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A simple model of ultrasound propagation in a cavitating liquid.
Part I: Theory, nonlinear attenuation and traveling wave generation
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a b s t r a c t

The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct

estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dis-

sipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid.

Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to

be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the

predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equa-

tions describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conve-

niently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation,

where the imaginary part of the squared wave number is directly correlated with the energy lost by a

single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above

the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger

then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bub-

bles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a

1D standing wave configuration. The expected strong attenuation is not only observed but furthermore,

the examination of the phase between the pressure field and its gradient clearly demonstrates that a trav-

eling wave appears in the medium.

1. Introduction

The complexity and large variety of spatial and temporal scales

involved in acoustic cavitation make difficult the derivation of a

full theoretical model, accounting for the coupled effects between

the bubble field and the sound field. Nevertheless, considerable

progress has been made in the last decade. Theoretical studies in

the context of single bubble sonoluminescence have allowed to re-

strict the ambient size of the bubbles in the micron range, owing to

surface instabilities [1–7]. This has been confirmed by 20 kHz

experiments, both in single bubble [8] and multi-bubble configura-

tions (see Ref. [9] and references therein).

Besides, a large collection of experimental observations have re-

vealed that radially oscillating bubbles in high-intensity acoustic

fields tend to self-organize into bubble structures, which shapes

depend on the experimental configuration, with possibly two

structures or more appearing simultaneously in different zones

of the liquid [10–13,9]. The shape of such structures is strongly

correlated with the fundamental issue of the translational motion

of the bubbles under Bjerknes forces, which have been reconsid-

ered in the context of strongly nonlinear inertial radial oscillations

and traveling waves [14,15,7].

On this basis, the action of the acoustic field on the organization

of inertial bubbles has been satisfactorily described in various con-

figurations by particle models [16,10,13,7], by calculating the

forces exerted on the bubbles directly from their nonlinear dynam-

ics. Assuming a simple shape of the sound field, some bubble struc-

tures have been remarkably caught by this method. However, the

correct prediction of other structures was found to be more diffi-

cult, mainly because, as suggested by Mettin [9], the local sound

field might have a complicated shape, which cannot be inferred

without describing correctly the acoustic field in the medium.

The backward effect of inertial bubbles on the propagation of

acoustic waves remains mainly unexplored. The main physical ef-

fects of the bubble radial oscillations on sound waves can be easily

understood qualitatively. Bubbles are mechanical oscillators so

that wave dispersion is expected. They oscillate non linearly for

large amplitude drivings, so that waves should be nonlinear. Final-

ly, they dissipate mechanical energy by various processes, which

should produce wave attenuation. The problem has been attacked

in the early work of Foldy [17] who considered linear scattering of

waves by an arbitrary statistical distribution of scatterers, and ob-

tained a linear dispersion relation. The application of this theory to

the specific case of linear sound waves in bubbly liquids has been



considered in Refs. [18,19]. A key feature in Foldy’s approach is that

for a sufficiently dilute bubbly mixture, each bubble behaves as if it

were excited by the statistical average pressure field, which allows

to cast aside the difficult issue of bubbles pairwise interaction. An

intuitive justification of this approach can be found in Refs. [20,21].

The assumption of small amplitude waves has been relaxed by

Iordansky [22] and simultaneously by van Wijngaarden [23,24] by

a semi-empirical volume-averaging of the bubbly liquid equations,

which is closed by a Rayleigh equation, where, as suggested by Fol-

dy’s work, the driving pressure term is the local average pressure

field. The model obtained has allowed the study of nonlinear

dispersive waves. The latter are classically described by the

Korteweg–de Vries equation [25], and the reduction of vanWijnga-

arden model to the latter for moderate amplitudes has been stud-

ied by various authors both theoretically [24,26–28] and

experimentally [29–31].

The popular Caflish model [32] is a rigorous generalization of

Foldy’s theory to the nonlinear case and yields a simplified version

of van Wijngaarden model, as far as the bubbly liquid is dilute en-

ough. The latter hypothesis has the important corollary that the

mean velocity of the mixture is infinitely small, so that the

momentum conservation equation coincide with the one of linear

acoustics [see Eq. (2)]. A physical discussion of the latter feature

can be found in Refs. [20,21].

Under the linear approximation, the Caflish model reduces to

the famous dispersion relation of Foldy, which can be extended

to calculate a wave attenuation coefficient, accounting for dissipa-

tion by a linearly oscillating bubble [20] and to polydisperse bub-

bles size distributions. Linearization allows a simple description of

the sound field by an Helmholtz equation, and has been used in

studies of the coupling between wave propagation and the bubble

field. The gain obtained by simplifying the wave equation allows a

complex description of its coupling with the bubble population

evolution, spatially and along the size axis. Following such an ap-

proach, Kobelev and Ostrovski [33] have proposed an elegant mod-

el of self-action of low amplitude sound waves in bubbly liquids,

accounting for the bubble drift under the action of primary Bjerk-

nes forces and bubble coalescence favored by secondary Bjerknes

forces. Although the wave equation in this study was linear, the

global model was nonlinear, owing to the dependence of the wave

number on the varying bubble density, which conversely evolves

non linearly with the sound field. Specific solutions under different

hypothesis could catch the experimentally observed self-transpar-

ency, self-focusing of sound waves in bubbly liquids, and destabi-

lization of homogeneous bubble distributions. The latter instability

has also been demonstrated in Ref. [34] by a similar approach, but

involving a slightly different physics.

The attenuation of sound waves by oscillating bubbles remains

normally weak for linear waves, except when the bubbles are close

to the resonant size [17,35,20], which is the main cause of sound

extinction considered in Ref. [33]. Since low-frequency inertial cav-

itation involves bubbles much smaller than the resonant size [9],

the use of the linear theory of Ref. [20] predicts an abnormally

low attenuation, compared to experimental data [36]. This is not

astonishing since inertial bubbles typically suffer a 10-fold expan-

sion of their radius and are expected to dissipate more energy than

predicted by linear theory. Despite the latter restriction, the linear

dispersion relation has often been used to predict attenuation of

strong cavitation fields, because it allows the description of the

problem by a linear Helmholtz equation, which is easy to solve,

and allows harmonic response simulations [37–40]. Moreover,

the use of a complex wave number provided by the linear disper-

sion relation in an Helmholtz equation somewhat masks the fact

that one physical origin of wave attenuation by the bubbles is

the energy dissipated by the latter. The latter point has been nicely

addressed by Rozenberg [41], who restated the problem of attenu-

ation of a traveling wave by a cavitation zone in terms of energy

conservation, without resorting to the linear hypothesis. The latter

study made use of an empirical expression, fitted on experimental

results, between the power dissipated by cavitation bubbles and

the wave intensity. Doing so, realistic attenuated intensity profiles

near the emitter could be calculated simply, and experimentally

observed self-attenuation of the wave could be accounted for.

The last remarks suggests that the relaxation of the linear

hypothesis is necessary to correctly predict attenuation by inertial

bubbles, so that one should revert to the original fully nonlinear

form of the Caflish model. However, although valid for any wave

amplitude, the latter remains intractable for large multi-dimen-

sional geometries, since it requires time-dependent simulations,

and presents convergence problems in the range of inertial cavita-

tion, even in 1D [42,43]. Thus, an intermediate model, simple en-

ough to be numerically tractable, but properly accounting for the

true energy dissipation by inertial bubbles, is necessary.

The motivation of this work is the derivation of such a reduced

model, and can be viewed as a systematic formalization of Rozen-

berg’s approach [41], based on the nonlinear Caflish model. The

present paper extends the ideas formerly presented in Ref. [44]

and is organized as follows. In Section 2, we recast the fully nonlin-

ear Caflish equations into a mechanical energy balance equation,

where we express explicitly the energy lost by the bubbly liquid

on average over an oscillation period, as functions of period-aver-

aged quantities of a single bubble dynamics. This energy loss is

then computed numerically, by simulating a bubble radial dynam-

ics equation over a typical parameter range, including the range of

inertial cavitation involved in cavitation and sonochemistry exper-

iments. In Section 3, we then seek a reduction of the Caflish equa-

tions for the main harmonic component of the acoustic field,

involving the energy dissipation calculated in Section 2. Finally,

in Section 4, the resulting nonlinear Helmholtz equation is solved

numerically in a 1D configuration, and a detailed analysis of the

obtained wave profiles is performed. The implications of the pres-

ent results on the primary Bjerknes forces and 2D simulations of

classical experimental configurations are deferred in a companion

paper.

2. Theory

2.1. Caflish equations

The Caflish model [32] describes the propagation of an acoustic

wave of arbitrary amplitude in a bubbly liquid described as a con-

tinuum, which means that the radial oscillations of all the bubbles

pertaining to an elementary small volume of mixture located at a

spatial point r can be described by a continuous spatio-temporal

radius function Rðr; tÞ. The first two equations of the model corre-

spond to mass and momentum conservation in the mixture:

1

qlc
2
l

@p

@t
þ $ � v ¼ @b

@t
; ð1Þ

ql

@v

@t
þ $p ¼ 0: ð2Þ

In the above equations, pðr; tÞ is the acoustic pressure field, vðr; tÞ
the velocity field, ql the liquid density, cl the sound speed in the li-

quid, and bðr; tÞ is the instantaneous void-fraction, which, assuming

a mono-disperse distribution of the bubbles, can be defined by:

bðr; tÞ ¼ NðrÞ4
3
pRðr; tÞ3; ð3Þ

where NðrÞ is the local bubble density. The latter is assumed time-

independent, or at least almost constant on the time scale of the

oscillations. Despite the set of Eqs. (1) and (2) is very similar to



the equations of linear acoustics, the presence of the right-hand-

side term of Eq. (1) renders the whole model nonlinear. Following

the procedure classically used for linear acoustics, these two equa-

tions can be easily recast into an equation of energy conservation,

by multiplying (1) by p and (2) by v:

@

@t

1

2

p2

qlc
2
l

þ 1

2
qlv

2

� �

þ $ � pvð Þ ¼ Np
@V

@t
; ð4Þ

where Vðr; tÞ denotes the instantaneous volume of the bubbles lo-

cated at r. The time derivative in the left-hand-side (LHS) of this

equation represent the time-variations of the acoustic energy den-

sity, which is the sum of kinetic energy and potential compressional

energy of the pure liquid. The second LHS-term is the divergence of

the acoustic intensity pv. The right-hand-side (RHS), which would

be zero for a linear wave propagating in the pure liquid, represents

the mechanical power exchanged between the acoustic wave and

the bubbles. As will be seen below, part of this energy is irreversibly

dissipated along the radial oscillations of the bubbles, which is the

physical origin of the acoustic wave attenuation.

2.2. Bubble dynamics

The bubble radial motion equation can be described by a radial

dynamics equation. The Caflish model in its original form uses a

inviscid Rayleigh–Plesset equation with isothermal behavior of

the bubble, in which the infinite driving pressure field is the mean

local acoustic pressure field pðr; tÞ. In the present study, we want to

examine the energy dissipation by heat transfer between the bub-

ble interior and the liquid, and by viscous friction in the radial mo-

tion of the liquid around the bubble. We therefore leave the bubble

pressure pg unspecified for now, and add the classical viscous term

in the Rayleigh–Plesset equation. Besides, since surface tension

plays a preponderant role in inertial cavitation [45–48], we also

added the correction accounting for the latter effect, so that the

bubble dynamics is given by:

ql R€Rþ 3

2
_R2

� �

¼ pg ÿ
2r
R

ÿ 4ll

_R

R
ÿ p; ð5Þ

where ll is the liquid dynamic viscosity, and r the surface tension.

All the quantities R, pg and p in this equation are spatio-temporal

fields, depending on both r and t, so that the time derivatives rep-

resented by over-dots in this equation must be understood as par-

tial derivatives @=@t at r constant. We did not add any corrections

accounting for liquid compressibility, in order to keep a reasonably

simple model. We defer the discussion of this choice to the conclu-

sion section.

For further use in the paper, we recall that when a bubble is dri-

ven by a sinusoidal pressure field p ¼ p0 1ÿ P� sinð2pftÞ½ � around
the ambient pressure p0, its oscillations become inertia-controlled

and involve a strong collapse when the driving pressure amplitude

is above the Blake threshold [45–47]:

P�
B ¼ 1þ 4

27

S3

1þ S

 !1=2

; ð6Þ

where S ¼ 2r=ðp0R0Þ is the dimensionless Laplace tension and R0

the bubble ambient radius. Such an oscillation regime, historically

termed as ‘‘transient cavitation’’, is now classically named as ‘‘iner-

tial cavitation’’ [49,5].

2.3. Energy dissipation per bubble

In order to get an energetic interpretation of the bubble radial

motion, Eq. (5) can be multiplied by the time derivative of the bub-

ble volume @V=@t, and noting that qlðR€Rþ 3
2
_R2Þ � @V=@t is the

time-derivative of the radial kinetic energy of the liquid

K l ¼ 2pqlR
3 _R2, we obtain:

@

@t
K l þ 4pR2r
� �

¼ ÿ16pllR
_R2 ÿ p

@V

@t
þ pg

@V

@t
: ð7Þ

This equation is strictly equivalent to the Rayleigh equation, and is

the expression of the theorem of kinetic energy applied to the liquid

surrounding the bubble. The parentheses in the LHS of (7) repre-

sents the sum of the kinetic energy of the radially moving liquid

and the interfacial potential energy.

The first term in the RHS of Eq. (7) is the power irreversibly lost

by internal viscous friction within the liquid as it moves radially.

The second term in the RHS is the power transferred from the

acoustic field to the liquid surrounding the bubble, and can be

viewed as the energy source available to drive the bubble oscilla-

tions and the radial motion of the liquid around. When multiplied

by the number of bubbles per unit-volume, this term is similar to

the right-hand-side of Eq. (4) with the opposite sign, which clearly

indicates how energy is transferred between the driving acoustic

field and the radially oscillating bubble.

Finally, the last term in the RHS of (7) is the mechanical power

done by the gas on the liquid, and could be expressed as the time-

derivative of a compressional energy ÿ@Ep=@t in the case of a baro-

tropic relation between the bubble pressure pg and volume V (for

example assuming an isothermal [32] or adiabatic evolution of

the gas). However, in the general case where heat flows irrevers-

ibly between the bubble interior and the liquid, this term cannot

be expressed as the time-derivative of a potential function, and

we now detail how this term is linked to dissipation of energy over

a whole oscillation cycle of the bubble.

In what follows, we will assume periodic oscillations of all the

fields. Averaging Eq. (7) over one cycle, the time-derivative in the

left side cancels and we get:

ÿp
@V

@t

� �

¼ Pth þPv; ð8Þ

where the two bubble dynamics-dependent average quantitiesP th

and Pv read:

Pth ¼ 1

T

Z T

0

ÿpg

@V

@t
dt; ð9Þ

Pv ¼
1

T

Z T

0

16pllR
_R2 dt: ð10Þ

The quantity Pv defined by (10) is clearly positive, and is the peri-

od-averaged power loss by viscous friction in the liquid.

A clear interpretation of Pth can be obtained by applying the

first principle of thermodynamics to the whole bubble content,

which yields integral (9) as:

Pth ¼ 1

T

Z T

0

dðUg þ KgÞ
dt

dt ÿ 1

T

Z T

0

_Q dt; ð11Þ

where Ug and Kg depict the internal energy and kinetic energy,

respectively, of the whole gas in the bubble, and _Q is the heat

gained by the bubble over one cycle. The first integral in the

right-hand-side of (11) is zero for a periodic motion, so that

Pth ¼ ÿ _Q
D E

is just the net heat lost by the bubble over one oscilla-

tion cycle.

Eq. (8) has therefore the following physical meaning: the energy

transferred by the acoustic field to the bubble over one acoustic

period is dissipated by two processes: the heat flow from the bub-

ble toward the liquid and the viscous friction in the liquid radial

motion.

The integrals Pv and Pth can be evaluated numerically by solv-

ing the bubble dynamics equation (5) for an arbitrary single bubble

of ambient radius R0 excited by a sinusoidal forcing



p ¼ p0 1ÿ P� sinð2pftÞ½ �, possibly varying the acoustic parameters P�

and f, the bubble ambient radius R0, and the properties of the liquid

and the gas. In this paper we will restrict to air bubbles in water at

ambient pressure excited at 20 kHz and take: p0 ¼ 101;300 Pa,

ql ¼ 1000 kg=m3, ll ¼ 10ÿ3 Pa s, r ¼ 0:0725 N �mÿ1. The bubble

ambient radius R0 and driving pressure amplitude P will be varied

within a range of interest. More results involving, among others,

the effect of the frequency and the type of gas will be given else-

where [50].

Since Pth represents the net heat flow leaving the bubble, ther-

mal diffusion in the bubble interior must be properly accounted for

in our simulations, at least in an approximate manner. To that aim,

the bubble interior is modeled by an approximate energy conser-

vation equation based on a thermal diffusion layer [51–53]. Water

evaporation and condensation at the bubble interface is also taken

into account by a similar method, as described in the same refer-

ences. The latter refinement may be important since the presence

of water vapor in the bubble is known to decrease the temperature

collapse [51] and therefore influences the estimation of _Q . To solve

the bubble radial dynamics, the variables are non-dimensionalized

by:

t� ¼ xt; R� ¼ R

R0

; p�
g ¼

pg

p0

; P�
v;th ¼ Pv;th

p0V0x
;

and the dimensionless dissipation functions P�
th and P�

v are calcu-

lated numerically by:

P�
th ¼ 1

2p
1þ 2r

p0R0

� �
Z 2p

0

p�
g

dV
�

dt
� dt

�
; ð12Þ

P�
v ¼

6

p
xll

p0

Z 2p

0

R� dR
�

dt
�

� �2

dt
�
: ð13Þ

For comparison purposes, we recall that assuming linear oscilla-

tions of the bubble, the equation of radial dynamics can be linear-

ized by setting

R�ðtÞ ¼ 1þ 1

2
Xeit

�
þ c:c:

� �

; ð14Þ

where the complex amplitude can be obtained analytically,

accounting rigorously for thermal effects [54,55,28]. Introducing

(14) in (12) and (13), P�
th and P�

v can be obtained analytically, and

we obtain:

P�
th;lin ¼ 3

2
1þ 2r

p0R0

� �

IðUgÞjXj2; ð15Þ

P�
v;lin ¼ 6llx

p0

jXj2; ð16Þ

where Ug is a complex dimensionless number which can be ex-

pressed in terms of the gas thermal Péclet number Pe th ¼
R2
0x=vg , where vg is the thermal diffusivity of the gas in ambient

conditions [55,56].

Fig. 1 displays the values calculated for P�
v and P�

th for an air

bubble of ambient radius R0 ¼ 3 lm driven at 20 kHz in water at

ambient pressure and temperature. First, it is seen that the power

dissipated either by viscous friction (thick solid line) or by thermal

diffusion (thick dashed line) quickly rises in the neighborhood of

the Blake threshold (where approximately P�
v ’ P�

th ’ 1), well

above their value predicted by linear theory (between 5 and 6 or-

ders of magnitude). This clearly demonstrates the need for exact

nonlinear bubble dynamics to calculate realistic values of the en-

ergy dissipated by inertial bubbles.

Another interesting feature is that, for the parameters used in

Fig. 1, viscous dissipation becomes much larger than the thermal

one (more than one order of magnitude), for driving pressures

above the Blake threshold, whereas linear theory predicts the

opposite in this parameter range. Viscous dissipation in the liquid

is thus found to largely predominate over the thermal one for 3 lm

inertial bubbles.

It is also interesting to interpret these results in the light of the

experimental data reported by Rozenberg [41], who fitted the vol-

umic power dissipated in the cavitation zone by the following

function of sound intensity I:

P ¼ AðI ÿ ItÞ2; I > It

0; I 6 It

(

; ð17Þ

where It is the intensity cavitation threshold. Identifying P with

NðPth þPvÞ, noting that sound intensity I scales as P2 for traveling

waves, and identifying the cavitation threshold with Blake thresh-

old, Rozenberg’s result suggests that Pth þPv would scale as

P2 ÿ P2
B for P > PB, and would be 0 under the threshold. This is al-

most consistent with our results, except that redrawing Fig. 1 with

linear scale (not shown) would reveal a linear dependence rather

than a quadratic one. However, on one hand, Rozenberg’s results

apply to 500 kHz fields, and on the other hand, it is highly probable

that the bubble density N also depends on the local sound field, de-

spite we will consider N constant above the Blake threshold in the

model developed below (see Section 4).

We repeated the same calculation for a 8 lm bubble (Fig. 2).

The scale is chosen identical as Fig. 1 in order to make the compar-

ison easier. The same conclusions apply except that the increase of

viscous dissipation P�
v over the Blake threshold is lower than for

the 3 lm bubble, and remains of the same order of magnitude as

Pth for moderate driving pressures.

To assess more clearly the dependence of Pv and P th on the

ambient radius R0, we calculated Pv and Pth at constant P� ¼ 1:5,

but varying R0. The result is displayed in Fig. 3. Viscous dissipation

Pv is much larger than thermal dissipationPth just above the Blake

threshold, and decreases below Pth only above R0 ’ 10 lm.

More curves like the ones of Figs. 1–3 could be drawn, but we

can summarize the comparison of Pv and Pth above the Blake

threshold as follows: Pv predominates for larger drivings and

smaller bubbles, while the opposite is true for larger bubbles and

smaller drivings. Since for large drivings, surface instabilities main-

tain the ambient radii of inertial bubbles in a small interval just

above the Blake threshold [1,57,3], this suggests that viscous fric-

Fig. 1. Dimensionless power dissipated by an argon bubble of ambient radius

R0 ¼ 3 lm in water, at 20 kHz: by viscosity P�
v [thick solid line, from Eq. (13)]; by

thermal diffusion, P�
th [thick dashed line, from Eq. (12)]. The thin lines are the

corresponding values obtained from linear theory, Eqs. (16) and (15) (solid: P�
v;lin;

dashed: P�
th;lin). The vertical dash-dotted line represents the Blake threshold

calculated by Eq. (6) .



tion would be the predominant dissipation phenomenon in cavita-

tion clouds.

The real power dissipated by an inertial bubble is therefore lar-

ger than the one predicted by linear theory by several orders of

magnitude. We therefore expect the real wave attenuation in a li-

quid containing inertial bubbles (above the Blake threshold) to be

much higher than the value calculated by linear theory. We will

quantify this point in Section 3.

Although the above results are sufficient to carry on the devel-

opment of our model, it is instructive to close this section by relat-

ing the dissipation functions Pth and Pv to the conservation of

acoustic energy, generalizing the conservation equation proposed

in the original paper of Caflish et al. [32].

2.4. Conservation of energy in the bubbly liquid

The term p@V=@t can be eliminated between Eqs. (4) and (7), by

multiplicating the latter by N, to obtain a global energy conserva-

tion equation of the bubbly liquid:

@

@t

1

2

p2

qlc
2
l

þ 1

2
qlv

2 þ NK l þ 4pNrR2

� �

þ $ � pvð Þ

¼ Npg

@V

@t
ÿ N16pllR

_R2: ð18Þ

Eq. (18) represents the conservation of mechanical energy of the

bubbly liquid:

� p2=ð2qlc
2
l Þ is the elastic potential energy stored by the pure

liquid involved in the propagation of the wave,

� qlv
2=2 is the kinetic energy per unit volume of the pure liquid

involved in the propagation of the wave,

� NK l is the kinetic energy per unit volume of the liquid in its

radial motion around the bubbles,

� 4pNrR2 is the interfacial potential energy per unit volume,

� pv is the acoustic intensity, or flux density of mechanical

energy. It is supplied at a vibrating boundary in contact with

the bubbly liquid, typically by the oscillating motion of the

sonotrode [58].

In what follows, we will assume periodic oscillations of all the

fields. Averaging Eq. (18) over one cycle, the time-derivative in

the left side cancels and we get:

$ � pvh i ¼ ÿN Pth þPvð Þ: ð19Þ

Eq. (19) is the conservation of mechanical energy averaged over one

period of oscillation, and has a clear physical interpretation: the bal-

ance between the acoustic energy leaving a volume of bubbly liquid

and the one reaching it is always negative, owing to thermal loss in

the bubble and viscous friction in the radially moving liquid. Each

bubble therefore appears as a dissipator of acoustic energy, owing

to these two phenomena. The physical origin of wave attenuation

is thus self-contained in the Caflish model, even for nonlinear oscil-

lations, provided that a correct model is used to describe thermal

diffusion in the bubble interior. Caflish and co-workers proposed

a conservation equation similar to (18), disregarding viscosity and

assuming isothermal oscillations, in which case mechanical energy

is conserved [32]. It should also be noted that Eq. (19) reverts ex-

actly the equation solved in 1D by Rozenberg [41] in the case of

purely traveling waves, but in the latter work, the dissipated power

was fitted from experimental data, rather than being calculated ab

initio from single bubble dynamics as done in the present work.

3. The model

3.1. Intuitive approach

We first recall that the velocity field can be eliminated between

Eq. (1) and (2) to yield an equation involving only the pressure field

[32,20]:

r2p ¼ 1

c2l

@2p

@t2
ÿ ql

@2b

@t2
: ð20Þ

Setting the pressure field p as a mono-harmonic wave:

pðr; tÞ ¼ 1

2
PðrÞeixt þ PðrÞeÿixt
ÿ �

;

the linearization of the above equation and of the bubble dynamics

equation allows to show that the complex field P fulfills an Helm-

holtz equation:

r2P þ k
2
P ¼ 0;

where the complex wave number is given by the linear dispersion

relation [17,23,32,20,28]:

Fig. 2. Same as Fig. 1 for a 8 lm bubble.

Fig. 3. Same as Figs. 1 and 2, but varying R0 for P� ¼ 1:5. The vertical dash-dotted

line represents the Blake threshold.



k
2 ¼ x2

c2l
þ 4pR0x2N

x2
0 ÿx2 þ 2ibx

: ð21Þ

In Eq. (21), x0 is the resonance frequency and b the damping

factor, respectively given by

x2
0 ¼ p0

qR2
0

ð1þ SÞRðUgÞ ÿ S
� �

; ð22Þ

2b ¼ p0ð1þ SÞ
qxR2

0

IðUgÞ þ
4ll

qR2
0

: ð23Þ

It can be readily seen, that, even for sub-resonant bubbles (x < x0Þ,
the wave number is complex because of the damping factor b,

which, as expected from the discussion in Section 2.3, is correlated

with the heat loss from the bubble and the viscous friction in the

liquid. The imaginary part of the wave number represents the atten-

uation factor of the wave, and can be easily calculated by setting

k ¼ kr ÿ ia and identifying kr and a from Eq. (21).

Generalizing this simple theory for inertial cavitation sounds

unrealistic, since the bubble dynamics cannot be reasonably linear-

ized for inertial oscillations. Thus all the fields are not mono-har-

monic anymore and the problem cannot be reduced to an

Helmholtz equation. However, for periodic oscillations, either lin-

ear or not, the correlation between the energy dissipated by each

bubble over one cycle and the attenuation of the wave remains a

universal principle, formalized by Eq. (8), and constitutes the

guideline of the following derivation.

We will therefore show that the first harmonic component of

the field (at the frequency x of the driving) approximately follows

an Helmholtz equation, but whose wave number is directly ex-

pressed as functions of the dissipation functions Pth and P v pre-

sented in the precedent section. This procedure allows to

generalize the linear model, in the sense that the time-variable is

eliminated, but keeping realistic values for the energy dissipated

by inertial bubbles.

3.2. Derivation of the model

We decompose the pressure field into a sum of a time-average

pressure pm, a first harmonic pressure p1, oscillating at the fre-

quency of the ultrasonic source, and harmonic terms noted p osc,

that could be written as a Fourier series starting with a term at

the frequency 2x: 1

pðr; tÞ ¼ pmðrÞ þ p1ðr; tÞ þ poscðr; tÞ: ð24Þ

The first harmonic pressure field p1 is expressed as:

p1ðr; tÞ ¼
1

2
PðrÞeixt þ PðrÞeÿixt
ÿ �

; ð25Þ

where over-lines denote complex conjugate. Next, we set w the

primitive of the first harmonic pressure field:

w ¼ 1

2

1

ix
PðrÞeixt ÿ PðrÞeÿixt
ÿ �

: ð26Þ

Multiplicating the propagation equation (20) by w and averaging

over one acoustic period yields:

wr2p
D E

¼ 1

c2l
w
@2p

@t2

* +

ÿ ql w
@2b

@t2

* +

: ð27Þ

Integrating by parts, using the definition of w, and the fact that all

quantities are periodic, we obtain:

wr2p
D E

¼ ÿ 1

c2l
p1

@p

@t

� �

þ ql p1

@b

@t

� �

: ð28Þ

Using the decomposition (24), it can be easily seen that

wr2p
D E

¼ wr2p1

D E

and that p1@p=@th i ¼ 0. Besides, using Eq.

(24), the second term of the right-hand-side of (28) can be ex-

pressed as:

p1

@b

@t

� �

¼ p
@b

@t

� �

ÿ posc

@b

@t

� �

;

since pm@b=@th i ¼ p m @b=@th i ¼ 0. We now make the empirical

assumption that posc@b=@th i is negligible. A rigorous justification

for this assumption is difficult in the absence of results on the

respective orders of magnitude of p1 and posc. However, unpub-

lished measurements show that the latter is generally one order

of magnitude lower than the former, so that for now, we assume

that the assumption is justified. We therefore conclude that:

p1

@b

@t

� �

’ p
@b

@t

� �

ð29Þ

A physical interpretation of this approximate equation can be

given by looking at Eqs. (4) and (7): it reverts to consider that

the interaction between the acoustic field and the bubbles only oc-

cur through the first harmonic part of the field, and that the bubble

mainly responds to this first harmonic content. We will term this

hypothesis as ‘‘first harmonic approximation’’ (FHA). From this

assumption and the above derivation, Eq. (28) takes therefore the

approximate form:

wr2p1

D E

¼ ql p
@b

@t

� �

; ð30Þ

and using Eq. (8), Eq. (30), we finally obtain:

wr2p1

D E

¼ ÿN Pth þPvð Þ: ð31Þ

We can now use the harmonic expressions (25) and (26) of p1 and

w, to obtain:

i

4x
Pr2P ÿ Pr2P
� �

¼ ÿqlN Pth þPvð Þ;

and, dividing both sides of this equation by jPj2, P is finally found to

fulfill:

I
r2P

P

 !

¼ 2qlxN
Pth þPv

jPj2
; ð32Þ

where I denotes the imaginary part. We therefore see that if P were

to fulfill an Helmholtz equation, the wave number would necessar-

ily satisfy following relation:

I k
2

� �

¼ ÿ2qlxN
Pth þPv

jPj2
: ð33Þ

This equation is a generalization of the linear case represented by

Eq. (21), but here, Pth and Pv can be estimated from fully nonlinear

bubble dynamics. By the way, it can be checked after a few algebra

that, linearizing Pth and Pv, Eq. (33) yields the same results as tak-

ing the imaginary part of the dispersion relation (21). For linear

oscillations, Pth and Pv scale as jPj2 (see left part of the curves in

Figs. 1 and 2), so that linear theory yields a value of I k
2

� �

indepen-

dent of the driving amplitude jPj. This is no longer the case for non-

linear oscillations and Eq. (33) yields a value of I k
2

� �

, which now

depends on the local magnitude of the acoustic pressure jPj.
The idea of the present paper is thus to use Eq. (33) by using the

nonlinear values of Pth and Pv obtained in Section 2.3 to calculate

Iðk2Þ, and, relying on Eq. (32), to introduce the latter in a nonlinear

Helmholtz equation:

1 We assume here for simplicity that there is no subharmonics or ultra-harmonic

terms, but the following reasoning can always be generalized by taking time-averages

over the largest period of the pressure field.



r2P þ k
2 jPjð ÞP ¼ 0: ð34Þ

Clearly, owing to the approximations made above, some additional

terms would appear in the exact equation fulfilled by P. However,

Eq. (33) has the advantage to clearly link the attenuation factor to

the real dissipation of energy by the bubbles. Since it only yields

the imaginary part of k
2
, there remains the problem of calculating

its real part. For now, we still use the linear dispersion relation to

evaluate Rðk2Þ, and defer the discussion of this approximation

below:

Rðk2Þ ¼ x2

c2l
þ 4pR0x2N

x2
0 ÿx2

: ð35Þ

The attenuation coefficient and the real part of the wave number

can now be deduced from:

k ¼ kr ÿ ia; ð36Þ

and by identification with (33)–(35).

Fig. 4 displays the attenuation coefficient a calculated by fol-

lowing this procedure (thick solid line), for 5 lm bubbles, and a

typical [59] void fraction b0 ¼ 5� 10ÿ5, as a function of the acous-

tic pressure jPj. The attenuation coefficient rises abruptly for

acoustic pressures just above the Blake threshold, as do Pth and

Pv, and becomes about 4 orders of magnitude larger than its linear

value [thin solid line, calculated from Eq. (21)]. This demonstrates

that a cloud of inertial cavitation bubbles damps out the incident

wave much more drastically than linearly oscillating bubbles.

Moreover, contrarily to the linear prediction, the attenuation coef-

ficient increases with the wave peak-amplitude. Thus, increasing

the source vibration amplitude does not necessarily produce a

more extended bubble field since increasing the acoustic pressure

also increases the attenuation. This self-saturation phenomenon is

well known in cavitation experiments [36], and will be demon-

strated in the simulations of the next section.

The real part of the wave number is also displayed in Fig. 4

(thick dashed line), and the constant linear value predicted by

(21) is recalled (thin dashed line) for comparison. It is interesting

to note that, above the Blake threshold, kr closely follows a. This
comes from the fact that the imaginary part of k

2
, calculated from

the dissipation functions by Eq. (33), is much larger in absolute va-

lue than its real part (35). This can be seen by writing the complex

wave number as:

k
2 ¼ K2 exp i �ÿ p=2ð Þ½ �; ð37Þ

where � is a small number, since I k
2

� �

is negative and large. The

wave number k therefore reads:

k ¼ K exp i �=2ÿ p=4ð Þ½ �; ð38Þ

and is therefore almost equal to Kð1ÿ iÞ=
ffiffiffi

2
p

, so that we indeed have

kr ’ a.
The ratio a=kr has a strong physical sense. The attenuation of

the wave over one wavelength k is expðÿakÞ ¼ expðÿ2pa=krÞ.
Thus, if as in the present case a is of the same order of magnitude

as kr , the attenuation of the wave over one wavelength is of the or-

der of expðÿ2pÞ ’ 0:002. This means that as soon as the imaginary

part of k
2
is much larger than its real part, attenuation will play a

dominant role whatever the precise value of its real value. This is

why the precise choice of R k
2

� �

is of minor importance, and Eq.

(35) is a good compromise.

4. Results

4.1. 1D wave profiles

We consider a tube of length L filled with water, bounded on the

left by a piston which oscillating displacement reads:

UðtÞ ¼ U0 cosxt ð39Þ

and on the right by an infinitely soft boundary, imposing a zero

acoustic pressure. This arbitrary boundary condition was chosen

so that a standing wave should be obtained in the absence of bub-

bles. It can be easily changed to different and more complex condi-

tions, as will be exemplified in the companion paper.

We consider 5 lmair bubbles. This choice is partially justified by

experimental measurements of bubble size distributions at low fre-

quency [59,9]. In order to solve (34) along with Eqs. (33)–(35), the

bubble densityNmust be known. For now,we consider that bubbles

are only present in the zoneswhere the acoustic pressure amplitude

is above the Blake threshold equation (6), and with a uniform

density:

N ¼ N0 if jPj > PB

0 if jPj < PB

�

ð40Þ

The nonlinear Helmholtz equation along with (40) and the above

boundary conditions is solved using the commercial COMSOL soft-

ware, and a mesh convergence was performed.

Fig. 5 displays the profiles of the peak acoustic pressure

jP�j ¼ P=p0 obtained for various amplitude of the source. For the

smallest amplitude of the emitter U0 ¼ 0:2 lm, we recover a stand-

ing wave profiles in the pure liquid (dash-dotted line). For a

slightly larger vibration of the emitter U0 ¼ 0:5 lm (dashed line),

the acoustic pressure at the antinodes is just above the Blake

threshold, so that the bubbles present here start to dissipate some

energy. This yields nonzero acoustic pressures at the nodes, but the

profile remains globally similar to a linear standing wave profile.

When the amplitude of the source is much larger (U0 ¼ 5 lm, solid

line), the wave profile completely changes, and is drastically atten-

uated in a zone of about 1 cm width near the emitter. This is due to

the fact that the acoustic pressure near the emitter is larger than

the Blake threshold, so that the bubbles present in this zone dissi-

pate a lot energy. The remaining part of the profile is similar to a

damped linear standing wave.

In order to emphasize the importance of the nonlinear energy

dissipation accounted for by our model, we present in Fig. 6 a com-

parison of the upper profile of Fig. 5 (U0 ¼ 5 lm, thick solid line), to

the profile that would be obtained either by using the linear rela-

tion dispersion (21) with the same bubble density (thin solid line),

or in the pure liquid (thin dashed line). The important conclusion is

Fig. 4. Real part (dashed) and imaginary part (solid) of the wave number k. The thin

horizontal lines are predictions from linear theory (21) and the thick lines are

results calculated from Eqs. (33) and (35). The vertical dash-dotted line represents

the Blake threshold.



that the two linear models predict unrealistic huge values of the

acoustic pressure, while our model yields commonly measured

amplitudes at 20 kHz (typically 1.5–3 bar [9]).

4.2. Standing and traveling waves

The phase h between the pressure field and the pressure gradi-

ent allows to determine whether the wave is traveling or standing.

For a purely traveling wave (typically pðx; tÞ � ei xtÿkxð Þ ), pressure

and pressure gradient are in phase quadrature, so that j sin hj ¼ 1.

Conversely, for a purely standing wave (typically

pðx; tÞ � cosðkxÞeixt ), pressure and pressure gradient are in phase

or in phase opposition, so that j sin hj ¼ 0 in the latter case [60].

Thus, the quantity sin
2
h can be used as a measurement of the trav-

eling character of the wave.

In the configuration studied here, where the domain is closed

with perfectly reflecting boundaries, linear acoustics without dissi-

pation would predict a perfect standing wave. However, if there is

attenuation in the medium, a traveling wave component appears,

because the reflected wave is of lower amplitude than the incident

wave. This can be checked in Fig. 7, where sin
2
h is displayed for the

same simulation conditions as Fig. 5. It is seen that for low driving

amplitudes (U0 ¼ 0:2 lm, dash-dotted line), sin
2
h is 0 everywhere,

so that we have an almost perfect standing wave (which was

clearly visible in Fig. 5). But for higher emitter amplitude

(U0 ¼ 0:5 lm, dashed line), sin2
h starts to increase everywhere in

the medium, especially near the pressure antinodes, and for

U0 ¼ 5 lm (solid line), sin2
h progressively increases toward 1 in

a large part of the medium.

Finally, Fig. 8 confirms that, as shown above [see Eq. (38)], the

phase of the complex wave number k is close to ÿp=4 in zones

where the bubbles oscillate inertially. The wave number k is thus

proportional to 1ÿ i, which means that the attenuation factor a
and the real part kr of the wave number are of the same orders

of magnitude.

Fig. 6. Wave profiles for an amplitude of the emitter of 5 lm. Thick solid curve:

predicted by the present model (same as the thick solid curve of Fig. 5); thin solid

curve: obtained by the linear dispersion relation equation (21); thin dashed curve:

obtained in the pure liquid.

Fig. 7. Phase between pressure and pressure gradient in the same conditions as

Fig. 5. The line-styles are the same as for Fig. 5.

Fig. 5. Peak value of the dimensionless pressure field, calculated by solving

numerically Eq. (34) for various emitter displacement amplitudes. Solid line:

U0 ¼ 5 lm; dashed line: U0 ¼ 0:5 lm; dash-dotted line: U0 ¼ 0:2 lm.

Fig. 8. Phase of the complex wave number k divided by p, in the same conditions as

Fig. 5, for U0 ¼ 5 lm (solid line) U0 ¼ 0:5 lm (dashed line), and U0 ¼ 0:2 lm

(dashed-dotted line). For the largest amplitude, the wave number phase near the

emitter is seen to approach ÿp=4, as expected from Eq. (38).



5. Conclusion

Inertial bubbles dissipate much more energy than a linearly

oscillating bubble, both by thermal diffusion in the gas and viscous

dissipation in the liquid, the latter mechanism being dominant for

bubble ambient radii lower than 10 lm. The wave attenuation in

an inertial cavitation field is therefore much larger than the value

predicted by the classical linear dispersion relation (by typically 4

orders of magnitude). Although the latter conclusion is qualita-

tively intuitive, to our knowledge, no quantitative estimation has

ever been reported.

Under the assumption that the bubbles are mainly excited by

the first harmonic content of the acoustic field, the latter fulfills

approximately a nonlinear Helmholtz equation. The imaginary part

of the squared wave number is estimated rigorously from the en-

ergy dissipated by a single bubble, which can be easily calculated

by solving a bubble dynamic equation. The real part is still arbi-

trarily estimated from the linear theory, but this arbitrary choice

was shown to be of low importance, owing to the huge value of

the imaginary part. This has the importance consequence that in

bubbly zones, the attenuation factor is of the same order of magni-

tude as the real part of the wave number, which results in a strong

attenuation of the wave.

The model has been solved in a typical 1D-domain, and yields as

expected a strongly attenuated wave profile near the emitter for

high amplitude vibrations of the latter. The amplitude of the calcu-

lated acoustic pressure fields are realistic, contrarily to linear the-

ory. This strong attenuation yields in turn a traveling component in

the wave, where purely standing waves would be expected in a

non dissipative medium enclosed by perfectly reflecting

boundaries.

It is interesting to note that following the present results,

attenuation, and therefore wave structures, are mainly governed

by viscous dissipation involved in the bubble radial motion, the

thermal effects in the bubble playing a minor role. This conjecture

might be checked experimentally by measuring the wave attenu-

ation for solutions of different viscosities and with different dis-

solved gas.

The choice of the incompressible Rayleigh–Plesset equation to

model the bubble dynamics may be questioned. Although this is

the original formulation of the Caflish model, the compressibility

of the liquid produces sound scattering, and contributes therefore

to the attenuation of waves in bubbly liquids, as is well known

in the linear case [17,20]. One may therefore replace equation (5)

for example by a Keller equation [61–63], and reformulate the en-

ergy equation (8) to exhibit an additional contribution of radiation

Pa in its right-hand-side. This would in turn add a contribution in

Eq. (33), and produce more wave attenuation. However, the proce-

dure is not straightforward, and the energetical interpretation in

this case is less easy. One of the reasons for that is that compress-

ible bubble dynamics equations are not exact solutions of the basic

physical principles [62,63], but only first terms of expansions in the

parameter _R=cl. It is also expected that sound scattering also mod-

ifies the real part of k
2
, which again raises the issue of a correct

expression for the latter. However, it may be conjectured that, in

the low frequency range studied here, the power loss by sound

scattering is much lower than the one produced by viscous dissipa-

tion, because, as for thermal effects, sound radiation occurs mainly

in the vicinity of the collapse. Thus we expect that the model in its

present form catches the main dissipation phenomenon and that

the values proposed for Iðk2Þ is a good estimation. This will be

examined in more details in future work.

The occurrence of traveling waves, aside of the issue of the

Bjerknes forces examined in the companion paper, may also have

fundamental consequences on the final stage of the bubbles

collapse. Indeed, it has been shown recently that bubbles in travel-

ing waves are more exposed to shape instabilities and can undergo

jetting, which reduces the final collapse temperature [64], com-

pared to a spherically collapsing bubble. This would therefore

influence the estimation of the heat lost by a single bubble, but

the spherical collapse model used in the present study yields an

upper value.

Besides, measurements of the acoustic field in conical

structures has revealed the presence of a time-independent mean

pressure field, which amplitude may be comparable with the

first-harmonic part [36]. Our model does not catch this feature,

and there is yet no correct theoretical description of this phenom-

enon. We emphasize however that our derivation of the imaginary

part of the wave number is valid even in this case, since our

decomposition of the field equation (24) accounts a priori for the

presence of such a mean field. This suggests that the present model

could be supplemented by a specific equation describing this mean

pressure field, which remains to be determined.

To conclude, we believe that the present model opens the way

to more realistic simulations of the coupled evolution of the cavi-

tation field and the acoustic field. The nonlinear Helmholtz equa-

tion is relatively easy to solve and constitutes a viable solution

halfway between a fully nonlinear simulation of the Caflish equa-

tions, which requires painful, if not intractable, temporal integra-

tion, and a fully linearized model which, as shown above, yields

unrealistic acoustic pressure values. The companion paper will ad-

dress the calculation of the Bjerknes forces in the acoustic fields

calculated with the present model, and the resulting bubble struc-

tures predicted in more complex 2D configurations.
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