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Abstract – In the field of first-return statistics in bounded domains, short paths may be defined as
those paths for which the diffusion approximation is inappropriate. However, general integral con-
straints have been identified that make it possible to address such short-path statistics indirectly
by application of the diffusion approximation to long paths in a simple associated first-passage
problem. This approach is exact in the zero Knudsen limit (Blanco S. and Fournier R., Phys.
Rev. Lett., 97 (2006) 230604). Its generalization to the low to intermediate Knudsen range is ad-
dressed here theoretically and the corresponding predictions are compared to both one-dimension
analytical solutions and three-dimension numerical experiments. Direct quantitative relations to
the solution of the Schwarzschild-Milne problem are identified.

A simple invariance property of diffusion random walks
was independently identified in [1] and [2]: for parti-
cles incident on a system Ω, distributed uniformly and
isotropically at its boundary, the average length ⟨L⟩ of
the particle trajectories inside the system before the first
exit is invariant when changing the characteristics of the
random walk (exponentially distributed path lengths and
micro-reversibly distributed scattering directions); highly
or weakly scattering, and isotropic, forward or backward
scattering particles lead to the same average trajectory
length, that is therefore only dependent on the system ge-
ometry. For three-dimension walks

⟨L⟩ =
4V

S
, (1)

where V is the volume of Ω and S the surface of its bound-
ary ∂Ω. Numerous applications were reported in fields
such as biology, colloid physics, turbid media and radiative
transfer [3–13]. Theoretical extensions were also addressed
by Benichou and co-workers [14], providing significant
advances in our understanding of random search strate-
gies [15–17] and contributing to the field of Brownian

motion in confined geometries [18–20] (see also [21] for
a review). A very significant and recent step forward was
also made in [22], where the property could be rigorously
extended to the scattering of waves in resonant, chaotic or
Anderson-localized structures. Major advances can also
be expected from the numerous contributions of Mazzolo
and co-workers that have closely considered the links be-
tween the physics and mathematics literatures, in partic-
ular with the introduction of this property in the field of
integral geometry as a generalization of the Cauchy for-
mula [23–27], and a reconciliation with the Feynman-Kac
formalism [28–31]. Their researches, especially those ad-
dressing the full length distribution [32], led to the iden-
tification of the following second property [33]: for any
function f of the trajectory length, with a defined limit f0

in zero,

⟨f(L)⟩ = f0 + ⟨L⟩⟨f ′(R)⟩, (2)

where R is the random variable corresponding to trajec-
tory lengths until the first exit for particles starting uni-
formly and isotropically from within the volume, with the
only constraint that limx→+∞ pR(x)f(x) = 0, where pR is
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Fig. 1: Illustration of first-return L trajectories (a) and first-
passage R trajectories (b).

the probability density function of R (see fig. 1(b)). The
main interest of eq. (2) may be summarized the following
way [33]: L trajectories start at the boundary and there-
fore always include a non-negligible amount of short paths
(particle returning to the boundary after a few scattering
events, see fig. 1(a)) for which the diffusion approximation
is inappropriate. In this sense, evaluating ⟨f(L)⟩ is a first-
return problem. But ⟨f(L)⟩ can be exactly related to ⟨L⟩
and ⟨f ′(R)⟩, where ⟨L⟩ is a known geometric quantity (see
eq. (1)), and ⟨f ′(R)⟩ is the solution of a first-passage prob-
lem, which is easier to handle (in the present context) us-
ing the diffusion approximation because the contribution
of short paths decreases with the Knudsen number. We
may therefore write ⟨f(L)⟩ in the zero Knudsen limit as

⟨f(L)⟩|Kn→0 = f0 + ⟨L⟩⟨f ′(Rdiff)⟩, (3)

where Rdiff is the random variable corresponding to the
diffusion approximation applied to R.

The particular case in which f(x) = xn, with n a strictly
positive integer value, corresponds to the evaluation of the
positive moments of L. The limit f0 is null and eq. (3)
becomes

⟨Ln⟩|Kn→0 = ⟨L⟩n⟨Rn−1
diff ⟩. (4)

According to the properties of macroscopic diffusion, Rdiff

scales as k = 1/λ∗, where λ∗ is the transport mean free
path (λ∗ reduces to the mean free path in the particular
case of isotropic diffusion). This leads to

⟨Ln⟩|Kn→0 = αnkn−1, (5)

where αn is only dependent on the system geometry, and
not on the random walk characteristics. This result was
pointed out in [33,34] as highlighting the contribution of
short paths to ⟨Ln⟩: if only long L trajectories were to
contribute to ⟨Ln⟩, the diffusion approximation could be
directly applied on L and ⟨Ln⟩ would scale as kn instead
of kn−1. The authors then proposed a detailed physical
picture for this quite counterintuitive reduction of the ex-
ponent of k by 1 due to short-path statistics. Essentially,

large path-lengths scale indeed as kn but the probability
to enter deep enough in the system scales as 1/k.

Coming back to the general case, eq. (3) is directly
relevant to numerous application problems in which
the numerical evaluation of first-return statistics in real
geometries is either unfeasible or incompatible with com-
putation time requirements. Such simulations use either
stochastic methods of the Monte Carlo type, or deter-
ministic methods based on phase-space discretisation of
transport equations. Both approaches are known as com-
putationally very demanding and the alternative consist-
ing in the evaluation of ⟨f ′(Rdiff)⟩ using any standard
numerical solution of the macroscopic diffusion equation
is obviously orders of magnitude faster, and is tractable
whatever the geometrical complexity. One such practical
example is optical diagnostic, in which numerical treat-
ments are required for inversion of the measured signals,
with real-time constraints (in particular in the pharma-
ceutic and medical domains) which are such that solving
the macroscopic diffusion equation is about the maximum
affordable computational cost [35]. But what about all
practical configurations in which intermediate Knudsen
levels are encountered? We know that eq. (1) is rigorously
valid independently of the Knudsen level: is there more
behind this property that could be used for the evaluation
of ⟨f(L)⟩ outside the zero Knudsen limit? In particular,
can we obtain some theoretical benefits of the above-
mentioned physical picture explaining why ⟨Ln⟩|Kn→0

scales as kn−1? These questions are addressed hereafter
according to the following sequence: Available analytical
solutions in the one-dimensional case are used to explore
how eq. (5) is modified when increasing the Knudsen value.
The observed features lead us to the proposition of an ap-
proximate polynomial form of ⟨Ln⟩ in the general case.
We then address the question of practically evaluating the
polynomial coefficients for complex three-dimensional ge-
ometries, highlighting quantitative relations to the solu-
tion of the Schwarzschild-Milne problem [36,37].

The characteristics of a diffusion random walk are en-
tirely known given the mean free path λ(x) (the average
of the exponentially distributed path lengths between suc-
cessive scattering events) and the single scattering phase
function p(us; ui, x) (the probability density function of
the scattering direction us for an incident direction ui).
Both are functions of the location x. When considering
one-dimension walks (displacement along a line with in-
stantaneous direction changes), the phase function can be
chosen arbitrarily. Here we make the choice of isotropic
scattering, which means that at each scattering event the
probabilities to turn backward and to keep the same di-
rection are both 1/2. In the particular case in which the
mean free path is uniform and the considered system Ω is
a segment of length a, the following analytical solution is
available for ⟨Ln⟩ [33]:

⟨(L/a)n⟩1D =
n−1
∑

i=0

βi,n
1

Kni
(6)



Table 1: βi,n coefficients of the polynomial approximations of ⟨Ln⟩ (see eq. (7)), for the one-dimentionnal walk described in
the text, as well as for three-dimensional walks in five geometries: a slab, a cube, a sphere, a spherical shell enclosed by two
concentric spheres of radius R and 2R, and a volume composed of three identical cubes assembled according to a L shape (called
tricube). For each geometry, a has been chosen equal to ⟨L⟩: ⟨L⟩ is indeed equal to the segment length in the one-dimensional
case; and ⟨L⟩ is computed with eq. (1) for the three-dimensional geometries. The “line” coefficients are all analytical. For
the five other configurations: β0,1 is obtained with eq. (1); βn−1,n are obtained as proposed in [33]; βn−2,n are computed with
eq. (14); the other coefficients are evaluated, knowing βn−1,n and βn−2,n, using MC simulations. The MC simulations evaluate
both ⟨Ln⟩ and ∂⟨Ln⟩/∂Kn between 1/Kn = 10 and 1/Kn = 50, and the displayed corresponding βi,n coefficients are the result
of a Gauss-Markov linear fit (read [38]); for thus evaluated coefficients, an estimation of the calculus error is given in square
brackets. The number of sampled trajectories is about 109.

Line Slab Sphere Spherical shell Cube Tricube
β0,1 1 1 1 1 1 1
β1,2

1/6 0.125 0.225 0.1394 0.2724 0.2531
β0,2 1 1.066 1.066 1.115 1.288 1.295
β2,3

1/20 28.13e-3 0.1085 35.80e-3 0.1707 0.1433
β1,3

1/2 0.3996 0.7193 0.4751 1.131 1.068
β0,3 1 1.828 [0.009] 1.235 [0.007] 2.050 [0.007] 2.187 [0.003] 2.357 [0.005]
β3,4

17/840 8.538e-3 73.23e-3 12.46e-3 0.1526 0.1155
β2,4

17/60 0.1698 0.6243 0.2314 1.300 1.132
β1,4

11/10 1.292 [0.004] 1.764 [0.005] 1.626 [0.006] 3.959 [0.008] 3.992 [0.007]
β0,4 1 4.564 [0.075] 1.794 [0.022] 5.857 [0.081] 3.214 [0.027] 4.214 [0.028]

with Kn = λ/a. The constants βi,n are given in table 1
(in the “Line” column) up to n = 4. The n-th mo-
ment of L is therefore a polynomial function of degree
n − 1 of the inverse of the Knudsen number. At the
zero Knudsen limit, only the monome of higher degree
remains and ⟨(L/a)n⟩1D |Kn→0 = βn−1,n/Knn−1, which is
compatible with the theoretical predictions of [33], with
αn = βn−1,na2n−1 (see eq. (5)).

With this simple academic example, we can explore the
accuracy level corresponding to the straightforward ap-
plication of eq. (5) outside the zero Knudsen limit. The
conclusions are that the 1% accuracy level is only reached
beyond 1/Kn = 590 for ⟨L2⟩, 1/Kn = 980 for ⟨L3⟩ and
1/Kn = 1390 for ⟨L4⟩. Even a 10% accuracy level requires
that the Knudsen number remains below 1/Kn = 50 (see
the first line of table 2). Other calculations made on three-
dimensional geometries lead to similar conclusions (see
“monome” in table 2). This strongly restrains the range
of the possible practical use of the theoretical derivations
of [33], in particular for medical applications where the ac-
curacy requirements are high and the Knudsen numbers
always greater than 10−2.

But the fact that the exact solution of the 1D problem
has a polynomial shape over the whole Knudsen range
gives us a simple indication concerning a possible exten-
sion of eq. (5) to the intermediate Knudsen range for any
dimension and any geometry. Outside the one-dimensional
case, eq. (6) can indeed be seen as a polynomial approxi-
mation of ⟨Ln⟩ in the limit Kn → 0:

⟨(L/a)n⟩ =
n−1
∑

i=0

βi,n
1

Kni
+ O(Kn) (7)

with Kn = 1/(ka) and a any length scale characteristic
of the considered system geometry. The meaning of such

a polynomial approximation is directly related to the fact
that eq. (5) leads to limKn→0 Knn−1⟨(L/a)n⟩ = αn

a2n−1 and
the coefficients βi,n are the n first coefficients of the Taylor
expansion of Knn−1⟨(L/a)n⟩ with respect to Kn around
Kn = 0. We held numerical experiments to explore the
validity of eq. (7) in the low to intermediate Knudsen
range. The coefficients βi,n, obtained by model fitting of
Monte Carlo simulations, are given in table 1. The relative
accuracies of resulting ⟨Ln⟩ predictions are better when
decreasing the Knudsen range, as was observed with the
monomial model of [33], but they are now of a few percent,
or below one percent, in the Knudsen range typical of
the above-listed applications (see the lines “polynome” in
table 2).

For this modeling approach to become fully practical,
the remaining question is: how to make the βi,n coeffi-
cients easily accessible to those who want to estimate the
moments of L in any new geometry? A first solution is to
perform Monte Carlo simulations, fit them with eq. (7),
and mount tables of βi,n coefficients for different geometry
classes. Such computations are very demanding, but they
are to be done only once, as the βi,n are purely geometric
quantities.

We also started to think of pure theoretical alternatives.
In [33], an exact expression was provided for the first coef-
ficient (βn−1,n) as the solution of a macroscopic diffusion
process. The idea was that ⟨Ln⟩ = ⟨L⟩n ⟨Rn−1⟩ could
be expressed in an integral manner using the first-passage
time probability density function (that of the R config-
uration, i.e. when particles start uniformly within the
volume), and that this density was the solution of a macro-
scopic diffusion problem with null density at the boundary.
Using a Hilbertian approach (expanding the distribution
function), it can be shown that this solution corresponds



Table 2: Lower bound values of 1/Kn which with a 1% or 10% accuracy can be reached using the monomial [33], binomial, and
polynomial approximations. The “line”, “slab”, “sphere”, “spherical shell”, “cube”, and “tricube” configurations are described
in the caption of table 1.

Precision 1% 10%

Moment ⟨L2⟩ ⟨L3⟩ ⟨L4⟩ ⟨L2⟩ ⟨L3⟩ ⟨L4⟩
line, monome 594 988 1390 54 88.0 130
line, binome 0 39.8 66.2 0 9.32 15.6
line, polynome 0 0 0 0 0 0
slab, monome 840 1400 2000 77 130 190
slab, binome 24 74 110 4.1 19 30
slab, polynome 24 16 12 4.1 4.3 4.1
sphere, monome 470 660 850 43 61 79
sphere, binome 3.4 31 45 0 7.5 12
sphere, polynome 3.4 3.9 1.2 0 0 0
spherical shell, monome 790 1300 1800 72 120 170
spherical shell, binome 22 69 110 0 17 28
spherical shell, polynome 22 12 6.3 0 0.69 2.9
cube, monome 470 660 850 43 62 80
cube, binome 6.7 32 47 0 7.9 12
cube, polynome 6.7 2.9 0 0 0 0
tricube, monome 510 740 970 46 69 92
tricube, binome 8.4 37 54 0 8.9 14
tricube, polynome 8.4 2.5 0.62 0 0 0

to a first-order approximation in Knudsen number. But
the same Hilbertian reasoning establishes that the approx-
imation becomes accurate to second order when using the
Milne boundary condition [39]. This implies that both
βn−1,n and βn−2,n can be deduced from the diffusion ap-
proximation as

an

n⟨L⟩ βn−1,n = lim
Kn→0

(

Knn−1⟨Rn−1⟩
)

= lim
Kn→0

(

Knn−1⟨Rn−1
diff ⟩

)

,
(8)

an

n ⟨L⟩ βn−2,n = lim
Kn→0

∂
∂Kn

(

Knn−1⟨Rn−1⟩
)

= lim
Kn→0

∂
∂Kn

(

Knn−1⟨Rn−1
diff ⟩

)

,
(9)

where Knn−1⟨Rn−1
diff ⟩ reads

Knn−1⟨Rn−1
diff ⟩ =

( q

a

)n−1
∫ +∞

0

pdiff(τ)τn−1dτ, (10)

with q the problem dimension and pdiff the probabil-
ity density of the dimensionless first-passage time at
the macroscopic diffusion limit, using Milne boundary
conditions. This density writes

pdiff(τ) =

∫

∂Ω

u · ∇ρ(x; τ, Kn)dx, (11)

∂τρ(x; τ, Kn)=∇2ρ(x; τ, Kn), ∀(x; τ)∈Ω×[0; +∞[,

ρ(x; τ, Kn)=ΛaKnu · ∇ρ(x; τ, Kn),

∀(x; τ)∈∂Ω×]0; +∞[,

ρ(x; 0, Kn)=1/V, ∀x∈Ω,
(12)

where u is the inward normal unit vector at the bound-
ary and Λ the extrapolation length. Λ = 1 in the one-
dimentional case, and Λ ≃ 0.710446 in three dimensions
with isotropic scattering [40]. Consequently, βn−1,n and
βn−2,n are directly related to the solutions, at Kn = 0, of
both the diffusion problem of eq. (12) and its associated
derived one in s = 1

Λa
∂ρ

∂Kn . This leads to the following
coupled macroscopic diffusion problem:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂τρ(x; τ, 0) = ∇2ρ(x; τ, 0),
∂τs(x; τ, 0) = ∇2s(x; τ, 0),

∀(x; τ) ∈ Ω × [0; +∞[,

ρ(x; τ, 0) = 0,
s(x; τ, 0) = u · ∇ρ(x; τ, 0),

∀(x; τ) ∈ ∂Ω×]0; +∞[,

ρ(x; 0, 0) = 1/V,
s(x; 0, 0) = 0,

∀x ∈ Ω,

(13)
the solution of which allows to address βn−1,n as in [33]
and βn−2,n as

βn−2,n = Λ
⟨L⟩n qn−1

a2n−2

∫ +∞

0

pdiff,s(τ)τn−1dτ,

pdiff,s(τ) =
∫

∂Ω
u · ∇s(x; τ, 0) · dx.

(14)

These expressions are exact, which explains why βn−1,n

and βn−2,n have no associated uncertainty values in table 1
where they are provided for a slab, a sphere, a cube, a
tricube, and a spherical shell. Monte Carlo simulations
were only used for βi,n with i ! n − 3. In practice, if
Monte Carlo simulations cannot be afforded, then these
last coefficients can be neglected as a first modeling ap-
proach. The binomial results of table 2 illustrate that this
is sufficient to extend by one order of magnitude the range
of Knudsen numbers addressed in [33].
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