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Region-based prediction for image compression in
the cloud

Jean Bégaint, Dominique Thoreau, Philippe Guillotel and Christine Guillemot

Abstract—Thanks to the increasing number of images stored
in the cloud, external image similarities can be leveraged to
efficiently compress images by exploiting inter-images correla-
tions. In this paper, we propose a novel image prediction scheme
for cloud storage. Unlike current state-of-the-art methods, we
use a semi-local approach to exploit inter-image correlation.
The reference image is first segmented into multiple planar
regions determined from matched local features and super-pixels.
The geometric and photometric disparities between the matched
regions of the reference image and the current image are then
compensated. Finally, multiple references are generated from
the estimated compensation models and organized in a pseudo-
sequence to differentially encode the input image using classical
video coding tools. Experimental results demonstrate that the
proposed approach yields significant rate-distortion performance
improvements compared to current image inter-coding solutions
such as HEVC.

I. INTRODUCTION

The emergence of cloud applications and web services has
led to an increasing use of online resources. Associated with
the large availability of high-end digital cameras in smart-
phones, as well as the rise of online storage solutions (e.g.
Google Photos, Flickr, OneDrive, Dropbox) and new social
media practices (e.g. Facebook, Twitter, Pinterest), images and
videos constitute today a significant part of this data. Billions
of images are already stored in the cloud, and hundreds of
millions are uploaded every day [1]. Furthermore, these images
are rarely deleted and often duplicated across filesystems and
datacenters to mitigate data loss risks.

Images are usually independently encoded with the classical
JPEG [2] codec. However, given the amount of data saved in
the cloud, very similar content may already be stored online
and this redundancy can be exploited to significantly reduce
storage requirements. Given a large enough dataset of images,
a new image could then be encoded from a reference, or
multiple references, already present in the cloud. An example
of similar images that could be found in such a database is
shown Fig. 1.

Inter-coding of images is traditionally used in video com-
pression, where the redundancy is reduced by encoding con-
secutive frames from previous frames used as references.
Solutions have been proposed to leverage the inter-prediction
tools of video codecs to encode similar images as pseudo-
video sequences [3], [4]. Still, video codecs are primarily
designed assuming that rigid, block-based, two-dimensional
displacements are suitable models for the motion taking place
in a scene. In the considered case, disparities between cor-
related images can result from pictures taken from different
viewpoints, with different cameras, focal lengths, illumination

(a) “Merton College” (b) “Bodleian Library”

(c) “Radcliffe Camera” (d) “All Souls College”

(e) “Holidays 1192” (f) “Holidays 1127”

Fig. 1: Example of targeted images presenting geometric
distortions and illumination disparities.

conditions, at different points in time, etc. These dispari-
ties can be characterized by geometric transformations (e.g.
translations, rotations, zoom) or photometric transformations
(e.g. illumination disparities, gamma changes). Besides, image
scenes are not always planar, and as such, multiple distortions
can occur within an image pair. Several approaches have
been successfully proposed to encode correlated images by
compensating these distortions with multiple transformation
models [5], [6]. However, in the work of Shi et al. [5], the
number of transformation models is restricted to 4, whereas
in the method of Zhang et al. [6] the frame is divided into
256�256 pixel prediction units. Furthermore, both of these
methods do not take into account the image content. Thus,
we introduce here a compression scheme able to efficiently
handle non-planar images with complex deformations via a
region-based approach.

In this paper, we propose a novel region-based prediction
scheme able to leverage correlation between similar non-planar
images. Unlike existing approaches, our scheme extracts mul-
tiple regions, planes or objects, of the current image, each
subject to a distinct transformation model. Geometric and
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photometric disparities are then efficiently compensated in a
region-wise manner to predict the targeted frame, which is
then finally encoded with HEVC [7]. As an alternative for a
classical scale-offset compensation on the luminance channel,
we also propose to apply a compensation model on the color
channels, which is able to address larger disparities.

Experimental results indicate that the proposed scheme
can efficiently leverage inter-image redundancy, achieving on
average a 19.6% BD-rate reduction compared to HEVC inter
coding, computed on a dataset of several hundreds sequences.
We also demonstrate that our scheme is competitive in terms of
bit-rate distortion performances when compared against state
of the art methods.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. Section III gives an overview of
the proposed compression scheme. Section IV describes it in
details. Experiments are reported and discussed in Section V.
Section VI concludes this paper.

II. RELATED WORK

A. Image set compression

Zou et al. propose in [3] to organize images from an album
into a tree structure, then encode it as a video sequence.
A graph structure is first determined by order of similarity
between the images. Correlations are measured with the sum
of square differences (SSD). An image tree is then obtained
from the graph via a minimum spanning tree approach (MST)
and encoded with HEVC, with a group of pictures (GOP)
of one I frame (the tree root) and n following P frames, i.e.
the leaves. The scanning is performed via a depth-first search
algorithm, meaning the lowest leaves are explored before
going upwards. A maximum depth of the tree is imposed in
order to limit the image retrieval time (the random access). The
authors obtain an overall improvement of 75% over JPEG.
However, this method relies on the SSD for measuring the
correlation, which is not robust to geometric and illumination
changes. In addition, accessing a random image requires prior
decoding of several images and increases the loading time.
Moreover, video encoders have not been designed to cope with
variations in terms of focal length, viewpoint, illumination,
encountered in sets of images.

When considering millions of images available in the cloud,
it is very likely that from a given image, another highly similar
image can be found in a very large database [4]. Perra et al.
thus propose to take advantage of the large online datasets
and the inter-coding performance of HEVC to compress image
pairs, and introduce a novel approach with low computational
cost. To find correlated images, global feature descriptors are
used. A GIST descriptor [8] is computed from the current
image and then reduced to a 512 bits representation. GIST
descriptors have been selected as they are as efficient as SIFT
in this context [9], and with a lower computational cost. A
nearest neighbour search (K-NN) is then performed to retrieve
the most correlated image from the dataset. An HEVC inter-
coding is finally applied with the reference image as an I frame
and the query image as a P frame. This method provides fast
operations, suitable for online applications, and produces an

average reduction of size by a 74% factor with a canonical set
of 13 million images, compared to JPEG.

B. Feature-based image compression

Additional methods have been developed to deal with sets
of images with larger disparities. As such, Yue et al. propose
in [10] to encode an image from its down-sampled version
and local feature descriptors. The descriptors are used to
retrieve correlated images from the cloud and identify cor-
responding patches. As an image can have thousands of SIFT
descriptors [11], the total size of feature vectors can exceed
the image size. The SIFT descriptors of the current image
are thus encoded from the SIFT descriptors extracted from
the down-sample version of the image. Only the compressed
descriptors and the encoded down-sampled image are then
sent to the cloud. Once the data has been decompressed, the
image can be reconstructed. First, highly correlated patches are
retrieved from the cloud. The transformation between a pair of
patches (retrieved and up-sampled) is estimated by applying
the RANSAC algorithm on the descriptors. Finally, the patch
stitching is guided by the up-sampled decompressed image.
This method achieves an average 1885:1 compression rate, and
yields a better subjective quality than JPEG and HEVC intra-
coding. However, this method has some limitations. On some
images, one may not find sufficiently correlated images in the
cloud. Complex images can also be too difficult to reconstruct
faithfully. The authors propose then to extract the complex
parts of the image and encode them with classical image
compression tools. Furthermore, this method requires high
computational power to perform all the operations. Although
good visual results and an impressive compression ratio can
be obtained, this technique might not reconstruct faithfully the
original image due to the use of sparse local feature, and the
absence of residual coding.

Another approach has then been proposed by Shi et al.
in [5], relying on local feature descriptors. They introduced
a three-step method to reduce inter-image redundancy. A
feature-based multi-model approach is first used to compensate
geometric transformations between images. Then, a photo-
metric transformation is applied to account for illumination
changes between the references and the target image. Fi-
nally, a block matching compensation (BMC) is performed
to compensate remaining local disparities. To evaluate the
geometric transformation, a content-based feature matching is
first performed by using SIFT local feature descriptors [11].
The matching between images is performed based on the
correlation between groups of descriptors instead of pixel
values. A K-means algorithm is applied to cluster SIFT
descriptors and organize the images into correlated sets. The
images are placed in a graph, the weights are computed as the
distance between matched SIFT feature vectors. The prediction
structure is obtained by converting the graph into a MST.
The number of transformations and their parameters are then
derived, and the geometric transformation is then estimated
via the RANSAC algorithm. A feature-based photometric
compensation is proposed to compensate illumination changes.
Finally, a BMC is used to account for local disparities, which
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Fig. 2: Illustration of the proposed compression scheme.

are not compensated by the global geometric and photometric
compensations. This method outperforms JPEG by reducing
the bit-stream size by a factor of 10, while maintaining the
same quality.

It is worth also pointing out that similar registration tech-
niques based on local features extracted from correlated
images have also been used successfully for image super-
resolution [12]–[17] and image denoising [18], [19] tasks.

Recently, Zhang et al. presented in [6] a novel predic-
tion method based on dense correspondences. They proposed
to compensate geometric and photometric distortions on a
256 � 256 pixels block basis. By using dense pixel to pixel
correspondences in local units instead of local descriptors,
the parametric estimation of the geometric models and the
luminance compensation is more robust to local disparities.

In a previous work [20], we proposed a method relying on
a global compensation associated to a local prediction based
on locally-weighted template matching. Compared to current
coding solutions, significant rate-distortion performance im-
provements have been obtained, at the cost of high complexity.

In this paper, we present a different approach based on a
semi-local prediction model which relies on a region-based
estimation of multiple homographic and photometric models.

III. OVERVIEW OF THE PROPOSED COMPRESSION SCHEME

The proposed compression scheme comprises two main
steps, as shown in Fig. 2. For the purpose of explanation, we
will only consider a pair of images but our scheme can also
be adapted for larger sets of images. When considering the
current image IC to be encoded, a reference image IR is first
retrieved from the cloud with the help of a classical Content
Based Image Retrieval (CBIR) system. Additional reference
images Ir;i are then constructed by exploiting geometric and
photometric transformation models between the reference and
the current images. The current image IC is finally encoded
from the reference images Ir;i with a video encoder such as
HEVC. To decode IC , the reference images Ir;i are recon-
structed from the reference image IR and the transformation
models. The reference image thus needs to be available both
at the encoder and the decoder sides. In this paper, we assume

that the reference image is retrieved from a large and static
image database, and is referenced in the bit-stream.

The proposed prediction method relies on a semi-local
approach which estimates region-based geometric and pho-
tometric models to better capture correlation between the
two images. To segment the current image into homogeneous
regions, in terms of geometric transformations, the image
is first segmented into super-pixels. SIFT descriptors are
then extracted from both images and matched exhaustively.
For each super-pixel extracted from IC , a projective trans-
formation, i.e. a homography model, is estimated from the
SIFT keypoints located inside the super-pixel boundaries. To
reduce the number of homographies the estimated models are
recursively re-estimated and fitted to the keypoints via the
energy minimization method proposed in [21]. The Delaunay
triangulation of the keypoints is used to preserve the spatial
coherence during the homographies estimation. Then, the
photometric disparities between IC and IR are compensated
region-wise by estimating a transformation model between
matched regions of the image pair. Multiple references Ir;i
are generated by warping each region using its assigned ho-
mographic model and applying the photometric compensation.
Finally, the references are organized in a pseudo-sequence
in which the current image is differentially-encoded with
classical video coding tools. The side information (SI), i.e. the
homographies and the photometric model coefficients required
to reconstruct the predictions on the decoder side, need to be
transmitted and are taken into account in the bit-rate.

IV. REGION-BASED PREDICTION SCHEME

A. Super-pixel segmentation

To initialize the region-based segmentation, a super-pixel
segmentation is first performed via the SLIC algorithm pro-
posed by Achanta et al. in [22]. All the pixels i of IC are
clustered according to a combined colorimetric and spatial
distance D(Ck; i) to a centroid Ck defined as

D(Ck; i) =

r� dc
mc

�2
+
� ds
ms

�2
(1)

where dc represents the l2-norm in the LAB colorspace,
ds the l2 norm between a given pixel i and a centroid
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(a) (b)

(c) (d)

Fig. 3: Region-based geometric estimation: (a) SLIC seg-
mentation of IC . (b) Mesh of the Delaunay triangulation of
the matched keypoints. (c) Keypoints labels, each keypoint
is assigned a homography model, the outliers points are
represented in black. (d) Region segmentation.

Ck. The quantities ms and mc are weighting parameters
used to normalize color and spatial proximity. Our scheme
relies on the Adaptive-SLIC (ASLIC) variant of the SLIC
algorithm, where ms and mc are updated at each iteration
of the algorithm. When using SLIC, ms and mc are set
to constant values, the assumed maximum colorimetric and
spatial distance. Whereas with ASLIC, only the first iteration
relies on fixed normalization parameters, they are then updated
to the maximum distances observed in each cluster at the pre-
vious iteration. According to [22], this decreases the boundary-
recall performance. However, the super-pixels compactness
parameter is highly dependent of the image content and its
contrast. Thus, by using the adaptive version of the algorithm,
no per-image tuning is required, since the initial parameters
are updated along the iterations.

The SLIC segmentation is initialized from a regular grid
of centroids fCkjk 2 [0;K[g spaced by a fixed distance, the
step size s, and result in a segmentation of n super-pixels.
With K = bw

s
c � bh

s
c, (w; h) the image size, and n � K

depending on the clean-up step, where some centroids with
too few assignments can be removed.

An example of the resulting segmentation of the current
image IC is shown in Fig. 3a.

B. Geometric model estimation

To estimate the geometric models, our scheme relies on
local feature descriptors as they are more robust to geometric
distortion (e.g. translation, rotation, zoom, scale) and illumi-
nation variations than the pixel values [11].

SIFT keypoints are first extracted from both IC and IR and
then matched exhaustively. In order to improve the matching,

we use the RootSIFT algorithm proposed by Arandjelovic et
al. in [23]. The computed SIFT descriptors Xi are first
projected into a feature space:

X
0

i =

s
Xi

kXik1
;8i 2 J1; NK (2)

with kXik1 =

128X
j=1

jXi(j)j

then the distance between them is computed using the l2 norm.
For each super-pixel, a homography model H , defined by the
matrix

H =

2
4sx: cos(�) �sy: sin(� + �) tx
sx: sin(�) sy: cos(� + �) ty

kx ky 1

3
5 (3)

is then estimated via the RANSAC [24] algorithm from the
matched keypoints contained within the super-pixel bound-
aries. Here (tx; ty) denote the translation coefficients, � the ro-
tation, (sx; sy) the scale parameters, � the shear, and (kx; ky)
the keystone distortion coefficients.

RANSAC is an iterative method which can estimate a
parametric model from a noisy set of data points. There is no
guarantee that the optimal solution will be found during the
iterations. However, the probability of success is independent
of the number of points in the data set and only relies on
two parameters: the number of iterations N and the residual
threshold t to discard an outlier. Let u be the probability of a
data point to be an outlier, the minimal number of iterations to
reach a probability p of finding the optimal solution is given
by

N =
log(1� p)

log(1� uc)
(4)

where c is the minimum number of samples to estimate the
parametric model. In the case of a homography model, c = 4
(8 degrees of freedom).

To robustly estimate a homography model with RANSAC,
the Symmetric Transfer Error (STE) [25] is used to compute
the distances between matched keypoints:

STE(Hl) =

forward termz }| {X
p2P

d(x0p; Hl:xp)
2
+

backward termz }| {X
p2P

d(xp; H
�1
l :x0p)

2
(5)

where Hl denotes a homography model to be evaluated, xp
and x0p two matched keypoints, and d the euclidean distance.
Since the STE takes into account both forward and backward
projections of matched keypoints, this distance is well suited
for real-world data where local feature detection and their
matching will likely contain errors [25].

To further improve the estimation process, the determinant
of the homography matrix is also used to discard invalid
models. As pointed out by Vincent et al. in [26], homographies
not respecting the condition:



5

H =

�
Hl j

1

k
� jdet(Hl)j � k

�
(6)

can be rejected as they correspond to degenerated cases, i.e. the
absolute value of the determinant of the matrix (or its inverse)
is close to zero. Following the recommendation of [26], we
set k to 10.

From the n super-pixels of the SLIC segmentation, m

homography models are thus estimated, with m � n. In-
deed, some super-pixels do not contain a sufficient number
of matched keypoints to estimate a projective transform, or
contain only outliers. Furthermore, the models attributed to
neighboring super-pixels may be very similar as they might
be part of the same region.

C. Geometric model fitting

From the previously estimated homography models, the
most representative model for each region needs to be ex-
tracted and refined before generating the projections.

Delong et al. proposed in [21] an efficient method to solve
the issue of multiple models fitting. To solve this labelling
problem, i.e. assigning a model to each keypoint, they intro-
duce a new joint discrete energy:

E(f) =

data costz }| {X
p2P

Dp(fp)+

smooth costz }| {X
(p;q)2N

Vpq(fp; fq)+

label costz }| {X
L�L

hL:�L(f)

(7)
to be minimized iteratively, where N is the keypoints neigh-
borhood, hL the label cost of the subset of labels L, and where
the function �L(f) is defined as:

�L(f)
�
=

(
1; 9p : fp 2 L

0; otherwise
(8)

Following the set-up described in [27], an initial proposal
for the homography models needs to be estimated from the
matched keypoints, the observations P . During the expansion
step, each keypoint p is assigned a label l from the set of
homographies L in order to minimize the objective function
(7). From the labelling f , the set of models can then be updated
(re-estimation step). The expansion and re-estimation steps are
performed iteratively until convergence of the minimization of
(7) or until a maximum number of iterations is reached.

In the set-up described in [21] and [27], the set of initial
homography models is randomly generated by selecting N

samples of 4 matches. In our approach, we use the models
previously estimated from the super-pixels, which allows for
a faster convergence and a more robust estimation. The set of
homography models is then reduced and refined by recursively
minimizing the energy (7).

The data cost is a fidelity term, which ensures that the model
properly describes a transformation, computed from the STE
(5). Due to the likely presence of outliers in the matches, an
additional model � is introduced to fit their distribution, with
a fixed data cost for all the vertices and a label cost set to
zero:
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Fig. 4: Example of the splines fitting on the RGB channels.

(
h� = 0

Dp(�) = C;with C > 0
(9)

The smoothness cost for the set of neighbours pq 2 N

is defined from the Delaunay triangulation of the matched
keypoints in the current image IC (Fig. 3b). It penalizes
neighboring points with different labels in order to preserve
spatial coherence and is defined as:

Vpq = wpq � �(fp 6= fq) with

(
wpq; weight for the vertex pq

�; Kronecker delta
(10)

The label cost (8) is used to restrict the number of models.
An example of the resulting labelling is shown in Fig. 3c,

where one can observe that several planes, or regions, of the
image are detected successfully.

D. Photometric compensation

Once the finite set of homographies describing geometric
transformations between image pairs has been determined,
a reference image can be constructed. However, disparities
due to illumination and photometric differences between the
constructed reference image and the current image persist.
During the encoding, these disparities will result in a highly
energetic residual, limiting the use of the predicted image by
the encoder.

To compensate these distortions, we propose to estimate
a photometric compensation model for each previously esti-
mated region.

A scale-offset model is often proposed to minimize distor-
tion on the Y channel ( [5], [6], [10]). The model coefficients,
� and � are computed by minimizing the sum of square errors
on the matched keypoint pixels:

argmin
�;�

X
P

jY 0(x0p)� (�:Y (xp) + �)j2 (11)

This model can efficiently handle illumination disparities,
but performs poorly on complex colorimetric disparities. We
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choose to add the more flexible model proposed by Hacohen
et al. in [28]. The photometric deformation is modelled by a
piece-wise cubic spline f on each RGB channel. This model
can compensate for a variety of photometric distortions such
as gamma changes or color temperature. The minimization
problem:

argmin
f

X
Q

jI 0(x0q)� f(I(xq))j
2 + Csoft(f)

subject to: Chard(f)

(12)

is solved for 6 knots (0, 0.2, 0.4, 0.6, 0.8, 1) via quadratic
programming. The same soft constraints (Csoft) and hard
inequalities constraints (Chard):

Csoft(f) = �1
X

x2f0;1g

jf(x)� xj2

+ �2
X

x2f0:2j�0:1g5
j=1

jf(x)� xj2

+ �3
X

x2f0:2j�0:1g5
j=1

jf 00(x)j2

(13)

Chard(f) =

(
0:2 � f 0(x) � 5; 8x 2 f0:2j � 0:1g5j=1
f(0) � 0

(14)
are used to control smoothness and monotonicity of the curves.
Hard equality constraints are also set on the 4 inner knots of
the splines and their first derivative. Each curve thus has 7
degrees of freedom.

The minimization is performed for each region determined
from the labelling. As we cannot rely on a dense correspon-
dence field as in the original paper [28], we use a set of pixels
Q within a given radius of matched keypoints of each region,
to ensure that only reliable pairs of pixels values are used.

We use the sum of absolute differences (SAD) to select
the best performing photometric model for each region during
the prediction. The SAD is preferred here over the sum of
squared differences (SSD), as it tends to favour more compact
residuals, and thus is considered as a better estimator for the
quality of the reconstruction. The photometric compensation
can also be disabled when the image pair does not present any
photometric distortions or the estimation fails.

E. Pseudo-video sequence encoding

Once the geometric and photometric models have been
successfully estimated, the image can be segmented into
regions at the pixel level. The region segmentation is computed
by selecting the best projection for each super-pixel. The mean
absolute error is used to measure the distortion for each super-
pixel between a given projection and the current image. An
example of the final segmentation is shown in Fig. 3d.

A prediction image can then be constructed from the refer-
ence frame, the estimated models and the region segmentation.
However, sending this segmentation map to reconstruct the
prediction on the decoder side would be costly. Instead,

IR Ir;0 Ir;1 Ir;n�1 IC

Fig. 5: Illustration of the pseudo-video sequence encoding
scheme used.

TABLE I: Side information (SI) sent to the decoder for each
of the n predicted regions. For the photometric compensation,
one of the two models is chosen for each region, or the
compensation is disabled.

Compensation method Model Bits

Geometric homography 8 � 16

Photometric scale-offset 2 � 16

piece-wise spline 7 � 16

multiple reference pictures are used, which can be constructed
in the same manner on both the encoder and decoder sides.

Those n additional references Ir;i are constructed from the
reference image IR and the region models (the associated
geometric and photometric compensation models). For each
region, an additional reference image Ir;i is constructed by
warping the reference image IR with the associated region
homography model and applying the photometric correction.
This step is both performed at the encoder and decoder
side, and as such the encoded Ir;i are discarded in the
transmitted bit-stream. The reference image, the projections
and the current image are then concatenated in a pseudo-video
sequence, finally encoded with HEVC. Our encoding structure
differs from the main HEVC profiles such as the low-delay
and hierarchical configurations, as the last frame needs to be
predicted from all the previous frames in the sequence in order
to fully exploit the inter-redundancies.

Starting from the low-delay configuration of the HM soft-
ware (lowdelay P main.cfg), the GOP settings are modified to
keep all the frames in the reference pictures buffer, as shown in
Fig. 5. The reference frames are encoded at maximum quality
(QP = 0), since this part of the bit-stream will not be stored
in the final bit-stream, while the quality of the current frame
is controlled via the QPoffset value.

To enable the decoder to reconstruct the projections used
as reference pictures for the current image, some Side In-
formation (SI) is also stored alongside the HEVC bit-stream.
By using multiple reference frames, only the geometric and
photometric models coefficients need to be transmitted. The
encoder then performs its reference selection for each inter-
coded prediction unit and stores it in the bit-stream. This
avoids sending the costly segmentation map, and lets the
encoder decide the best reference frame to select for each
prediction-unit, in the rate distortion optimization (RDO) loop.
All the SI parameters are stored as half-precision floating
point, coded on 16 bits each. For the homography models, 8
parameters need to be stored in the bit-stream, 2 parameters for
the scale-offset model or 7 parameters for each color channel
for the piece-wise spline fitting model, as detailed in Tab. I.
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V. EXPERIMENTAL RESULTS

To perform our experiments, numerous images have been
retrieved from publicly available databases [29]–[32] and
also crawled from Google Images and Flickr. The collected
images present challenging disparities such as combinations
of different viewpoints, focal lengths, illumination variations,
translations, rotations. Such disparities result from pictures
taken at different points in time, with different camera po-
sitions, lighting conditions, etc. . .

Unless otherwise specified, the HEVC HM1 software ver-
sion 16.9 with the low-delay configuration is used for the
video coding in all the following tests. The rate-distortion
performances presented in the rest of this paper are computed
with the Bjontegaard metric [33] using the recommended
settings of 22, 27, 32 and 37 for the Quantization Parameter
(QP). The PSNR is computed on the Y channel.

The super-pixel centroids are initialized on a regular grid,
spaced by 64 pixels. The initial compactness is set to 10. In
order to use the energy (7) to estimate the multiple geometric
models, the value of the label, smooth and outlier costs first
need to be determined. As stated by Delong et al. in [21],
these parameters are application dependent, and as such, they
can be learned offline once, on a representative dataset. Their
values have been computed on a training dataset with the
differential evolution algorithm introduced by Storn & Price
in [34]. This method allows finding the global minimum of a
multivariate function, over a large space of possible parameters
combinations more robustly than with manual tuning, to the
detriment of a slow convergence.

As regards the splines fitting based photometric model, the
parameters provided in [28] have been used. The pixel search
radius is set to 15 pixels and the quadratic problem has been
solved with an efficient quadratic solver2.

The same set of parameters is used for all the results
presented in this paper.

A. Performance of region-based models

The performance of the region-based prediction model
(“region-based”) is first compared with the performance of
a global compensation model (“global”) and also with HEVC
low-delay (“inter”). The two prediction modes are evaluated
with only the geometric compensation enabled (“geo”) and
both the geometric and photometric compensations enabled
(“geo+photo”). The global compensation scheme consists in a
single homography transformation, estimated from the clas-
sical SIFT+RANSAC approach, followed by a photometric
scale-offset compensation, i.e. with only one homography and
one photometric compensation model per image. Examples
are shown in Fig. 6 for the four sequences of Fig. 1: “Merton
College” (Fig. 6a), “Bodleian Library” (Fig. 6b), “Radcliffe
Camera” (Fig. 6c), and “All Souls College” (Fig. 6d), the
Bjontegaard metrics are provided in Tab. II. The “Merton
College” sequence exhibits multiple geometric distortions,
while “Bodleian Library” and “Radcliffe Camera” both present

1https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/
2https://github.com/liuq/QuadProgpp

multiple geometric and photometric distortions, and “All Souls
College” a global geometric and photometric distortion. The
choice of which image is the current/reference image was
performed randomly.

The proposed scheme results in the following respec-
tive BD-rate improvements of 28.50%, 39.80%, 61.32% and
40.54% compared with HEVC inter. For the “Merton College”
sequence, the BD-rate gain increases from 9.96% to 28.50%
thanks to the use of multiple geometric compensation models,
whereas the photometric compensation does not yield any
performance improvements for this sequence.

On the “All Souls College” sequence, one might observe
that the photometric compensation can greatly improve the
efficiency, from 10.63% to 38.63%. Also, in this case, the
photometric compensation of the region-based model is more
performant, from 38.63% to 61.32%. Although there is only
one region in the image, the photometric model based on
splines yields a better prediction. This is confirmed on the
“Bodleian Library” and “Radcliffe Camera”, which all ben-
efit from the photometric compensation, from 28.03% to to
39.80% and from 26.03% to 40.54%, respectively. It is also
worth noting that on the “Radcliffe Camera” and “Bodleian
Library” sequences, the global scheme with the photometric
compensation performs better than the region-based algorithm
without photometric compensation, emphasizing its crucial
role in providing an accurate prediction.

For the four sequences, the respective bit-stream ratio allo-
cated for the side information over the total bit-stream size is
0.77%, 0.41%, 0.28% and 0.25%, which is negligible.

Results for the reversed sequences, where the reference and
current images are swapped, are also provided for comparison.
The rate-distortion improvements are consistent for the “Mer-
ton College” and “Radcliffe Camera” sequences. However,
while an increase in performance is observed for the “Bodleian
Library” sequence, one can notice a decrease for the “All Souls
College”. This can be explained by the different exposures
of the frames in each sequence. Indeed, predicting an image
from an under-exposed correlated image is more challenging,
as numerous details are lost due to the lack of brightness and
thus cannot be predicted correctly.

To illustrate the performance gains due to the use of the
predicted regions, we modified an HEVC bit-stream analyzer
to display the reference picture index used for each coding
unit. An example is shown Fig. 7 on the “Merton College”
sequence, where the encoder decisions for the reference picture
selection are displayed for different QP values. Each color
indicates a reference frame, i.e. a region, chosen by the
encoder as a reference picture, the intra mode is represented
in black. One can observe that the reference frame selection
for each coding unit in the quad-tree is overall quite consistent
with the region-based segmentation presented previously. Still,
there are some local inconsistencies in the reference selection
that can be attributed to the decisions of the RDO loop. Also,
at higher bit-rates, i.e. lower QP values, the intra-mode is
more frequently selected by the encoder, especially in complex
zones such as the windows where the light reflection cannot
be predicted accurately.

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
https://github.com/liuq/QuadProgpp
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Fig. 6: Performance comparison of the different prediction methods. The proposed region-based model and a global scheme
are compared to HEVC inter, with and without photometric compensation.

TABLE II: Bjontegaard metrics computed on the rate-distortion curves presented in Fig. 6. The symbol “r” indicates that the
sequence was processed backward, i.e. the reference image and the current image were switched.

Sequence global geo global geo+photo region-based geo region-based geo+photo

BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR

“Merton College” 9.96% 0.42db 9.96% 0.42db 28.50% 1.22db 28.50% 1.22db
“Bodleian Library” 26.94% 1.40db 26.94% 1.40db 28.03% 1.47db 39.80% 2.17db
“Radcliffe Camera” 17.78% 0.90db 34.18% 1.84db 26.03% 1.34db 40.54% 2.26db
“All Souls College” 10.63% 0.51db 38.63% 2.18db 10.55% 0.50db 61.32% 3.79db

“Merton College” r 15.52% 0.74db 15.52% 0.74db 28.32% 1.39db 28.32% 1.39db
“Bodleian Library” r 36.65% 1.98db 46.19% 2.65db 37.61% 2.04db 53.45% 3.21db
“Radcliffe Camera” r 19.95% 0.93db 32.64% 1.64db 25.02% 1.21db 38.66% 2.01db
“All Souls College” r 11.15% 0.50db 23.30% 1.12db 11.80% 0.53db 38.16% 1.88db
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(a) QP = 22 (b) QP = 27

(c) QP = 32 (d) QP = 37

Fig. 7: Encoder reference frame decisions by coding unit
on “Merton College” for different QP values. Each color
corresponds to a reference frame index in the active reference
picture set (the projections for our application), while the intra-
mode is represented in black.

TABLE III: BD-rate reduction compared with HEVC inter for
different methods, with N the number of prediction models.

Sequence Zhang [6] Shi [5] Ours

BD-rate N BD-rate N BD-rate N

“Merton College” 19.63% 12 24.60% 4 28.50% 8
“Bodleian Library” 19.17% 12 27.52% 4 39.80% 6
“Radcliffe Camera” 28.82% 12 42.74% 4 40.54% 3
“All Souls College” 26.42% 12 44.70% 4 61.32% 1
“Holidays-1192” 4.59% 80 1.67% 4 8.04% 7
“Holidays-1127” 23.94% 80 33.29% 4 37.2% 4

“Merton College” r 13.29% 12 21.17% 4 28.32% 8
“Bodleian Library” r 19.80% 12 41.96% 4 53.45% 6
“Radcliffe Camera” r 31.02% 12 37.37% 4 38.66% 3
“All Souls College” r 31.55% 12 36.50% 4 38.16% 1
“Holidays-1192” r 3.8% 80 7.16% 4 12.59% 8
“Holidays-1127” r 25.41% 80 27.95% 4 32.07% 4

Mean BD-rate gain 20.64% 28.89% 34.89%

B. Comparison to the state of the art

To compare with the state of the art, we implemented the
approaches proposed by Shi et al. [5] and Zhang et al. [6].

The BD-rate gains are reported in Tab. III for the six
sequences shown in Fig. 1.

Our method achieves a higher coding performance for
the image pairs (a), (b), (d), (e) and (f), with a respective
improvement of 3.9%, 12.28%, 16.62%, 3.91% and 3.45%.

Improvements over the state of the art can be explained by
the use of a finer prediction model. Restricting the number of
models to 4, as proposed by Shi et al., reduces the prediction
efficiency as smaller regions could be absorbed into larger
ones and thus would not benefit from an accurate prediction
model. Zhang et al. divide the images into 256x256 pixel
“units”, which is costly in terms of side information which
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Fig. 8: Overall performance comparison of prediction meth-
ods.
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Fig. 9: Distribution of the rate-distortion gains for different
prediction methods, with their respective cumulative density
function.

need to be encoded, this explains the lower performance on
all the sequences compared to our scheme. A “unit” can also
span over multiple planes and thus results in an incorrect
projection estimation. In our scheme, the regions are depen-
dent on the image pair content correlations, thus the models
are more robustly estimated from a plain and distinct region,
which results in a better prediction. Moreover, the proposed
photometric compensation on the color channels can be more
efficient than the simple scale-offset compensation model on
the luminance channel. For the (c) sequence, our scheme fails
to detect the optimal number of models and selects 3 models
instead of 4. With a fixed number of 4 models, an improvement
of 44.56% over HEVC inter can be obtained. As such, the
automatic detection of the number of regions performs well
on average, but can result in lower gains on some sequences.
Re-learning the parameters of the model fitting on a larger
dataset could help improving the performances.

C. Overall performance

In this section we present the overall coding performance
of the proposed prediction scheme on a large dataset of image
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TABLE IV: Mean runtime increases for the total encoding and
the HEVC encoding of the proposed scheme, compared to the
HEVC inter-coding of two images.

Method Total HEVC encoding

global geo 121.54% 110.59%
global geo+photo 120.61% 109.65%
region-based geo 143.17% 125.76%
region-based geo+photo 142.55% 123.45%

pairs. Multiples images were randomly aggregated to form a
collection of about 700 sequences from the previously men-
tioned online databases [29]–[32]. This dataset present a large
variety of scene contents, image resolutions and distortions:
different cameras, viewpoints, conditions of illuminations,
etc. . . Again, the BD-rate gains reported here are calculated
with respect to the performance of the HEVC low-delay inter-
coding configuration.

The overall performances in terms of BD-rate saving for dif-
ferent geometric prediction methods, a single model “global”
versus our method “region-based”, with and without photo-
metric compensation, are shown in Fig. 8.

The mean BD-rate distortion improvements are respectively
12.16%, 13.29%, 16.50% and 19.61%. The distribution of the
rate-distortion improvements on the dataset is shown in Fig. 9.
The wide range of gain interval (from 0% to 61%) reflects the
method high dependency on the inter-image correlation. The
full region-based model outperforms the other models, with
at least 19.62% gain for half the sequences. While 41.59% of
the sequences do not benefit from a photometric compensation,
the scale-offset model is selected for 37.61% of the sequences
and the piece-wise spline model is more performant on the re-
maining 20.80%. The very high gains are obtained for frames
with a simple global geometric distortion, such as a rotation,
which cannot be compensated efficiently by the block motion
estimation and compensation of video encoders. The low gains
result from either sequences with complex distortions that
cannot be compensated with geometric-based compensations
(e.g. significant optical distortion) or simple distortions already
compensated efficiently by block motion compensation. Also
our scheme strongly relies on the keypoints extraction and
matching step, which can fail for some scenes, as no adaptive
method is proposed to control the sensitivity of the detector
and the matching threshold. In these cases, no prediction
can be performed and thus no improvements over the HEVC
“inter” baseline can be expected.

For the BD-rate distortion improvement over HEVC all-
intra coding, a mean gain of 21.56% is achieved. The gain of
19.61% obtained over HEVC “inter” indicates that the HEVC
inter-prediction models can only handle larger distortions to a
limited extent.

D. Complexity study

Compared to a classical pseudo-video coding approach, the
main increase in complexity of our scheme resides on the
encoder side. The mean encoding run-times of HEVC low-
delay, a global prediction scheme and our region-based predic-
tion model have been computed for the same 700 sequences,

TABLE V: Distribution of the runtime for each step in the
region-based scheme.

Step Runtime ratio

Super-pixels extraction 26.58%
Descriptors extraction and matching 44.86%
Geometric models estimation 2.64%
Geometric models fitting 24.10%
Photometric compensation 1.46%
Misc. 0.36%

TABLE VI: Influence of the “search range” value on the
runtime and the rate-distortion performance.

Prediction method Search Range Runtime BD-rate gain

“global” 64px 116.45% 14.44%

“region-based geo”

1px 105.90% 14.98%
2px 107.18% 15.31%
4px 107.24% 15.50%
8px 107.57% 15.69%
16px 108.76% 15.72%
32px 111.14% 15.67%
64px 130.73% 16.50%

and are reported in Tab. IV. The mean runtime increase of
our scheme is of 142.55% compared with HEVC inter. The
increased complexity can be explained both by the overhead
of the region-based prediction algorithm and the HEVC inter-
coding.

The distribution of the increase in complexity of the region-
based prediction algorithm is detailed for each step in Tab. V.
The slowest step is by far the local descriptors extraction
and matching, followed by the super-pixels extraction and
the homography models fitting. The SIFT extraction could
benefit from a more efficient implementation, such as the GPU
one proposed in [35]. The descriptors matching could also be
performed on GPU, or leverage the approximate k-nearest-
neighbours methods based on KD-Trees such a FLANN [36].
Similarly, an efficient GPU implementation of SLIC have also
been proposed [37].

The second significant overhead in the complexity of the
proposed scheme is due to the inter-prediction process in
HEVC. The 23.45% increase is due to the compensated
regions which need to be encoded by HEVC before being
available as reference to encode the target frame.

By enforcing multiple reference frames, the encoder has to
perform more block motion estimations to compute the po-
tential motion vectors. The default “low-delay” configuration
of HEVC sets a search range of 64 pixels for the motion
vector, and can be reduced to speed up the encoding at the cost
of a reduction of the compression performance. Experimental
results are reported in Tab. VI for the 700 sequences. One can
observe that by setting a lower value for the motion vector
search range, the encoding runtime can be reduced, at the
expense of a decreased BD-rate gain, since local geometric
disparities would not be well compensated by the constrained
block motion compensation. However, it provides a good
trade-off between complexity and efficiency.

On the decoder side, the increase in complexity is fairly
limited. Once the reference image has been retrieved, only
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the additional step of reconstructing the projections from the
side information needs to be performed. This step amounts to
computing the new pixel coordinates, applying an interpolation
and finally correcting the pixel values with the photometric
model for each region. This operation has an O(n) complexity,
and as such, can be performed in linear time with respect to
the image size. With our implementation, it takes less than 1s
to generate the reference images on a recent laptop.

VI. CONCLUSION

In this paper, we presented a novel prediction scheme for
cloud-based image compression. Unlike current approaches,
our scheme features a semi-local geometric and photometric
prediction method able to compensate in a region-wise manner
distortions between two images. The proposed scheme can sig-
nificantly improve the rate-distortion performances compared
to classical image and video coding solutions, and is also
competitive compared to state of the art methods. The added
complexity of our solution is limited and could be reduced by
leveraging efficient implementation of the algorithms involved.
Furthermore, the proposed prediction method is agnostic to the
video codec used, allowing to use existing coding infrastruc-
tures without introducing major modifications.

Though we focused in this paper on image sets compression
in the cloud, other applications with highly correlated image
content such as photo albums compression [38], cloud gaming
streaming [39], [40], and traditional video coding [41] could
also benefits from the proposed prediction methods.

Interesting challenges still remain, such as exploiting mul-
tiple frames from the cloud and ascertaining the scalability
of cloud-based image compression techniques. Furthermore,
cloud-based image compression solutions rely on classical
content-based image retrieval systems, designed for semantic
retrieval. Adapting one of these schemes for cloud-based
compression applications would provide better references for
the prediction and ultimately improve the bit-rate distortion
performances.
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