of magnetic field piercing the interferometer. It corresponds to the sum of the contributions
associated to two distinct single QPC geometries, proportional respectively to |Λ1|2 and |Λ2|2.

By replacing the explicit form of the scattering matrix elements respectively for Σ̂(1) and
Σ̂(2) (see Eq. (15) and Eq. (17)) one obtains the factorization

J (l)(z) = J (l)
int(z)Jfree(z) l = 1, 2 (26)

with (see Appendix A)

Jfree(z) = exp

{

−2

∫ ∞

0

dω

ω

[

1− e−iωz
]

e−ω/ωρ

}

(27)

=
1

(1 + iωρz)2
(28)

the free fermion contribution and

J (1)
int (z) = exp

{

−2

∫ ∞

0

dω

ω

(

cosωτσ − 1

5 + 3 cosωτσ

)

[

1− e−iωz
]

e−ω/ωρ

}

(29)

J (2)
int (z) = exp

{

−8

∫ ∞

0

dω

ω

(

cosωτσ − 1

13 + 5 cos ωτσ

)

[

1− e−iωz
]

e−ω/ωρ

}

(30)

the corrections due to the interaction. Notice that, for further convenience, we have
introduced the convergence factor e−ω/ωρ with high frequency cut-off ωρ = vρ/α in order to
have well behaved integrals for ω → +∞.

9
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3.2 Quantum contribution to the current

Differently from the classical contribution discussed above, this term depends non locally on
the two QPCs amplitudes and encodes information about the Aharonov-Bohm interference
at the level of the FPI. It is given by

IqB =
e

π2α2

∫ +∞

−∞
dzℑ

[

Λ1Λ
∗
2e

iω0zW(l)
]

ℑ
[

Y(l) (∆t− z)
]

(31)

with ∆t = (x1 − x2)/v,

W(l) = exp

{∫ +∞

0

dω

ω

[

Σ
(l)
ab (ω) + Σ

(l)
ba (ω)

]

}

(32)

and

Y(l)(z) = exp

{

−
∫ +∞

0

dω

ω

[

2−
(

Σ∗(l)
aa(ω) + Σ

(l)
bb (ω)

)

eiωz
]

}

. (33)

In analogy with what discussed for the classical current, also this contribution does not depend
explicitly on time.

In terms of the explicit form of the scattering matrix elements for Σ̂(1) and Σ̂(2) (Eq. (15)
and Eq. (17)), one has

W(1) = exp

{

2

∫ ∞

0

dω

ω

(

1− eiωτσ

3 + eiωτσ

)

e−ω/ωρ

}

(34)

W(2) = exp

{

4

∫ ∞

0

dω

ω

(

1− eiωτσ

5 + eiωτσ

)

e−ω/ωρ

}

. (35)

Moreover, also in this case we can factorize the interaction contribution in the form

Y(l)(z) = Y(l)
int(z)Jfree(−z) with,

Y(1)
int(z) = exp

{

2

∫ ∞

0

dω

ω

(

cosωτσ − 1

5 + 3 cos ωτσ

)

eiωze−ω/ωρ

}

(36)

Y(2)
int(z) = exp

{

8

∫ ∞

0

dω

ω

(

cosωτσ − 1

13 + 5 cosωτσ

)

eiωze−ω/ωρ

}

. (37)

According to the Fourier series expansion of the functions h(1) (Eq. (16)) and h(2) (Eq.

(18)) it is possible to derive useful asymptotic limits for the functions J (l)
int, W(l) and Y(l)

int

(l = 1, 2) which are discussed in detail in Appendix A.
In particular, focusing on the role played by W(l), Eq. (31) can be approximated in a very

good way by (j = 0, 1, 2)

IqB (Φ, ω0) ≈ −e|Λ1||Λ2|
π2α2

(ωρτσ)
aje−γj cos (ω0∆t− Φ− θj)

∫ +∞

−∞
dz sinω0zℑ

[

Y(j)
int(z)Jfree(−z)

]

(38)
where we have included the conventional free fermion case j = 0. In the above expression

we have introduced the compact notation a0 = 0, a1 = 2/3 and a2 = 4/5; θ0 = 0, θ1 = π/3
and θ2 = 2π/5; γ0 = 0, γ1 ≈ 0.129656 and γ2 ≈ 0.099524 (see Appendix A). Moreover, it is

10
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worth to note that in the non interacting case we trivially have Y(0)
int = 1. We observe that the

more dramatic effects associated to the presence of the trapped channels consists in modifying
the scaling of the tunneling amplitude through a cut-off dependent contribution and to add an
additional phase shift. Both these contributions crucially depend on the number of trapped
channels.

4 Results

4.1 Classical contribution

Icl
B
/I0

Gcl

B
/G0

Figure 3: Color on-line. Classical current in units of I0 = e|Λ|2/(πvρτσ)2 (top) and differential
conductance in units of G0 = eI0 (bottom). Every curve is properly further rescaled with
respect to the factor (ωρτσ)

aje−γj in order to keep track of the interaction induced renormal-
ization of the tunneling amplitudes for the non interacting case (j = 0, full black curve), the
one trapped channel case (j = 1, dashed blue curve) and the two trapped channels case (j = 2,
dotted-dashed red curve) as a function of the Josephson frequency ω0 = eV0/~. Parameters
are: τσ = 1, ωρτσ = 1000, |Λ1| = |Λ2| = |Λ| and ~ = 1.

In Fig. 3 we show the behavior of the classical contribution to the current and the

11
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Gq

B/G0

Figure 4: Color on-line. Quantum contribution to the differential conductance in units of
G0, calculated at ω0 = 0 as a function of the Aharonov-Bohm phase (Φ). Also in this case
every curve is properly further rescaled with respect to the factor (ωρτσ)

aje−γj in order to
keep track of the interaction induced renormalization of the tunneling amplitudes for the non
interacting case (j = 0, full black curve), the one trapped channel case (j = 1, dashed blue
curve) and the two trapped channels case (j = 2, dotted-dashed red curve). Parameters are:
τσ = 1, ωρτσ = 1000, |Λ1| = |Λ2| = |Λ| and ~ = 1.

associated differential conductance

Gcl
B ∝ ∂〈IclB 〉

∂ω0
=

e

2π2α2

[

|Λ1|2 + |Λ2|2
]

∫ +∞

−∞
dzz cos (ω0z)ℑ

[

J (l)(z)
]

. (39)

In order to take into account the renormalization of the tunneling amplitudes induced
by the presence of the trapped channels and to better compare the results, the curves are
normalized here with respect to the proper cut-off dependent factor (ωρτσ)

aje−γj (j = 0, 1, 2).
Concerning the current (top panel of Fig. 3) all curves are linear as a function of the

Josephson frequency (and consequently of the voltage V ) for ω0 ≈ 0 as a consequence of the
fact that the edge-magnetoplasmon scattering matrix reduces to the identity at low enough
frequency. However, the interacting cases (dashed blue and dotted-dashed red curves) strongly
deviate from this linearity at higher voltages (ω0τσ ≈ π) and show a remarkable oscillating
behavior. This is even more evident for what it concerns the differential conductance (bottom
panel of Fig. 3) which is constant (up to a small deviations due to the high frequency cut-off
used in the numerics) in the free case, but oscillates and decay quite fast by increasing the
number of trapped channels. Notice that this phenomenology is reminiscent of what derived
in literature for a FPI in the integer and fractional quantum Hall regime [25] or for the
topological insulators in presence of interaction [26].

12
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4.2 Quantum contribution to the current

Concerning the interference contribution, relevant information about the physics of the sys-
tems can be extracted form the conductance calculated at zero voltage (j = 0, 1, 2.)

Gq
B (Φ, ω0 = 0) ∝ ∂IqB

∂ω0
|ω0=0 ≈ −e|Λ1||Λ2|

π2α2
(ωρτσ)

aje−γj cos (Φ + θj)

∫ +∞

−∞
dzzℑ

[

Y(j)
int(z)Jfree(−z)

]

(40)
The behavior of this quantity as a function of the Aharonov-Bohm phase Φ is represented

in Fig. 4, where the phase shifts θ1 = π/3 and θ2 = 2π/5 induced by the presence of a
different number of channels trapped into the interferometer loop are clearly visible.

It is worth to note that the various curves have the same amplitude. This can be easily
found by comparing the non interacting case (j = 0), where the integral in Eq. (40) can be
evaluated analytically according to the relation

∫ +∞

−∞
dzzℑ

[

1

(1 + iωρz)2

]

= − π

ω2
ρ

(41)

due to the second order poles in the complex plane and coincide with what obtained numer-
ically for the interacting cases (j = 1, 2). This is a direct consequence of the zero energy
properties of the edge-magnetoplasmon scattering matrix which guarantee the fact that the
electrons are effectively free at low enough frequency.

4.3 Considerations about multiple electron tunneling

As discussed above, Choi’s experiment shows a puzzling and extremely interesting evolution
of the effective tunneling charge as a function of the number of trapped channels. In order to
shed light on this behavior one can imagine to allow also the tunneling of excitations with m
times the charge of an electron3 (m ∈ N) at the QPCs, despite the fact that these multiple
excitations are less relevant with respect to the electrons in the renormalisation group sense
[34]. The vertex operator associated to them is given by

Ψ(m)(x) ∝ eimϕ(x) (42)

with the corresponding tunneling Hamiltonian

H
(m)
T =

∑

j=1,2

Λ
(m)
j eimϕb(xj)e−imϕa(xj) +H.c. (43)

In this case, as far as we consider a gaussian model for the edge states dynamics, the ex-
pressions for this kind of excitations can be derived directly from the one for the electrons

through the substitutions X → [X ]m
2

, being X = J (1,2),W(1,2) or Y(1,2) and with a conse-
quent replacement of the tunneling amplitudes and the charge associated to the excitations.
This leads to a superohmic behavior which reflects on the fact that the conductance at zero

3Notice that a similar analysis involving the tunneling of multiple fractionally charged excitation has been
proposed in Refs. [27, 28, 29, 30] as a possible explanation for the unexpected evolution of the effective charge
in a QPC geometry in the composite edge states of the fractional quantum Hall effect [31, 32, 33].
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bias is identically zero. This fact can be verified analytically in the non interacting case due
to the relation

∫ +∞

−∞
dzzℑ

[

1

(1 + iωρz)2m
2

]

= 0 for m 6= 1 (44)

which is a consequence of the presence of higher order poles in the complex plane and numer-
ically in the other cases.

Therefore, no signature associated to higher charge carrier are expected in the framework
of the proposed model. According to this, the comparison with experimental observations
rules out the simple picture based on short range strong interaction usually considered as a
valuable work hypothesis and seems to suggests that a more involved description is required.
In particular dissipative effects at the level of the edge-magnetoplasmon scattering matrix
[15], finite range interaction and non-gaussianity in the particle injection process [8] could
play a relevant role.

5 Effects of an ohmic contact in the interferometer loop

In order to be further closer to what has been done in experiments, we can also consider a
modified set-up in which an integer number k ≤ n of the trapped channels is absorbed by
an ohmic contact. This configuration has been introduced in order to both enhancing the
screening of the interaction and inducing dephasing among the trapped channels (see Fig.
1) [6]. We will study this geometry in the full equilibration limit (τσ → +∞) where we can
neglect the oscillations appearing in the edge-magnetoplasmon scattering matrices (see Eqs.
(15) and (17)). This leads to a semiclassical approximation based only on the conservation of
a unitary energy flow. In full generality it writes

Σ̂
(n,k)
↑ =

(

(n−k+1)(n+1)
n2(k+2)+3n+1

(n−k+1)n
n2(k+2)+3n+1

(n−k+1)n
n2(k+2)+3n+1

(n+1)2

n2(k+2)+3n+1

)

. (45)

The notation ↑ indicates an ohmic contact placed in the upper part of the interferometer loop
(see Fig. 2), as opposite to ↓ for an ohmic contact in the lower part whose scattering matrix
elements are obtained through the replacements ↑↔↓, a ↔ b. Notice that the position of the
ohmic contact does not affect the results concerning the current flowing across the sample.

Depending on the incoming arm of injection (a or b) one can have two different fraction
of the unitary energy flux leaking into the ohmic contact, namely

∆Ea,↑ = 1− Σ
(n,k)
aa,↑ − Σ

(n,k)
ba,↑ =

k(n+ 1)2

n2(k + 2) + 3n + 1

∆Eb,↑ = 1− Σ
(n,k)
ab,↑ − Σ

(n,k)
bb,↑ =

kn(n+ 1)

n2(k + 2) + 3n+ 1
.

(46)

In absence of ohmic contact (k = 0) the scattering matrix in Eq. (45) reduces to

Σ̂
(n,0)
↑ = Σ̂

(n,0)
↓ = Σ̂(n,0) =

( n+1
2n+1

n
2n+1

n
2n+1

n+1
2n+1

)

(47)

14



SciPost Physics Submission

with an obvious zero energy leakage (∆Ea,↑ = ∆Eb,↑ = 0). Two important comments are in

order at this point. First of all, we notice that it is possible to obtain the expressions for Σ̂(1,0)

and Σ̂(2,0) directly from Eq. (15) and (17) in the semiclassical limit, where all the oscillating
terms are neglected. Eq. (47) represents therefore a generalization of what is done above as
far as equilibration among the channels comes into play. Moreover, this fact also represents a
validation of the renormalisation of the tunneling amplitudes previously derived, due to the
fact that the dominant contribution to the integrals comes indeed from a region where the
considered approximation holds.

According to the previous considerations, the classical and quantum contribution to the
current can be written, in terms of the elements of the scattering matrix and the energy loss,
as

IclB =
e

2π2α2

(

|Λ1|2 + |Λ2|2
)

R
[

ω0, ωρ,Σ
(n,k)
aa +Σ

(n,k)
bb +∆Ea +∆Ea

]

(48)

IqB = − e

π2α2
(|Λ1||Λ2|) cos (ω0∆t− Φ) exp

{

−(∆Ea +∆Eb)

∫ +∞

0

dω

ω
e−ω/ωρ

}

× R
[

ω0, ωρ,Σ
(n,k)
aa +Σ

(n,k)
bb

]

(49)

with

R [x, y, α] =
2π

Γ(α)

|x|α−1

yα
e−|x|/ysgn(x) (50)

and Γ(α) the Euler’s Gamma function. Notice that we have omitted the indication about
the placement of the ohmic contact due to the fact that the results are independent of this

because of the symmetries relating Σ̂
(n,k)
↑ and Σ̂

(n,k)
↓ .

In absence of ohmic contact (∆Ea = ∆Eb = 0), but still considering the equilibrated limit,
one obtains (for |Λ1| = |Λ2| = |Λ|)

IclB + IqB =
e|Λ|2
π2α2

[1− cos (ω0∆t− Φ)]R
[

ω0, ωρ,Σ
(n,0)
aa +Σ

(n,0)
bb

]

(51)

showing oscillation as a function of the piercing magnetic flux modulating the overall

power-law behavior ω
Σ

(n,0)
aa +Σ

(n,0)
bb

−1
0 reminiscent of the one observed for the fractional quantum

Hall effect [25] and topological insulators in presence of interaction [26]. It is worth to note
that the exponents satisfies

1 < Σ(n,0)
aa +Σ

(n,0)
bb < 2 (52)

leading to a sub-ohmic and not diverging current-voltage characteristic.
The presence of an ohmic contact dramatically affects the quantum contribution, which is

exponentially suppressed according to the vanishing prefactor in Eq. (49). Indeed, the integral
at the exponent is formally divergent and have to be regularized by adding an additional low
frequency cut-off depending on the typical equilibration length of the interferometer loop.
However, this exponential suppression still survives at finite temperature even after having
taken care of this formal divergence.

Moreover, the classical and quantum contribution to the current scale in a different way
as a function of the voltage, namely

IclB ∝ ω
Σ

(n,k)
aa +Σ

(n,k)
bb

+∆Ea+∆Ea−1
0 (53)

IqB ∝ ω
Σ

(n,k)
aa +Σ

(n,k)
bb

−1
0 . (54)
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6 Conclusion

In the present paper we have discussed the physics of a FPI in the integer quantum Hall
regime. Motivated by very recent experiments, we focused on a system at filling factor
ν = n + 1 (n ∈ N) where only one edge channel is transmitted across the sample, while
the other n are trapped into the interferometer loop. Due to screening, the only residual
interaction effect is given by a strong short range inter-channel interaction that we described
in terms of the edge-magnetoplasmon scattering matrix formalism. The major effects associ-
ated to the presence of interacting trapped channels are: a renormalisation of the tunneling
amplitudes affecting in exactly the same way the classical and the quantum contribution to
the current, an evident damped and oscillatory behavior of the differential conductance in
contrast to the constant (ohmic) behavoir observed in absence of trapped channels and an
additional phase shift in the Aharonov-Bohm periodicity that is clearly visible in the differen-
tial conductance at zero bias. We have also discussed a simple model for a system in which k
(0 ≤ k ≤ n) channels in the loop are absorbed by an ohmic contact, based only on the energy
conservation. Here we observed that, as long as the energy is not conserved due to losses into
the contact, the quantum contribution to the conductance is strongly suppressed and only
the classical contribution survives, showing a non-universal power-law behavior reminiscent
of the element of the effective edge-magnetoplasmon scattering matrix. It is worth to note
that the comparison between our analysis and the experiments allows to rule out this simple
and widely accepted model for the inter-edge channel interaction as the proper description of
the considered set-up. According to this, additional physical effects like dissipation or non-
gaussianity could play a major role. However, the developed formalism is general enough to
allow estention towards these directions.
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A Consideration about the integrals

Aim of this Appendix is to investigate the asymptotic behavior of the functions J (l)
int, W(l)

and Y(l)
int (l = 1, 2) defined in the main text. According to the integral representation

f(η,A) =

∫ +∞

0

dω

ω

(

1− e−iωη
)

e−ωA = ln
(

1 + i
η

A

)

(55)

and recalling the Fourier series expansion of h(1) and h(2) in Eqs. (16) and (18) one obtains
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J (1)
int (z) = exp

{

4

3

+∞
∑

n=0

(−1)n

3n

[

f

(

z,
1

ωρ
− niτσ

)

+ f

(

z,
1

ωρ
+ niτσ

)]

− 2f

(

z,
1

ωρ

)

}

(56)

J (2)
int (z) = exp

{

12

5

+∞
∑

n=0

(−1)n

5n

[

f

(

z,
1

ωρ
− niτσ

)

+ f

(

z,
1

ωρ
+ niτσ

)]

− 4f

(

z,
1

ωρ

)

}

(57)

W(1) = exp

{

2

3

∞
∑

n=0

(−1)n

3n
f

(

−τσ,
1

ωρ
− niτσ

)

}

(58)

W(2) = exp

{

4

5

∞
∑

n=0

(−1)n

5n
f

(

−τσ,
1

ωρ
− niτσ

)

}

(59)

Y(1)
int(z) = exp

{

4

3

+∞
∑

n=0

(−1)n

3n

[

f

(

−nτσ,
1

ωρ
− iz

)

+ f

(

nτσ,
1

ωρ
− iz

)]

}

(60)

Y(2)
int(z) = exp

{

12

5

+∞
∑

n=0

(−1)n

5n

[

f

(

−nτσ,
1

ωρ
− iz

)

+ f

(

nτσ,
1

ωρ
− iz

)]

}

. (61)

The above series converge quite fast and are helpful both in the numeric evaluation of
the integrals for the current and in order to obtain asymptotic expressions under the natural
condition ωρτσ ≫ 1.

A.1 J (1)
int and J (2)

int

In the limit |z| ≫ nτσ (n ∈ N) one directly obtains

J (1)
int (|z| → +∞) ≈ (ωρτσ)

2
3 e−γ1 (62)

J (2)
int (|z| → +∞) ≈ (ωρτσ)

4
5 e−γ2 (63)

with

γ1 =
8

3

∑

n=1

(

−1

3

)n

log n ≈ 0.129656 (64)

γ2 =
24

5

∑

n=1

(

−1

5

)n

log n ≈ 0.099524. (65)

A.2 W(1) and W(2)

In this case there is no dependence on z, but it is still possible to resum the series in an
approximate way obtaining

W(1) = (ωρτσ)
2
3 e−iπ

3 e−γ1 (66)

W(2) = (ωρτσ)
4
5 e−i 2π

5 e−γ2 . (67)

Notice that the appearance of a phase factor that will enter directly as a shift of the
magnetic flux into the quantum contribution to the current.
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A.3 Y (1)
int and Y (2)

int

Here, in the limit |z| ≫ nτσ (n ∈ N) these functions reduce to

Y(1)
int(|z| → +∞) = Y(2)

int(|z| → +∞) ≈ 1. (68)
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and G. Fève, Separation of neutral and charge modes in one-dimensional chiral edge

channels, Nat. Commun. 4, 1839 (2013), doi:10.1038/ncomms2788.

[16] E. Miranda, Braz. J. Phys. 33, 3 (2003).

[17] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford,
2004).

[18] X. G. Wen, Topological orders and edge excitations in fractional quantum Hall states,
Adv. Phys. 44, 405 (1995), doi:10.1080/00018739500101566.

[19] A. Braggio, D. Ferraro, M. Carrega, N. Magnoli, and M. Sassetti, Environmental induced

renormalization effects in quantum Hall edge states due to 1/f noise and dissipation,
New J. Phys. 14, 093032 (2012), doi:10.1088/1367-2630/14/9/093032.

[20] C. L. Kane and M. P. A. Fisher, Impurity scattering and transport of fractional quantum

Hall edge states, Phys. Rev. B 51, 13449 (1995), doi:10.1103/PhysRevB.51.13449.

[21] D. Chevallier, J. Rech, T. Jonckheere, C. Wahl, and T. Martin, Poissonian tunneling

through an extended impurity in the quantum Hall effect, Phys. Rev. B 82, 155318 (2010),
doi:10.1103/PhysRevB.82.155318.

[22] G. Dolcetto, S. Barbarino, D. Ferraro, N. Magnoli, and M. Sassetti, Tunneling be-

tween helical edge states through extended contacts, Phys. Rev. B 85, 195138 (2012),
doi:10.1103/PhysRevB.85.195138.

[23] G. D. Mahan, Many particle physics (Spingler, New York, 1981).

[24] T. Martin, Les Houches Session LXXXI edited by H. Bouchiat S. Guéron, Y. Gefen, G.
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