
HAL Id: hal-01662908
https://hal.science/hal-01662908

Submitted on 13 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy Query By Example
Aurélien Moreau, Olivier Pivert, Grégory Smits

To cite this version:
Aurélien Moreau, Olivier Pivert, Grégory Smits. Fuzzy Query By Example. SAC 2018 - The 33rd
ACM/SIGAPP Symposium On Applied Computing, Apr 2018, Pau, France. �hal-01662908�

https://hal.science/hal-01662908
https://hal.archives-ouvertes.fr

Fuzzy Query By Example

Aurélien Moreau, Olivier Pivert and Grégory Smits
Univ Rennes, CNRS, IRISA – UMR 6074

22305 Lannion Cedex France
{aurelien.moreau | olivier.pivert | gregory.smits}@irisa.fr

ABSTRACT
This paper describes Fuzzy Query By Example, an approach
helping users retrieve data without any prior knowledge of
the database schema or any formal querying language. The
user is solicited to evaluate, in a binary way, pre-selected
items of the database. We provide a characterization-based
strategy that identifies the properties shared by the exam-
ples (resp. counter-examples) positively (resp. negatively)
evaluated by the user. These properties are expressed using
linguistic terms from a fuzzy vocabulary to ensure that the
user has a good understanding of the inferred query.

CCS Concepts
•Information systems → Users and interactive re-
trieval;

Keywords
Query by Example; Fuzzy logic; Databases;

1. INTRODUCTION
Storing and structuring information efficiently are some of
the keys to facilitating data browsing and retrieval. Com-
mercial websites provide easy-to-use interfaces to navigate
around their data, e.g. with keyword search. Other search
paradigms — such as faceted search or attribute filtering —
were also introduced to ease date browsing. In this paper we
consider the Query By Example (QBE) paradigm, in which
users are asked to evaluate samples from the database to find
items similar to the ones they evaluate positively — positive
examples — while dismissing those evaluated negatively —
counter-examples. QBE implies two main challenges: (i) the
selection of examples to submit for user evaluation, and (ii)

Publication rights licensed to ACM. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or
affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.
SAC 2018,April 9–13, 2018, Pau, France

ACM 978-1-4503-5191-1/18/04. . . $15.00
DOI: https://doi.org/10.1145/3167132.3167208

the interpretation of these user evaluations to infer a query
retrieving relevant results.

We present Fuzzy Query By Example (FQBE), a QBE ap-
proach based on fuzzy set theory. Fuzzy logic provides tools
to express and infer preferences in a flexible way. Our ob-
jective is to help users obtain answers with a simple binary
evaluation of examples. As in [13], we consider a fuzzy vo-
cabulary for each attribute domain in the database. This
vocabulary enables us to formulate, in a linguistic way, de-
scriptions of the attribute values shared by positive exam-
ples that are not shared by counter-examples (later defined
as characterizations).

Let us consider that the user is given to evaluate the ex-
amples in Table 1. Based on the obtained evaluations, with
FQBE we infer that the user is interested in cars that have:
small engine size (eng.), medium price, and very low, low or
medium fuel consumption (mostly low) (FC). In addition to
returning the items that best match the examples evaluated
by the user, we also provide the user with an interpretable
linguistic explanation of the fuzzy query inferred by the sys-
tem. In other words, the user knows what the system be-
lieves about his/her preferences. We implemented FQBE
and conducted experiments to demonstrate the interest of
our approach. In this paper we show how to:

1. Select which examples in a dataset should be submit-
ted to the user for evaluation, leveraging a vocabulary;

2. Use the evaluations to deduce the data properties the
user is interested in;

3. Translate these properties into a query;
4. Provide the user with understandable explanations.

The remainder of the paper is structured as follows. Related
work is discussed in Section 2. Section 3 provides a refresher
on fuzzy set theory. In Section 4, we describe the principle of
the approach and present experimental results in Section 5.
Finally, Section 6 recalls the main contributions and outlines
perspectives for future work.

2. RELATED WORK
The elicitation of user preferences stems from the domain of
preference learning [3]. Preference learning techniques aim
at inferring a preference model (utility function or binary
relation) from examples or user feedbacks. In this approach
we do not aim at learning a preference model but descrip-
tions of a set of examples. However we do rank the examples

Table 1: Some attribute values of the example used
in this paper

year FC mileage eng. HP price make eval
2009 6 32500 1.4 85 9900 seat +
2009 6 59000 1.4 85 8900 seat +
2008 10 25000 2 136 20900 volvo -
2008 10 50000 2 136 20900 volvo -
2009 8 45000 1.4 85 9900 seat +
2008 5 32500 1.4 70 10000 mini +
2008 9 35000 2 140 27000 ford -
2009 6 12000 1.6 115 16000 chevrolet -
2009 8 6000 1.6 115 16000 chevrolet -
2005 12 39000 2 140 15500 audi -
2010 9 4000 1.9 105 20500 seat -
2008 9 60000 2 140 23000 audi -
2009 7 17000 2 136 31500 peugeot -

provided to the user to prepare the preference learning step.

The selection of examples representative of a dataset can be
viewed as a machine learning task similar to boosting algo-
rithms [6]. Starting from one “good” example, the search
for new examples is a compromise between exploitation —
ensuring obtaining other “good” examples with similar val-
ues — and exploration — aiming at obtaining more diverse
examples, albeit not so “good.” When selecting examples we
aim at balancing exploitation and exploration.

Query by Example is a paradigm in information retrieval to
acquire results based either on:

• one (or several) input tuple(s) provided by the user;
• or the evaluation of prototypical examples (positively,

negatively, ...) reflecting the content of the database.

The expected output contains elements that are similar to
the input tuple(s) provided as example(s), or that reflect
the choices of the user if prototypical examples were evalu-
ated. For example, if a user browses houses and positively
evaluates houses with 3 bedrooms and negatively evaluates
houses with a small garden, then the results will include
houses with 3 bedrooms and a “not small” garden.

Some user-example-based approaches have been proposed
for graph databases, where users can either submit a graph
[9] or simply tuples [5]. Only providing tuples enables the
user to not have to specify the relation between the instances
in the tuples. For example, if a user inputs the tuple 〈Jerry
Yang, Yahoo!〉, then answers such as 〈David Filo, Yahoo!〉
and 〈Sergei Brin, Google〉 are returned, without ever pro-
viding the relation (in this case, company founder) between
the elements in the tuple given as input.

Unlike most papers cited above, our work focuses on an
evaluation-based QBE approach. We do not need users to
have in mind the exact idea of what they are looking for;
instead we ask them to evaluate (positively or negatively)
examples of our choosing. We highlight the differences be-
tween the works of [1], [13] and this paper on three points:
the selection of examples, their evaluation, and the use of
these evaluations.

2.1 Selection of Prototypical Examples
The authors of [1] suggest using: (i) actual items that are
representative of categories, or (ii) items that feature diver-
sified values for the attributes the user is interested in, or

(iii) items generated by the user. The authors of [13] pro-
pose to resort to a random or partially random selection of
examples, either using some information on the user if avail-
able, or representing predefined categories of data. Also,
they take into account previous evaluations to select new
examples with a partitioning method. In both [1] and [13]
the authors do not specify how to obtain examples represen-
tative of (categories of) the dataset. In this work we propose
to use the vocabulary describing the data as well as the rep-
resentativity of the data to select examples to evaluate.

2.2 Evaluation of Prototypical Examples
The authors of [1] propose to assign an importance to at-
tributes, and to evaluate the representativity of an example
on a scale. The authors of [13] propose to evaluate each
example value for each attribute on a scale, as well as to
give a global evaluation to each example. In this work we
ask users to simply give a binary global evaluation to each
example: no attribute preferences, nor any single attribute
value preferences. Thus we do not require users to have an
understanding of the structure of the database, and try to
keep the number of interactions with the system reasonable.

2.3 Evaluations, Results, and User Preferences
The authors of [1] check whether items in the database are
“similar to at least one example (w.r.t. all the attributes) and
which are dissimilar to all counter-examples (each time w.r.t.
at least one attribute).” They do not infer user preferences
— with linguistic labels — but provide items that match
the user’s preferences, according to a measure of their own.
For each database item x, this measure is computed with
(i) the similarity degree between positive examples and x,
and (ii) the dissimilarity degree between counter-examples
and x, on all attribute domains. The authors of [13] provide
items to evaluate until the user is satisfied, by selecting new
items to evaluate with the k-NN algorithm. The discovery
of user preferences — to obtain new examples — is done
in an “extensional way” through the selection of desirable
items. The reconstruction of user preferences — to keep the
user aware of the preference elicitation process — however is
done in an “intensional way” by describing the liked items.
Global positive and negative evaluations are used to find
association rules determining whether some linguistic terms
are relevant to the user. Then for each attribute, at best one
linguistic term is selected to express the user preferences for
this attribute, only if the support, confidence and lift for the
association rule that found it are “high enough.” They gen-
erate a fuzzy query based on user preferences reconstructed
but never run it: they only use it for explanation purposes.
In this work we look for common properties between positive
examples on the one hand, and common properties between
counter-examples on the other hand to infer user preferences
and generate a query matching those. Unlike the approach
described in [1], we do not use similarity relations to infer
user preferences. Also, we use the inferred preferences to
compute a fuzzy query and present its results, unlike the
approach in [13] which resorts to an iterative evaluation of
examples until the user is satisfied (without ever evaluating
a fuzzy query).

3. LINGUISTIC VOCABULARY AND SET
OF REPRESENTATIVE ITEMS

Before detailing FQBE we first introduce some notions such
as fuzzy vocabularies, fuzzy queries, and also we provide
a method to build a set of diverse items representing the
diversity of the terms involved in the vocabulary.

3.1 Fuzzy Vocabulary and Data Rewriting
Fuzzy set theory was introduced by Zadeh [12] for modeling
classes or sets whose boundaries are not clear-cut. For such
objects, the transition between full membership and full mis-
match is gradual rather than crisp. Typical examples of such
fuzzy classes are those described using adjectives of the nat-
ural language, such as young, cheap, fast, etc. Formally, a
fuzzy set F on a referential U is characterized by a member-
ship function µF : U → [0, 1] where µF (u) denotes the grade
of membership of u in F . In particular, µF (u) = 1 reflects
full membership of u in F , while µF (u) = 0 expresses abso-
lute non-membership. When 0 < µF (u) < 1, one speaks of
partial membership.

Let R be a relation defined on a set A of q categorical or
numerical attributes {A1, A2, . . . , Aq}. A fuzzy vocabulary,
denoted by V, on R is defined by means of fuzzy partitions
of the q domains. A fuzzy partition Pi associated with the
domain Di of attribute Ai is composed of mi fuzzy sets
{Pi,1, Pi,2, . . . , Pi,mi}, such that for all x ∈ Di:

mi∑
j=1

µPi,j (x) = 1,

where µPi,j (x) denotes the degree of membership of x to the
fuzzy set Pi,j . Each fuzzy partition Pi is associated with a
set of linguistic labels {Li

1, L
i
2, . . . , L

i
mi
}.

Straightforwardly, one has: C(F) = F1 and S(F) = F0.
In practice, the membership function associated with F is often of a trape-

zoidal shape. Then, F is expressed by the quadruplet (A, B, a, b) where C(F) =
[A, B] and S(F) = [A − a,B + b], see Figure 1.

Let F and G be two fuzzy sets on the universe U , we say that F ⊆ G iff
µF (u) ≤ µG(u), ∀u ∈ U . The complement of F , denoted by F c, is defined by
µF c(u) = 1 − µF (u). Furthermore, F ∩ G (resp. F ∪ G) is defined the following
way: µF∩G = min(µF (u), µG(u)) (resp. µF∪G = max(µF (u), µG(u))).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and
complementation operator correspond respectively to the conjunction ∧, dis-
junction ∨ and negation ¬. See [5] for more details.

2.2 Fuzzy Partitions

In the approach we propose, it is assumed that the user specifies a vocabulary
defined by means of fuzzy partitions. Let R be a relation containing w tuples
{t1, t2, . . . , tw} defined on a set Z of q categorical or numerical attributes
{Z1, Z2, . . . , Zq}. A fuzzy vocabulary on R is defined by means of fuzzy partitions
of the q domains. A partition Pi associated with the domain of attribute Zi is
composed of mi fuzzy predicates {Pi,1, Pi,2, ..., Pi,mi

}, such that for all Zi and
for all t ∈ R :

mi∑

j=1

µPij
(t) = 1.

1

0

!

year

`la
st

 m
od

el
'

10 20 30 40

`v
er

y
re

ce
nt

'

`re
ce

nt
'

`m
ed

iu
m

'

`o
ld

'

`v
er

y
ol

d'

`v
in

ta
ge

'

Fig. 2. A partition over the domain of attribute year

More precisely, we consider partitions for numerical attributes (Fig. 2) com-
posed of fuzzy sets, where a set, say Pi, can only overlap with its predecessor
Pi−1 or/and its successor Pi+1 (when they exist). For categorical attributes,
we simply impose that for each tuple the sum of the satisfaction degrees on all
elements of a partition is equal to 1. Each Pi is associated with a set of linguistic
labels {Lp

i,1, Lp
i,2, . . . , Lp

i,mi
}.

Figure 1: A partition over the domain of the at-
tribute year

For the case of numerical attributes (Fig. 1 illustrates a
possible definition of a partition over the attribute year of
second-hand cars), it is also imposed, for the sake of inter-
pretability, that a fuzzy set Pi in a partition Pi can only
overlap with its predecessor Pi−1 or/and its successor Pi+1

(when they exist). In this paper we only consider numerical
attributes. However FQBE is also applicable to categorical
attributes: we only impose that for each attribute domain
the sum of the membership degrees on all modalities of a
partition be 1.

In the approach we propose, it is assumed that a vocabulary
has already been manually defined on the data considered by

a domain expert using a dedicated graphical interface such
as ReqFlex [11], or using an automatic method of vocabulary
elicitation from data [7, 4, 10].

Definition 1. An item x may be rewritten in terms of a
vocabulary V as a vector of

∑q
k=1mk membership degrees.

This vector, denoted by RVx, is of the form 〈µP1,1(x.A1), . . . ,
µP1,m1

(x.A1), . . . , µPq,1(x.Aq), . . . , µPq,mq
(x.Aq)〉.

Example 1. The rewriting of a car from 2007 is rewrit-
ten according to the year partition illustrated by the Figure 1
into the following vector: 〈0, 0, 0.5, 0.5, 0, 0, 0〉, or, only using
non-zero values: 〈0.5/recent, 0.5/medium〉.�

3.2 Fuzzy Query
Terms from a user vocabulary may be used to form fuzzy
predicates that can then take part in the selection statement
of a query. Let Pi,j be a fuzzy set from the partition Pi de-
fined on the domain of attribute Ai and Li

j be its associated
linguistic label. Then, a fuzzy predicate based on Pi,j is of
the form Ai is Li

j . Such fuzzy predicates, as well as Boolean
predicates, may be combined in a conjunctive or disjunc-
tive way using respectively the t-norm (>) and t-conorm
(⊥) operators. Let Pa and Pb be two fuzzy sets, then their
conjunctive (resp. disjunctive) combination is denoted by
Pa ∧ Pb (resp. Pa ∨ Pb) and processed in the following way:

µPa∧Pb(x) = >(µPa(x), µPb(x)) (1)

(resp. µPa∨Pb(x) = ⊥(µPa(x), µPb(x))), where the min (resp.
max) operator is generally used for > (resp. ⊥).

In FQBE, we generate a conjunctive fuzzy query Q′ reflect-
ing the properties that the desirable items should satisfy.
Less restrictive aggregation functions, such as quantifiers
or weighted sums, may be used instead of the conjunction.
However, despite the fact that they may capture and dis-
criminate more items, their meaning is more difficult to ex-
plain to the user (Sec. 4.4).

3.3 Diverse and Representative Items
The generated query Q′ is inferred from the binary eval-
uations of items provided by the user. The first question
to address concerns the selection of items to submit to the
user such that their evaluation, whether positive or negative,
will make it possible to determine if a term of the vocabulary
should appear in the inferred query.

As said in Sec. 2, we share the point of view of several exist-
ing approaches to QBE that it is more meaningful to eval-
uate real items from the DB instead of artificial ones. An
optimal but unrealistic solution would be to find for each
term of the vocabulary a set of items among which only one
item fully characterizes the concerned term, all other values
(i.e. rewritings) being equal. As it appears unconceivable
to find such sets of items and to task the user to evaluate
too many items, we propose a strategy that builds offline
a reduced set S of k items from the DB. These items are
selected in such a way that they are representative of the
vocabulary, of the dataset, and that they are as mutually
diverse as possible.

The representativity of an item x w.r.t. the vocabulary
quantifies the extent to which the item may be precisely

described by the different linguistic terms. This representa-
tivity degree w.r.t. the vocabulary, denoted by RepV (x) is
computed from the rewriting vector RVx as follows:

RepV (x) =
∑

Ai,i=1..q

max
Pi,j ,j=1..mi

µPi,j (x), (2)

where q is the number of dimensions over which each item
is described. This representativity degree is thus maximal if
x fully satisfies one fuzzy set on each dimension (as opposed
to somewhat satisfying more than one fuzzy set).

An item x also has to be representative of a sufficiently large
data subset. This second representativity degree, this time
w.r.t. the dataset D, is denoted by RepD(x) and defined
by:

RepD(x) =
1

|D| ×
∑
x′∈D

1− d(RVx′ , RVx), (3)

where d(RVx′ , RVx) is a distance measure between two rewrit-
ing vectors computed in the following way:

d(RVx′ , RVx) =

∑
Pi∈V

∑
Pi,j∈Pi

|µPi,j (x)− µPi,j (x′)|∑q
k=1mk

,

(4)
where Pi is a partition of the vocabulary V, and that Pi,j

is a modality of the partition Pi. The first element of S is
computed with:

Sc(x, ∅) = >(RepV (x), RepD(x)). (5)

Then, the set S to build has to be as diverse as possible so
as to capture the different term combinations that may be
used to retrieve items. The diversity of an item x, or more
precisely of its rewriting vector RVx, w.r.t. to the set S of
previously selected items, denoted by DivS(x), represents
the extent to whichRVx is disjoint from the rewriting vectors
of the items in S.

DivS(x) =
1

|S|
∑
x′∈S

µdisjoint(RVx, RVx′), (6)

where µdisjoint(RVx, RVx′) quantifies how much the two rewrit-
ing vectors are disjoint:

µdisjoint(RVx, RVx′) =
1

q

∑
Ai

[1−⊥Pi,j>(µPi,j (x), µPi,j (x′))].

(7)
W.r.t. the current content of the set S, a global score may
be computed for each item x ∈ D\S based on the three
previously defined notions:

Sc(x,S) = >(RepV (x), RepD(x), DivS(x)), (8)

where the Lukasiewicz t-norm and t-conorm (>Luk(x, y) =
max(0, x+y−1) and ⊥Luk(x, y) = min(x+y, 1)) have been
used in our case to allow for some compensation between
the combined degrees.

The algorithm (Algo. 1) used to build S consists in first iden-
tifying the item x1 from D maximizing the score Sc(x, ∅),
an item is arbitrarily picked in case of tie, and then to incre-
mentally complete this set with the next best item, and so
on until the cardinality of S is equal to k. It is worth recall-
ing that this costly algorithm, k × |D| steps, that computes
a locally optimal diversified set (depending on the choice of

the first x1), is performed offline and only once, unless sig-
nificant changes on D have been done. The second question
concerns the choice of the value for the parameter k. The
main goal of the approach is to display a small set of items
that can be quickly evaluated by the user. Thus, as no more
than 20 or 30 items can be displayed simultaneously, we con-
sider that setting k to 100 is generally enough. Obviously,
additional interesting items may be identified on-the-fly if k
items are not enough, at the cost of new scans of the data.

Input: data D; k the number of expected examples in S
Output: set of diversified examples S
begin
S ← ∅;
x1 ← arg maxx∈D(Sc(x, ∅));
S ← {x1};
while |S| < k do

maxSc← 0;
x1 ← NULL;
foreach x ∈ D\S do

tmpSc← Sc(x,S);
if tmpSc > maxSc then

maxSc← tmpSc;
x1 ← x;

end

end

S ← {x1} ∪ S;
end
return S;

end
Algorithm 1: Construction of S

4. FQBE
FQBE consists of the following steps:

• The user chooses which examples are “good” or “bad”
according to his/her expectations. They are put in a
positive and a negative set respectively.
• The sets are characterized as in [8] so as to discover

the modalities that represent them best.
• The positive set provides a conjunctive selection state-

ment reflecting fuzzy properties desired by the user.
• The answers to this query are submitted to the user,

along with explanations of the user preferences in a
linguistic interpretable form.

After each example evaluation, the inferred query is updated
and displayed. If they are satisfactory, the generated query
is executed. Otherwise, the user can evaluate more examples
to modify the inferred characterizations.

4.1 Evaluating Examples
In the following we use a running example to illustrate the
last three steps mentioned at the beginning of the section.
For the sake of clarity we select our own examples and the
associated evaluations. Table 1 contains the data elements
used in this example with the associated (positive or nega-
tive) evaluations. Positive examples are put in the set E+
and counter-examples are put in the set E−. Items in this ex-
ample are described according to the attributes: year, fuel

consumption, mileage, option level, comfort level, security
level, engine size, horse power, price and make.

4.2 Characterization of the Sets of Examples
The objective is to deduce from the evaluations of the sug-
gested examples the user’s expectations. We aim at finding
which properties are satisfied by items of E+ and not by
those of E− (and vice-versa). These properties are called
characterizations.

Definition 2. A characterization EE attached to a set E
is a conjunction of couples (attribute, fuzzy set of labels) of
the form

EE = {(Ai, Fi) |Ai ∈ A and Fi is a fuzzy set of linguistic

labels from the partition of the domain of Ai}.

Items from the sets E+ and E− are projected on the vo-
cabulary in order to obtain a characterization of the sets
using terms of the natural language, i.e. terms from the
vocabulary. The projection of a set E on the partition of
an attribute Ai ∈ A is represented by a fuzzy set of labels
Fi = {Li

j/µLi
j
(E) | Li

j ∈ Pi} where

µLi
j
(E) =

∑
x∈E µLi

j
(x)

|E| , (9)

and µLi
j
(x) is the degree of membership of x to Li

j . It is as-

sumed that the only labels that appear in Fi are such that
µLi

j
(E) > 0. The degree associated with each label is related

to the number of points verifying it and to their member-
ship degrees, hence making characterizations representative
of each set. The projection of the sets E+ and E− on the
modalities of the vocabulary leads to a table as the one il-
lustrated in Table 2.

Table 2: Projection of the sets on the vocabulary
Set year mileage price
E+ v. recent (1) low (1) medium (1)

E−
recent (0.11)
v. recent (0.78)
recent (0.11)

v. low (0.44)
low (0.56)

expensive (0.54)
v. expensive (0.46)

Each combination of attributes is a candidate characteriza-
tion. All such combinations are reviewed. In [8] the authors
coined two properties that characterizations of interest must
have: specificity and minimality. A high specificity degree
ensures that the characterization indeed characterizes one
set in particular and not the other. Minimality ensures that
the characterization contains as little attributes as possible
while having a high specificity degree. Let us consider a
candidate characterization CEE+ for E+. To check whether
it is specific, we consider its mirror CEE− for E− with the
same attributes (we project the elements of E− on the at-
tributes of CEE+). The specificity degree sp(CEE+, CEE−)
is computed by the mutually exclusive disjunction between
the fuzzy sets:

sp(CEE+,CEE−) =

max
Ai∈A

(1− max
Li

j∈Pi

min(µLi
j
(E+), µLi

j
(E−))), (10)

where A is the set of attributes in the candidate character-
izations CEE+ and CEE−, Pi the partition of the attribute
Ai ∈ A on the vocabulary, and Li

j ∈ Pi the modalities cov-
ered by the characterizations.

Remark 1. If either E+ or E− is empty then all candidate
characterizations for the non-empty set are fully specific.

The number of possible characterizations is exponential in
the number of attributes. In order to avoid reviewing all
of them, the authors of [8] found that the characteriza-
tion containing all attributes has the maximum specificity
degree possible, a degree in [0, 1] not necessarily equal to
1. Our Apriori-like algorithm to find characterizations re-
views them by size, from one-attribute characterizations to
the q-attributes characterization. As we want to find the
minimal and specific characterizations, we stop looking for
longer characterizations as soon as a characterization with
the maximum specificity degree is found. It means that the
attributes not yet explored do not increase the overall speci-
ficity. It means that these attributes do not make it possible
to discriminate between items from E+ and E−. The char-
acterizations found are then sorted by decreasing specificity
degree.

Example 2. Using the data in Table 2, we present some
of the possible candidate characterizations for E+:

• CE1
+ =“year is very recent (1)”

• CE2
+ =“mileage is low (1)”

• CE3
+ =“price is medium (1).”

Candidate characterizations for E− include:

• CE1
− =“year is recent (0.11) or very recent (0.78) or

last model (0.11)”
• CE2

− =“mileage is very low (0.44) or low (0.56)”
• CE3

− =“price is expensive (0.54) or very exp. (0.46).”

In this running example we consider candidate characteriza-
tions with only one attribute, and get:

sp(CE1
+, CE

1
−) = 1−max(min(0, 0.11),min(1, 0.78),

min(0, 0.11)) = 0.22

We obtain sp(CE2
+, CE

2
−) = 0.44 and sp(CE3

+, CE
3
−) = 1.

As the label very recent is present in both CE1
+ and CE1

−
with a high degree, their specificity degree is low. Among
these candidate characterizations, CE3 is the best choice ac-
cording to the specificity degree. Since CE3 has the maxi-
mum specificity degree, there is no need to look for “longer”
characterizations with the attribute price: they will not be
minimal and cannot be more specific.
After reviewing all possible candidate characterizations and
checking whether they verify the minimality property, we or-
der them by decreasing specificity degree and find the follow-
ing characterizations for E+ (top-3):

• E1
+ =“engine size is small” (specificity 1);

• E2
+ =“price is medium” (specificity 1);

• E3
+ =“consumption is very low (0.13) or low (0.62) or

medium (0.25)” (specificity 0.78).

We find the following characterizations for E− (top-3):

• E1
− =“engine size is medium (0.28) or big (0.72)” (speci-

ficity 1);
• E2

− =“price is expensive (0.54) or very expensive (0.46)”
(specificity 1);

• E3
− =“consumption is low (0.22) or medium (0.11) or

high (0.67)” (specificity 0.78).�

Only the characterizations with a high enough specificity
degree (above a threshold λ) become a selection condition.

4.3 Generation of the Fuzzy Query
From the characterizations of E+ and those of E− we seek to
build a query that will look for elements similar (in terms of
properties) to the positive examples. The characterizations
are first “refined,” so as to render them coherent. A label
present in the positive and negative characterizations may
or may not be removed depending on its membership degree.
We propose to apply the following rule: if the positive and
the negative degrees are both superior or equal to 0.5, then
they are both removed from the positive and negative char-
acterizations. Otherwise, the label with the highest degree is
kept.

Characterizations with a specificity degree equal to 1 are not
affected by this rule. Indeed, a specificity degree equal to 1
means that there are no labels shared between the positive
and negative characterizations: their sets are fully disjoint.
In our running example, E3

− is concerned, the low modality
is removed (0.62 is higher than 0.22) and we get:
E3
− =“consumption is medium (0.11) or high (0.67)”. The

medium modality is also removed (0.25 is higher than 0.11),
and as a result: E3

− =“consumption is high (0.67)”.

Finally we translate the characterizations into a conjunctive
query, each characterization becoming a selection condition.
The selection conditions are in Listing 1.

engine s ize i s smal l
and p r i c e i s medium
and consumption i s (very low (0 . 1 3) or low (0 . 6 2)

or medium (0 . 2 5))

Listing 1: Conjunction of selection conditions

For some attributes one label does not fully cover the sets of
examples or counter-examples: this leads to a disjunction of
labels (such as consumption is very low or low or medium).
Each of these labels does not carry the same weight: for in-
stance here the label low has the highest membership degree
(0.62). We treat these degrees as importances that must be
taken into account in the query. To differentiate labels we
propose to use the weighted disjunction as proposed in [2].
This weighted disjunction enables us to take into account
the weights (here the membership degrees) assigned to each
modality in the characterization, so that we obtain:

µAi(t) = max
Pi,j∈Pi

min(wj , µPi,j (t)) (11)

where wj denotes the weight associated with the modality
Pi,j related to attribute Ai in the characterization used to
generate the query.

Example 3. Let us consider the selection condition “con-
sumption is very low (0.13) or low (0.62) or medium (0.25)”.
In order to use the weighted disjunction, the weights must
first be normalized so that the maximum weight is equal to 1.
The selection condition thus becomes “consumption is very

low (0.2) or low (1) or medium (0.4)”. When reviewing a
tuple t with a fuel consumption that is fully “low,” we get:

µfuel con.(t) = max(min(wvery low, µvery low(t)),min(wlow,

µlow(t)),min(wmedium, µmedium(t)))

= max(min(0.2, 0),min(1, 1),min(0.4, 0)) = 1,

which is the maximum possible obtainable value.�

4.4 Query Results
Query results are presented to the user, along with char-
acterizations. They enable the user to know what prefer-
ences were inferred from his/her evaluations. Negative ex-
planations can greatly improve readability if for any given
attribute the positive explanation is a disjunction of most
modalities. In this case only providing one or two modalities
as the negative explanation is more cooperative than provid-
ing a disjunction covering almost the entire partition. For
instance, the explanation “not high consumption” is more
intelligible than the disjunction in E3

+. In our running ex-
ample, the user gets the following explanations:
We believe you have an interest in:

• small engine size;
• medium price.
• not high consumption.

Several objectives must be met when formulating explana-
tions. Contradictions must be avoided: an attribute’s label
should not appear in positive and negative characterizations.
Translation rules handle this issue. Characterizations must
be easy to read: negligible labels (with a very low member-
ship degree) may be omitted, and important labels should
be emphasized.

5. EXPERIMENTS AND DISCUSSION
We study the effectiveness of FQBE using a real dataset of
second-hand cars scraped from LeBonCoin.fr of cardinality
10k+, with 9 different numerical attributes that each have
a predefined vocabulary. We set two objectives: (i) use pre-
cision to compare our example selection scoring method Sc
to a random selection, and (ii) determine how well we infer
user preferences, and the impact of the specificity threshold
λ on precision and recall.

To evaluate the proposed approach, we consider the set of
queries in Listing 2. These queries have been selected for
the diversity of the vocabulary elements involved in their
selection statement. For each such query Q that we try to
infer, we evaluate examples based on their belonging to the
result set R of Q.

Each tested fuzzy query Q yields a fuzzy result set R. The
core of R is denoted by Rc and contains only the fully sat-
isfactory results of R. Its support, denoted by Rs contains
all elements from R with a non-zero degree. With FQBE,
by evaluating examples we generate a query Q′ that yields
a result set R′. To evaluate the interest of the generated
query Q′, we compare its result set R′ to the original re-
sult set R. Obtaining the fuzzy set equality R = R′ is not
our primary objective here. Our first objective is precision:
finding only “good” results. Only afterwards we shall focus
on recall: finding all “good” results. We compute the degree

of inclusion of R′ in R with µ⊆(R′, R), in order to know
how “good” the generated results are. This is a fuzzy inter-
pretation of the precision in IR. Similarly, we compute the
inclusion of R in R′ with µ⊆(R,R′) to obtain the recall.

Precision = µ⊆(R′, R) =

∑
x∈R′ min(µR(x), µR′(x))∑

x∈R′ µR′(x)
. (12)

Q1: p r i c e i s medium and mileage i s low
Q2 : (p r i c e i s expens ive or v . expens ive)

and year i s last model
Q3 : (consumption i s low or v . low) and mileage

i s medium and (year i s r e c ent or v . r e cent)
Q4 : p r i c e i s medium and consumption i s low

and mileage i s v . low and year i s r e c ent
Q5 : p r i c e i s cheap and mileage i s low
Q6 : consumption i s low and year i s v . r e cent
Q7 : mi leage i s v . low and horsepower i s v . high
Q8 : p r i c e i s cheap and horsepower i s v . high
Q9 : mi leage i s medium and consumption i s v . low
Q10 : year i s medium and p r i c e i s cheap

and mileage i s medium

Listing 2: Conjunctions of selection conditions

5.1 Example Selection Methods Comparison
We compare two sets of examples: a random selection, and
S, the set of examples selected with Sc. In both cases we
consider a set of 150 examples to evaluate (let us recall that
S is ordered). For each query Q considered, we positively
evaluate the examples that match it (that are in R), and
negatively evaluate the others. Characterizations found such
that sp > 0.7 are kept. In Table 3 we specify the size of
the result set R (the cardinality |Rs| of its support) of each
query Q considered, as well as the number of results |Rc|
fully satisfying Q. We present the number of consecutive
examples to evaluate to attain certain precision values (0.5
and 0.9) between the set of generated results and that of
original results. We only focus on precision (R′ ⊆ R) as we
aim to find original results only, not all original results.

In Table 3 there is only one line for Sc as the 0.9 precision
value is always attained with the same number of examples
necessary to attain the 0.5 precision value. Random scores
are obtained by averaging their results over 10 runs, and us-
ing the number 151 when no minimal number of examples
has been found to attain the expected precision values (e.g.
if for Q1 the precision 0.9 is attained by evaluating 49 ex-
amples on the first run, and is never attained by evaluating
all examples on the second run, the average over these two
runs is (49 + 151)/2 = 100). Nevertheless, the average num-
bers over 10 selections of randomly-chosen examples are far
greater than those of Sc. In Table 3 we also show the ratio
between the minimal number of random examples and the
minimal number of examples from S to attain a precision of
0.9. On average, this ratio is of 15.2, showing that S is more
efficient at building Q′. Only Q4 is not inferred: R4 may be
too small compared to the dataset.

5.2 Impact of specificity threshold λ

We now evaluate the precision and recall over examples se-
lected with Sc only. In Table 4 we present the cardinalities
of the generated sets of answers for the 10 inferred queries
considered (which can be compared to the cardinalities of

the original sets of answers from Table 3), as well as the
precision and recall for three different specificity threshold
values λ. We positively evaluate examples from S that are
in R, and negatively evaluate the others. S(R) is the set of
examples from S that are also in R.

With a specificity threshold of 0.7, the generated queries do
not yield many fully satisfactory results. While the preci-
sion is excellent (maximal for all queries but Q4 and Q8),
the recall is very low, as are the numbers of generated re-
sults. The generated queries all have a very high number
of selection conditions (see Table 5), almost one for every
attribute (out of 9).

With a specificity threshold of 0.75, we obtain the maximal
precision for queries Q1, Q2, Q3, Q5, Q6, Q9, and Q10. In
other words, all fully satisfactory results from R1′ also fully
satisfy R1, and the top-42 (unordered) results between these
two sets are the same. However we are still far from covering
the whole R1, although it is already a good improvement
from finding only 4 elements with λ = 0.7. On average, the
generated queries cover half the attributes of the dataset.

With the specificity threshold λ = 0.8, we obtain the max-
imal precision for queries Q1, Q2, Q3, Q5, Q9, and Q10. In
other words, all fully satisfactory results from R1′ also fully
satisfy R1, and the top-685 (unordered) results between
these two sets are the same. Furthermore, we obtain R1s =
R1′s. Furthermore, the recall for R1 is also maximal: we
have R1 = R1′. This is a major improvement in terms of
result set size, although the equality was not found in as
many cases as before. The queries obtained with λ = 0.8
are described in Listing 3. On average the queries only cover
a few attributes of the dataset (between 2 and 4).

Q1‘ p r i c e i s medium (1) and mileage i s low (1)
Q2‘ year i s last model (1) and (p r i c e i s

expens ive (0 . 4 62) or v . expens ive (1))
Q3‘ year i s r e c ent (1) and (p r i c e i s medium (1)

or expens ive (0 . 2 5)) and mileage i s medium (1)
and (consumption i s v . low (0 . 5) or low (1))

Q4‘ true
Q5‘ p r i c e i s cheap (1) and mileage i s low (1)

and (year i s medium (1) or r e cent (1))
Q6‘ (p r i c e i s v . cheap (0 . 5) or medium (1)

or expens ive (0 . 5)) and consumption i s low (1)
Q7‘ (p r i c e i s v . expens ive (1) or e x c e s s i v e l y

expens ive (1)) and (consumption i s high (0 . 6 6)
or v . high (1)) and mileage i s v . low (1)

Q8‘ p r i c e i s cheap (1) and (year i s v . o ld (0 . 5)
or old (0 . 5) or medium (1))

Q9‘ consumption i s v . low (1) and mileage i s
medium (1) and (p r i c e i s v . cheap (0 . 4 3)
or cheap (1) or medium (0 . 4 8)) and
(year i s medium (1) or r e cent (0 . 4))

Q10 ‘ consumption i s v . low (1) and p r i c e i s
cheap (1) and mileage i s medium (1)
and year i s medium (1)

Listing 3: Conjunctions of selection conditions ob-
tained

The differences between recall values lie on the specificity
threshold. We propose to check how many characterizations
are kept for each query and for different specificity thresh-
olds in Table 5. With 0.7, a query is generated over almost
all attributes, with 0.75 over half the attributes and with 0.8
over one third of the attributes. This may explain the earlier
gaps between result set sizes in Table 4. A high specificity

Table 3: Result sets sizes, and inclu-
sion degrees with Random and Sc se-
lection methods

Q1 Q2 Q3 Q4 Q5
|Rc| 685 156 536 3 29
|Rs| 1312 157 714 47 72

Random
Precision > 0.5 27.7 71.6 53.1 +150 139.2
Precision > 0.9 86.5 84.5 121.6 +150 139.2

Sc
Precision > 0.9 22 2 14 +150 3
Ratio @ 0.9 3.93 42.25 8.69 1 46.4

Q6 Q7 Q8 Q9 Q10
|Rc| 462 458 175 116 385
|Rs| 654 912 382 459 477

Random
Precision > 0.5 27.5 15.2 51.7 121.1 57.9
Precision > 0.9 51.4 34.5 59 121.4 84.1

Sc
Precision > 0.9 3 2 17 14 26
Ratio @ 0.9 17.13 17,25 3.47 8.67 3.23

Table 4: Number of elements from S in R, and cardinalities of
result sets
Q Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
|S(Rc)| 5 19 5 0 6 4 19 4 7 6
|S(R)| 6 19 6 0 6 4 21 4 8 6

λ = 0.7
|R′c| 4 3 74 3575 3 1 1 26 2 1
|R′s| 21 38 225 10479 4 8 43 119 27 12
Precision 1 1 1 1 1 1 0,192 1 1
Recall 0,01 0,05 0,22 0,09 0,01 0,02 0,03 0,05 0,02

λ = 0.75
|R′c| 42 36 357 3575 8 2 211 605 20 5
|R′s| 167 98 644 10479 27 32 523 931 116 29
Precision 1 1 1 1 1 0,88 0,18 1 1
Recall 0,07 0,47 0,79 0,33 0,02 0,5 0,49 0,25 0,04

λ = 0.8
|R′c| 685 124 357 3575 24 1232 287 1458 97 22
|R′s| 1312 157 644 10479 64 1952 588 1729 407 91
Precision 1 1 1 1 0,31 0,83 0,17 1 1
Recall 1 0,96 0,79 0,88 0,87 0,55 0,92 0,9 0,12

threshold will limit the number of characterizations consid-
ered to generate the query, and in turn less selection condi-
tions will increase the size of the result set. Let us note that
is it crucial to find some characterizations for the approach
to work, and that should there be no characterization with
a specificity degree above a given λ, then the top-k char-
acterizations should be considered instead (with k = 3 for
instance). λ values higher than 0.8 become too restrictive.

Table 5: Number of characterizations obtained for
the positive set of examples with different specificity
thresholds

λ Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0.7 8 9 8 0 9 8 8 8 8 8
0.75 5 5 4 0 5 4 5 4 5 5
0.8 2 2 4 0 3 2 3 2 4 4

6. CONCLUSION
In this paper we presented FQBE, a Query by Example ap-
proach to help users browse databases by simply evaluating
examples. We proposed a method to select which examples
to submit for user evaluation, which provides better results
than a random selection of examples. We also showed that
for most tested queries, FQBE is capable of inferring the user
preferences and returning only original satisfactory results.

Future work include conducting experiments on other real-
world datasets, as well as taking into account user feedback
to alter the inferred user preferences. We also intend to
conduct a user study so as to evaluate the benefits of FQBE.

Acknowledgments This work has been partially funded by
the French DGE (Direction Générale des Entreprises) under
the project ODIN (Open Data INtelligence).

7. REFERENCES
[1] M. De Calmès, D. Dubois, E. Hullermeier, H. Prade,

and F. Sedes. Flexibility and fuzzy case-based
evaluation in querying: An illustration in an
experimental setting. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems,
11(01):43–66, sep 2003.

[2] D. Dubois and H. Prade. Weighted minimum and
maximum operations in fuzzy set theory. Information
Sciences, 39(2):205–210, sep 1986.

[3] J. Fürnkranz and E. Hüllermeier. Preference Learning.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[4] S. Guillaume and B. Charnomordic. Generating an
interpretable family of fuzzy partitions from data.
IEEE Transactions on Fuzzy Systems, 12(3):324–335,
2004.

[5] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri.
Querying knowledge Graphs By Example entity
tuples. In ICDE, volume 27, pages 1494–1495. IEEE,
may 2016.

[6] M. Kearns and L. Valiant. Cryptographic Limitations
on Learning Boolean Formulae and Finite Automata.
Journal of the ACM, 41(1):67–95, 1994.

[7] C. Marsala and B. Bouchon-Meunier. Fuzzy
partitioning using mathematical morphology in a
learning scheme. In FUZZ’IEEE, volume 2, pages
1512–1517. IEEE, 1996.

[8] A. Moreau, O. Pivert, and G. Smits. A Fuzzy
Approach to the Characterization of Database Query
Answers. In IPMU, Eindhoven, Netherlands, 2016.

[9] D. Mottin, M. Lissandrini, Y. Velegrakis, and
T. Palpanas. Exemplar Queries: Give me an Example
of What You Need. VLDB, pages 365–376, 2014.

[10] G. Smits, M.-J. Lesot, and O. Pivert. Vocabulary
Elicitation for Informative Descriptions of Classes. In
IFSA-SCSI, Otsu, Japan, 2017.

[11] G. Smits, O. Pivert, and T. Girault. ReqFlex: Fuzzy
Queries for Everyone. VLDB, 6(12):1206–1209, aug
2013.

[12] L. A. Zadeh. Fuzzy Sets. Information and Control,
8(3):338–353, 1965.

[13] S. Zadrozny, J. Kacprzyk, and M. Wysocki. On a
novice-user-focused approach to flexible querying: The
case of initially unavailable explicit user preferences.
ISDA, pages 696–701, 2010.

