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Measure contraction properties for two-step

sub-Riemannian structures and medium-fat Carnot groups

Z. Badreddine∗ L. Rifford†

Abstract

We prove that two-step sub-Riemannian structures on a compact manifold
equipped with a smooth measure and medium-fat Carnot groups satisfy measure
contraction properties.

1 Introduction

The aim of this paper is to provide new examples of sub-Riemannian structures sat-
isfying measure contraction properties. Let M be a smooth manifold of dimension
n ≥ 3 equipped with a sub-Riemannian structure (∆, g) of rank m < n, whose geodesic
distance dSR is supposed to be complete. We refer the reader to Appendix A for the
notations used throughout the paper. As in the previous paper of the second author
on the same subject [23], we restrict our attention to the notion of measure contraction
properties in metric measured spaces with negligeable cut loci (if A ⊂ M is a Borel
set then Ln(A) = 0 means that A has vanishing n-dimensional Lebesgue measures in
charts):

Definition 1. We say that the sub-Riemannian structure (∆, g) on M has negligeable
cut loci if for every x ∈M , there is a measurable set C(x) ⊂M with

Ln (C(x)) = 0,

and a measurable map γx : (M \ C(x))× [0, 1] −→M such that for every y ∈M \ C(x)
the curve

s ∈ [0, 1] 7−→ γx(s, y)

is the unique minimizing horizontal path from x to y.
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Measure contraction properties consists in comparing the contraction of volumes
along minimizing geodesics from a given point with what happens in classical model
spaces of Riemannian geometry. We recall that for every K ∈ R, the comparison
function sK : [0,+∞) → [0,+∞) (sK : [0, π/

√
K) → [0,+∞) if K > 0) is defined by

sK(t) :=















sin(
√
Kt)√
K

if K > 0

t if K = 0
sinh(

√
−Kt)√

−K
if K < 0.

In our setting, the following definition is equivalent to the notion of measure contraction
property introduced by Ohta in [21] for more general measured metric spaces (see also
[28]).

Definition 2. Let (∆, g) be a sub-Riemannian structure on M with negligeable cut loci,
µ a measure absolutely continuous with respect to Ln and K ∈ R, N > 1 be fixed. We
say that (∆, g) equipped with µ satisfies MCP(K,N) if for every x ∈ M and every
measurable set A ⊂ M \ C(x) (provided that A ⊂ BSR(x, π

√

N − 1/K) if K > 0) with
0 < µ(A) <∞,

µ (As) ≥
∫

A
s

[

sK
(

sdSR(x, z)/
√
N − 1

)

sK
(

dSR(x, z)/
√
N − 1

)

]N−1

dµ(z) ∀s ∈ [0, 1],

where As is the s-interpolation of A from x defined by

As :=
{

γx(s, y) | y ∈ A \ C(x)
}

∀s ∈ [0, 1].

In particular, (∆, g) equipped with µ satisfies MCP(0, N) if for every x ∈M and every
measurable set A ⊂M \ C(x) with 0 < µ(A) <∞,

µ (As) ≥ sNµ(A) ∀s ∈ [0, 1].

To our knowledge, the first study of measure contraction properties in the sub-
Riemannian setting has been performed by Juillet in his thesis. In [16], Juillet proved
that the n-th Heisenberg group H

n (with n ≥ 1) equipped with its sub-Riemannian
distance and the Lebesgue measure L2n+1 (in this case the ambiant space is R

2n+1)
satisfies MCP(0, 2n + 3). This result is sharp for two reasons. First, Juillet proved
that H

n does not satisfy any other stronger notion of ”Ricci curvature bounded from
below” in metric measured spaces such as for example the so-called curvature dimen-
sion property (see [19, 27, 28, 29]). Secondly, Juillet showed that 2n+3 is the optimal
dimension for which H

n satisfies MCP(0, N), there is no N < 2n + 3 such that H
n
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(equipped with dSR and L2n+1) satisfies MCP(0, N). The Juillet’s Theorem, which
settled the case of the simplest sub-Riemannian structures, paved the way to the study
of measure contraction properties for more general sub-Riemannian structures. In [6],
Agrachev and Lee investigated the case of sub-Riemannian structures associated with
contact distributions in dimension 3. In [17, 18], Lee and Lee, Li and Zelenko studied
the particular case of Sasakian manifolds. In [23], the second author proved that any
ideal Carnot group satisfy MCP(0, N) for some N > 1 (it has been shown later by Rizzi
[26] that a Carnot group is ideal if and only if it is fat). In [26], Rizzi showed that any
co-rank 1 Carnot group of dimension k+1 (equipped with the sub-Riemannian distance
and a left-invariant measure) satisfies MCP(0, k + 3). Finally, more recently, Barilari
and Rizzi [9] proved that H-type Carnot groups of rank k and dimension n satisfy
MCP(0, k + 3(n − k)). The purpose of the present paper is to pursue the qualitative
approach initiated by the second author in [23]. We aim to show that some assump-
tions on the sub-Riemannian structure insure that the sub-Riemannian distance enjoyes
some properties which guarantee that some measure contraction property of the form
MCP(0, N) is satisfied. Our approach is purely qualitative, we do not compute any
curvature type quantity in order to find the best exponents. Our results are concerned
with two-step distributions and medium-fat Carnot groups.

We recall that a distribution ∆, or a sub-Riemannian structure (∆, g), is two-step
if

[∆,∆](x) :=
{

[X,Y ](x) |X,Y smooth sections of ∆
}

= TxM ∀x ∈M.

A measure on M is called smooth if it is locally defined by a positive smooth density
times the Lebesgue measure Ln. Our first result is the following:

Theorem 3. Every two-step sub-Riemannian structure on a compact manifold equipped
with a smooth measure satisfies MCP(0, N) for some N > 0.

In the case of Carnot groups, the homogeneity allows us to extended the above
result to left-invariant medium-fat distributions. A distribution ∆, or a sub-Riemannian
structure with distribution ∆ or a Carnot group whose first layer ∆ is equipped with a
left-invariant metric, is called medium-fat if, for every x ∈M and every smooth section
X of ∆ with X(x) 6= 0, there holds

TxM = ∆(x) + [∆,∆](x) +
[

X, [∆,∆]
]

(x),

where
[

X, [∆,∆]
]

(x) :=
{

[

X, [Y,Z]
]

(x) |Y,Z smooth sections of ∆
}

.

The notion of medium-fat distribution has been introduced by Agrachev and Sarychev
in [8]. The class of medium-fat distributions contain the class of two-step distributions.
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An important feature of medium-fat distributions is that they do not admit non-trivial
Goh paths (see Section 2.3). Of course, in the case of a Carnot group the property of
being medium-fat depends only on the properties of its Lie algebra. Our second results
is the following:

Theorem 4. Any medium-fat Carnot group whose first layer is equipped with a left-
invariant metric and equipped with Haar measure satisfies MCP(0, N) for some N > 0.

The proofs of Theorem 3 and 4 are based on the fact that squared sub-Riemannian
pointed distances dSR(x, ·)2 satisfy a certain property of horizontal semiconcavity. This
property together with the lipschitzness of dSR(x, ·)2 allows us to give an upper bound
for divergence of horizontal gradients of fx which implies the desired measure contrac-
tion property.

We recall that all the notations used throughout the paper are listed in Appendix
A. The material required for the proof of the two theorems above is worked out in
Section 2. The proofs of Theorems 3 and 4 are respectively given in Sections 3 and 4.

2 Preliminaries

Throughout all this section, (∆, g) denotes a complete sub-Riemannian structure onM
of rank m ≤ n.

2.1 The minimizing Sard conjecture

The minimizing Sard conjecture is concerned with the size of points that can be can
reached from a given point by singular minimizing geodesics. Following [24], given
x ∈M , we set

Sx
∆,ming :=

{

γ(1) | γ ∈W 1,2
∆ ([0, 1],M), γ sing., dSR(x, γ(1))

2 = energyg(γ)
}

.

Note that for every x ∈ M , the set Sx
∆,ming is closed and contains x (because m < n).

Let us introduce the following definition.

Definition 5. We say that (∆, g) satisfies the minimizing Sard conjecture at x ∈M if
the set Sx

∆,ming has Lebesgue measure zero inM . We say that it satisfies the minimizing
Sard conjecture if this property holds for any x ∈M .

It is not known if all complete sub-Riemannian structures satisfy the minimizing
Sard conjecture (see [3, 24]). The best general result is due to Agrachev who proved
in [2] that all closed sets Sx

∆,ming have empty interior. As the next result shows,
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the minimizing Sard conjecture is related to regularity properties of pointed distance
functions. Following Agrachev [2], we call smooth point of the function y 7→ dSR(x, y)
(for a fixed x ∈ M) any y ∈ M for which there is p ∈ T ∗

xM which is not a critical
point of the exponential mapping expx and such that the projection γx,p of the normal
extremal ψ : [0, 1] → T ∗M starting at (x, p) is the unique minimizing geodesic from x
to y = γx,p(1). By Agrachev’s Theorem, the set Ox of smooth points is always open
and dense in M . The following holds:

Proposition 6. Let x ∈M be fixed, the following properties are equivalent:

(i) the structure (∆, g) satisfies the minimizing Sard conjecture at x ∈M ,

(ii) the function y 7→ dSR(x, y) is differentiable almost everywhere in M ,

(iii) the set of smooth points Ox is an open set with full measure in M .

Furthermore, the function y 7→ dSR(x, y) is smooth on Ox and if M and (∆, g) are
real-analytic or if all singular minimizing geodesics are strictly abnormal, then the set
Ox is geodesically star-shaped at x, that is

γ(s, y) ∈ Ox ∀s ∈ (0, 1], ∀y ∈ Ox, (2.1)

where γx(·, y) ∈W 1,2
∆ ([0, 1],M) is the unique minimizing geodesic from x to y.

Proof of Proposition 6. Let x ∈ M be fixed. The part (iii) ⇒ (ii) is immediate. Let
us prove that (ii) ⇒ (i). By assumption the set of differentiability D of f := dSR(x, ·)
has full measure in M . Recall that for every y ∈ D, there is a unique minimizing
geodesic from x to y which is given by the projection of the normal extremal ψ :
[0, 1] → T ∗M such that ψ(1) = (y, dSR(x, y)dyf) (see [22, Lemma 2.15 p. 54]). By
Sard’s Theorem, the set S of expx(p) with p ∈ T ∗

xM critical has Lebesgue measure zero
in M . Therefore, the set D \ S has full measure and for every y ∈ D \ S there is a
unique minimizing geodesic from x to y and it is not singular, which shows that y does
not belong to Sx

∆,ming . Let us now show that (i) ⇒ (iii). By definition of Sx
∆,ming , for

every y /∈ Sx
∆,ming all minimizing horizontal paths between x and y are not singular.

So repeating the proof of [22, Theorem 3.14 p. 98] (see also [12]), we can show that
the function f : y 7→ dSR(x, y) is locally semiconcave and so locally Lipschitz on the
open set U := M \ Sx

∆,ming . Thus for every compact set K ⊂ U , there is a compact
set PK ⊂ T ∗

xM such that for every y ∈ K, there is p ∈ PK with expx(p) = y and
H(x, p) = dSR(x, y)

2/2 (in other words γx,p : [0, 1] →M is a minimizing geodesic from
x to y). By Sard’s Theorem, the set SK of expx(p) with p ∈ PK critical is a closed set
of Lebesgue measure zero. For every positive integer k, set (here the diameter of the
convex set d+y f is taken with respect to some geodesic distance on T ∗M)

Σk(f) :=
{

y ∈ U |diam(d+y f) ≥ 1/k
}

.
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By local semiconcavity of f in U , each set Σk(f) is a closed set in U with Lebesgue
measure zero (see [13, Proposition 4.1.3 p. 79]). We claim that

S′
K := K ∩

⋃

k>0

Σk(f) ⊂
(

K ∩
⋃

k>0

Σk(f)

)

∪ SK .

As a matter of fact, if y ∈ K belongs to ∪k>0Σk(f)\∪k>0Σ
k(f), then d+y f is a singleton

and there is a sequence {yl}l converging to y such that all d+ylf have dimension at least
one and tend to d+y f . This implies that the covector p such that expx(p) = y and
H(x, p) = dSR(x, y)

2/2 is critical, which shows that y belongs to SK . By construction,
every point in K \ S′

K is a smooth point. We conclude easily.
It remains to prove the second part. The smoothness of f : y 7→ dSR(x, y) is an

easy consequence of the inverse function theorem. As a matter of fact, we can show
easily that for every y ∈ Ox such that y = expx(p) with H(x, p) = dSR(x, y)

2/2 and
p ∈ T ∗

xM non-critical, there is a neighborhood U of y in Ox such that

f(z)2 = 2H(x, expx(z)
−1) ∀z ∈ U,

where exp−1
x denotes a local inverse of the exponential mapping from a neighborhood

of p to U . To prove (2.1), we argue by contradiction. If there are x ∈ M , y ∈ Ox and
s ∈ (0, 1) such that z := γ(s, y) ∈ Ox then either there are two distinct minimizing
geodesics from x to z or there is only one minimizing geodesic from x to y which is
singular. In the first case, we infer the existence of two distinct minimizing geodesics
from x to y, which contradicts the smoothness of y. In the second case, we deduce that
the minimizing geodesic γx(·, y) is the projection of a normal extremal which is regular
and whose restriction to [0, s] is singular. This cannot happens under the assumption of
analyticity of the datas or if all singular minimizing geodesics are strictly abnormal.

Remark 7. By Proposition 6, any (complete) sub-Riemannian structure satisfying the
minimizing Sard conjecture has negligeable cut loci.

Remark 8. It can be shown by transversality techniques that sub-Riemannian struc-
tures all of whose singular minimizing geodesics are strictly abnormal are generic (see
[11], [14, Proposition 2.7]).

2.2 Two characterizations for MCP(0, N)

The following result was implicit in the previous paper [23] of the second author. The
measure contraction property MCP(0, N) is equivalent to some upper bound on the
divergence of the horizontal gradient of the squared pointed sub-Riemannian distance.
This result holds at least whenever the horizontal gradient is well-defined and the sets
Ox are geodesically star-shaped.
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Proposition 9. Assume that (∆, g) satisfies the minimizing Sard conjecture and that
all its sets Ox are geodesically star-shaped, and let µ be a smooth measure on M and
N > 0 be fixed. Then (∆, g) equipped with µ satisfies MCP(0, N) if and only if

divµ
y

(

∇hfx
)

≤ N ∀y ∈ Ox, ∀x ∈M, (2.2)

where fx :M → R is the function defined by fx(y) := dSR(x, y)
2/2.

Proof. Let x ∈M be fixed, the vector field Z := −∇hfx is well-defined and smooth on
Ox. Moreover by assumption, every solution of ẏ(t) = Z(y(t)) with y(0) ∈ Ox remains
in Ox for all t ≥ 0, we denote by {ϕt}t≥0 the flow of Z on Ox. For every y ∈ Ox, the
function θ : t ∈ [0,+∞) 7→ dSR(ϕt(y), y) satisfies

θ(0) = 0 and θ(t) = lengthg
(

ϕ[0,t](y)
)

=

∫ t

0
|Z(ϕs(y)| ds.

So that, for all t ≥ 0,

θ̇(t)

= |Z(ϕt(y)| = dSR (x, ϕt(y)) = dSR(x, y)− dSR (y, ϕt(y)) = dSR(x, y)− θ(t),

which yields
θ(t) = dSR(x, y)

(

1− e−t
)

∀t ≥ 0.

Consequently, if A ⊂ Ox is a Borel set and s ∈ (0, 1], then we have

As =
{

γx(s, y) | y ∈ A
}

= ϕt(A) with t = − ln(s).

Let us now assume that (2.2) is satisfies. By definition of divµZ, for every x ∈ M
and any measurable set A ⊂ Ox, we have for every t ≥ 0 (see for example, see [10,
Proposition B.1]),

µ (ϕt(A)) =

∫

A
exp

(∫ t

0
divµϕs(y)

(Z) ds

)

dµ(y),

which by (2.2) implies with s = e−t,

µ (As) = µ (ϕt(A)) ≥
∫

A
exp (−Nt) dµ(y) = sNµ(A).

This shows that (2.2) implies MCP(0, N). Conversely, if (∆, g) equipped with µ satisfies
MCP(0, N) then for every x ∈M and every small ball Bδ(y) ⊂ Ox (say a Riemannian
ball with respect to the Riemannian extension g), we have

µ (ϕt (Bδ(y))) =

∫

Bδ(y)
exp

(∫ t

0
divµϕs(y)

(Z) ds

)

dµ(y) ≥ e−Nt µ (Bδ(y)) ∀t ≥ 0.
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For every t ≥ 0, letting δ go to 0 yields

exp

(
∫ t

0
divµϕs(y)

(Z) ds

)

≥ e−Nt.

We infer (2.2) by dividing by t and letting t go to 0.

In the case of Carnot groups, the invariance of the divergence of ∇hfx by dilation
allows us to characterize MCP(0, N) in term of a control on the divergence over a
compact set not containing the origin.

Proposition 10. Let G be a Carnot group whose first layer is equipped with a left-
invariant metric satisfying the minimizing Sard conjecture and N > 0 fixed. Then the
metric space (G, dSR) with Haar measure µ satisfies MCP(0, N) if and only if

divµ
y

(

∇hf0
)

≤ N ∀y ∈ O0 ∩ SSR(0, 1), (2.3)

where f0 :M → R is the function defined by f0(y) := dSR(0, y)
2/2.

Proof. Since Carnot groups are indeed analytic, by the second part of Proposition 6
and Proposition 9, it is sufficient to show that (2.3) is equivalent to

divµ
y

(

∇hf0
)

≤ N ∀y ∈ O0. (2.4)

Recall that by taking a set of exponential coordinates (x1, . . . , xn), we can identify
G with its Lie algebra g ≃ R

n and indeed consider that we work with the Lebesgue
measure in R

n and that the sub-Riemannian structure is globally parametrized by an
orthonormal family of analytic vector fields X1, . . . ,Xn in R

n satisfying

Xi (δλ(x)) = λ−1 δλ
(

Xi(x)
)

∀x ∈ R
n, ∀i = 1, . . . , n, (2.5)

where {δλ}λ>0 is a family of dilations defined as (d1, . . . , dn are positive integers)

δλ (x1, . . . , xn) =
(

λd1x1, λ
d2x2, . . . , λ

dnxn

)

∀x ∈ R
n.

By the homogeneity property, we have dSR (0, δλ(x)) = λdSR(0, x) for all x ∈ R
n and

λ > 0. Then we have

f0 (δλ(x)) = λ2 f0(x) and dδλ(x)f
0 ◦ δλ = λ2 dxf

0 ∀x ∈ R
n, ∀λ > 0. (2.6)

Recall that the horizontal gradient ∇hf0 is given by

∇h
xf

0 =

m
∑

i=1

(

Xi · f0
)

(x)Xi(x) ∀x ∈ R
n.
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Therefore, by (2.5)-(2.6), we infer that for every x ∈ R
n and λ > 0,

∇h
δλ(x)

f0 =

m
∑

i=1

dδλ(x)f
0
(

Xi (δλ(x))
)

Xi (δλ(x))

= λ−2
m
∑

i=1

dδλ(x)f
0
(

δλ
(

Xi(x)
))

δλ
(

Xi(x)
)

=
m
∑

i=1

dxf
0
(

Xi(x)
)

δλ
(

Xi(x)
)

= δλ

(

∇h
xf

0
)

.

We deduce that

divµ
y

(

∇h
δλ(x)

f0
)

= divµ
y

(

∇h
xf

0
)

∀x ∈ R
n, ∀λ > 0,

which shows that (2.3) and (2.4) are equivalent and concludes the proof.

2.3 Nearly horizontally semiconcave functions

Recall that without loss of generality, we can assume that the metric g over ∆ is the
restriction of a global Riemannian metric on M . This metric allows us to define the
C2-norms of functions from R

m to M . In the following statement, (e1, . . . , em) stands
for the canonical basis in R

m.

Definition 11. Let C > 0, U an open subset of M and K ⊂M , a function f : U → R

in an open set U ⊂ M is said to be C-nearly horizontally semiconcave with respect
to (∆, g) in K if for every y ∈ K, there are an open neighborhood V y of 0 in R

m, a
function ϕy : V y ⊂ R

m → U of class C2 and a function ψy : V y ⊂ R
m → R of class C2

such that

ϕy(0) = y, ψy(0) = f(y), f (ϕy(v)) ≤ ψy(v) ∀v ∈ V y, (2.7)

{

d0ϕ
y(e1), . . . , d0ϕ

y(em)
}

is an orthonormal family of vectors in ∆(y), (2.8)

and

‖ϕy‖C2 , ‖ψy‖C2 ≤ C, (2.9)

where ‖ϕy‖C2 , ‖ψy‖C2 denote the C2-norms of ϕy and ψy.
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If m were equal to n that is if we were in the Riemannian case, the above definition
would coincide with the classical definitions of semiconcave functions (see [13, 22]).
Here, in the case m < n, the definition tells that at each point, there is a support
function from above of class C2 which bounds the function along a C2 submanifold
which is tangent to the distribution. This type of mild horizontal ssemiconcavity will
allows us, at least in certain cases, to bound the divergence of the horizontal gradient
of squared pointed sub-Riemannian distance functions.

Before stating the main result of this section, we recall that a minimizing geodesic
or more generally an horizontal path γ : [0, 1] → M is called a Goh path if it admits
an abnormal lift ψ : [0, 1] → T ∗M which annihilates [∆,∆], that is to say an abnormal
lift ψ = (x, p) in local coordinates such that for every local parametrization of ∆ by
smooth vector fields X1, . . . ,Xm in a neighborhood of γ([0, 1]), we have

p(t) · [Xi,Xj ](γ(t)) = 0 ∀t ∈ [0, 1], ∀i, j = 1, . . . ,m. (2.10)

As we shall see in the proof of Theorem 3, the absence of minimizing Goh paths
implies the lipschitzness regularity of the distance function. The proof of this result,
due to Agrachev and Lee [5], follows by a study at second order of possibly abnormal
minimizing geodesics. Second order considerations, in [5] as in the proof of Proposition
12 below, owes a lot to techniques and material introduced by Agrachev and his co-
authors (see [7, Chapter 20] and [22]).

Proposition 12. Assume that any minimizing geodesic for (∆, g) joining two points
in M is not a Goh path, then for every compact set K ⊂ M there is C > 0 such that
for every x ∈ K, the function y 7→ dSR(x, y)

2 is C-nearly horizontally semiconcave in
K. In particular, if M is compact and ∆ is two-step then there is C > 0 such that all
functions dSR(x, ·)2 are C-nearly horizontally semiconcave in M .

Proof of Proposition 12. Let K be a compact subset of M and x ∈ K fixed, let us
first show how to construct functions ϕy, ψy of class C2 satisfying (2.7)-(2.8) for some
y ∈ K. Pick a minimizing geodesic γ̄ : [0, 1] →M from x to y = γ̄(1). There is an open
neighborhood Uγ̄ of γ̄([0, 1]) and a family Fγ̄ of m smooth vector fields X1

γ̄ , . . . ,X
m
γ̄

in M such that for every z ∈ Uγ̄ the family {X1
γ̄ (z), . . . ,X

m
γ̄ (z)} is orthonormal with

respect to g and parametrize ∆ (that is Span{X1
γ̄ (z), . . . ,X

m
γ̄ (z)} = ∆(z)) and for every

z ∈M \Uγ̄ , X
1
γ̄ (z), . . . ,X

m
γ̄ (z) belongs to ∆(z). Consider the End-Point mapping from

x in time 1 associated with the family Fγ̄ = {X1
γ̄ , . . . ,X

m
γ̄ }, it is defined by

Ex,1
Fγ̄

: L2([0, 1];Rm) 7−→ γ
Fγ
u (1),

where γ
Fγ
u (1) : [0, 1] →M is the solution to the Cauchy problem

γ̇(t) =

m
∑

i=1

ui(t)X
i
γ̄(γ(t)) for a.e. t ∈ [0, 1], γ(0) = x. (2.11)
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Note that taking the vector fields X1
¯̄γ , . . . ,X

m
γ̄ equal to zero outside an neighorbood of

Ūγ̄ , we may assume without loss of generality that Ex,1
Fγ̄

is well-defined on L2([0, 1];Rm).

Recall that the function Ex,1
Fγ̄

is smooth and satisfies (see [22, Proposition 1.10 p. 19])

∆(y) ⊂ Im
(

dūE
x,1
Fγ̄

)

,

where uγ̄ is the unique control u ∈ L2([0, 1],Rm) such that γ
Fγ
u = γ̄. Therefore, there

are v1γ̄ , . . . , v
m
γ̄ ∈ L2([0, 1],Rm) such that

duγ̄E
x,1
Fγ̄

(

viγ̄
)

= Xi
γ̄(y) ∀i = 1, . . . ,m. (2.12)

Define ϕγ̄ : Rm →M by

ϕγ̄(v) := Ex,1
Fγ̄

(

uγ̄ +

m
∑

i=1

viv
i
γ̄

)

∀v = (v1, . . . , vm) ∈ R
m.

By construction, ϕγ̄ is smooth and satisfies

ϕγ̄(0) = Ex,1
Fγ̄

(uγ̄) = γ̄(1) = y,

and
d0ϕγ̄(ei) = duγ̄E

x,1
Fγ̄

(

viγ̄
)

= Xi
γ̄(y) ∀i = 1, . . . ,m.

Moreover, for every v ∈ R
m such that the solution to (2.11) associated with the control

uγ̄ +
∑m

i=1 viv
i
γ̄ remains in Uγ̄ , we have

dSR (x, ϕγ̄(v))
2 ≤

∥

∥

∥

∥

∥

uγ̄ +

m
∑

i=1

viv
i
γ̄

∥

∥

∥

∥

∥

2

L2

=: ψγ̄(v).

By construction, ϕy := ϕγ̄ and ψy := ψγ̄ are smooth, defined in a neighborhood
of 0 ∈ R

m and satisfy (2.7)-(2.8). Furthermore, we observe that there is Cγ̄ > 0
and a neighborhood Uγ̄ of uγ̄ in L2([0, 1],Rm) such that for every u ∈ Uγ̄ there are
v1u, . . . , v

m
u ∈ L2([0, 1],Rm) satisfying (2.12) at u, that is

duE
x,1
Fγ̄

(viu) = Xi
γ̄

(

Ex,1
Fγ̄

(u)
)

∀i = 1, . . . ,m,

and such that the smooth functions ϕu : Rm →M , ψu : Rm → R defined by

ϕu(v) := Ex,1
Fγ̄

(

u+

m
∑

i=1

viv
i
u

)

and ψu(v) :=

∥

∥

∥

∥

∥

u+

m
∑

i=1

viv
i
u

∥

∥

∥

∥

∥

2

L2

∀v ∈ R
m

have C2-norms less than Cγ̄ on a neighborhood of 0 ∈ R
m. This claim follows readily

from the following lemma whose proof is based on the fact that there are no minimizing
Goh paths.
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Lemma 13. There are a neighborhood Uγ̄ of uγ̄ in L2([0, 1],Rm) and Cγ̄ > 0 such that
for every u ∈ Uγ̄, there are v1u, . . . , v

m
u ∈ L2([0, 1],Rm) such that

duE
x,1
Fγ̄

(

viu
)

= Xi
γ̄

(

Ex,1
Fγ̄

(u)
)

∀i = 1, . . . ,m

and
∥

∥viu
∥

∥

L2
≤ cγ̄ ∀i = 1, . . . ,m.

Proof of Lemma 13. Firstly, taking a chart on a neighborhood of y = γ̄(1) we may
assume that the restriction of Ex,1

Fγ̄
to a neighborhood of uγ̄ is valued in R

n. Define the

function F : L2([0, 1],Rm)×L2([0, 1],Rm) → R
n by (this function is indeed well-defined

only in that neighbourhood of uγ̄)

F (u, v) := duE
x,1
Fγ̄

(v) ∀u, v ∈ L2([0, 1],Rm).

Let i ∈ {1, . . . ,m} be fixed and V i ∈ R
n defined by

V i := Xi
γ̄

(

Ex,1
Fγ̄

(uγ̄)
)

,

we claim that there is vi ∈ L2([0, 1],Rm) such that F (uγ̄ , v
i) = V i and F is a submer-

sion at (uγ̄ , v
i). Two cases may appear.

First case: uγ̄ is not singular.

In this case, by definition the linear mapping v 7→ duγ̄E
x,1
Fγ̄

(v) is surjective, so the result

holds, because the image of d(uγ̄ ,v)F contains the image of duγ̄E
x,1
Fγ̄

.

Second case: uγ̄ is singular.

Let ū := uγ̄ and E := Ex,1
Fγ̄

, by assumption γ̄ is not a Goh path, therefore by [22,

Theorem 2.20 p. 61], for every p̄ ∈ (Rn)∗ \ {0} such that p̄ · dūE = 0, there holds (we
refer the reader to [7, 22] for the definition of the negative index of a quadratic form)

ind−
(

p̄ ·
(

d2ūE
)

|Ker(dūE)

)

= +∞.

Consequently, by compactness of the set of p̄ ∈ (Rn)∗ with |p̄| = 1 and p̄ · dūE = 0,
there is space X ⊂ L2([0, 1],Rm) of finite dimension such that the restriction Ẽ of E
to the affine space ū+X satisfies

Im
(

dūẼ
)

= Im (dūE) (2.13)

and

ind−

(

p̄ ·
(

d2ūẼ
)

|Ker(dūẼ)

)

≥ r ∀p̄ ∈
(

Im
(

dūẼ
))⊥

\ {0} (2.14)
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with
r := n− dim (Im (dūE)) .

Let K := Im(d0Ẽ)⊥ of dimension r, ProjK : Rn → K be the orthogonal projection onto
K, and Q : Ker(dūẼ) → K the quadratic mapping defined by

Q(v) := ProjK
[(

d2ūẼ
)

· (v, v)
]

∀v ∈ Ker
(

dūẼ
)

.

By [22, Lemma B.6 p. 130], there is v̄ ∈ Ker(dūẼ) such that dv̄Q is surjective which
means that the linear mapping

w ∈ Ker(dūẼ) 7−→ ProjK
[(

d2ūẼ
)

· (v̄, w)
]

∈ K

is surjective. Thus means that there are w1, . . . , wr ∈ L2([0, 1],Rm) such that the linear
mapping

λ ∈ R
r 7−→ ProjK



d2ūẼ



v̄,

c
∑

j=1

λjw
j









is bijective. By [22, Proposition 1.10 p. 19] and (2.13), we know that there is v̄i ∈
L2([0, 1],Rm) such that dūẼ(v̄i) = V i (without loss of generality we may assume that
v̄i belongs to X). Moreover, by bilinearity we have for every ǫ > 0,

ProjK



d2ūẼ



v̄i +
1

ǫ
v̄,

m
∑

j=1

λjw
j







 =

ProjK



d2ūẼ



v̄i,

m
∑

j=1

λjw
j







+
1

ǫ
ProjK



d2ūẼ



v̄,

m
∑

j=1

λjw
j







 .

So, we infer that for ǫ > 0 large enough the linear mapping

λ ∈ R
r 7−→ ProfK



d2ūẼ



v̄i +
1

ǫ
v̄,

m
∑

j=1

λjw
j









is bijective. We conclude easily because vi := v̄i + v̄/ǫ ∈ L2([0, 1],Rm) satisfies

F (ū, vi) = V i

and the differential of F at (ū, vi) contains the sum of the images of the linear mappings
dūE and d2ūE(vi, ·) which by the above construction contains K = Im(d0E)⊥.
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Returning to the proof of Lemma 13, since F (uγ̄ , v
i) = V i and F is a submersion

at (uγ̄ , v
i), by the Inverse Function Theorem, for every u ∈ L2([0, 1],Rm) sufficiently

close to uγ̄ there is viu such that duE
x,1
Fγ̄

(

viu
)

= Xi
γ̄

(

Ex,1
Fγ̄

(u)
)

with a control of ‖viu‖L2 .

We conclude easily.

It remains to explain why (2.9) holds for all y ∈ K for some uniform constant C.
It is a consequence of the following compactness result (see[1] or [15, Proposition 5.8]).

Lemma 14. The set

Γ :=
{

γ ∈W 1,2
∆ ([0, 1],M) |γ(0), γ(1) ∈ K and dSR(γ(0), γ(1))

2 = energyg(γ)
}

is a compact set in the W 1,2 topology.

By compactness (Lemma 14), there is a finite family of minimizing geodesics {γl}l∈L
such that

Γ ⊂
⋃

l∈L
Uγl .

We let the reader to show that (2.9) holds for all y ∈ K with C equal to the maximum
of all Cγl .

The second part of Proposition 12 follows by compactness and the fact that a two-
step distribution does not admit minimizing Goh paths (even constant curves cannot
be Goh paths).

We state now the result that will be used to prove Theorem 4.

Proposition 15. Let x ∈ M be fixed, assume that any minimizing geodesic for (∆, g)
joining x to any y ∈ M \ {x} is not a Goh path, then for every compact set K ⊂
M \ {x} there is C > 0 such that the function y 7→ dSR(x, y)

2 is C-nearly horizontally
semiconcave in K. In particular, if ∆ is a medium-fat distribution, then for every
compact set K ⊂ M \ {x} there is C > 0 such that the function dSR(x, ·)2 is C-nearly
horizontally semiconcave in SSR(0, 1).

Proof. The first part follows exactly by the same arguments as in the proof of Propo-
sition 12. The second part is a consequence of the following result.

Lemma 16. If ∆ is medium-fat, it does not admit non-trivial Goh paths.

Proof of Lemma 16. Argue by contradiction and assume that γ : [0, 1] → M is a non-
trivial horizontal path which admits an abnormal lift ψ = (γ, p) : [0, 1] → T ∗M satis-
fying the Goh condition, then we have

p(t) ·
[

Xi,Xj
](

γ(t)
)

= 0 ∀i, j = 1, . . . ,m, (2.15)
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for every t in a small interval I ⊂ [0, 1] such that γ(t) is in a local chart of M and ∆
is parametrized by a family F = {X1, . . . ,Xm} of smooth vector fields. Then if we
denote by u the control which is associated to γ through F , derivating the previous
equality yields for any i, j = 1, . . . ,m,

p(t) ·
[

m
∑

k=1

uk(t)X
k,
[

Xi,Xj
]

]

(

γ(t)
)

= 0 for a.e. t ∈ I. (2.16)

Since ψ = (γ, p) is an abnormal lift, we also have p ·Xi = 0 along γ. Moreover since γ
is non-trivial, we may assume that

γ̇(t) =

m
∑

k=1

uk(t)X
k 6= 0.

By (??), (2.15)-(2.16) we get a contradiction.

The proof of Proposition 15 is complete.

3 Proof of Theorem 3

By the second part of Proposition 12, there is C > 0 such that for every x ∈ M the
function fx : y 7→ dSR(x, y)

2/2 is C-nearly horizontally semiconcave in M .

Lemma 17. There is B > 0 such that for every x ∈ M the following property holds:
for every y ∈ Ox, there is a neighborhood Uy ⊂ Ox of y along with an orthonormal
family of smooth vector fields X1, . . . ,Xm which parametrize ∆ in Uy such that

∥

∥Xi
∥

∥

C1
≤ B ∀i = 1, . . . ,m, (3.1)

and

[

Xi · (Xi · fx)
]

(z) ≤ B |∇zf
x|+B ∀z ∈ Uy, ∀i = 1, . . . ,m. (3.2)

Proof of Lemma 17. First of all, we notice that there is A > 0 such that if v1, . . . , vm

is an orthonormal family of tangent vectors in ∆(z) for some z ∈ M then there is an
orthonormal family of smooth vector fieldsX1, . . . ,Xm which generates the distribution
∆ in a neighborhood of z and such that ‖Xi‖C1 is bounded by A for all i = 1, . . . ,m.
Let x ∈M be fixed, then by C-nearly horizontal semiconcavity of fx, for every y ∈M ,
there are an open neighborhood V y of 0 in R

m, a function ϕy : V y ⊂ R
m → U of

class C2 and a function ψy : V x ⊂ R
m → R of class C2 such that (2.7) (with f = fx),
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(2.8) and (2.9) are satisfied. Fix y ∈ Ox and define the function F y : Uy → R by
F y := fx ◦ ϕy − ψy, it is of class C2 and satisfies

d0F
y = 0 and Hess0F

y ≤ 0.

Taking a chart near y we can assume that we work in R
n. Let ϕy = (ϕy

1, . . . , ϕ
y
n) and

(x1, . . . , xn) and (v1, . . . , vm) the coordinates respectively in R
n and R

m. Then, we
have

∂F y

∂vi
(0) =

(

n
∑

k=1

∂fx

∂xk
(y)

∂ϕy
k

∂vi
(0)

)

− ∂ψy

∂vi
(0) = 0 ∀i = 1, . . . ,m

and for every i = 1, . . . ,m,

∂2F y

∂v2i
(0) =





n
∑

k,l=1

∂2fx

∂xl∂xk
(y)

∂ϕy
k

∂vi
(0)

∂ϕy
l

∂vi
(0)





+

(

n
∑

k=1

∂fx

∂xk
(y)

∂2ϕy
k

∂v2i
(0)

)

− ∂2ψy

∂v2i
(0) ≤ 0,

which yields

n
∑

k,l=1

∂2fx

∂xl∂xk
(y)

∂ϕy
k

∂vi
(0)

∂ϕy
l

∂vi
(0) ≤ ∂2ψy

∂v2i
(0)−

n
∑

k=1

∂fx

∂xk
(y)

∂2ϕy
k

∂v2i
(0)

≤ C + C |∇yf
x| . (3.3)

By (2.8) and the observation made at the very beginning of this proof, there is an
orthonormal family of smooth vector fieldsX1, . . . ,Xm which generates the distribution
∆ in a neighborhood of z and such that

∥

∥Xi
∥

∥

C1
≤ A and d0ϕ

y(ei) =
∂ϕy

∂vi
(0) = Xi(y) ∀i = 1, . . . ,m. (3.4)

Setting Xi =
∑n

k=1 a
i
k∂k, we check easily that

Xi · fx =

n
∑

k=1

aik
∂fx

∂xk

and

Xi ·
(

Xi · fx
)

=

n
∑

k=1

(

n
∑

l=1

ail
∂aik
∂xl

)

∂fx

∂xk
+

n
∑

k=1

aik

(

n
∑

l=1

ail
∂2fx

∂xl∂xk

)

.
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The last expression at y yields, thanks to (3.3) and (3.4) (which implies aik(y) =
∂ϕy

k

∂vi
(0)

for all i = 1, . . . ,m and k = 1, . . . ,m)

[

Xi · (Xi · fx)
]

(y) ≤ A2 |∇yf
x|+ C + C |∇yf

x| ∀i = 1, . . . ,m.

We conclude easily by smoothness of fx in Ox with Uy sufficiently small and B > 0
sufficiently large.

The following result, due to Agrachev and Lee [5] (see also [22]), is a consequence of
the fact that ∆ is two-step (and the compactness of M). We refer the reader to [5, 22]
for the proof.

Lemma 18. There is L > 0 such that |∇yf
x| ≤ L for all x, y ∈M .

Let µ be a smooth measure on M , in order to prove Theorem 3, we need to bound
from above the divergence of fx over Ox for all x in M . The following holds:

Lemma 19. There is N > 0 such that the following property holds:

divµ
y

(

∇hfx
)

≤ N ∀y ∈ Ox, ∀x ∈M. (3.5)

Proof of Lemma 19. Let x ∈ M and y ∈ Ox be fixed, by Lemma 17 there is a neigh-
borhood Uy ⊂ Ox of y along with an orthonormal family of smooth vector fields
X1, . . . ,Xm which parametrize ∆ in Uy such that (3.2) holds. The horizontal gradient
of fx in Uy is given by

∇h
yf

x =

m
∑

i=1

(

Xi · fx
)

(y)Xi(y).

So, we have

divµy

(

∇hfx
)

=
m
∑

i=1

(

Xi · fx
)

(y) divµy
(

Xi
)

+
m
∑

i=1

[

Xi · (Xi · f)
]

(y).

The second term above (in the right-hand side) is bounded thanks to (3.2) and Lemma
18 and the first term is bounded by (3.1) and Lemma 18 (the quantities

(

Xi · fx
)

(y) are
indeed bounded by the fact that dSR(x, ·) is solution to the horizontal eikonal equation,
see [15]). The proof of Lemma 19 is complete.

Let us now conclude the proof of Theorem 3. If we can show that (∆, g) satisfies the
minimizing Sard conjecture and that all the sets Ox are geodesically star-shaped then
we are done thanks to Lemma 19 together with Proposition 9. As we said above, since
the distribution is two-step the functions fx are Lipschitz on M , hence the functions
y 7→ dSR(x, y) are locally Lipschitz on M \ {x} and by Proposition 6, the minimizing
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Sard conjecture is satisfied. It remains to show that all the sets Ox are geodesically
star-shaped. In the case where all singular minimizing geodesics are strictly abnormal,
then we get the result by the second part of Proposition 6. If not, we proceed by ap-
proximation of (∆, g) by a sequence of sub-Riemannian structures all of whose singular
minimizing geodesics are strictly abnormal (see Remark 8).

We can check that, without loss of generality, we may assume that all bounds
obtained in Lemma 17, Lemma 18 and Lemma 19 remain valid for small perturbations
of (∆, g) in smooth topology. So by the above proof and Remark 8, there is N > 0
and a sequence of two-step sub-Riemannian structures {(∆l, gl)}l converging to (∆, g)
which satisfy MCP(0, N) for the measure µ. The property MCP(0, N) (for µ) passes
to the limit. As a matter of fact, let x ∈ M be fixed and A ⊂ Ox a measurable set,
removing a set of measure zero in A we may assume that A is contained in all sets Ol

x

(which stand for the smooth sets with respect to (∆l, gl)). Then, denoting for every l
by Al

s the s-interpolation of A from x with respect to (∆l, gl), we have

µ
(

Al
s

)

≥ sNµ(A) ∀s ∈ [0, 1], ∀l.

For each y ∈ A, there is a unique minimizing geodesic γ from x to y. Moreover,
since A ⊂ ∩lOl

x there is as well a unique minimizing geodesic γl from x to y with
respect to each (∆l, gl). Hence, the sequence of curves {γl}l converges to γ in C0-
topology. This shows that for every s ∈ [0, 1], the characteristic functions of Al converge
pointwise to the characteristic function of A. We conclude by the Lebesgue’s Dominated
Convergence Theorem.

4 Proof of Theorem 4

By Proposition 10, it is sufficient to show that (2.3) holds. By Proposition 15, we
know that the function f0 : y → dSR(0, y)

2/2 is C-nearly horizontally semiconcave
in K. Furthermore, the function f0 is locally Lipschitz in G \ {0} (see [22, Theorem
3.15 p. 100]). So we can repeat the arguments used in the proof of Theorem 3 for
y ∈ O0 ∩ SSR(0, 1).

A Notations

We list below the notations used throughout this paper, we refer the reader to the
monographs [4, 13, 20, 22] for further details:

• M is a smooth manifold of dimension n ≥ 3.

• ∆ is a smooth totally nonholonomic distribution of rank m < n.
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• g is a smooth metric over ∆. Sometimes, we see g as the restriction of a global
Riemannian metric g on M . We use the notation 〈·, ·〉 instead of gx(·, ·) and we
denote the norm associated with g by | · | (instead of | · |x = gx(·, ·)1/2). Br(x)
stands for the open geodesic ball of radius r > 0 centered at x.

• We call horizontal path any γ : [0, 1] → M in W 1,2 which is almost everywhere
tangent to ∆. We denote byW 1,2

∆ ([0, 1],M) the set of horizontal paths γ : [0, 1] →
M endowed with the W 1,2-topology.

• For every γ ∈W 1,2
∆ ([0, 1],M), we define the length of γ (w.r.t. g) by lengthg(γ) =

∫ 1
0 |γ̇(t)| dt and its energy (w.r.t. g) by energyg(γ) =

∫ 1
0 |γ̇(t)|2 dt.

• For any x, y ∈M , we denote by dSR(x, y) (resp. eSR(x, y)) the infimum of lengths
(resp. energies) of horizontal paths joining x to y. We note that eSR = d2SR. We
denote the open ball and the sphere centered at x with radius r > 0 respectively
by BSR(x, r) and SSR(x, r).

• We call minimizing geodesic from x to y any γ ∈ W 1,2
∆ ([0, 1],M) with γ(0) =

x, γ(1) = y which minimizes the energy eSR(x, y) (and so the distance dSR(x, y)),
that is such that energyg(γ) = eSR(γ).

• For every x ∈M , we denote by W 1,2
∆,x([0, 1],M) the set of paths in W 1,2

∆ ([0, 1],M)
starting at x (that is γ(0) = x) and we define the end-point map

Ex
∆ : W 1,2

∆,x([0, 1],M) −→ M

by Ex
∆(γ) = γ(1). The infinite dimensional space W 1,2

∆,x([0, 1],M) has a smooth
manifold structure and the end-point map Ex

∆ is smooth.

• An horizontal path γ ∈ W 1,2
∆,x([0, 1],M) is called singular if it is singular with

respect to the end-point map Ex
∆, that is if the differential dγE

x,1
∆ is not surjective.

It is convenient to rewrite the definition of singular curves in term of singular
controls. If the distribution ∆ is parametrized by a family F of k smooth vector
fields X1, . . . ,Xk in a open neighborhood of γ([0, 1]) and if u ∈ L2([0, 1],Rk)
satisfies

γ̇(t) =
k
∑

i=1

ui(t)X
i(γ(t)) for a.e. t ∈ [0, 1],

then γ is singular if and only if the control u is a singular point of the smooth
mapping (well-defined in an open set U)

Ex,1
F : U ⊂ L2([0, 1],Rk) −→ M
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defined by
Ex,1

F (v) := γv(1) ∀v ∈ L2([0, 1],Rk),

where γv is the curve in W 1,2
∆,x([0, 1],M) solution to the Cauchy problem

γ̇v(t) =

k
∑

i=1

vi(t)X
i (γv(t)) for a.e. t ∈ [0, 1], γv(0) = x.

• An horizontal path γ ∈W 1,2
∆,x([0, 1],M) is singular if and only if it is the projection

of an abnormal extremal ψ : [0, 1] → T ∗M that never intersects the zero section
of T ∗M , such that

ψ̇(t) =

k
∑

i=1

ui(t)~h
i(ψ(t)) for a.e. t ∈ [0, 1],

where F is a family of k smooth vector fields X1, . . . ,Xk which parametrizes ∆ in
a open neighborhood of γ([0, 1]) and ~h1, . . . ,~hk are the Hamiltonian vector fields
associated canonically with hi(x, p) = p ·Xi(x) in T ∗M . The curve ψ is called an
abnormal lift of γ and γ is said to be abnormal.

• The Hamiltonian H : T ∗M → R associated with (∆, g) is defined by

H(x, p) :=
1

2
max

{

p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}

∀(x, p) ∈ T ∗M,

which coincides with
1

2

m
∑

i=1

(

p ·Xi(x)
)2
,

if ∆ is parametrized locally by an orthonormal family X1, . . . ,Xm. The Hamil-
tonian vector field ~H associated with (∆, g) is the Hamiltonian vector field given
by H with respect to the canonical symplectic form on T ∗M . In local coordinates
(x, p) the trajectories ψ = (x, p) of ~H are solution to

ẋ =
∂H

∂p
(x, p), ṗ = −∂H

∂x
(x, p),

we call them normal extremals. Any projection of a normal extremal is an hori-
zontal path that is said to be normal.

• An horizontal path γ is called strictly abnormal if it is abnormal (singular) and
not normal.
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• For every x ∈ M , the exponential mapping expx : T ∗
xM → M associated with

(∆, g) at x is defined by expx := π(ψx,p(1)) where ψx,p is the trajectory of ~H
starting at (x, p) and π : T ∗

xM →M is the canonical projection.

• A Carnot group (G, ⋆) of step s is a simply connected Lie group whose Lie al-
gebra g = T0G (we denote by 0 the identity element of G) admits a nilpotent
stratification of step s, i.e.

g = V1 ⊕ · · · ⊕ Vs, (A.1)

with

[

V1, Vj
]

= Vj+1 ∀1 ≤ j ≤ s, Vs 6= {0}, Vs+1 = {0}. (A.2)

By simple-connectedness of G and nilpotency of g, expG is a smooth diffeomor-
phism, which allows to identify G with its Lie algebra g ≃ R

n. If the first layer
V1 of G is equipped with a left-invariant metric, then there is a set of coordinates
(x1, . . . , xn), a one-parameter family of dilations {δλ}λ>0 of the form

δλ (x1, . . . , xn) =
(

λd1x1, λ
d2x2, . . . , λ

dnxn

)

∀x ∈ R
n,

and a orthonormal family of left-invariant vector fields generating V1 satisfying

Xi (δλ(x)) = λ−1 δλ
(

Xi(x)
)

∀λ > 0, x ∈ R
n.

• A function f : U → R on a open set U ⊂ M is called locally semiconcave if for
every x ∈ U there are a open neighborhood V ⊂ U of x and C > 0 such that for
any y ∈ V there is a function ψ :M → R with ‖ψ‖C2 ≤ C such that f ≤ V on M
and f(y) = ψ(y). For every y ∈ U , d+y f denotes the set of super-differentials of f
at y, it is the set of α ∈ T ∗

xM for which there is a function of class C1, ψ :M → R

such that ψ ≥ f on M , ψ(y) = f(y) and dyψ = α.

• If f : U → M is smooth on the open set U ⊂ M , ∇hf denotes its horizontal
gradient with respect to (∆, g). For every y ∈ U , ∇h

yf is defined as the unique
v ∈ ∆(y) such that dyf(w) = 〈v,w〉 for all w ∈ ∆(y). If ∆(y) is generated by an
orthonormal family X1(y), . . . ,Xm(y), then ∇h

yf =
∑m

i=1(X
i · f)(y)Xi(y).
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