
HAL Id: hal-01662857
https://hal.science/hal-01662857v2

Submitted on 27 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anytime Discovery of a Diverse Set of Patterns with
Monte Carlo Tree Search

Guillaume Bosc, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue

To cite this version:
Guillaume Bosc, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue. Anytime Discovery of a
Diverse Set of Patterns with Monte Carlo Tree Search. Data Mining and Knowledge Discovery, 2018,
32 (3), pp.604-650. �10.1007/s10618-017-0547-5�. �hal-01662857v2�

https://hal.science/hal-01662857v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Anytime Discovery of a Diverse Set of Patterns
with Monte Carlo Tree Search

Guillaume Bosc ·
Jean-François Boulicaut ·
Chedy Räıssi · Mehdi Kaytoue

Received: date / Accepted: date

Abstract The discovery of patterns that accurately discriminate one class la-
bel from another remains a challenging data mining task. Subgroup discovery
(SD) is one of the frameworks that enables to elicit such interesting patterns
from labeled data. A question remains fairly open: How to select an accurate
heuristic search technique when exhaustive enumeration of the pattern space
is infeasible? Existing approaches make use of beam-search, sampling, and ge-
netic algorithms for discovering a pattern set that is non-redundant and of
high quality w.r.t. a pattern quality measure. We argue that such approaches
produce pattern sets that lack of diversity: Only few patterns of high quality,
and different enough, are discovered. Our main contribution is then to formally
define pattern mining as a game and to solve it with Monte Carlo tree search
(MCTS). It can be seen as an exhaustive search guided by random simulations
which can be stopped early (limited budget) by virtue of its best-first search
property. We show through a comprehensive set of experiments how MCTS
enables the anytime discovery of a diverse pattern set of high quality. It out-
performs other approaches when dealing with a large pattern search space and
for different quality measures. Thanks to its genericity, our MCTS approach
can be used for SD but also for many other pattern mining tasks.

Guillaume Bosc
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France
E-mail: guillaume.bosc@insa-lyon.fr

Jean-François Boulicaut
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France
E-mail: jean-francois.boulicaut@insa-lyon.fr

Chedy Räıssi
INRIA Nancy Grand Est, F-54506, France
E-mail: chedy.raissi@inria.fr

Mehdi Kaytoue
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France
E-mail: mehdi.kaytoue@insa-lyon.fr

2 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

1 Introduction

The discovery of patterns, or descriptions, which discriminate a group of ob-
jects given a target (class label) has been widely studied as overviewed by
Novak et al (2009). Discovering such descriptive rules can be formalized as the
so-called subgroup discovery task (SD introduced by Wrobel (1997)). Given a
set of objects, each being associated to a description and a class label, a sub-
group is a description generalization whose discriminating ability is evaluated
by a quality measure (F1-score, accuracy, etc). In the last two decades, dif-
ferent aspects of SD have been studied: The description and target languages
(itemset, sequences, graphs on one side, quantitative and qualitative targets
on the other), the algorithms that enable the discovery of the best subgroups,
and the definition of measures that express pattern interestingness. These di-
rections of work are closely related and many of the pioneer approaches were
ad hoc solutions lacking from easy implementable generalizations (see for ex-
amples the surveys of Novak et al (2009) and Duivesteijn et al (2016)). SD
still faces two important challenges: First, how to characterize the interest of a
pattern? Secondly, how to design an accurate heuristic search technique when
exhaustive enumeration of the pattern space is unfeasible?

Leman et al (2008) introduced a more general framework than SD called
exceptional model mining (EMM). It tackles the first issue. EMM aims to
find patterns that cover tuples that locally induce a model that substantially
differs from the model of the whole dataset, this difference being measured
with a quality measure. This rich framework extends the classical SD settings
to multi-labeled data and it leads to a large class of models, quality measures,
and applications [van Leeuwen and Knobbe (2012); Duivesteijn et al (2016);
Kaytoue et al (2017)]. In a similar fashion to other pattern mining approaches,
SD and EMM have to perform a heuristic search when exhaustive search fails.
The most widely used techniques are beam search [van Leeuwen and Knobbe
(2012); Meeng et al (2014)], genetic algorithms [del Jesús et al (2007); Lucas
et al (2017)], and pattern sampling [Moens and Boley (2014); Bendimerad et al
(2016)].

The main goal of these heuristics is to drive the search towards the most
interesting parts, i.e., the regions of the search space where patterns maximize
a given quality measure. However, it often happens that the best patterns are
redundant : They tend to represent the same description, almost the same set
of objects, and consequently slightly differ on their pattern quality measures.
Several solutions have been proposed to filter out redundant subgroups, e.g.
as did Bringmann and Zimmermann (2009); van Leeuwen and Knobbe (2012);
Meeng et al (2014); Bosc et al (2016). Basically, a neighboring function enables
to keep only local optima. However, one may end up with a pattern set of small
cardinality: This is the problem of diversity, that is, many local optima have
been missed.

Let us illustrate this problem on Figure 1. The search space of patterns,
which can be represented as a lattice, hides several local optima (patterns
maximizing a pattern quality measure in a neighborhood). Figure 1(a) presents

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 3

such optima with red dots, surrounded with redundant patterns in their neigh-
borhood. Given the minimal number of objects a pattern must cover, ex-
haustive search algorithms, such as SD-Map [Atzmüller and Puppe (2006);
Atzmüller and Lemmerich (2009)], are able to traverse this search space ef-
ficiently: The monotonocity of the minimum support and upper bounds on
some quality measures such as the weighted relative accuracy (WRAcc) en-
able efficient and safe pruning of the search space. However, when the search
space of patterns becomes tremendously large, either the number of patterns
explodes or the search is intractable. Figure 1(b) presents beam-search, prob-
ably the most popular technique within the SD and EMM recent literature.
It operates a top-down level-wise greedy exploration of the patterns with a
controlled level width that penalizes diversity (although several enhancements
to favor diversity have been devised [van Leeuwen and Knobbe (2012); van
Leeuwen and Ukkonen (2013); Meeng et al (2014)]). Genetic algorithms have
been proposed as well [Rodŕıguez et al (2012); Pachón et al (2011); Carmona
et al (2010)]. They give however no guarantees that all local optima will be
found and they have been designed for specific pattern languages and quality
measures [Lucas et al (2017)]. Finally, pattern sampling is attractive as it en-
ables direct interactions with the user for using his/her preferences to drive the
search [Boley et al (2011); Moens and Boley (2014)]. Besides, with sampling
methods, a result is available anytime. However, traditional sampling methods
used for pattern mining need a given probability distribution over the pattern
space which depends on both the data and the measure and may be costly
to compute [Boley et al (2011); Moens and Boley (2014)]. Each iteration is
independent and draws a pattern given this probability distribution (Figure
1(c)).

In this article, we propose to support subgroup discovery with a novel
search method, Monte Carlo tree search (MCTS). It has been mainly used in
AI for domains such as games and planning problems, that can be represented
as trees of sequential decisions [Browne et al (2012)]. It has been popularized
as definitively successful for the game of Go in Silver et al (2016). MCTS
explores a search space by building a game tree in an incremental and asym-
metric manner: The tree construction is driven by random simulations and
an exploration/exploitation trade-off provided by the so called upper confi-
dence bounds (UCB) [Kocsis and Szepesvári (2006)]. The construction can be
stopped anytime, e.g., when a maximal budget is reached. As illustrated on
Figure 1(d), our intuition for pattern mining is that MCTS searches for some
local optima, and once found, the search can be redirected towards other local
optima. This principle enables per se a diversity of the result set: Several high
quality patterns covering different parts of the data set can be extracted. More
importantly, the power of random search leads to anytime mining : A solution
is always available, it improves with time and it converges to the optimal one if
given enough time and memory budget. This is a best-first search. Given a rea-
sonable time and memory budget, MCTS quickly drives the search towards a
diverse pattern set of high quality. Interestingly, it can consider, in theory, any

4 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Table 1: Toy dataset

ID a b c class(.)
1 150 21 11 l1
2 128 29 9 l2
3 136 24 10 l2
4 152 23 11 l3
5 151 27 12 l2
6 142 27 10 l1

pattern quality measure and pattern language (in contrast to current sampling
techniques as developped by Boley et al (2011); Moens and Boley (2014)).

Our main contribution is to a complete characterization of MCTS for sub-
group discovery and pattern mining in general. Revisiting MCTS in such a
setting is not simple and the definition of it requires smart new policies. We
show through an extensive set of experiments that MCTS is a compelling
solution for a pattern mining task and that it outperforms the state-of-the-
art approaches (exhaustive search, beam search, genetic algorithm, pattern
sampling) when dealing with large search space of numerical and nominal
attributes and for different quality measures.

The rest of this article is organized as follows. Section 2 formally introduces
the pattern set discovery problem. Section 3 then recalls the basic definitions
of MCTS. We present our MCTS method, called mcts4dm, in Section 4.
After discussing the related work in Section 5, we report on experiments for
understanding how to configure a MCTS for pattern mining (Section 6) and
how does MCTS compare to competitors (Section 7).

2 Pattern set discovery

There exists several formal pattern mining frameworks and we choose here
subgroup discovery to illustrate our purpose. We provide some basic definitions
and then formally define pattern set discovery.

Definition 1 (Dataset D(O,A, C, class)) Let O, A and C be respectively
a set of objects, a set of attributes, and a set of class labels. The domain of
an attribute a ∈ A is Dom(a) where a is either nominal or numerical. The
mapping class : O 7→ C associates each object to a unique class label.

A subgroup can be represented either by a description (the pattern) or by its
coverage, also called its extent.

Definition 2 (Subgroup) The description of a subgroup, also called pattern,
is given by d = 〈f1, . . . , f|A|〉 where each fi is a restriction on the value domain
of the attribute ai ∈ A. A restriction for a nominal attribute ai is a symbol
ai = v with v ∈ Dom(ai). A restriction for a numerical1 attribute ai is an

1 We consider the finite set of all intervals from the data, without greedy discretization.
As shown later, better patterns can be found in that case, when using only MCTS on large
datasets.

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 5

Redundant subgroups
w.r.t. the local optima

Lattice

Local Optima

Minimum support
threshold

Subgroups

(a) Redundancy problem.

Beam

Lattice

Local Optima

Minimum support
threshold

Subgroups

(b) Beam search.

Lattice

Local Optima

Minimum support
threshold

Subgroups
Randomly

sampled area

(c) Sampling exploration.

Built tree

Lattice

Local Optima

Minimum support
threshold

Subgroups

(d) MCTS-based exploration.

Fig. 1: Illustration of different SD search algorithms.

interval [l, r] with l, r ∈ Dom(ai). The description d covers a set of objects
called the extent of the subgroup, denoted ext(d) ⊆ O. The support of a
subgroup is the cardinality of its extent: supp(d) = |ext(d)|.

The subgroup search space is structured as a lattice.

Definition 3 (Subgroup search space) The set of all subgroups forms a
lattice, denoted as the poset (S,�). The top is the most general pattern,
without restriction. Given any s1, s2 ∈ S, we note s1 ≺ s2 to denote that s1 is
strictly more specific, i.e. it contains more stringent restrictions.

If follows that ext(s1) ⊆ ext(s2) when s1 � s2.
The ability of a subgroup to discriminate a class label is evaluated by means

of a quality measure. The weighted relative accuracy (WRAcc), intoduced by

6 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Lavrac et al (1999), is among the most popular measures for rule learning and
subgroup discovery. Basically, WRAcc considers the precision of the subgroup
w.r.t. to a class label relatively to the appearance probability of the label in the
whole dataset. This difference is weighted with the support of the subgroup
to avoid to consider small ones as interesting.

Definition 4 (WRAcc) Given a dataset D(O,A, C, class), the WRAcc of a
subgroup d for a label l ∈ Dom(C) is given by:

WRAcc(d, l) =
supp(d)

|O|
×
(
pld − pl

)
where pld = |{o∈ext(d)|class(o)=l}|

supp(d) and pl = |{o∈O|class(o)=l}|
|O| .

WRAcc returns values in [−0.25, 0, 25], the higher and positive, the better
the pattern discriminates the class label. Many quality measures other than
WRAcc have been introduced in the literature of rule learning and subgroup
discovery (Gini index, entropy, F score, Jaccard coefficient, etc. [Abudawood
and Flach (2009)]). Exceptional model mining (EMM) considers multiple la-
bels (label distribution difference in van Leeuwen and Knobbe (2012), Bayesian
model difference in Duivesteijn et al (2010), etc.). The choice of a pattern qual-
ity measure, denoted ϕ in what follows, is generally application dependant as
explained by Fürnkranz et al (2012).

Example 1 Consider the dataset in Table 1 with objects in O = {1, ..., 6}
and attributes in A = {a, b, c}. Each object is labeled with a class label from
C = {l1, l2, l3}. Consider an arbitrary subgroup with description d = 〈[128 ≤
a ≤ 151], [23 ≤ b ≤ 29]〉. Note that, for readability, we omit restrictions
satisfied by all objects, e.g., [9 ≤ c ≤ 12], and thus we denote that ext(〈〉) = O.
The extent of d is composed of the objects in ext(d) = {2, 3, 5, 6} and we
have WRAcc(d, l2) = 4

6 (3
4 −

1
2) = 1

6 . The upper part of the search space (most
general subgroups) is given in Figure 2. The direct specializations of a subgroup
are given, for each attribute, by adding a restriction: Either by shrinking the
interval of values to the left (take the right next value in its domain) or to the
right (take the left next value). In this way, the finite set of all intervals taking
borders in the attributes domain will be explored (see Kaytoue et al (2011)).

Pattern set discovery consists in searching for a set of patterns R ⊆ S
of high quality on the quality measure ϕ and whose patterns are not redun-
dant. As similar patterns generally have similar values on ϕ, we design the
pattern set discovery problem as the identification of the local optima w.r.t.
ϕ. As explained below, this has two main advantages: Redundant patterns of
lower quality on ϕ are pruned and the extracted local optima are diverse and
potentially interesting patterns.

Definition 5 (Local optimum as a non redundant pattern) Let sim :
S × S → [0, 1] be a similarity measure on S that, given a real value Θ > 0,
defines neighborhoods on R ⊆ S : NR(x) = {s ∈ R | sim(x, s) ≥ Θ}. r?

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 7

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
 9 ≤ c ≤ 12

136.16 ≤ a ≤ 152.16
21 ≤ b ≤ 29
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 151.28
21 ≤ b ≤ 29
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 27
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
10 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
 9 ≤ c ≤ 11

136.16 ≤ a ≤ 152.16
23 ≤ b ≤ 29
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 151.28
23 ≤ b ≤ 29
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
24 ≤ b ≤ 29
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 27
 9 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
10 ≤ c ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
 9 ≤ c ≤ 11

Fig. 2: The upper part of the search space for Table 1.

is a local optimum of R on ϕ iff ∀r ∈ NR(r?), ϕ(r?) ≥ ϕ(r). We denote by

filter(R) the set of local optima of R and by redundancy(R) = 1− |filter(R)|
|R|

the measure of redundancy of R.

In this paper, the similarity measure on S will be the Jaccard measure defined
by

sim(r, r′) =
ext(r) ∩ ext(r′)
ext(r) ∪ ext(r′)

We propose to evaluate the diversity of a pattern set R ⊆ S by the sum of
the quality of its patterns. Indeed, the objective is to obtain the largest set of
high quality patterns:

Definition 6 (Pattern set diversity) The diversity of a pattern set R is
evaluated by: diversity(R) =

∑
r∈filter(R) ϕ(r).

The function filter() is generally defined in a greedy or heuristic way in
the literature. van Leeuwen and Knobbe (2012) called it pattern set selection
and we use their implementation in this article. First all extracted patterns
are sorted according to the quality measure and the best one is kept. The next
patterns in the order are discarded if they are too similar with the best pattern
(Jaccard similarity between pattern supports is used). Once a non similar
pattern is found, it is kept for the final result and the process is reiterated:
Following patterns will be compared to it.

Problem 1 (Pattern set discovery) Compute a set of patterns R∗ ⊆ S
such that ∀r ∈ R∗, r is a local optimum on ϕ and

R∗ = argmaxR⊆Sdiversity(R).

By construction, R∗ maximizes diversity and it minimizes redundancy. Nat-
urally, R∗ is not unique. Existing approaches sometimes search for a pattern
set of size k [Lucas et al (2017)], with a minimum support threshold minSupp
[Atzmüller and Puppe (2006)].

8 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

3 Monte Carlo tree search

MCTS is a search method used in several domains to find an optimal deci-
sion (see the survey by Browne et al (2012)). It merges theoretical results
from decision theory [Russell and Norvig (2010)], game theory, Monte Carlo
[Abramson (1990)] and bandit-based methods [Auer et al (2002)]. MCTS is
a powerful search method because it enables the use of random simulations
for characterizing a trade-off between the exploration of the search tree and
the exploitation of an interesting solution, based on past observations. Con-
sidering a two-players game (e.g., Go): The goal of MCTS is to find the best
action to play given a current game state. MCTS proceeds in several (limited)
iterations that build a partial game tree (called the search tree) depending on
the results of previous iterations. The nodes represent game states. The root
node is the current game state. The children of a node are the game states
accessible from this node by playing an available action. The leaves are the
terminal game states (game win/loss/tie). Each iteration, consisting of 4 steps
(see Figure 3), leads to the generation of a new node in the search tree (de-
pending on the exploration/exploitation trade-off due to the past iterations)
followed by a simulation (sequence of actions up to a terminal node). Any node
s in the search tree is provided with two values: The number N(s) of times
it has been visited, and a value Q(s) that corresponds to the aggregation of
rewards of all simulations walked through s so far (e.g., the proportion of wins
obtained for all simulations walked through s). The aggregated reward of each
node is updated through the iterations such that it becomes more and more
accurate. Once the computation budget is reached, MCTS returns the best
move that leads to the child of the root node with the best aggregated reward
Q(.).

In the following, we detail the 4 steps of a MCTS iteration applied to a
game. Algorithm 1 gives the pseudo code of the most popular algorithm in
the MCTS family, namely UCT (upper confidence bound for trees), as given
in Kocsis and Szepesvári (2006).

The Select policy. Starting from the root node, the Select method recur-
sively selects an action (an edge) until the selected node is either a terminal
game state or is not fully expanded (i.e., some children of this node are not

Select Expand Roll-out Update

Fig. 3: One MCTS iteration (taken from Browne et al (2012)).

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 9

Algorithm 1 UCT: The popular MCTS algorithm.
1: function Mcts(budget)
2: create root node s0 for current state
3: while within computational budget budget do
4: ssel ← Select(s0)
5: sexp ← Expand(ssel)
6: ∆← RollOut(sexp)
7: Update(sexp,∆)
8: end while
9: return the action that reaches the child s of s0 with the highest Q(s)

10: end function

11: function Select(s)
12: while s is non-terminal do
13: if s is not fully expanded then return s
14: else s← BestChild(s)
15: end if
16: end while
17: return s
18: end function

19: function Expand(ssel)
20: randomly choose sexp from non expanded children of ssel
21: add new child sexp to ssel
22: return sexp
23: end function

24: function RollOut(s)
25: ∆← 0
26: while s is non-terminal do
27: choose randomly a child s′ of s
28: s← s′

29: end while
30: return the reward of the terminal state s
31: end function

32: function Update(s,∆)
33: while s is not null do
34: Q(s)← N(s)×Q(s)+∆

N(s)+1

35: N(s)← N(s) + 1
36: s← parent of s
37: end while
38: end function

39: function BestChild(s)
40: return arg max

s′∈ children of s
UCB(s, s′)

41: end function

yet expanded in the search tree). The selection of a child of a node s is based
on the exploration/exploitation trade-off. For that, upper confidence bounds
(UCB) are used. They bound the regret of choosing a non-optimal child. The
original UCBs used in MCTS are the UCB1 from Auer et al (2002) and the

10 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

UCT from Kocsis and Szepesvári (2006):

UCT (s, s′) = Q(s′) + 2Cp

√
2 lnN(s)

N(s′)

where s′ is a child of a node s and Cp > 0 is a constant (generally, Cp = 1√
2
).

This step selects the most urgent node to be expanded, called ssel in the
following, considering both the exploitation of interesting actions (given by
the first term in UCT) and the exploration of lightly explored areas of the
search space (given by the second term in UCT) based on the result of past
iterations. The constant Cp can be adjusted to lower or increase the exploration
weight in the exploration/exploitation trade-off . Note that when Cp = 1

2 , the
UCT is called UCB1.

The Expand policy. A new child, denoted sexp, of the selected node ssel is
added to the tree according to the available actions. The child sexp is randomly
picked among all available children of ssel not yet expanded in the search tree.

The RollOut policy. From this expanded node sexp, a simulation is played
based on a specific policy. This simulation consists of exploring the search tree
(playing a sequence of actions) from sexp until a terminal state is reached. It
returns the reward ∆ of this terminal state: ∆ = 1 if the terminal state is a
win, ∆ = 0 otherwise.

The Update policy. The reward ∆ is back-propagated to the root, updat-
ing for each parent the number of visits N(.) (incremented by 1) and the
aggregation reward Q(.) (the new proportion of wins).

Example. Figure 3 depicts a MCTS iteration. Each node has no more than
2 children. In this scenario, the search tree is already expanded: We consider
the 9th iteration since 8 nodes of the tree have been already added. The first
step consists in running the Select method starting from the root node.
Based on a UCB, the selection policy chooses the left child of the root. As this
node is fully expanded, the algorithm randomly selects a new node among
the children of this node: Its right child. This selected node ssel is not fully
expanded since its left hand side child is not in the search tree yet. From this
not fully expanded node ssel, the Expand method adds the left hand side
child sexp of the selected node ssel to expand the search tree. From this added
node sexp, a random simulation is rolled out until reaching a terminal state.
The reward ∆ of the terminal node is back-propagated with Update.

4 Pattern set discovery with MCTS

Designing a MCTS approach for a pattern mining problem is different than for
a combinatorial game: The goal is not to decide, at each turn, what is the best
action to play, but to explore the search space: The pattern mining problem
can thus be considered as a single-turn single-player game. Most importantly,
MCTS offers a natural way to explore the search space of patterns with the

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 11

a b c

ab

∅

a b c

ab ac

∅

a b c

ab ac

∅

a b c

ab ac

∅

Select Expand RollOut Update

Select ssel, the most urgent node
according to the chosen UCB,

e.g. the UCT

Randomly choose one of the direct
specializations of ssel, noted sexp

(here a superset of {a} of cardinality 2)

Create a path p(ssel, sn) of refinements,
keep the best pattern(s) and its

quality measure Δ (or an aggregation)

Update the parents of ssel in
the tree, N(.) is incremented by 1

and Q(.) is updated with Δ

ssel

sexp

p(ssel, sn)

Δ

Δ

ssel

Fig. 4: A simple instanciation of MCTS for pattern mining.

benefit of the exploitation/exploration trade-off to improve diversity while lim-
iting redundancy. For example, an exhaustive search will maximize diversity,
but it will return a very large and redundant collection (but an exhaustive
search is usually impossible). In contrast, a beam search can extract a limited
number of patterns but it will certainly lack diversity (empirical evidences are
given later in Section 7).

Before going into the formalization, let us illustrate how MCTS is applied
to the pattern set discovery problem with Figure 4. We consider here itemset
patterns for the sake of simplicity, that is, subgroups whose descriptions are
sets of items. We present an iteration of a MCTS for a transaction database
with items I = {a, b, c}. The pattern search space is given by the lattice S =
(2I ,⊆). The MCTS tree is built in a top-down fashion on this theoretical search
space: The initial pattern, or root of the tree, is the empty set ∅. Assume that
pattern ssel = {a} has been chosen by the select policy. During the expand, one
of its direct specializations in {{a, b}, {a, c}} is randomly chosen and added to
the tree,e.g., sexp = {a, c}. During the roll out, a simulation is run from this
node: it generates a chain of specializations of sexp called a path p(ssel, sn) (a
chain is a set of comparable patterns w.r.t. ⊆, or � in the general case). The
quality measure ϕ is computed for each pattern of the path, and an aggregated
value (max, mean, etc.) is returned and called ∆. Finally, all parents of sexp
are updated: Their visit count N(.) is incremented by one, while their quality
estimation Q(.) is recomputed with ∆ (back propagation). The new values of
N(.) and Q(.) will directly impact the selection of the next iteration when
computing the chosen UCB, and thus the desired exploration/exploitation
trade off. When the budget is exceeded (or if the tree is fully expanded), all
patterns are filtered with a chosen pattern set selection strategy (filter(.)).

The expected shape of the MCTS tree after a high number of iterations is
illustrated in Figure 1d. It suggests a high diversity of the final pattern set if
given enough budget (i.e., enough iterations). However, how to properly define
each policy (select, expand, roll out and update), is not obvious. Table 2 sums
up the different policies that we use or develop specifically for a pattern mining
problem.

12 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Select
Choose one of the following UCB:

UCB1 or UCB1-Tuned or SP-MCTS or UCT
Expand

direct-expand: Randomly choose the next direct expansion
gen-expand: Randomly choose the next direct expansion until it changes the extent

label-expand: Randomly choose the next direct expansion until it changes the true positives
Activate LO: Generate each pattern only once (lectic enumeration)

Activate PU: Patterns with the same support/true positive set point to the same node
RollOut

naive-roll-out: Generate a random path of direct specializations of random length.
direct-freq-roll-out: Generate a random path of frequent direct specializations.

large-freq-roll-out: Generate a random paths of undirect specializations (random jumps).
Memory

no-memory: No pattern found during the simulation is kept for the final result.
top-k-memory: Top-k patterns of a simulation are considered in memory.

all-memory: All patterns generated during the simulation are kept.
Update

max-update: Only the maximum ϕ found in a simulation is back propagated
mean-update: The average of all ϕ is back-propagated

top-k-mean-update: The average of the best k ϕ is back-propagated

Table 2: The different policies

4.1 The Select method

The Select method has to select the most promising node ssel in terms of
the exploration vs. exploitation trade-off. For that, the well-known bounds
like UCT or UCB1 can be used. However, more sophisticated bounds have
been designed for single player games. The single-player MCTS (SP-MCTS),
introduced by Schadd et al (2008), adds a third term to the UCB to take into
account the variance σ2 of the rewards obtained by the child so far. SP-MCTS
of a child s′ of a node s is:

SP-MCTS(s, s′) = Q(s′) + C

√
2 lnN(s)

N(s′)
+

√
σ2(s′) +

D

N(s′)

where the constant C is used to weight the exploration term (it is fixed to 0.5
in its original definition) and the term D

N(s′) inflates the standard deviation for

infrequently visited children (D is also a constant). In this way, the reward of
a node rarely visited is considered as less certain: It is still required to explore
it to get a more precise estimate of its variance. If the variance is still high, it
means that the subspace from this node is not homogeneous w.r.t. the quality
measure and further exploration is needed.

Also, Auer et al (2002) designed UCB1-Tuned to reduce the impact of
the exploration term of the original UCB1 by weighting it with either an
approximation of the variance of the rewards obtained so far or the factor 1/4.
UCB1-Tuned of a child s′ of s is:

UCB1-Tuned(s, s′) = Q(s′) +

√√√√ lnN(s)

N(s′)
min (

1

4
, σ2(s′) +

√
2 lnN(s)

N(s′)
)

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 13

The only requirement the pattern quality measure ϕ must satisfy is, in case
of UCT only, to take values in [0, 1]: ϕ can be normalized in this case.

4.2 The Expand method

The Expand step consists in adding a pattern specialization as a new node
in the search tree. In the following, we present different refinement operators,
and how to avoid duplicate nodes in the search tree.

4.2.1 The refinement operators

A simple way to expand the selected node ssel is to choose uniformly an
available attribute w.r.t. ssel, that is to specialize ssel into sexp such that
sexp ≺ ssel: sexp is a refinement of ssel. It follows that ext(sexp) ⊆ ext(ssel),
and obviously supp(sexp) ≤ supp(ssel), known as the monotonocity property
of the support.

Definition 7 (Refinement operator) A refinement operator is a function
ref : S → 2S that derives from a pattern s a set of more specific patterns
ref (s) such that:

(i) ∀s′ ∈ ref (s), s′ ≺ s
(ii)∀s′i, s′j ∈ ref (s), i 6= j, s′i � s′j , s

′
j � s′i

In other words, a refinement operator gives to any pattern s a set of its
specializations, that are pairwise incomparable (an anti-chain). The refine op-
eration can be implemented in various ways given the kind of patterns we are
dealing with. Most importantly, it can return all the direct specializations only
to ensure that the exploration will, if given enough budget, explore the whole
search space of patterns. Furthermore, it is unnecessary to generate infrequent
patterns.

Definition 8 (Direct-refinement operator) A direct refinement operator
is a refinement operator directRef : S → 2S that derives from a pattern s the
set of direct more specific patterns s′ such that:

(i) ∀s′ ∈ directRef (s), s′ ≺ s
(ii) 6 ∃s′′ ∈ S s.t. s′ ≺ s′′ ≺ s
(iii) For any s′ ∈ directRef (s), s′ is frequent, that is supp(s′) ≥ minSupp

The notion of direct refinement is well known in pattern mining. For in-
stance, the only way to refine a nominal (resp. Boolean) attribute is to assign
it a value of its domain (resp. the true value). Refining an itemset consists in
adding a item, while refining a numerical attribute can be done in two ways:
Applying the minimal left change (resp. right change), that is, increasing the
lower bound of the interval to the next higher value in its domain (resp. de-
creasing the upper bound to the next lower) as explained by Kaytoue et al
(2011). We still use the term restriction to denote the operations that create
a direct refinement of pattern.

14 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Definition 9 (The direct-expand strategy) We define the direct-expand
strategy as follows: From the selected node ssel, we randomly pick a – not yet
expanded – node sexp from directRef(ssel) and add it in the search tree.

As most quality measures ϕ used in SD and EMM are solely based on the
extent of the patterns, considering only one pattern among all those having
the same extent is enough. However, with the direct-refinement operator, a
large number of tree nodes may have the same extent as their parent. This
redundancy may bias the exploration and more iterations will be required. For
that, we propose to use the notion of closed patterns and their generators.

Definition 10 (Closed descriptions and their generators) The equiva-
lence class of a pattern s is given by [s] = {s′ ∈ S | ext(s) = ext(s′)}. Each
equivalence class has a unique smallest element w.r.t.≺ that is called the closed
pattern: s is said to be closed iff 6 ∃s′ such that s′ ≺ s and ext(s) = ext(s′).
The non-closed patterns are called generators.

Definition 11 (Generator-refinement operator) A generator refinement
operator is a refinement operator genRef : S → 2S that derives from a pattern
s the set of more specific patterns s′ such that, ∀s′ ∈ genRef (s):

(i) s′ 6∈ [s] (different support)
(ii) 6 ∃s′′ ∈ S\genRef (s) s.t. s′′ 6∈ [s], s′′ 6∈ [s′], s′ ≺ s′′ ≺ s (direct next
equivalence class)
(iii) s′ is frequent, that is supp(s′) ≥ minSupp (frequent)

Definition 12 (The gen-expand strategy) To avoid the exploration of
patterns with the same extent in a branch of the tree, we define the min-gen-
expand strategy as follows: From the selected node ssel, we randomly pick a –
not yet expanded – refined pattern from genRef (ssel), called sexp, and add it
to the search tree.

Finally, when facing a SD problem whose aim is to characterize a label
l ∈ C we can adapt the previous refinement operator based on generators on
the extents of both the subgroup and the label. As many other measures, the
WRAcc seeks to optimize the (weighted relative) precision or accuracy of the
subgroup. The accuracy is the ratio of true positives in the extent. We propose
thus, for this kind of measures only, the label-expand strategy: Basically, the
pattern is refined until the set of true positives in the extent changes. This
minor improvement performs very well in practice (see Section 6).

4.2.2 Avoiding duplicates in the search tree

We define several refinement operators to avoid the redundancy within a
branch of the tree, i.e., do not expand ssel with a pattern whose extent is
the same because the quality measure ϕ will be equal. However, another re-
dundancy issue remains at the tree scale. Indeed, since the pattern search

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 15

space is a lattice, a pattern can be generated in nodes from different branches
of the Monte Carlo tree, that is, with different sequences of refinements, or
simply permutations of refinements. As such, it will happen that a part of the
search space is sampled several times in different branches of the tree. How-
ever, the visit count N(s) of a node s will not count visits of other nodes that
denote exactly the same pattern: The UCB is clearly biased. To tackle this
aspect, we implement two methods: (i) Using a lectic order or (ii) detecting
and unifying the duplicates within the tree. These two solutions can be used
for any refinement operator. Note that enabling both these solutions at the
same tame is useless since each of them ensures to avoid duplicates within the
tree.

Avoiding duplicates in the tree using a lectic order (LO).
Pattern enumeration without duplicates is at the core of constraint-based

pattern-mining [Boulicaut and Jeudy (2010)]. Avoiding to generate patterns
with the same extent is usually based on a total order on the set of attribute
restrictions. This poset is written by (R,l).

Example 2 For instance, considering itemset patterns, R = I and a lectic
order, usually the lexicographic order, is chosen on I: a l b l c l d for I =
{a, b, c, d} and bc l ad. Consider that a node s has been generated with a
restriction ri: we can expand the node only with restrictions rj such that
ril rj . This total order also holds for numerical attributes by considering the
minimal changes (see the work of Kaytoue et al (2011) for further details).

We can use this technique to enumerate the lattice with a depth-first search
(DFS), which ensures that each element of the search space is visited exactly
once. An example is given in Figure 5. However, it induces a strong bias: An
MCTS algorithm would sample this tree instead of sampling the pattern search
space. In other words, a small restriction w.r.t. l has much less chances to be
picked than a largest one. Going back to the example in Figure 5 (middle), the
item a can be drawn only once through a complete DFS; b twice; while c four
times (in bold). It follows that patterns on the left hand side of the tree have
less chances to be generated, e.g., prob({a, b}) = 1/6 while prob({b, c}) = 1/3.
These two itemsets should however have the same chance to be picked as they
have the same size. This variability is corrected by weighting the visit counts
in the UCT with the normalized exploration rate (see Figure 5 (right)).

Definition 13 (Normalized exploration rate) Let S be the set of all pos-
sible patterns. The normalized exploration rate of a pattern s is,

ρnorm(s) =
Vtotal(s)

Vlectic(s)
=

|{s′|s′ � s,∀s′ ∈ S}|
|{s′|(sl s′ ∧ s′ ≺ s) ∨ s = s′,∀s′ ∈ S}|

Given this normalized exploration rate, we can adapt the UCBs when en-
abling the lectic order. For example, we can define the DFS-UCT of a child s′

16 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

a b c

ab ac bc

abc

∅

a b c

ab ac bc

abc

∅

The most
 general pattern

Legend:

Vtotal(s)

Vlectic(s)

pattern s

The lattice
of patterns

Fig. 5: Search space as a lattice (left), DFS of the search space (middle), and
the principles of the normalized exploration rate.

of a pattern s derived from the UCT as follows:

DFS-UCT(s, s′) = Q(s′) + 2Cp

√
2 ln (N(s) · ρnorm(s))

N(s′) · ρnorm(s′)

Proposition 1 (Normalized exploration rate for itemsets) For item-
sets, let si be the child of s obtained by playing action ri and i is the rank of

ri in (R,l): ρnorm(si) = 2(|I|−|si|)

2(|I|−i−1) .

Proof Let Vlectic(si) be the size of the search space sampled under si using a
lectic enumeration, and Vtotal(si) be the size of the search space without using
a lectic enumeration. Noting Vtotal(si) = 2(|I|−|si|) and Vlectic(si) = 2(|I|−i−1)

for itemsets, we have ρnorm(si) = Vtotal(si)
Vlectic(si)

= 2(|I|−|si|)

2(|I|−i−1) . ut

Proposition 2 (Normalized exploration rate for a numerical attribute)
For a single numerical attribute a, ρnorm(.) is defined as follows :

– Let s′ = 〈αi ≤ a ≤ αj〉 obtained after a left change: ρnorm(s′) = 1.
– Let s′ = 〈αi ≤ a ≤ αj〉 obtained after a right change. Let n be the number

of values from Dom(a) in [αi, αj]: ρnorm(s′) = n+1
2 .

Proof As explained in the proof of (Proposition 1), ρnorm(s) = Vtotal(s)
Vlectic(s) . For a

numerical attribute, Vtotal(s) = n(n + 1)/2, i.e. the number of all sub in-
tervals. If s was obtained after a left change, Vlectic(s) = n(n + 1)/2 as
both left and right changes can be applied. If s was obtained after a right
change, Vlectic(s) = n, as only n right changes can be applied. It follows

that ρnorm(s) = n(n+1)/2
n(n+1)/2 = 1 if s was obtained from a left change and

ρnorm(s) = n(n+1)/2
n = n+1

2 otherwise. ut

Avoiding duplicates in the tree using permutation unification (PU).
The permutation unification is a solution that enables to keep a unique

node for all duplicates of a pattern that can be expanded within several

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 17

branches of the tree. This is inspired from Permutation AMAF of Helmbold
and Parker-Wood (2009), a method used in traditional MCTS algorithms to
update all the nodes that can be concerned by a play-out. A unified node no
longer has a single parent but a list of all duplicates’ parent. This list will be
used when back-propagating a reward.

This method is detailed in Algorithm 2. Consider that the node sexp has
been chosen as an expansion of the selected node ssel. The tree generated so
far is explored for finding sexp elsewhere in the tree: If sexp is not found, we
proceed as usual; otherwise sexp becomes a pointer to the duplicate node in
the tree. In our MCTS implementation, we will simply use a hash map to store
each pattern and the node in which is has been firstly encountered.

Algorithm 2 The permutation unification principle.
1: H ← new Hashmap()
2: function Expand(ssel)
3: randomly choose sexp from non expanded children of ssel
4: if (node← H.get(sexp)) 6= null then
5: node.parents.add(ssel)
6: sexp ← node
7: else
8: sexp.parents← new List()
9: sexp.parents.add(ssel)

10: H.put(sexp, sexp) . A pointer on the unique occurrence of sexp
11: end if
12: add new child sexp to ssel in the tree . Expand ssel with sexp
13: return sexp
14:end function

4.3 The RollOut method

From the expanded node sexp a simulation is run (RollOut). With standard
MCTS, a simulation is a random sequence of actions that leads to a terminal
node: A game state from which a reward can be computed (win/loss). In our
settings, it is not only the leaves that can be evaluated, but any pattern s
encountered during the simulation. Thus, we propose to define the notion of
path (the simulation) and reward computation (which nodes are evaluated and
how these different rewards are aggregated) separately.

Definition 14 (Path policy) Let s1 the node from which a simulation has
to be run (i.e., s1 = sexp). Let n ≥ 1 ∈ N, we define a path p(s1, sn) =
{s1, . . . , sn} as a chain in the lattice (S,≺), i.e., an ordered list of patterns
starting from s1 and ending with sn such that ∀i ∈ {1, . . . , n − 1}, si+1 is a
(not necessarily direct) refined pattern of si.

– naive-roll-out : a path of direct refinements is randomly created with length
pathLength ∈ N+ a user-defined parameter.

18 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

– direct-freq-roll-out : The path is extended with a randomly chosen restric-
tion until it meets an infrequent pattern sn+1 using the direct refinement
operator. Pattern sn is a leaf of the tree in our settings.

– large-freq-roll-out overrides the direct-freq-roll-out policy by using special-
izations that are not necessarily direct. Several actions are added instead
of one to create a new element of the path. The number of added actions is
randomly picked in (1, ..., jumpLength) where jumpLength is given by the
user (jumpLength = 1 gives the previous policy). This techniques allows
to visit deep parts of the search space with shorter paths.

Definition 15 (Reward aggregation policy) Let s1 be the node from
which a simulation has been run and p(s1, sn) the associated random path. Let
E ⊆ p(s1, sn) be the subset of nodes to be evaluated. The aggregated reward
of the simulation is given by: ∆ = aggr({ϕ(s)∀s ∈ E}) ∈ [0; 1] where aggr is
an aggregation function. We define several reward aggregation policies:

– terminal-reward : E = {sn} and aggr is the identity function.
– random-reward : E = {si} with a random 1 ≤ i ≤ n and aggr is the identity

function.
– max-reward : E = p(s1, sn) and aggr is the max(.) function
– mean-reward : E = p(s1, sn) and aggr is the mean(.) function.
– top-k-mean-reward : E = top-k(p(s1, sn)), aggr is the mean(.) function and

top-k(.) returns the k elements with the highest ϕ.

A basic MCTS forgets any state encountered during a simulation. This is
not optimal for single player games as relate Björnsson and Finnsson (2009):
A pattern with a high ϕ should not be forgotten as we might not expand the
tree enough to reach it. We propose to consider several memory strategies.

Definition 16 (Roll-out memory policy) A roll-out memory policy spec-
ifies which of the nodes of the path p = (s1, sn) shall be kept in an auxiliary
data structure M .

– no-memory : Any pattern in E is forgotten.
– all-memory : All evaluated patterns in E are kept.
– top-k-memory : A list M stores the best k patterns in E w.r.t. ϕ(.).

This structure M will be used to produce the final pattern set.

4.4 The Update method

The backpropagation method updates the tree according to a simulation. Let
ssel be the selected node and sexp its expansion from which the simulation is
run: This step aims at updating the estimation Q(.) and the number of visits
N(.) of each parent of sexp recursively. Note that sexp may have several parents
when we enable permutation unification (PU). The number of visits is always
incremented by one. We consider three ways of updating Q(.):

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 19

– mean-update:Q(.) is the average of the rewards∆ back-propagated through
the node so far (basic MCTS).

– max-update: Q(.) is the maximum reward ∆ back-propagated through the
node so far. This strategy enables to identify a local optimum within a part
of the search space that contains mostly of uninteresting patterns. Thus,
it gives more chance for this area to be exploited in the next iterations.

– top-k-mean-update: Q(.) average of the k best rewards ∆ back-propagated
through the node so far. It gives a stronger impact for the parts of the
search space containing several local optima.

mean-update is a standard in MCTS techniques. We introduce the max-
update and top-k-mean-update policies as it may often happen that high-
quality patterns are rare and scattered in the search space. The mean value
of rewards from simulations would converge towards 0 (there are too many
low quality subgroups), whereas the maximum value (and top-k average) of
rewards enables to identify the promising parts of the search space.

4.5 Search end and result output

There are two ways a MCTS ends: Either the computational budget is reached
(number of iterations) or the tree is fully expanded (an exhaustive search has
been possible, basically when the size of the search space is smaller than the
number of iterations). Indeed, the number of tree nodes equals the number of
iterations that have been performed. It remains now to explore this tree and
the data structure M built by the memory policy to output the list of diverse
and non-redundant patterns.

Let P = T ∪ M be a pool of patterns, where T is the set of patterns
stored in the nodes of the tree. The set P is totally sorted w.r.t. ϕ in a list
Λ. Thus, we have to pick the k-best diverse and non-redundant subgroups
within this large pool of nodes Λ to return the result set of subgroups R ⊆ P.
For that, we choose to implement filter(.) in a greedy manner as done byvan
Leeuwen and Knobbe (2012); Bosc et al (2016). R = filter(P) as follows: A
post-processing that filters out redundant subgroups from the diverse pool of
patterns Λ based on the similarity measure sim and the maximum similarity
threshold Θ. Recursively, we poll (and remove) the best subgroup s∗ from Λ,
and we add s∗ to R if it is not redundant with any subgroup in R. It can be
shown easily that redundancy(R) = 0.

Applying filter(.) at the end of the search requires however that the pool of
patterns P has a reasonable cardinality which may be problematic with MCTS
in term of memory. The allowed budget always enables such post-processing
in our experiments (up to one million iterations).

5 Related work

SD aims at extracting subgroups of individuals for which the distribution on
the target variable is statistically different from the whole (or the rest of the)

20 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

population [Klösgen (1996); Wrobel (1997)]. Two similar notions have been
formalized independently and then unified by Novak et al (2009): Contrast
set mining and emerging patterns. Close to SD, redescription mining aims
to discover redescriptions of the same group of objects in different views van
Leeuwen and Galbrun (2015). Exceptional model mining (EMM) was first
introduced by Leman et al (2008) (see a comprehensive survey by Duivesteijn
et al (2016)). EMM generalizes SD dealing with more complex target concepts:
There are not necessarily one but several target variables to discriminate.
EMM seeks to elicit patterns whose extents induce a model that substantially
deviates from the one induced by the whole dataset.

First exploration methods that have been proposed for SD/EMM are ex-
haustive search ensuring that the best subgroups are found, e.g. Klösgen
(1996); Wrobel (1997); Kavsek and Lavrac (2006); Atzmüller and Lemmerich
(2009). Several pruning strategies have been used to avoid the exploration of
uninteresting parts of the search space. These pruning strategies are usually
based on the monotonic (or anti-monotonic) property of the support or up-
per bounds on the quality measure [Grosskreutz et al (2008); Kaytoue et al
(2017)]. To the best of our knowledge, the most efficient algorithms are (i)
SD-MAP* from Atzmüller and Lemmerich (2009) which is based on the FP-
growth paradigm [Han et al (2000)] and (ii) an exhaustive exploration with
optimistic estimates on different quality measures [Lemmerich et al (2016)].
When an exhaustive search is not possible, heuristic search can be used. The
most widely used techniques in SD and EMM are beam search, evolutionary
algorithms and sampling methods. Beam search performs a level-wise explo-
ration of the search space: A beam of a given size (or dynamic size for recent
work) is built from the root of the search space. This beam only keeps the most
promising subgroups to extend at each level [Lavrac et al (2004); Mueller et al
(2009); van Leeuwen and Knobbe (2012)]. The redundancy issue due to the
beam search is tackled with the pattern skyline paradigm by van Leeuwen
and Ukkonen (2013), and with a ROC-based beam search variant for SD by
Meeng et al (2014). Another family of SD algorithms relies on evolutionary
approaches. They use a fitness function to select which individuals to keep at
the next generated population. SDIGA, from del Jesús et al (2007), is based
on a fuzzy rule induction system where a rule is a pattern in disjunctive nor-
mal form (DNF). Other approaches have been then proposed, generally ad-hoc
solutions suited for specific pattern languages and selected quality measures
[Rodŕıguez et al (2012); Pachón et al (2011); Carmona et al (2010)].

Finally, pattern sampling techniques are gaining interest. Moens and Bo-
ley (2014) employ controlled direct pattern sampling (CDPS). It enables to
create random patterns with the help of a procedure based on a controlled
distribution as did Boley et al (2011). This idea was extended by Bendimerad
et al (2016) for a particular EMM problem to discover exceptional models
induced by attributed graphs. Pattern sampling is attractive as it supports di-
rect interactions with the user for using his/her preferences to drive the search.
Besides, with sampling methods, a result is available anytime. However, tra-
ditional sampling methods used in pattern mining need a given probability

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 21

distribution over the pattern space: This distribution depends on both the
data and the measures [Boley et al (2011); Moens and Boley (2014)]. Each
iteration is independent and consists of drawing a pattern given this probabil-
ity distribution. Moreover, these probability distributions exhibit the problem
of the long tail: There are many more uninteresting patterns than interesting
ones. Thus, the probability to draw an uninteresting pattern is still high, and
not all local optima may be drawn: There are no guaranties on the diversity
of the result set. Recently, the sampling algorithm Misere has been proposed
by Gay and Boullé (2012); Egho et al (2015, 2017). Contrary to the sampling
method of Moens and Boley, Misere does not require any probability distri-
bution. It is agnostic of the quality measure but it still employs a discretization
of numerical attribute in a pre-processing task. To draw a pattern, Misere
randomly picks an object in the data, and thus it randomly generalizes it into
a pattern that is evaluated with the quality measure. Each draw is indepen-
dent and thus the same pattern can be drawn several times. Finally, MCTS
samples the search space without any assumption about the data and the
measure. Contrary to sampling methods, it stores the result of the simulations
of the previous iterations and it uses this knowledge for the next iterations:
The probability distribution is learned incrementally. If given enough compu-
tation budget, the exploration/exploitation trade-off guides the exploration to
all local optima (an exhaustive search). To the best of our knowledge, MCTS
has never been used in pattern mining, however, Gaudel and Sebag (2010)
designed the algorithm FUSE (Feature UCT Selection) which extends MCTS
to a feature selection problem. This work aims at selecting the features from
a feature space that are the more relevant w.r.t. the classification problem.
For that, Gaudel and Sebag explore the powerset of the features (i.e., item-
sets where the items are the features) with a MCTS method to find the sets
of features that minimize the generalization error. Each node of the tree is
a subset of feature, and each action consists of adding a new feature in the
subset of features. The authors focus on reducing the high branching factor
by using UCB1-Tuned and RAVE introduced by Gelly and Silver (2007). The
latter enables to select a node even if it remains children to expand. The aim
of FUSE is thus to return the best subset of features (the most visited path
of the tree), or to rank the features with the RAVE score.

6 Empirical evaluation on how to parameterize mcts4dm

Our MCTS implementation for pattern mining, called mcts4dm is publicly
available2. As there are many ways to configure mcts4dm, we propose first to
study the influence of the parameters on runtime, pattern quality and diversity.
We both consider benchmark and artificial data. The experiments were carried
out on an Intel Core i7 CPU 4 Ghz machine with 16 GB RAM running under
Windows 10.

2 https://github.com/guillaume-bosc/MCTS4DM

https://github.com/guillaume-bosc/MCTS4DM

22 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Table 3: Benchmark datasets experimented on in the SD and EMM literature.

Name # Objects # Attributes Type of attributes Target attribute
Bibtex 7,395 1,836 Binary TAG statphys23

BreastCancer 699 9 Numeric Benign
Cal500 502 68 Numeric Angry-Agressive

Emotions 594 72 Numeric Amazed-suprised
Ionosphere 352 35 Numeric Good

Iris 150 4 Numeric Iris-setosa
Mushroom 8,124 22 Nominal Poisonous
Nursery 12,961 8 Nominal class=priority
Olfaction 1,689 82 Numeric Musk

TicTacToe 958 9 Nominal Positive
Yeast 2,417 103 Numeric Class1

6.1 Data

Firstly, we gathered benchmark datasets used in the recent literature of SD and
EMM, that is, from van Leeuwen and Knobbe (2012); Downar and Duivesteijn
(2017); van Leeuwen and Galbrun (2015); van Leeuwen and Knobbe (2011);
Duivesteijn and Knobbe (2011). Table 3 lists them, mainly taken from the
UCI repository, and we provide some of their properties.

Secondly, we used a real world dataset from neuroscience. It concerns ol-
faction (see Table 3).This data provides a very large search space of numerical
attributes (more details on the application are presented by Bosc et al (2016)).

Finally, to be able to specifically evaluate diversity, a ground-truth is re-
quired. Therefore, we create an artificial data generator to produce datasets
where patterns with a controlled WRAcc are hidden. The generator takes the
parameters given in Table 4 and it works as follow. A data table with nominal
attributes is generated with a binary target. The number of objects, attributes
and attributes values are controlled with the parameters nb obj, nb attr and
domain size. Our goal is to hide nb patterns patterns in noise: We generate
random descriptions of random lengths Ground = {di | i ∈ [1, nb patterns]}.
For each pattern, we generate pattern sup objects positively labeled with a
probability of 1−noise rate to be covered by the description di, and noise rate
for not being covered. We also add pattern sup×out factor negative examples
for the pattern di: It will allow patterns with different WRAcc. Finally, we add
random objects until we reach a maximum number of transactions nb obj.

6.2 Experimental framework

We perform a large pool of experiments to assess this new exploration method
for pattern mining. For that, we have designed an experimental framework
that enables to test the different combinations of factors for all the strategies
we introduced in previous sections. Each experiment are run on the benchmark
datasets. An experiment consists in varying a unique strategy parameter while

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 23

Table 4: Parameters of the artificial data generator.

Name Description Psmall Pmedium Plarge
nb obj Number of objects 2,000 20,000 50,000
nb attr Number of attributes 5 5 25

domain size Domain size per attribute 10 20 50
nb patterns Number of hidden patterns 3 5 25
pattern sup Support of each hidden pattern 100 100 100
out factor Proba. of a pattern labeled − 0.1 0.1 0.1
noise rate Proba. of a object to be noisy 0.1 0.1 0.1

Table 5: The default parameters for each dataset.

Dataset minSupp # iterations Path Policy
Bibtex 50 50k direct-freq-roll-out

BreastCancer 10 50k large-freq-roll-out (jumpLength = 30)
Cal500 10 100k large-freq-roll-out (jumpLength = 30)

Emotions 10 100k large-freq-roll-out (jumpLength = 30)
Ionosphere 10 50k large-freq-roll-out (jumpLength = 30)

Iris 10 50k large-freq-roll-out (jumpLength = 30)
Mushroom 30 50k direct-freq-roll-out
Nursery 50 100k direct-freq-roll-out
Olfaction 10 100k large-freq-roll-out (jumpLength = 30)
TicTacToe 10 100k direct-freq-roll-out

Yeast 20 100k large-freq-roll-out (jumpLength = 30)

the others are fixed. Since mcts4dm uses random choices, each experiment is
run five times and only the mean of the results is discussed.

Default parameters. For each benchmark dataset, we provide a set of de-
fault parameters (Table 5). Indeed, due to the specific characteristics of each
dataset, a common set of default parameters is unsuitable. Nevertheless, all
datasets share a subset of common parameters:

– The maximum size of the result set is set to maxOutput = 50.
– The maximum redundancy threshold is set to Θ = 0.5.
– The maximum description length is set to maxLength = 5. This is a widely

used constraint in SD that enables to restrict the length of the description,
i.e., it limits the number of effective restrictions in the description.

– The quality measure used is ϕ = WRAcc for the first label only.
– The SP-MCTS is used as the default UCB.
– The permutation unification (PU) strategy is used by default.
– The refinement operator for Expand is set to tuned-min-gen-expand.
– The direct-freq-roll-out strategy is used for the Roll-Out
– The reward aggregation policy is set to max-reward.
– The memory policy is set to top-1-memory.
– The update policy is set to max-udpate.

List of experiments. Evaluating mcts4dm is performed with six different
batches of experiments:

24 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

– Section 6.3 is about the choice of the UCB.
– Section 6.4 deals with the several strategies for the Expand method.
– Section 6.5 presents the leverage of all the possibilities for the RollOut.
– Section 6.6 shows out the impact of the Memory strategy.
– Section 6.7 compares the behaviors of all the strategies for the Update.
– Section 6.8 performs the experiments by varying the computational budget.
– Section 6.9 studies if mcts4dm is able to retrieved a diverse pattern set.

For simplicity and convenience, for each experiment we display the same batch
of figures. For each dataset we show (i) the boxplots of the quality measure
ϕ of the subgroups in the result set, (ii) the histograms of the runtime and
(iii) the boxplots of the description length of the subgroups in the result set
depending on the strategies that are used. In this way, the impacts of the
strategies are easy to understand.

We do not evaluate memory consumption in this section, as it increases
linearly with the number of iterations (to which should be added the number
of patterns kept by the memory policy).

6.3 The Select method

The choice of the UCB is decisive, because it is the base of the exploration
/ exploitation trade off. Indeed, the UCB chooses which part of the search
tree will be expanded and explored. We presented four existing UCBs and
an adaptation with a normalized exploration rate to take into account an
enumeration based on a lectic order (LO). As such, we need to consider also
the expand methods (standard, lectic order LO and permutation unification
PU) at the same time.

Figure 6 presents the results. Comparing the runtime for all the strategies
leads to conclude that there is no difference in the computation of the several
UCBs (see Figure 6(a)). Indeed, the impact of the UCBs lies in its compu-
tation, and there is no UCB that is more time-consuming than others. The
difference we can notice, is that when LO is used, the runtime is lower. This
result is expected because with LO, the search space is less large since each
subgroup is unique in the search space (this is not due to the chosen UCB).
PU has also a smaller search space, but it requires call to updates pointers
towards subgroups with the same extent, and requires thus more time.

Figure 6(b) depicts the boxplots of the quality measure of the result set
when varying the UCB. The results suggest that the UCB1-Tuned and DFS-
UCT lead to weaker quality result for several datasets: On the Cal550, Emo-
tions and Yeast datasets, the quality measures of the result set are worse
than the results of other UCBs (see, e.g., Figure 6(b)). This is due to the fact
that the search space of these datasets is larger than the other with many
local optima, and the UCB1-Tuned is designed to explore less, thus less local
optima are found. Besides, the SP-MCTS seems to be more suitable for SD
problems: The quality is slightly better than other UCBs for the BreastCancer

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 25

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

(1) (6) (11)

Runtime (ms)

Strategies

 0

 0.02

 0.04

 0.06

 0.08

 0.1

(1) (6) (11)

Quality

Strategies

 0

 1

 2

 3

 4

 5

(1) (6) (11)

Description length

Strategies

(a) Runtime: BreastCancer (b) Avg. quality: Emotions (c) Descr length: Mushroom

Select Policies: (1) DFS-UCT with LO

(2) UCB1 (3) UCB1 with LO (4) UCB1 with PU

(5) SP-MCTS (6) SP-MCTS with LO (7) SP-MCTS with PU

(8) UCB1-Tuned (9) UCB1-Tuned with LO (10) UCB1-Tuned with PU

(11) UCT (12) UCT with LO (13) UCT with PU

Fig. 6: Impact of the Select strategy.

and Emotions datasets. LO leads to a worse quality in the result set, whereas
PU seems to be more efficient.

The use of these different UCBs also do not impact the description length
of the subgroups within the result set. For some datasets, the permutation
unification leads to longer descriptions (see for instance Figure 6(c)).

6.4 The Expand method

Considering the Expand policy, we introduced three different refinement op-
erators, namely direct-expand, gen-expand and label-expand, and we presented
two methods, namely LO and PU, to take into account that several nodes in
the search tree are exactly the same. The several strategies we experiment with
are given in Figure 7(bottom). Let us consider the leverage on the runtime of
these strategies in Figure 7(a). Once again, using LO implies a decrease of
the runtime. Conversely, PU requires more time to run. There is very little
difference in the runtime when varing the refinement operator: direct-expand
is the faster one, and label-expand is more time consuming.

Considering the quality of the result set varying the expand strategies, we
can assume that the impact differs w.r.t. the dataset (see Figure 7(b)). Sur-
prisingly, LO improves the quality of the result set for some datasets (e.g. the
Iris dataset in Figure 7(b)). This contradicts what we observe in the Emotions
dataset of the previous experiment in Section 6.3. Most importantly, the re-
sults using label-expand are better than other ones in most of the datasets.
Actually, this is due that this expand favors pattern with a better accuracy
which is part of the WRAcc.

26 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

 0

 1000

 2000

 3000

 4000

 5000

 6000

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Runtime (ms)

Strategies

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Quality

Strategies

 0

 1

 2

 3

 4

 5

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Description length

Strategies

(a) Runtime: Nursery

(b) Avg. quality: Iris (c) Descr length: Mushroom

(1) direct-expand (2) direct-expand with LO (3) direct-expand with PU

(4) gen-expand (5) gen-expand with LO (6) gen-expand with PU

(7) label-expand (8) label-expand with LO (9) label-expand with PU

Fig. 7: Impact of the Expand strategy.

The description length of the extracted subgroups are quite constant when
varying the expand strategies (see Figure 7(c)). With LO, the description
lengths are slightly smaller than with other strategies.

6.5 The RollOut method

For the RollOut step we derived several strategies that combine both the
path policy and the reward aggregation policy in Table 6. Clearly, the experi-
ments show that the runs using the direct refinement operator (naive-roll-out
and direct-freq-roll-out) are time consuming (see Figure 8(a)). In the Breast-
Cancer data, the runtime are twice longer with the direct refinement operator
than with the large-freq-roll-out path policy. In other datasets (e.g., Ionosphere
or Yeast), the runtime is even more than 3 minutes (if the run lasts more than
3 minutes to perform the number of iterations, the run is ignored). Besides,
it is clear that the random-reward aggregation policy is less time consuming
than other strategies. Indeed, with random-reward, the measure of only one
subgroup within the path is computed, thus it is faster.

Figure 8(b) is about the quality of the result set. The naive-roll-out and
direct-freq-roll-out path policies lead to the worst results. Besides, the quality
of the result set decreases with the random-reward reward aggregation policy
in other datasets (e.g., Emotions). Basically, these strategies evaluate only
random nodes and thus they are not able to identify the promising parts of the
search space. Finally, there are not large differences between other strategies.

As can be seen in Figure 8(c), the description length of the subgroups is
not very impacted by the strategies of the Roll-Out step. The results of
the random-reward reward aggregation policy are still different from other
strategies: The description length is smaller for the Mushroom dataset. Using
large-freq-roll-out with jumpLength = 100 leads to smaller descriptions for

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 27

Table 6: The list of strategies used to experiment with the RollOut method.

Strategy Path Policy Reward Aggregation Policy
(1) naive-roll-out (pathLength = 20) terminal-reward
(2) direct-freq-roll-out max-reward
(3) direct-freq-roll-out mean-reward
(4) direct-freq-roll-out top-2-mean-reward
(5) direct-freq-roll-out top-5-mean-reward
(6) direct-freq-roll-out top-10-mean-reward
(7) direct-freq-roll-out random-reward
(8) large-freq-roll-out (jumpLength = 10) max-reward
(9) large-freq-roll-out (jumpLength = 10) mean-reward
(10) large-freq-roll-out (jumpLength = 10) top-2-mean-reward
(11) large-freq-roll-out (jumpLength = 10) top-5-mean-reward
(12) large-freq-roll-out (jumpLength = 10) top-10-mean-reward
(13) large-freq-roll-out (jumpLength = 10) random-reward
(14) large-freq-roll-out (jumpLength = 20) max-reward
(15) large-freq-roll-out (jumpLength = 20) mean-reward
(16) large-freq-roll-out (jumpLength = 20) top-2-mean-reward
(17) large-freq-roll-out (jumpLength = 20) top-5-mean-reward
(18) large-freq-roll-out (jumpLength = 20) top-10-mean-reward
(19) large-freq-roll-out (jumpLength = 20) random-reward
(20) large-freq-roll-out (jumpLength = 50) max-reward
(21) large-freq-roll-out (jumpLength = 50) mean-reward
(22) large-freq-roll-out (jumpLength = 50) top-2-mean-reward
(23) large-freq-roll-out (jumpLength = 50) top-5-mean-reward
(24) large-freq-roll-out (jumpLength = 50) top-10-mean-reward
(25) large-freq-roll-out (jumpLength = 50) random-reward
(26) large-freq-roll-out (jumpLength = 100) max-reward
(27) large-freq-roll-out (jumpLength = 100) mean-reward
(28) large-freq-roll-out (jumpLength = 100) top-2-mean-reward
(29) large-freq-roll-out (jumpLength = 100) top-5-mean-reward
(30) large-freq-roll-out (jumpLength = 100) top-10-mean-reward
(31) large-freq-roll-out (jumpLength = 100) random-reward

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

(1) (6) (11) (16) (21) (26) (31)

Runtime (ms)

Strategies

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

(6) (11) (16) (21) (26) (31)

Quality

Strategies

 0

 1

 2

 3

 4

 5

(6) (11) (16) (21) (26) (31)

Description length

Strategies

(a) Runtime: BreastCancer (b) Avg. quality: Mushroom (c) Descr length: Mushroom

Fig. 8: Impact of the Roll-Out strategy.

the Mushroom dataset. Finally, the description length is not or almost not
influenced by the Roll-Out strategies.

6.6 The Memory method

We derived six strategies for the Memory step given in Figure 9(bottom).
Obviously, the all-memory policy is slower than other strategies because all
the nodes within the path of the simulation have to be stored (see Figure 9(a)).

28 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

(1) (2) (3) (4) (5) (6)

Runtime (ms)

Strategies

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

(1) (2) (3) (4) (5) (6)

Quality

Strategies

 0

 1

 2

 3

 4

 5

(1) (2) (3) (4) (5) (6)

Description length

Strategies

(a) Runtime: Ionosphere (b) Avg. quality: Emotions (c) Descr. length: BreastCancer

(1) no-memory (2) all-memory (3) top-1-memory

(4) top-2-memory (5) top-5-memory (6) top-10-memory

Fig. 9: Impact of the Memory strategy.

Conversely, the no-memory policy is the fastest strategy. The runtimes of the
top-k-memory policies is comparable.

Figure 9(b) shows that the quality of the result set is impacted by the choice
of the memory policies. We can observe that the no-memory is clearly worse
than other strategies. Indeed, in the Emotion dataset, the best subgroups are
located more deeper in the search space, thus, if the solutions encountered
during the simulation are not stored it would be difficult to find them just be
considering the subgroups that are expanded in the search tree. Surprisingly,
the all-memory policy does not lead to better result. In fact the path gener-
ated during a simulation contains a lot of redundant subgroups: Storing all
these nodes is not required to improve the quality of the result set. Only few
subgroups within the path are related to different local optima.

As expected in Figure 9(c), the descriptions of the subgroups obtained
with the no-memory policy are smaller than those of other strategies. Indeed,
with the no-memory policy, the result sets contains only subgroups that are
expanded in the search tree, in other words, the subgroups obtained with the
Expand step.

6.7 The Update method

Figure 10(bottom) presents the different strategies we use to implement the
Update step. The goal of this step is to back-propagate the reward obtained
by the simulation to the parent nodes. The runtime of these strategies are
comparable (see Figure 10(a)). However, we notice that the top-k-mean-update
policy is a little more time consuming. Indeed, we have to maintain a list for
each node within the built tree that stores the top-k best rewards obtained so
far.

Figure 10(b) shows the quality of the result set when varying the Update
policies. For most of the datasets, since the proportion of local optima is very
low within the search space, the max-update is more efficient than the mean-
update. Indeed, using the max-update enables to keep in mind that there is
an interesting pattern that is reachable from a node. However, Figure 10(b)

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 29

 0

 500

 1000

 1500

 2000

 2500

(1) (2) (3) (4) (5)

Runtime (ms)

Strategies

 0

 0.05

 0.1

 0.15

 0.2

(1) (2) (3) (4) (5)

Quality

Strategies

 0

 1

 2

 3

 4

 5

(1) (2) (3) (4) (5)

Description length

Strategies

(a) Runtime: TicTacToe (b) Avg. quality: Ionosphere (c) Descr length: Iris

(1) max-update (2) mean-update (3) top-2-mean-update

(4) top-5-mean-update (5) top-10-mean-update

Fig. 10: Impact of the Update strategy.

presents the opposite phenomena: The mean-update policy leads to a better
result. In fact, since there are a lot of local optima in the Ionosphere dataset,
the mean-update can find the areas with lots of interesting solutions. Moreover,
using the top-k-mean-update leads to the mean-update when k increases.

The description of the subgroups in the result set is comparable when
varying the policies of the Update method (see Figure 10(c)). Indeed, the
aim of the Update step is just to back-propagate the reward obtained during
the simulation to the nodes of the built tree to guide the exploration for the
following iterations. This step does not have a large influence on the length of
the description of the subgroups.

6.8 The number of iterations

We study the impact of different computational budgets allocated to mcts4dm,
that is, the maximum number of iterations the algorithm can perform. As de-
picted in Figure 11(a), the runtime is linear with the number of iterations. The
x-axis is not linear w.r.t. the number of iterations, please refer to the bottom
of Figure 11 to know the different values of the number of iterations.

Moreover, as expected, the more iterations, the better the quality of the
result set. Figure 11(b) shows that a larger computational budget leads to a
better quality of the result set, but, obviously, it requires more time. Thus,
with this exploration method, the user can have some results anytime. For the
BreastCancer dataset, the quality decreases from 10 to 100 iterations: This is
due to the fact that with 10 iterations there are less subgroups extracted (12
subgroups) than with 100 iterations (40 subgroups), and the mean quality of
the result set with 100 iterations contains also subgroups with lower quality
measures.

30 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

6.9 Evaluating pattern set diversity when a ground truth is known

Artificial datasets are generated according to default parameters given in Ta-
ble 4. Then, we study separately the impact of each parameter on the ability
to retrieve the hidden patterns with our MCTS algorithm. After a few trials,
we use the following default MCTS parameters: The single player UCB (SP-
MCTS) for the select policy; the label-expand policy with PU activated; the
direct-freq-roll-out policy for the simulations, the max-update policy as aggre-
gation function of the rewards of a simulation, the top-10-memory policy and
finally the max-update policy for the back-propagation.

The ability to retrieve hidden patterns is measured with a Jaccard coeffi-
cient between the support of the hidden patterns and the one discovered by
the algorithm:

Definition 17 (Evaluation measure) Let H be the set of hidden patterns,
and F the set of patterns found by an MCTS mining algorithm, the quality,
of the found collection is given by:

qual(H,F) = avg∀h∈H(max∀f∈F (Jaccard(ext(h), ext(f))))

that is, the average of the quality of each hidden pattern, which is the best
Jaccard coefficient with a found pattern. We thus measure here the diversity.
It is a pessimistic measure in the sense that it takes its maximum value 1 iff
all patterns have been completely retrieved.

It can be noticed that we do not use the Definition 6 for diversity: As a ground
truth is available, we opt for a measure that quantifies its recovering.

Varying the noise parameter. We start with the set of parameters Psmall. The
results are given in Figure 12 with different minimal support values (used
during the expand step and the simulations). Recall that a hidden pattern
is random set of symbols attribute = value when dealing with nominal at-
tributes, repeated in pattern sup object descriptions: The noise makes that
each generated object description may not support the pattern. Thus, the
noise directly reduces the support of a hidden pattern: increasing the noise

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Runtime (ms)

Strategies

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Quality

Strategies

 0

 1

 2

 3

 4

 5

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Description length

Strategies

(a) Runtime: Cal500 (b) Avg. quality: BreastCancer (c) Descr length: Nursery

(strategy)#iterations: (1)10 (2)50 (3)100 (4)500 (5)1K (6)5K (7)10K (8)50K (9)100K

Fig. 11: Impact of the maximal budget (number of iterations).

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 31

 0

 0.2

 0.4

 0.6

 0.8

 1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

noise

1 iteration
10 iterations
100 iterations
1K iterations
10K iterations
100K iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

noise

(i) minSup = 100 (ii) minSupp = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

noise

(iii) minSup = 10

Fig. 12: Ability to retrieve hidden patterns (qual(H,F) in Y-axis) when intro-
ducing noise and mining with different minimum supports minSup.

requires to decrease the minimal support of the algorithm. This is clearly ob-
servable on the different figures. When the minimum support is set to the same
value as the support of the hidden patterns (minSupp = 100), the noise has a
strong impact and it is difficult to retrieve the hidden patterns, even when the
whole tree (of frequent patterns) has been expanded. Reducing the minimal
support to 1 makes the search very resistant to noise. Note that when two
lines exactly overlaps, it means that the search space of frequent patterns was
fully explored: MCTS performed an exhaustive search.

Varying the out factor parameter. Each pattern is inserted in pattern sup
transactions (or less when there is noise) as positive examples (class label +).
We also add pattern sup×out factor negative examples (class label −). When
out factor = 1, each pattern appears as much in positive and negative exam-
ples. This allows to hide patterns with different quality measure, and especially
different WRAcc measures. The Table 7 (row (1)) shows that this parameter
has no impact: patterns of small quality are retrieved easily in a small number
of iterations. The UCB hence drives the search towards promising parts that
have the best rewards.

Varying the number of hidden patterns. We claim that the UCB will guide
the search towards interesting parts (exploitation) but also unvisited parts
(exploration) of the search space. It follows that all hidden patterns should
be retrieved and well retrieved. We thus vary the number of random patterns

32 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

between 1 and 20 and observe that they are all retrieved (Table 7 (row (2))).
When increasing the number of hidden more patterns, retrieving all of them
requires more iterations in the general case.

Varying the support size of the hidden patterns. Patterns with a high support
(relative to the total number of objects) should be easier to be retrieved as
a simulation has more chance to discover them, even partially. We observe
that patterns with small support can still be retrieved but it requires more
iterations to retrieve them in larger datasets (Table 7 (row (3))).

Varying the number of objects. The number of objects directly influences the
computation of the support of each node: Each node stores a projected database
that lists which objects belong to the current pattern. The memory required
for our MCTS implementation follows a linear complexity w.r.t. the number
of iterations. This complexity can be higher depending on the chosen memory
policy (e.g. in these experiments, the top-10 memory policy was chosen). The
time needed to compute the support of a pattern is higher for larger dataset,
but it does not change the number of iterations required to find a good result.
This is reported in (Table 7 (row (4))). Run times will be discussed later.

Varying the number of attributes and the size of attributes domains. These
two parameters directly determine the branching factor of the exploration
tree. It takes thus more iterations to fully expand a node and to discover all
local optima. Here again, all patterns are well discovered but larger datasets
require more iterations (Table 7 (row (5) and (6))).

Pmedium Plarge

(1
)
ou
t
f
a
ct
or

 0

 0.2

 0.4

 0.6

 0.8

 1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
 0

 0.2

 0.4

 0.6

 0.8

 1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

(2
)
n
b
p
a
tt
er
n
s

 0

 0.2

 0.4

 0.6

 0.8

 1

0

2

4

6

8

10

12

14

16

18

20
 0

 0.2

 0.4

 0.6

 0.8

 1

0

2

4

6

8

10

12

14

16

18

20

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 33

Pmedium Plarge

(3
)
p
a
tt
er
n
su
p

 0

 0.2

 0.4

 0.6

 0.8

 1

20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

 0

 0.2

 0.4

 0.6

 0.8

 1

20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

(4
)
n
b
ob
j

 0

 0.2

 0.4

 0.6

 0.8

 1

0

50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

45
00
0

50
00
0

 0

 0.2

 0.4

 0.6

 0.8

 1

0

50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

45
00
0

50
00
0

(5
)
n
b
a
tt
r

 0

 0.2

 0.4

 0.6

 0.8

 1

5

10

15

20

25

30

35

40

45

50
 0

 0.2

 0.4

 0.6

 0.8

 1

5

10

15

20

25

30

35

40

45

50

(6
)
d
om

a
in

si
z
e

 0

 0.2

 0.4

 0.6

 0.8

 1

10

20

30

40

50

60

70

80

90

10
0

 0

 0.2

 0.4

 0.6

 0.8

 1

0

20

40

60

80

10
0

12
0

Pmedium Plarge

Legend:

Table 7: Evaluation of the ability to retrieve hidden patterns in artificial data
generated according to different parameters (average of 5 runs for each point).
qual(H,F) in Y-axis, parameters given in the first columns as X-axis.

34 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Table 8: Parameters of the artificial data generator. The format of name of
the data is given by their parameters by [nb obj] [nb attr] [domain size].

Name 5000 10 200 5000 50 50 5000 50 200 20000 10 200 20000 50 200

nb obj 5,000 5,000 5,000 20,000 20,000

nb attr 10 50 50 10 50

domain size 200 50 200 200 200

nb patterns 5 5 5 5 5

pattern sup 200 200 200 200 200

out factor 0.05 0.05 0.05 0.05 0.05

noise rate 0.05 0.05 0.05 0.05 0.05

7 Comparisons with existing algorithms

We compare mcts4dm to other SD approaches (exhaustive search, beam
search, genetic algorithms and sampling) in terms of computational time, di-
versity and redundancy of the pattern set, and memory usage. In addition to
the benchmark data we used in the previous section, we generate 5 new artifi-
cial datasets for which parameters are given in Table 8. In this empirical study,
we consider a timeout of 5 minutes that is enough to capture the behavior of
the algorithms that are not based on a computational budget, such as SD-
Map or beam search approaches. Indeed, mcts4dm and sampling methods
use a computational budget.

7.1 SD-Map

SD-Map*, an improvement of SD-Map, is considered as the most efficient ex-
haustive method for subgroup discovery [Atzmüller and Puppe (2006); Atzmüller
and Lemmerich (2009)]. It employs the FP-Growth principle to enumerate
the search space [Han et al (2004)]. It operates a greedy discretization as a
pre-processing step to handle numerical data. It can consider several quality
measures to evaluate the interestingness of a subgroup (WRAcc, F1 score,
etc.). The source code is available at http://www.vikamine.org.

Runtime. SD-Map* is very efficient when dealing with dataset of reasonable
search space size. We empirically study the scalability of this algorithm com-
pared to those of mcts4dm for several numbers of iterations. Figure 13 (a)
displays the runtime of SD-Map* on the Mushroom dataset when varying the
minimum support threshold. Clearly, for high minimum support thresholds,
SD-Map* is able to provide the results quickly. However, the runtime is ex-
ponential w.r.t. this threshold, and thus this algorithm cannot be applied to
extract small subgroups. Conversely, mcts4dm is tractable for very low min-
imum support thresholds: Many iterations can be performed. Figure 13 (b)
displays the runtimes for the Ionosphere data and once again mcts4dm is

http://www.vikamine.org

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 35

Table 9: Diversity in the result set for artificial data. The value is the
qual(H,F) where H is the set of hidden patterns in the artificial data and
F is the set of found patterns by the algorithm The character ’-’ means that
the algorithm exceeds the time limit of 5 minutes.

D
a
ta

m
in
S
u
p
p

S
D
-M

a
p

m
c
t
s4

d
m

B
e
a
m
S
e
a
r
c
h

M
is
e
r
e

S
S
D
P

1
K

5
K

1
0
K

5
0
K

1
0
0
K

5
0
0
K

1
,0

0
0
K

1
0

1
0
0

5
0
0

1
K

5
K

1
0
K

5
0
K

1
0
0
K

5
0
0
K

1
,0

0
0
K

1
0
0

5
0
0

1
K

5
K

1
0
k

5
0
0
0

1
0

2
0
0

5
0

1
1

1
1

1
1

1
1

1
0
.3

8
1

1
1

1
1

1
1

1
0
.7

2
0
.7

2
0
.7

2
0
.7

2
0
.7

2

5
0
0
0

5
0

5
0

5
0

-
0
.8

2
1

1
1

1
-

-
0
.9

9
1

-
0
.7

3
0
.9

4
0
.9

3
0
.9

9
0
.9

9
0
.9

9
1

0
.4

8
0
.7

2
0
.7

2
0
.7

2
0
.7

2

5
0
0
0

5
0

2
0
0

5
0

-
1

1
1

1
1

1
1

1
1

-
0
.7

0
.8

9
0
.9

7
0
.9

8
0
.9

8
0
.9

9
1

0
.6

8
0
.7

2
0
.7

2
0
.7

2
0
.7

2

2
0
0
0
0

1
0

2
0
0

1
0
0

1
1

1
1

1
1

1
1

1
1

-
0
.7

7
0
.8

9
0
.9

6
0
.9

7
1

1
-

0
.7

3
0
.7

3
0
.7

3
0
.7

2
-

2
0
0
0
0

5
0

2
0
0

1
0
0

-
0
.6

9
1

1
1

-
-

-
-

-
-

0
.6

0
.8

6
0
.8

7
0
.9

5
0
.9

8
-

-
0
.6

1
0
.7

2
0
.7

2
0
.7

2
-

36 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

 100

 1000

 10000

 100000

2822 564 282 56 28

Runtime (ms)

minSupp

SDMAP
MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000
MCTS4DM-500000
MCTS4DM-1000000

 10

 100

 1000

 10000

 100000

 1x106

175 35 17 3 1

Runtime (ms)

minSupp

SDMAP
MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000
MCTS4DM-500000
MCTS4DM-1000000

(a) Mushroom (b) Ionosphere

Fig. 13: Runtime of SD-Map and mcts4dm when varying minSupp.

able to perform lots of iteration in a linear time w.r.t. the minimum support
threshold whereas SD-Map* fails.

Redundancy and diversity in the result set. SD-Map* is an exhaustive
search, thus the diversity of the result set is either perfect if the run can fin-
ish or null: Table 9 gives the diversity using the formula of Definition 17 on
artificial data since the ground truth is known. However when dealing with
numerical attributes, SD-Map* does not ensure a perfect diversity anymore.
Indeed, since it handles numerical attributes by performing a discretization in
a pre-processing step, there is no guarantee to extract the best patterns. For ex-
ample, in the BreastCancer dataset, the quality measure of the best subgroup
extracted by SD-Map* is 0.18 whereas mcts4dm has found a subgroup whose
quality measure is 0.21 with 50, 000 iterations in only 0.213ms. Figure 14 (a)
and Figure 14 (b) show the redundancy of the result set (computed with the
formula in Definiton 5) extracted on the Mushroom dataset respectively with
minSupp = 264 and minSupp = 282. Obviously, the lower the maximum
similarity threshold Θ, the more redundant the result set. Compared to SD-
Map*, mcts4dm produces few redundancy when performing few iterations,
but few iterations are not enough to provide good results: The more iterations,
the more redundancy. Surprisingly, the result set of mcts4dm can be more re-
dundant than those of SD-Map* that represents our baseline. Indeed, the set
of redundant patterns for the main local optima is larger than for other small
local optima, i.e., there are many more patterns that are similar with the main
local optima than with small local optima. Since mcts4dm generally finds at
first the main local optima, the redundancy measure is higher than those of
SD-Map* because there are, in proportion, more redundant subgroups in the
result set than local optima. When minSupp decreases, SD-Map* becomes
more redundant compared to some mcts4dm runs.

Memory usage. Figure 15 (a) displays the memory usage of our algorithm
mcts4dm on the Mushroom data with different numbers of iterations. As ex-
pected, the more iterations, the higher the memory usage. It grows linearly
with the number of iterations (the creation of the storage structures avoids to
see the linear growth of the memory during the first iterations). Figure 15 (b)
displays the memory usage when varying the minimum support threshold in

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 37

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.8 0.6 0.4 0.2

Redundancy

�

SDMAP
MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

0.8 0.6 0.4 0.2

Redundancy

�

SDMAP
MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000

(a) minSupp = 564 (b) minSupp=282

Fig. 14: The redundancy in the result set for the Mushroom data varying Θ.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1k 5k 10k 50k 100k 500k

Memory usage (Mo)

iterations

MCTS4DM

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2822 564 282 56 28

Memory usage (Mo)

minSupp

SDMAP
BeamSearch-100

MCTS4DM-100000
Misere-100000
SSDP-10000

(a) mcts4dm (b) All algorithms

Fig. 15: The memory usage in the Mushroom dataset.

the Mushroom dataset for all the considered algorithms. Here, we only dis-
cuss the case of SD-Map* compared to mcts4dm. Although SD-Map* is
an exhaustive search, its memory usage is similar to (but slightly lower than)
those of mcts4dm with 100k iterations. It confirms that the implementation
of SD-Map* is efficient.

7.2 Beam search

The beam search strategy is the most popular heuristic method in subgroup
discovery. Cortana is a tool that enables to run SD tasks with beam search
approaches and its source code is available at http://datamining.liacs.

nl/cortana.html. Beam search, originally introduced in Lowerre (1976), is
a greedy method that partially explores the search space with several hill
climbings run in parallel. It proceeds in a level-wise approach considering at
each level the best subgroups to extend at the next level. The number of
subgroups that are kept to be extended at the next level is called the beam
width.

Runtime. By definition, beam search can only find, yet very quickly, local
optima reachable from the most general pattern with a hill climbing. Figure 16
shows the runtimes with different beam widths. Obviously, the larger the beam

http://datamining.liacs.nl/cortana.html
http://datamining.liacs.nl/cortana.html

38 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

 1

 10

 100

 1000

 10000

 100000

479 95 47 9 4

Runtime (ms)

minSupp

BeamSearch-50
BeamSearch-100
BeamSearch-500
MCTS4DM-1000

MCTS4DM-100000

Fig. 16: Runtime of the beam search exploration and mcts4dm when varying
minSupp in the tictactoe dataset.

width, the longer the runtimes. However, even with a beam width of 500, the
runtime is lower than those of mcts4dm with 100k iterations. This is due to
the greedy nature of beam search that expands subgroups only if the quality
measure increases. However, the local optima that are located deeper in the
search space are often missed since the quality measure is not monotone. For
large data, such as Bibtex, the beam search is not tractable since it is required
to expand all the first level of the search tree to build up the beam. Thus, in
our settings, the timeout of 5 minutes is reached with beam search whereas
mcts4dm can proceed to 100k iterations in 4 minutes.

Redundancy and diversity in the result set. Due to the greedy approach
of the beam search, the redundancy in the result set is the main problem.
Figure 17 (a) compares the redundancy in the TicTacToe data obtained with
several beam searches and with mcts4dm. Clearly, the beam search leads to
a more redundant result set than mcts4dm. This remark holds for all data
we experimented with. For example, in the Olfaction dataset, there is a high
difference in the redundancy in the result set obtained with a beam search
as well (Figure 17 (b)). Besides this high redundancy in the result set with a
beam search, the diversity is not as good as with mcts4dm. Even if in Table 9,
the beam search extracts the local optima for some datasets, it may require
large beam widths that are time consuming. Figure 18 illustrates the diversity
for the BreastCancer data with Θ = 0.2. With 100k iterations, mcts4dm leads
to a much more diverse result set than a beam search.

Memory consumption. The size of the set of patterns extracted with a beam
search is generally lower than the size of the set of patterns obtained with tens
of thousands iterations with mcts4dm. Thus, the memory usage is lower for
a beam search. Figure 15 displays the memory usage of a beam search with a
beam width set to 100 in the Mushroom data. We observe that the memory
usage increases similarly to (but it is lower than) those of mcts4dm when
varying the minimum support thresholds.

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 39

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.8 0.6 0.4 0.2

Redundancy

�

BeamSearch-50
BeamSearch-100
BeamSearch-500
MCTS4DM-1000

MCTS4DM-100000

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.8 0.6 0.4 0.2

Redundancy

�

BeamSearch-50
BeamSearch-100
MCTS4DM-1000

MCTS4DM-100000

(a) TicTacToe (minSupp = 47) (b) Olfaction (minSupp = 84)

Fig. 17: The redundancy in the result set for the TicTacToe and Olfaction
data for the beam search strategy.

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7

1 5 10 50 100 500 1000

Diversity

top-K

BeamSearch-50
BeamSearch-100
BeamSearch-500
MCTS4DM-1000

MCTS4DM-100000

Fig. 18: The diversity of the result set in BreastCancer data when Θ = 0.2.

7.3 Evolutionary algorithms

The evolutionary approaches aim at solving problems imitating the process
of natural evolution. Genetic algorithms are a branch of the evolutionary ap-
proaches that use a fitness function to select which individuals to keep at the
next generated population [Holland (1975)]. In this empirical study, we evalu-
ate the efficiency of mcts4dm from Lucas et al (2017) against the evolutionary
algorithm SSDP.

Runtime. SSDP is free from the minimum support constraint: It explores the
whole search space without pruning w.r.t. the support of the patterns. There-
fore, the runtimes of SSDP are the same for all minimum support thresholds
(Figure 19). However, when varying the population size, it comes with large
changes in the runtimes. The runtimes of SSDP are quite similar to those of
mcts4dm when varying the number of iterations. However, in general SSDP
is not scalable when considering a large population size.

Redundancy and diversity in the result set. On one hand, SSDP seems
to provide less redundant pattern sets, due to the mutation and cross-over
operations of this evolutionary algorithm. Figure 21 (a) deals with the Iris data
with minSupp = 7: The redundancy of SSDP is generally better than those

40 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

 10

 100

 1000

 10000

 100000

 1x106

349 69 34 6 3

Runtime (ms)

minSupp

SSDP-100
SSDP-500
SSDP-1000
SSDP-5000
SSDP-10000
SSDP-50000

MCTS4DM-1000
MCTS4DM-100000

Fig. 19: Runtime of SSDP and mcts4dm when varying minSupp in Breast-
Cancer.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.8 0.6 0.4 0.2

Redundancy

�

SSDP-100
SSDP-500
SSDP-1000
SSDP-5000
SSDP-10000
SSDP-50000
SSDP-100000

MCTS4DM-1000
MCTS4DM-100000

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.8 0.6 0.4 0.2

Redundancy

�

SSDP-100
SSDP-500
SSDP-1000
SSDP-5000
SSDP-10000

MCTS4DM-1000
MCTS4DM-100000

(a) Iris (minSupp = 7) (b) Mushroom (minSupp = 56)

Fig. 20: The redundancy in the result set for the iris and mushroom data.

of our algorithm mcts4dm. This is the same conclusion in Figure 20 (b) for
Mushroom with minSupp = 56. On the other hand, the diversity in the result
set of SSDP is lower than those of mcts4dm. In Table 9, SSDP fails to extract
all hidden patterns in our artificial data. Figure 21 (a) and Figure 21 (b)
display the same result for benchmark datasets. Clearly, mcts4dm is able to
extract much more interesting subgroups than SSDP. Thus, even if the result
set of mcts4dm can be redundant, it provides a more diverse set of patterns
compared to the result set extracted by SSDP. This is due to the population
size that is not enough large to provide a high diversity (but SSDP is not
tractable for large population sizes).

Memory consumption. The memory usage of SSDP depends on the size
of the population. In mushroom, when considering a population of size 1, 000,
the memory usage is higher than those of mcts4dm with 100k iterations for
high minimum support thresholds but it is lower for low minimum support
thresholds (see Figure 15). Indeed, since SSDP does not use any minimum
support threshold, its memory usage is independent w.r.t. minSupp.

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 5 10 50 100 500 1000

Diversity

top-K

SSDP-100
SSDP-500
SSDP-1000
SSDP-5000
SSDP-10000
SSDP-50000
SSDP-100000

MCTS4DM-1000
MCTS4DM-100000

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

1 5 10 50 100 500 1000

Diversity

top-K

SSDP-100
SSDP-500
SSDP-1000
SSDP-5000
SSDP-10000
SSDP-50000

MCTS4DM-1000
MCTS4DM-100000

(a) Emotions (minSupp = 5) (b) BreastCancer (minSupp = 34)

Fig. 21: The diversity of the result set when Θ = 0.2.

 100

 1000

 10000

 100000

 1x106

2822 564 282 56 28

Runtime (ms)

minSupp

Misere-1000
Misere-5000
Misere-10000
Misere-50000
Misere-100000
Misere-500000
Misere-1000000
MCTS4DM-1000

MCTS4DM-100000

Fig. 22: Runtime of Misere and mcts4dm when varying minSupp on the
Mushroom dataset.

7.4 Sampling approach

Sampling methods are useful to provide interactive applications. Indeed, they
enable a result anytime. We experiment with the sampling algorithm Mis-
ere [Gay and Boullé (2012); Egho et al (2015, 2017)]. Its principle consists
in drawing uniformly an object from the data, and then uniformly pick one
of its possible generalizations. Each sample is independent and thus a pattern
can be drawn several times. We chose Misere as it can consider any pattern
quality measure (in contrast to other sampling approaches such as Moens and
Boley (2014); Boley et al (2011)), and it performs very well.

Runtime. Since this strategy consists in randomly drawing patterns, the
runtime is linear with the number of draws. Varying the minimum support
thresholds does not really impact the runtime (Figure 22). An iteration with
mcts4dm is almost only twice much longer than a draw with Misere. This
is explained by the fact that Misere only draws one pattern at once without
additional memory (i.e., the Monte Carlo tree). Conversely, in one iteration,
MCTS additionally performs Select, Expand, Memory and Update steps.

Redundancy and diversity in the result set. Since Misere proceeds in
independent draws of patterns without exploiting the result of the previous

42 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.8 0.6 0.4 0.2

Redundancy

�

Misere-1000
Misere-5000
Misere-10000
Misere-50000
Misere-100000
Misere-500000
Misere-1000000
MCTS4DM-1000

MCTS4DM-100000

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 5 10 50 100 500 1000

Diversity

top-K

Misere-1000
Misere-5000
Misere-10000
Misere-50000

MCTS4DM-1000
MCTS4DM-100000

(a) Redundancy in Cal500 (b) Diversity in Bibtex

Fig. 23: The redundancy and the diversity in the result set for the Cal500 and
Bibtex data.

draws of patterns, it leads to a result set that contains little redundancy. In-
deed, it can draw an interesting pattern that is close to its local optimum, but
it would not try to find this optimum at the next draws. Figure 23 illustrates
this: The result set is much less redundant than those of mcts4dm. For exam-
ple, considering a result set containing 1, 000 draws of patterns and another
obtained with 1, 000 iterations from mcts4dm. mcts4dm returns pattern set
10 times more redundant than Misere. However, since Misere does not ex-
ploit the result of the previous draws, it leads to less diversity. In Table 9,
Misere may require lots of draws to find all local optima. Figure 23 (b) shows
for Bibtex that the diversity is better with mcts4dm than with Misere. Con-
trary to mcts4dm, there is no guarantee that Misere will explore the whole
search space, even given a large computational budget. Nevertheless, in Ta-
ble 9, we can notice that, in practice, Misere can extract all patterns hidden
in artificial data, but it might require a lot of draws to find them.

Memory consumption. As expected, since this sampling method performs
independent draws, the memory usage is low. In our settings, only the patterns
that are drawn are stored. Figure 15 illustrates the memory usage of Misere
when it has randomly picked 100k patterns. It is constant w.r.t. the minimum
support thresholds, and this is the exploration method that requires the less
memory for low minimum support thresholds.

7.5 Considering several measures

mcts4dm can consider any pattern quality measures. Up to now, we ex-
perimented with the popular WRAcc measure only. We empirically evaluate
mcts4dm with several quality measures that are also used in SD. We consider
some of the quality measures available in Cortana: The entropy, the F1 score,
the Jaccard coefficient and the accuracy (or precision). The measures we use
are not equivalent since they do not sort the patterns in the same order : Each
measure induces a specific profile on the pattern space.

mcts4dm is not measure-dependent since it does not use any prior knowl-
edge to explore the search space. During the first iterations, mcts4dm ran-

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 43

 0

 20

 40

 60

 80

 100

 120

1 5 10 50 100 500 1000

Diversity

top-K

MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000

Misere-1000
Misere-5000
Misere-10000
Misere-50000
Misere-100000

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 5 10 50 100 500 1000

Diversity

top-K

MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000

Misere-1000
Misere-5000
Misere-10000
Misere-50000
Misere-100000

(a) Entropy (b) F1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 5 10 50 100 500 1000

Diversity

top-K

MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000

Misere-1000
Misere-5000
Misere-10000
Misere-50000
Misere-100000

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1 5 10 50 100 500 1000

Diversity

top-K

MCTS4DM-1000
MCTS4DM-5000
MCTS4DM-10000
MCTS4DM-50000
MCTS4DM-100000

Misere-1000
Misere-5000
Misere-10000
Misere-50000
Misere-100000

(c) Jaccard coefficient (d) Accuracy

Fig. 24: The diversity of the result set for several quality measures in the
Mushroom dataset.

domly samples the search space, then once it has an estimation – that is usually
rather not reliable at the beginning – of the distribution of the quality measure
on the pattern space, it biases the exploration to focus on the promising areas
(exploitation) and the areas that have been rarely visited (exploration). The
strategies we developed are useful to handle the specific profile induced by a
quality measure on the pattern space, e.g., if there are lots of local optima in
the search space the exploration strategy should be different than if there are
few local optima. For instance, the mean-update strategy is the most efficient
strategy when we are facing a pattern space with lots of local optima since it
enables to exploit the areas that are deemed to be interesting in average. Thus,
mcts4dm can be used with any quality measure. The choice of the strategies
only impacts how fast it will find the interesting patterns.

We compare our approach with the sampling method Misere which is the
most efficient opponent based on the previous results (see Figure 24). We ex-
periment on the Mushroom dataset to reach low minimum support thresholds
using the four quality measures (the entropy, the F1 score, the Jaccard coeffi-
cient and the accuracy). The results suggest that mcts4dm is able to provide
a good diversity regardless the quality measure that is used. mcts4dm finds
a result set with a better diversity for all quality measures. The results on the
other datasets are similar but not reported here.

44 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

8 Discussion

Based on the empirical study reported in the two previous sections, we now
provide a summary of the main results. First, we experimented with several
strategies we defined for our algorithm mcts4dm. Our conclusions are the
following:

– Select: Concerning the choice of the upper confidence bound, it seems
more suitable to use the SP-MCTS for SD problems, although it has a
limited impact. Activating LO leads to worse results, but with PU we are
able to get more interesting patterns. This is a quite interesting fact as LO
is a widely used technique in pattern mining (enumerate each pattern only
once with a lectic order).

– Expand: We advise to use the label-gen strategy that enables to reach more
quickly the best patterns, but it can require more computational time.

– RollOut: For nominal attributes, the direct-freq-roll-out is an efficient
strategy. However, when facing numerical attributes, we recommend to
employ the large-freq-roll-out since it may require a lot of time to reach
the maximal frequent patterns.

– Memory: Using a memory strategy is essential since it enables to store
the patterns encountered during the RollOut step. The top-1-memory is
enough to avoid to miss interesting patterns that are located deeper in the
search space.

– Update: When there are potentially many local optima in the search space,
we recommend to set the mean-update strategy for the Update step. In-
deed it enables to exploit the areas that are deemed to be interesting in
average. However, when there are few local optima among lots of uninter-
esting patterns, using mean-update is not optimal since the mean of the
rewards would converge to 0. In place, the max-update should be used to
ensure that an area containing a local optima is well identified.

Our second batch of experiments compared mcts4dm with the main ex-
isting approaches for SD. For that, we experimented with one of the most
efficient exhaustive search in SD, namely SD-Map*, a beam search, the re-
cent evolutionary algorithm SSDP and a sampling method implemented in
the algorithm Misere. The results suggest that mcts4dm leads, in general,
to a more diverse result set when an exhaustive search is not tractable. The
greedy property of the beam search leads to a low diversity in the result set,
and the lack of memory in sampling methods avoid to exploit interesting pat-
terns to find the local optima (a pattern may be drawn several times). There is
no guarantee that evolutionary algorithms and sampling approaches converge
to the optimal pattern set even with an infinite computational budget.

MCTS comes with several advantages but has some limits:

+ It produces a good pattern set anytime and it converges to an exhaustive
search if given enough time and memory (a best-first search).

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 45

+ It is agnostic of the pattern language and the quality measures: It handles
numerical patterns without discretization in a pre-processing step and it
still provides a high diversity using several quality measures.

+ mcts4dm is aheuristic: No hypotheses are required to run the algorithm
whereas with some sampling methods, a probability distribution (based on
the quality measure and the pattern space) has to be given as a parameter.

- mcts4dm may require a lot of memory. This memory usage becomes more
and more important with the increase of the number of iterations.

- Despite the use of UCB, it is now well known that MCTS algorithms
explore too much the search space. As MCTS basically requires to expand
all the children of a node before exploiting one of them, this problem is
even stronger when dealing with very high branching factor (number of
direct specializations of a pattern). This problem has been in part tackled
by the progressive widening approach that enables to exploit a child of
a node before all of the other children of the node have been expanded
[Gaudel and Sebag (2010); Browne et al (2012)].

9 Conclusion

Heuristic search of supervised patterns becomes mandatory with large datasets.
However, classical heuristics lead to a weak diversity in pattern sets: Only few
local optima are found. We advocate for the use of MCTS for pattern min-
ing: An exploration strategy leading to “any-time” pattern mining that can
be adapted with different measures and policies. The experiments show that
MCTS provides a much better diversity in the result set than existing heuristic
approaches. For instance, interesting subgroups are found by means of a rea-
sonable amount of iterations and the quality of the result iteratively improves.

MCTS is a powerful exploration strategy that can be applied to several,
if not all, pattern mining problems that need to optimize a quality measure
given a subset of objects. For example, Belfodil et al (2017) have already tuned
MCTS4DM for mining convex polygon patterns in numerical data. In general,
the main difficulties are to be able to deal with large branching factors, and
jointly deal with several quality measures. This opens new research perspec-
tives for mining more complex patterns such as sequences and graphs.

Acknowledgments

The authors would like to thank the anonymous reviewers for their construc-
tive and insightful comments. They also warmly thank Sandy Moens, Mario
Boley, Tarćısio Lucas, Renato Vimiero, Albrecht Zimmermann, Marc Plante-
vit, Aimene Belfodil, Abdallah Saffidine, Dave Ritchie and especially Céline
Robardet for discussions, advice or code sharing. This work has been partially
supported by the European Union (GRAISearch, FP7-PEOPLE-2013-IAPP)
and the Institut rhônalpin des systèmes complexes (IXXI).

46 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

References

Abramson B (1990) Expected-outcome: A general model of static evalua-
tion. IEEE Trans Pattern Anal Mach Intell 12(2):182–193, DOI 10.1109/
34.44404, URL https://doi.org/10.1109/34.44404

Abudawood T, Flach PA (2009) Evaluation measures for multi-class subgroup
discovery. In: Buntine WL, Grobelnik M, Mladenic D, Shawe-Taylor J (eds)
Machine Learning and Knowledge Discovery in Databases, European Con-
ference, ECML PKDD 2009, Bled, Slovenia, September 7-11, 2009, Pro-
ceedings, Part I, Springer, Lecture Notes in Computer Science, vol 5781,
pp 35–50, DOI 10.1007/978-3-642-04180-8 20, URL https://doi.org/10.

1007/978-3-642-04180-8_20

Atzmüller M, Lemmerich F (2009) Fast subgroup discovery for continu-
ous target concepts. In: Rauch J, Ras ZW, Berka P, Elomaa T (eds)
Foundations of Intelligent Systems, 18th International Symposium, IS-
MIS 2009, Prague, Czech Republic, September 14-17, 2009. Proceed-
ings, Springer, Lecture Notes in Computer Science, vol 5722, pp 35–
44, DOI 10.1007/978-3-642-04125-9 7, URL https://doi.org/10.1007/

978-3-642-04125-9_7

Atzmüller M, Puppe F (2006) Sd-map - A fast algorithm for exhaustive
subgroup discovery. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds)
Knowledge Discovery in Databases: PKDD 2006, 10th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases,
Berlin, Germany, September 18-22, 2006, Proceedings, Springer, Lecture
Notes in Computer Science, vol 4213, pp 6–17, DOI 10.1007/11871637 6,
URL https://doi.org/10.1007/11871637_6

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multi-
armed bandit problem. Machine Learning 47(2-3):235–256, DOI 10.1023/A:
1013689704352, URL https://doi.org/10.1023/A:1013689704352

Belfodil A, Kuznetsov SO, Robardet C, Kaytoue M (2017) Mining convex
polygon patterns with formal concept analysis. In: Sierra C (ed) Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, ijcai.org,
pp 1425–1432, DOI 10.24963/ijcai.2017/197, URL https://doi.org/10.

24963/ijcai.2017/197

Bendimerad AA, Plantevit M, Robardet C (2016) Unsupervised exceptional
attributed sub-graph mining in urban data. In: Bonchi F, Domingo-Ferrer
J, Baeza-Yates RA, Zhou Z, Wu X (eds) IEEE 16th International Confer-
ence on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain,
IEEE, pp 21–30, DOI 10.1109/ICDM.2016.0013, URL https://doi.org/

10.1109/ICDM.2016.0013

Björnsson Y, Finnsson H (2009) Cadiaplayer: A simulation-based general game
player. IEEE Trans Comput Intellig and AI in Games 1(1):4–15, DOI
10.1109/TCIAIG.2009.2018702, URL https://doi.org/10.1109/TCIAIG.

2009.2018702

https://doi.org/10.1109/34.44404
https://doi.org/10.1007/978-3-642-04180-8_20
https://doi.org/10.1007/978-3-642-04180-8_20
https://doi.org/10.1007/978-3-642-04125-9_7
https://doi.org/10.1007/978-3-642-04125-9_7
https://doi.org/10.1007/11871637_6
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.24963/ijcai.2017/197
https://doi.org/10.24963/ijcai.2017/197
https://doi.org/10.1109/ICDM.2016.0013
https://doi.org/10.1109/ICDM.2016.0013
https://doi.org/10.1109/TCIAIG.2009.2018702
https://doi.org/10.1109/TCIAIG.2009.2018702

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 47

Boley M, Lucchese C, Paurat D, Gärtner T (2011) Direct local pattern sam-
pling by efficient two-step random procedures. In: Apté C, Ghosh J, Smyth
P (eds) Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Diego, CA, USA, Au-
gust 21-24, 2011, ACM, pp 582–590, DOI 10.1145/2020408.2020500, URL
http://doi.acm.org/10.1145/2020408.2020500

Bosc G, Golebiowski J, Bensafi M, Robardet C, Plantevit M, Boulicaut J,
Kaytoue M (2016) Local subgroup discovery for eliciting and understand-
ing new structure-odor relationships. In: Calders T, Ceci M, Malerba D
(eds) Discovery Science - 19th International Conference, DS 2016, Bari,
Italy, October 19-21, 2016, Proceedings, Lecture Notes in Computer Sci-
ence, vol 9956, pp 19–34, DOI 10.1007/978-3-319-46307-0 2, URL https:

//doi.org/10.1007/978-3-319-46307-0_2

Boulicaut J, Jeudy B (2010) Constraint-based data mining. In: Maimon O,
Rokach L (eds) Data Mining and Knowledge Discovery Handbook, 2nd ed.,
Springer, pp 339–354, DOI 10.1007/978-0-387-09823-4 17, URL https://

doi.org/10.1007/978-0-387-09823-4_17

Bringmann B, Zimmermann A (2009) One in a million: picking the right pat-
terns. Knowl Inf Syst 18(1):61–81, DOI 10.1007/s10115-008-0136-4, URL
https://doi.org/10.1007/s10115-008-0136-4

Browne C, Powley EJ, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen
P, Tavener S, Liebana DP, Samothrakis S, Colton S (2012) A survey of
monte carlo tree search methods. IEEE Trans Comput Intellig and AI in
Games 4(1):1–43, DOI 10.1109/TCIAIG.2012.2186810, URL https://doi.

org/10.1109/TCIAIG.2012.2186810

Carmona CJ, González P, del Jesús MJ, Herrera F (2010) NMEEF-SD: non-
dominated multiobjective evolutionary algorithm for extracting fuzzy rules
in subgroup discovery. IEEE Trans Fuzzy Systems 18(5):958–970, DOI
10.1109/TFUZZ.2010.2060200, URL https://doi.org/10.1109/TFUZZ.

2010.2060200

Downar L, Duivesteijn W (2017) Exceptionally monotone models - the rank
correlation model class for exceptional model mining. Knowl Inf Syst
51(2):369–394, DOI 10.1007/s10115-016-0979-z, URL https://doi.org/

10.1007/s10115-016-0979-z

Duivesteijn W, Knobbe AJ (2011) Exploiting false discoveries - statistical vali-
dation of patterns and quality measures in subgroup discovery. In: Cook DJ,
Pei J, Wang W, Zäıane OR, Wu X (eds) 11th IEEE International Confer-
ence on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-
14, 2011, IEEE Computer Society, pp 151–160, DOI 10.1109/ICDM.2011.65,
URL https://doi.org/10.1109/ICDM.2011.65

Duivesteijn W, Knobbe AJ, Feelders A, van Leeuwen M (2010) Subgroup
discovery meets bayesian networks – an exceptional model mining approach.
In: Webb GI, Liu B, Zhang C, Gunopulos D, Wu X (eds) ICDM 2010, The
10th IEEE International Conference on Data Mining, Sydney, Australia,
14-17 December 2010, IEEE Computer Society, pp 158–167, DOI 10.1109/
ICDM.2010.53, URL https://doi.org/10.1109/ICDM.2010.53

http://doi.acm.org/10.1145/2020408.2020500
https://doi.org/10.1007/978-3-319-46307-0_2
https://doi.org/10.1007/978-3-319-46307-0_2
https://doi.org/10.1007/978-0-387-09823-4_17
https://doi.org/10.1007/978-0-387-09823-4_17
https://doi.org/10.1007/s10115-008-0136-4
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TFUZZ.2010.2060200
https://doi.org/10.1109/TFUZZ.2010.2060200
https://doi.org/10.1007/s10115-016-0979-z
https://doi.org/10.1007/s10115-016-0979-z
https://doi.org/10.1109/ICDM.2011.65
https://doi.org/10.1109/ICDM.2010.53

48 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Duivesteijn W, Feelders A, Knobbe AJ (2016) Exceptional model mining -
supervised descriptive local pattern mining with complex target concepts.
Data Min Knowl Discov 30(1):47–98, DOI 10.1007/s10618-015-0403-4, URL
https://doi.org/10.1007/s10618-015-0403-4

Egho E, Gay D, Boullé M, Voisine N, Clérot F (2015) A parameter-free ap-
proach for mining robust sequential classification rules. In: Aggarwal CC,
Zhou Z, Tuzhilin A, Xiong H, Wu X (eds) 2015 IEEE International Confer-
ence on Data Mining, ICDM 2015, Atlantic City, NJ, USA, November 14-17,
2015, IEEE Computer Society, pp 745–750, DOI 10.1109/ICDM.2015.87,
URL https://doi.org/10.1109/ICDM.2015.87

Egho E, Gay D, Boullé M, Voisine N, Clérot F (2017) A user parameter-free
approach for mining robust sequential classification rules. Knowl Inf Syst
52(1):53–81, DOI 10.1007/s10115-016-1002-4, URL https://doi.org/10.

1007/s10115-016-1002-4

Fürnkranz J, Gamberger D, Lavrac N (2012) Foundations of Rule Learning.
Cognitive Technologies, Springer, DOI 10.1007/978-3-540-75197-7, URL
https://doi.org/10.1007/978-3-540-75197-7

Gaudel R, Sebag M (2010) Feature selection as a one-player game. In:
Fürnkranz J, Joachims T (eds) Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel,
Omnipress, pp 359–366, URL http://www.icml2010.org/papers/247.pdf

Gay D, Boullé M (2012) A bayesian approach for classification rule mining
in quantitative databases. In: Flach PA, Bie TD, Cristianini N (eds) Ma-
chine Learning and Knowledge Discovery in Databases - European Confer-
ence, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceed-
ings, Part II, Springer, Lecture Notes in Computer Science, vol 7524, pp
243–259, DOI 10.1007/978-3-642-33486-3 16, URL https://doi.org/10.

1007/978-3-642-33486-3_16

Gelly S, Silver D (2007) Combining online and offline knowledge in UCT. In:
Ghahramani Z (ed) Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-
24, 2007, ACM, ACM International Conference Proceeding Series, vol 227,
pp 273–280, DOI 10.1145/1273496.1273531, URL http://doi.acm.org/

10.1145/1273496.1273531

Grosskreutz H, Rüping S, Wrobel S (2008) Tight optimistic estimates for fast
subgroup discovery. In: Daelemans W, Goethals B, Morik K (eds) Machine
Learning and Knowledge Discovery in Databases, European Conference,
ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceed-
ings, Part I, Springer, Lecture Notes in Computer Science, vol 5211, pp
440–456, DOI 10.1007/978-3-540-87479-9 47, URL https://doi.org/10.

1007/978-3-540-87479-9_47

Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate genera-
tion. In: Chen W, Naughton JF, Bernstein PA (eds) Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, May 16-
18, 2000, Dallas, Texas, USA., ACM, pp 1–12, DOI 10.1145/342009.335372,
URL http://doi.acm.org/10.1145/342009.335372

https://doi.org/10.1007/s10618-015-0403-4
https://doi.org/10.1109/ICDM.2015.87
https://doi.org/10.1007/s10115-016-1002-4
https://doi.org/10.1007/s10115-016-1002-4
https://doi.org/10.1007/978-3-540-75197-7
http://www.icml2010.org/papers/247.pdf
https://doi.org/10.1007/978-3-642-33486-3_16
https://doi.org/10.1007/978-3-642-33486-3_16
http://doi.acm.org/10.1145/1273496.1273531
http://doi.acm.org/10.1145/1273496.1273531
https://doi.org/10.1007/978-3-540-87479-9_47
https://doi.org/10.1007/978-3-540-87479-9_47
http://doi.acm.org/10.1145/342009.335372

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 49

Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candi-
date generation: A frequent-pattern tree approach. Data Min Knowl Dis-
cov 8(1):53–87, DOI 10.1023/B:DAMI.0000005258.31418.83, URL https:

//doi.org/10.1023/B:DAMI.0000005258.31418.83

Helmbold DP, Parker-Wood A (2009) All-moves-as-first heuristics in monte-
carlo go. In: Arabnia HR, de la Fuente D, Olivas JA (eds) Proceedings of
the 2009 International Conference on Artificial Intelligence, ICAI 2009, July
13-16, 2009, Las Vegas Nevada, USA, 2 Volumes, CSREA Press, pp 605–610

Holland JH (1975) Adaptation in natural and artificial systems: an introduc-
tory analysis with applications to biology, control, and artificial intelligence.
U Michigan Press

del Jesús MJ, González P, Herrera F, Mesonero M (2007) Evolutionary fuzzy
rule induction process for subgroup discovery: A case study in market-
ing. IEEE Trans Fuzzy Systems 15(4):578–592, DOI 10.1109/TFUZZ.2006.
890662, URL https://doi.org/10.1109/TFUZZ.2006.890662

Kavsek B, Lavrac N (2006) APRIORI-SD: adapting association rule learn-
ing to subgroup discovery. Applied Artificial Intelligence 20(7):543–
583, DOI 10.1080/08839510600779688, URL https://doi.org/10.1080/

08839510600779688

Kaytoue M, Kuznetsov SO, Napoli A (2011) Revisiting numerical pattern min-
ing with formal concept analysis. In: Walsh (2011), pp 1342–1347, DOI 10.
5591/978-1-57735-516-8/IJCAI11-227, URL https://doi.org/10.5591/

978-1-57735-516-8/IJCAI11-227

Kaytoue M, Plantevit M, Zimmermann A, Bendimerad AA, Robardet C (2017)
Exceptional contextual subgraph mining. Machine Learning 106(8):1171–
1211, DOI 10.1007/s10994-016-5598-0, URL https://doi.org/10.1007/

s10994-016-5598-0

Klösgen W (1996) Explora: A multipattern and multistrategy discovery assis-
tant. In: Advances in Knowledge Discovery and Data Mining, AAAI/MIT
Press, pp 249–271

Kocsis L, Szepesvári C (2006) Bandit based monte-carlo planning. In:
Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Machine Learning: ECML
2006, 17th European Conference on Machine Learning, Berlin, Germany,
September 18-22, 2006, Proceedings, Springer, Lecture Notes in Computer
Science, vol 4212, pp 282–293, DOI 10.1007/11871842 29, URL https:

//doi.org/10.1007/11871842_29

Lavrac N, Flach PA, Zupan B (1999) Rule evaluation measures: A uni-
fying view. In: Dzeroski S, Flach PA (eds) Inductive Logic Program-
ming, 9th International Workshop, ILP-99, Bled, Slovenia, June 24-27,
1999, Proceedings, Springer, Lecture Notes in Computer Science, vol 1634,
pp 174–185, DOI 10.1007/3-540-48751-4 17, URL https://doi.org/10.

1007/3-540-48751-4_17

Lavrac N, Cestnik B, Gamberger D, Flach PA (2004) Decision support
through subgroup discovery: Three case studies and the lessons learned. Ma-
chine Learning 57(1-2):115–143, DOI 10.1023/B:MACH.0000035474.48771.
cd, URL https://doi.org/10.1023/B:MACH.0000035474.48771.cd

https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1109/TFUZZ.2006.890662
https://doi.org/10.1080/08839510600779688
https://doi.org/10.1080/08839510600779688
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-227
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-227
https://doi.org/10.1007/s10994-016-5598-0
https://doi.org/10.1007/s10994-016-5598-0
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/3-540-48751-4_17
https://doi.org/10.1007/3-540-48751-4_17
https://doi.org/10.1023/B:MACH.0000035474.48771.cd

50 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

van Leeuwen M, Galbrun E (2015) Association discovery in two-view data.
IEEE Trans Knowl Data Eng 27(12):3190–3202, DOI 10.1109/TKDE.2015.
2453159, URL https://doi.org/10.1109/TKDE.2015.2453159

van Leeuwen M, Knobbe AJ (2011) Non-redundant subgroup discovery in
large and complex data. In: Gunopulos D, Hofmann T, Malerba D, Vazir-
giannis M (eds) Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD 2011, Athens, Greece, September
5-9, 2011, Proceedings, Part III, Springer, Lecture Notes in Computer
Science, vol 6913, pp 459–474, DOI 10.1007/978-3-642-23808-6 30, URL
https://doi.org/10.1007/978-3-642-23808-6_30

van Leeuwen M, Knobbe AJ (2012) Diverse subgroup set discovery. Data Min
Knowl Discov 25(2):208–242, DOI 10.1007/s10618-012-0273-y, URL https:

//doi.org/10.1007/s10618-012-0273-y

van Leeuwen M, Ukkonen A (2013) Discovering skylines of subgroup sets.
In: Blockeel H, Kersting K, Nijssen S, Zelezný F (eds) Machine Learn-
ing and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings,
Part III, Springer, Lecture Notes in Computer Science, vol 8190, pp 272–
287, DOI 10.1007/978-3-642-40994-3 18, URL https://doi.org/10.1007/

978-3-642-40994-3_18

Leman D, Feelders A, Knobbe AJ (2008) Exceptional model mining.
In: Daelemans W, Goethals B, Morik K (eds) Machine Learning and
Knowledge Discovery in Databases, European Conference, ECML/PKDD
2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part
II, Springer, Lecture Notes in Computer Science, vol 5212, pp 1–
16, DOI 10.1007/978-3-540-87481-2 1, URL https://doi.org/10.1007/

978-3-540-87481-2_1

Lemmerich F, Atzmueller M, Puppe F (2016) Fast exhaustive subgroup dis-
covery with numerical target concepts. Data Min Knowl Discov 30(3):711–
762, DOI 10.1007/s10618-015-0436-8, URL https://doi.org/10.1007/

s10618-015-0436-8

Lowerre BT (1976) The harpy speech recognition system. PhD thesis,
Carnegie-Mellon Univ., Pittsburgh, PA. Dept. of Computer Science.

Lucas T, Silva TCPB, Vimieiro R, Ludermir TB (2017) A new evolution-
ary algorithm for mining top-k discriminative patterns in high dimensional
data. Appl Soft Comput 59:487–499, DOI 10.1016/j.asoc.2017.05.048, URL
https://doi.org/10.1016/j.asoc.2017.05.048

Meeng M, Duivesteijn W, Knobbe AJ (2014) Rocsearch - an roc-guided search
strategy for subgroup discovery. In: Zaki MJ, Obradovic Z, Tan P, Banerjee
A, Kamath C, Parthasarathy S (eds) Proceedings of the 2014 SIAM In-
ternational Conference on Data Mining, Philadelphia, Pennsylvania, USA,
April 24-26, 2014, SIAM, pp 704–712, DOI 10.1137/1.9781611973440.81,
URL https://doi.org/10.1137/1.9781611973440.81

Moens S, Boley M (2014) Instant exceptional model mining using weighted
controlled pattern sampling. In: Blockeel H, van Leeuwen M, Vinciotti V
(eds) Advances in Intelligent Data Analysis XIII - 13th International Sym-

https://doi.org/10.1109/TKDE.2015.2453159
https://doi.org/10.1007/978-3-642-23808-6_30
https://doi.org/10.1007/s10618-012-0273-y
https://doi.org/10.1007/s10618-012-0273-y
https://doi.org/10.1007/978-3-642-40994-3_18
https://doi.org/10.1007/978-3-642-40994-3_18
https://doi.org/10.1007/978-3-540-87481-2_1
https://doi.org/10.1007/978-3-540-87481-2_1
https://doi.org/10.1007/s10618-015-0436-8
https://doi.org/10.1007/s10618-015-0436-8
https://doi.org/10.1016/j.asoc.2017.05.048
https://doi.org/10.1137/1.9781611973440.81

Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search 51

posium, IDA 2014, Leuven, Belgium, October 30 - November 1, 2014. Pro-
ceedings, Springer, Lecture Notes in Computer Science, vol 8819, pp 203–
214, DOI 10.1007/978-3-319-12571-8 18, URL https://doi.org/10.1007/

978-3-319-12571-8_18

Mueller M, Rosales R, Steck H, Krishnan S, Rao B, Kramer S (2009) Subgroup
discovery for test selection: A novel approach and its application to breast
cancer diagnosis. In: Adams NM, Robardet C, Siebes A, Boulicaut J (eds)
Advances in Intelligent Data Analysis VIII, 8th International Symposium on
Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2,
2009. Proceedings, Springer, Lecture Notes in Computer Science, vol 5772,
pp 119–130, DOI 10.1007/978-3-642-03915-7 11, URL https://doi.org/

10.1007/978-3-642-03915-7_11

Novak PK, Lavrac N, Webb GI (2009) Supervised descriptive rule discovery:
A unifying survey of contrast set, emerging pattern and subgroup mining.
Journal of Machine Learning Research 10:377–403, DOI 10.1145/1577069.
1577083, URL http://doi.acm.org/10.1145/1577069.1577083

Pachón V, Vázquez JM, Domı́nguez JL, López MJM (2011) Multi-objective
evolutionary approach for subgroup discovery. In: Corchado E, Kurzynski M,
Wozniak M (eds) Hybrid Artificial Intelligent Systems - 6th International
Conference, HAIS 2011, Wroclaw, Poland, May 23-25, 2011, Proceedings,
Part II, Springer, Lecture Notes in Computer Science, vol 6679, pp 271–
278, DOI 10.1007/978-3-642-21222-2 33, URL https://doi.org/10.1007/

978-3-642-21222-2_33

Rodŕıguez D, Ruiz R, Riquelme JC, Aguilar-Ruiz JS (2012) Searching for
rules to detect defective modules: A subgroup discovery approach. Inf
Sci 191:14–30, DOI 10.1016/j.ins.2011.01.039, URL https://doi.org/10.

1016/j.ins.2011.01.039

Russell SJ, Norvig P (2010) Artificial Intelligence - A Modern Approach (3. in-
ternat. ed.). Pearson Education, URL http://vig.pearsoned.com/store/

product/1,1207,store-12521_isbn-0136042597,00.html

Schadd MPD, Winands MHM, van den Herik HJ, Chaslot G, Uiterwijk JWHM
(2008) Single-player monte-carlo tree search. In: van den Herik HJ, Xu X,
Ma Z, Winands MHM (eds) Computers and Games, 6th International Con-
ference, CG 2008, Beijing, China, September 29 - October 1, 2008. Pro-
ceedings, Springer, Lecture Notes in Computer Science, vol 5131, pp 1–
12, DOI 10.1007/978-3-540-87608-3 1, URL https://doi.org/10.1007/

978-3-540-87608-3_1

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G,
Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S,
Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap TP, Leach M,
Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of go
with deep neural networks and tree search. Nature 529(7587):484–489

Walsh T (ed) (2011) IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-
22, 2011, IJCAI/AAAI, URL http://ijcai.org/proceedings/2011

https://doi.org/10.1007/978-3-319-12571-8_18
https://doi.org/10.1007/978-3-319-12571-8_18
https://doi.org/10.1007/978-3-642-03915-7_11
https://doi.org/10.1007/978-3-642-03915-7_11
http://doi.acm.org/10.1145/1577069.1577083
https://doi.org/10.1007/978-3-642-21222-2_33
https://doi.org/10.1007/978-3-642-21222-2_33
https://doi.org/10.1016/j.ins.2011.01.039
https://doi.org/10.1016/j.ins.2011.01.039
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.1007/978-3-540-87608-3_1
http://ijcai.org/proceedings/2011

52 Guillaume Bosc, Jean-François Boulicaut, Chedy Räıssi and Mehdi Kaytoue

Wrobel S (1997) An algorithm for multi-relational discovery of subgroups.
In: Komorowski HJ, Zytkow JM (eds) Principles of Data Mining and
Knowledge Discovery, First European Symposium, PKDD ’97, Trondheim,
Norway, June 24-27, 1997, Proceedings, Springer, Lecture Notes in Com-
puter Science, vol 1263, pp 78–87, DOI 10.1007/3-540-63223-9 108, URL
https://doi.org/10.1007/3-540-63223-9_108

https://doi.org/10.1007/3-540-63223-9_108

	Introduction
	Pattern set discovery
	Monte Carlo tree search
	Pattern set discovery with MCTS
	Related work
	Empirical evaluation on how to parameterize mcts4dm
	Comparisons with existing algorithms
	Discussion
	Conclusion

