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One-dimension visco-elastic modelling of wood in the process
of formation to clarify the HygroThermal Recovery behavior
of Tension Wood

Marie Capron · Sandrine Bardet · Sujan
K.C. · Miyuki Matsuo · Hiroyuki Yamamoto

Abstract To explain the HygroThermal Recovery (HTR) behavior of Tension Wood 
(TW) from a physical and chemical point of view in relation to time, species and mi-
crofibrils angle (MFA), we made a theoretical discussion by using an analytical one-
dimensional visco-elastic modelling. The chosen model included an elastic element, 
a deformation mechanism and two visco-elastic elements also called Kelvin-Voigt 
model. In this analysis, a top-down approach between the model and the experimen-
tal data was introduced in order to find realistic parameters for the model. This made 
us possible to fit the model to the HTR experimental data for different species. The 
three species studied here are konara oak (Quercus serrata Murray), urihada maple 
trees (Acer rufinerve Siebold et Zucc.) and keyaki wood (Zelkova serrata Makino). 
The fitting e xperimental d ata s howed t hat t he t wo c ompliances o f t he t wo visco-
elastic elements are the most important parameters that explain the evolution of TW 
longitudinal strain during the thermal treatment.

Keywords One-dimensional visco-elastic modelling · HygroThermal Recovery · 
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1 Introduction

Wood is produced by deposition of concentric layers at the periphery of the stem in
an area called cambium . This production is going along with the setting up of growth
stress. Growth stress has two origins: (1) loading, due to the weight of the structure,
is applied progressively during the tree growth; (2) cell maturation, which happens
at the end of the deposition of a new layer, causes a longitudinal (L) contraction (in
the direction of the stem) and a tangential (T) expansion (tangentially to the growth
rings), called maturation deformations. These deformations can’t happen freely due
to the previous layer and lead to the creation of initial tensile stress in L direction
and compression stress in T direction [1] near the periphery. The formation of suc-
cessive wood layers results in a growth stress distribution from pith to bark both in
L and T directions. Furthermore, for inclined stems, or tree reorientation issues, spe-
cific growth stress is produced with a higher level of tensile stress in L direction in
the case of broad-leaved trees. This particular wood with high longitudinal tension
growth stress is called tension wood (TW) as distinct from normal wood (NW) and
is generally characterized by an anatomical feature: the inside layer of tension wood
cells is replaced by a thicker gelatinous layer called G-layer [2].

The study of longitudinal growth stress is of prime importance as it can gener-
ate severe problems during wood transformation, such as cracks or warping. It is
especially crucial for high tensile stress in TW. Growth stress can be evaluated by
measuring the locked-in strain which can be separated into two parts: instantaneous
strain which is released by cutting wood specimens from the tree; while remaining
viscous strain is enhanced by boiling green wood (never dried and freshly cut wood)
above softening temperature of lignin [3]. This phenomenon is called HygroThermal
Recovery (HTR) [4]. After the first thermal treatments, TW specimens undergoes lon-
gitudinal contraction, while NW specimens elongated slightly. For all type of wood,
Sujan et al. [5] noticed a tangential elongation.

Growth stress can be approached from the point of view of the mechanical stand-
ing of trees as well as that of the loading history applied to the material before tree
felling. Stress originates in wood maturation causing both stiffening and expansion
to the cell-wall material. Gril et al. [3,6] have done an uniaxial visco-elastic analysis
on a portion of cylindrical stem on which the maturation of new layers is homoge-
neous on the periphery. They were studying an axisymmetric problem solved by a
rheological analogy in parallel in which each element corresponds to one wood layer
deposited on the periphery during the thickness growing.
Due to its polymeric semicrystalline nature, wood is a visco-elastic solid. The forma-
tion of cell wall layer used for building the tree skeleton is divided in several steps
[7]: (1) building of the primary wall defining the outside boundary of the cells; (2)
deposition inside of the cell of a cellulosic layer (secondary wall) at the same time,
lignification happens in the primary wall; (3) maturation characterized by the lig-
nification of the secondary wall, and, probably by the reticulation of the crystalline
cellulosic filaments (microfibrils).The final step goes with the change of structure of
the cell wall which has as consequence the transversally swelling of the cell and the



axial shortening, in most of the case ; the rigidity increases [8,9]. Due to the fact
that expansion is partially blocked while the cell walls are still soft induced deforma-
tions, the final rigidification will be mostly blocked. Clair [10] proposed a schematic
model of L shrinkage. This model is used to explain the components of the shrinkage.

In order to better understand the establishment of growth stress due to the load-
ing history during tree life, an one-dimensional (L direction) rheological model of
wood in the process of formation is proposed and used to simulate the Hygrothermal
Recovery behavior of both tension and normal wood from a physical and chemical
point of view. We propose in this study a top-down approach in which a model is fit
to experimental data.

2 Materials and methods

The model was fitted on experimental data that have used three different species:

– one konara oak (Quercus serrata Murray), 52 year-old, diameter at breast height
(DBH): 21 cm, from Aichi Prefectural Forestry Research Center in Shinshiro,
Aichi, Japan [5];

– two urihada maple trees (Acer rufinerve Siebold et Zucc.), 19 year-old, DBH:
10 cm and the other 21 year-old, DBH: 11 cm, from the experimental forest of
Nagoya University, Toyota, Aichi, Japan [5];

– one keyaki (Zelkova serrata Makino), age and diameter unknown, Japan.

The longitudinal axes experimental data have been used for the four samples. Lengths
along the longitudinal axes of freshly sawn specimens were recorded at room tem-
perature to determine the green-state dimensions, which served as the base values.
These measurements were conducted in accordance with Tanaka et al. (2014) [11,
12], using a comparator with a precision dial gauge (reading accuracy, 0.001 mm).
The digital comparators and rectangular gage blocks as supporting boards were set
on an iron surface plate so that all the specimens were at the same position for every
measurements. Four different positions were measured.
The specimens of konara oak and urihada maple lay immersed in water while being
heated, i.e., they underwent HT treatments for 10 min in an autoclave (Pasolina IST
150, Japan) under 0.2 MPa of pressure and a temperature of 120◦C.
Specimens of keyaki wood were grown in Japan, naturally dried after harvesting. The
dimensions of the samples were approximately 25 mm (L) x 6 v 10 mm (R) x6 v 10
mm (T). (The average dimensions were 25 mm, 7.4 mm, and 8.7 mm for L, R, and
T directions, respectively.) The specimens were soaked in water for 3 days until they
sank down. Wet specimens were boiled in water at 100◦C for planned duration. Cu-
mulative treatment durations were 0, 5, 10, 15, 25, 35, 50, 100, and 200 minutes.
After each hygrothermal treatment, all samples were immediately cooled by immer-
sion in ice water, in order to lessen the effect of residual heat and arrest molecular
activity within the wood. Then, length was re-measured at room temperature.

Surface growth stress is measured on living trees using strain gauges method [13],
the highest value of tensile strain observed on the upper side of the tree stem gives the
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Fig. 1 Rheological analogy representing the model using of two visco-elastic elements with α the matu-
ration strain, S0 the elastic or mature compliance and S1 and S2 the delayed compliance.

tension wood zone, which is confirmed by an anatomical study of wood samples [5].
This allows to separate normal and tension wood samples before applying thermal
treatment.

For each samples, the microfibril angle (MFA) has been measured in order to
confirm the type of wood. MFA was measured using the X-ray diffraction (XD) tech-
nique on each specimen, as described by Yamamoto et al. (1993) [14,5].

3 Analysis

3.1 Equation of the problem

In order to model the maturation process, cutting and HygroThermal Recovery (HTR)
of wood samples, a rheological analogy has been used (Fig. 1) [15,3]. This analogy
is made of a serie of four elements:

1. an elastic element represented by a spring of compliance S0 which is equal to that
of mature wood;

2. a deformation mechanism representing the expansion tendency during matura-
tion, with a varying strain α;

3. two visco-elastic elements represented by a spring of compliance S1 and S2 in
parallel with a dashpot also called Kelvin-Voigt model. The dashpot is considered
either ”soft”, during the maturation process, or ”hard” after the completion of
maturation. The reason of the used of two visco-elastic elements will be explained
in the Results and Discussion part.

The total strain ε is the sum of the elastic strain S0σ , the two viscous strains
ε1 = S1(σ −σ1) and ε2 = S2(σ −σ2) and the maturation strain α :

ε = S0σ + ε1 + ε2 +α (1)

In order to develop the viscous strains ε1 and ε2, the following equation was used for
both viscous strains.

σi = η
·
εi (2)



In order to simplify the equation, the parameter τ1 = S1η was introduced.

ε1 = S1σ − τ1
·

ε1 (3)

From the same method, we obtain a similar equation for ε2.

ε2 = S2σ − τ2
·

ε2 (4)

with τ2 = S2η .
By using a Laplace transformation, we obtain, from the eq. 1, the differential

equation of two Kelvin-Voigt in 1-D which will be used for modelling:

ε+(τ1+τ2)
·
ε+τ1τ2

··
ε−α−(τ1+τ2)

·
α−τ1τ2

··
α =(S0+S1+S2)σ +(S1τ2+S2τ1+S0(τ1+τ2))

·
σ +S0τ1τ2

··
σ

(5)
The model is divided in several steps. At the initial step (t = t0), we consider that

the stress is null which means that in the equation [5]: ε = 0. In this case, fibers are
blocked and can not move.

The first step from t0 to t1 corresponds to the internal maturation and rigidification
strain changes. The strain ε = 0 is null during this step. During this first step, the
function α varies from 0 to αmat following equation 6.

α(t) =
a3

1+b3 exp(−c3t)
(6)

with a3, b3 and c3 constants defined from the experimental data.

At the same time, the two functions τ1 and τ2 vary from 0 to their maximum val-
ues following sigmoid functions (eq. 7 and eq. 8), respectively. These two functions
represent the rigidification of the wood sample.

τ1(t) =
a1

1+b1 exp(−c1t)
+d1 (7)

τ2(t) =
a2

1+b2 exp(−c2t)
+d2 (8)

with a1, b1, c1, d1, a2, b2, c2 and d2 constants defined from the experimental data.
An example of how the functions α , τ1 and τ2 changes during the first step, are shown
on figure 2.

At t = t2, the sample is cut. During the cutting, all the strain coming from the
internal maturation strain changes is released. In order to represent this release in the
model, the strain value at t2 is equal to the opposite of the maturation strain value
which corresponds to the value at t1 (σ =−σm =−σ(t1)).

The third and final step corresponds to the heating of the cut samples. In the
case of heating, the strain is considered as null in the differential equation 5. And the
heating is represented in the model as a decreased of τ1 and τ2 whereas the parameters
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Fig. 2 Evolution during all the steps of modelling of functions α , τ1 and τ2 as functions of time for Konara
oak (Tension Wood)

S0, S1, S2 and αmat are unchanged. This two functions τ1 and τ2 follow, respectively,
equations 9 and 10.

τ1(t) = τ
HT R
1 +(τmat

1 − τ
HT R
1 )(1− exp(−k1(t− t3))) (9)

τ2(t) = τ
HT R
2 +(τmat

2 − τ
HT R
2 )(1− exp(−k2(t− t3))) (10)

with τmat
1 , τHT R

1 , k1, τmat
2 , τHT R

2 and k2 constants defined from the experimental data.

3.2 Solving

The model has been done using MatLab software and compared with Excel.
In order to solve this problem which includes two visco-elastic elements, a numerical
discretization was used in which σ(t) was hypothesized as linear on the step time
[16–18]. So for t ∈ [ti; ti+1], we can write:

σ(t) = σ(ti)+
∆σ

∆ t
(t− ti) (11)

For each Kelvin-Voigt (k), a combination of equations 11, 3 and 4 will give the dif-
ferential equation of one Kelvin-Voigt (k):

·
εk = τ

−1
k (ti)Sk

[
σ(ti)+

(t− ti)
∆ t

∆σ

]
− τ
−1
k (ti)εk (12)

The homogenous solution is:

εk =C exp
(
−τ
−1
k (ti)t

)
(13)



with C a constant.
We are looking for a particular solution having the following form: ε

p
k (t) = a +

b(t− ti). In order to determine the value of C, we consider that at t = ti, εV
k (ti) =

εV
k (ti−1) which is the value obtained at the previous step time. The full solution of the

differential equation 12 is then:

ε
V
k (t) =

[
ε

V
k (ti)−Skσ(ti)+ τk(ti)Sk

∆σ

∆ t

]
+Skσ(ti)− τk(ti)Sk

∆σ

∆ t
. (14)

From this equation 14, we can write the value of ∆εV
k :

∆ε
V
k = ε

V
k (ti+1)− ε

V
k (ti)

=
[
exp(−τ

−1
k (ti)ti+1)

[
exp(−τ

−1
k (ti)ti)

]−1−1
][

ε
V
k (ti)−Skσ(ti)+ τk(ti)Sk

∆σ

∆ t

]
.

(15)

The detail of the different steps mentioned in the previous part is in the Appendix
part.

3.3 Parametrization

The parameters of the model were defined as following.
From the modulus of elasticity (MOE) at air dried condition found in the litera-

ture for Keyaki [19] or calculated by a density correction from Guitard’s formula for
Urihada and Konara [20], the Young modulus in green state EL can be defined from
an empirical equation [21]:

EL(RH = 30%) = EL(RH = 12%)(1−0.015(30−12)). (16)

Above 30% of relative humidity (RH= 30%), MOE are considered as constant with
humidity.
The compliance S0 is defined as the inverse of EL.
From the fitting between the model and the experimental data, the ratio R1 between
S1 and S0 and R2 between S2 and S0 are determined which allows the calculation of
S1 and S2.
Concerning equation 9, τmat

1 and τHT R
1 are finding from the fitting. k1 is equal to 1000.

The parameters of equation 7 are defined as followed:

– τ
completion
1 = 0.01;

– a1 = τmat
1 − τ

completion
1 ;

– b1 = exp
(
−
(

1−4 t1
∆t1

))
;

– c1 =
4

∆t1
− 1

t1
;

– d1 = τ
completion
1 ;

– ∆t1 = 50h.



For equation 10, the parameters are defined as follow: τmat
2 = 10τmat

1 , τHT R
2 = 10τHT R

1
and k2 = 1000.
The parameters of equation 8 are defined as followed:

– τ
completion
2 = 0.01;

– a2 = τmat
2 − τ

completion
2 ;

– b2 = exp
(
−
(

1−4 t1
∆t1

))
;

– c2 =
4

∆t1
− 1

t1
;

– d2 = τ
completion
2 .

In the case of equation 6, the parameters are:

– a3 =−0.0024(1+R1 +R2);
– b3 = exp

(
−
(

1− 4t1
∆t1

))
;

– c1 =
4

∆t1
− 1

t1
.

4 Results and Discussion

4.1 Physical meaning of the model parameters

In order to understand the purpose of using two visco-elastic elements in the model, a
comparative study between model with one and two visco-elastic elements has been
done with one set of Urihada maple data. In the case of one visco-elastic element,
modelling equations 5, 8 and 10 are simplified considering that S2 and τ2 are null
in the parametrization. Figure 3 shows the fitting of one typical example of experi-
mental data for tension wood. The one Kelvin-Voigt model is not enough to explain
the decrease of the longitudinal strain over the time. Using one visco-elastic element
model is needed but not enough to explain the effect of the temperature increase on
the wood sample. This first model doesn’t explain at all the end of the curve where
the longitudinal strain is still decreasing with the time at the opposite of the model
curve which is almost constant at the end.

Adding a second visco-elastic element in modelling allows a better fitting of the
experimental data. This kind of model explains at the same time the effect of the
increase of temperature which corresponds to the longitudinal contraction of ten-
sion wood after the first hygrothermal treatment. One possibility is that the repetitive
change of temperature and moisture contents causes the increase of fibre saturation
point (FSP) inducing the shrinkage of the G-layer. From this point of view, a two
visco-elastic model corresponds to a first order chemical reaction [22]. A two visco-
elastic elements model allows a correct fitting of experimental data and explains the
different phenomena happening in the wooden sample during the thermal treatment.
This model will be used for fitting all the experimental data of this study.
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Fig. 4 Longitudinal strain changes as a function of cumulative treatment duration experimental data for
Urihada maple (o), Konara oak (x) and Keyaki (O) (Tension Wood) and their model using two visco-elastic
elements (-).

4.2 Comparison with the experimental data

The same model has been used for tension wood and normal wood. Fig. 4 and Fig. 5
show longitudinal strain plotted against cumulative treatment period in typical respec-
tively tension and normal wood for the three studied species. In the case of tension
wood, specimens experienced significant longitudinal contraction after the first ther-
mal treatment whereas normal wood specimens elongated slightly. The model allows
to fit both behavior of tension and normal wood specimens during the instantaneous
recovery phase and during the continuum contraction phase.

For each experimental data, a set of parameters has been obtained. The depen-
dency of the four main parameters: S1, S2, τmat

1 and τHT R
1 has been compared to MFA

because MFA provides a good evaluation of tension wood intensity of macro blocks
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Fig. 5 Longitudinal strain changes as a function of cumulative treatment duration experimental data for
Urihada maple (o), Konara oak (x) and Keyaki (O) (Normal Wood) and their modelling using two visco-
elastic elements (-).

[23]. The figure 6 displays the dependency of S1 on MFA for the three studied species
for tension and normal wood. The first observation is that the dependency of S1 on
MFA is consistent between species even if the ratio of the G-layer to the cell wall
are different between species. Indeed, Fig. 7 exhibits the signatures of the studied
species in terms of G-layer thickness. Konara oak tension wood had a remarkably
thick G-layer whereas urihada maple tension wood G-layer is thin. According to pre-
vious study [5], the dependency of MFA on the areal ratio of the G-layer apparently
varied with each species. S1 decreased with MFA from 8.99 10−4 to −1.63 10−4

GPa. The dependency of S1 on MFA is almost linear for tension wood which means
for low MFA and almost constant for normal wood which corresponds to high MFA.
The value of S1 is positive for tension wood whereas for normal wood, this param-
eter is negative close to zero. This model can explain the behavior of tension wood.
However for normal wood, it is almost impossible to find a physical explanation of
the calculated negative compliance S1 and S2. As the values of S1 and S2 are close to
zero, it could expressed a variation of this two parameters.

Concerning the parameter S2 of the second visco-elastic element (Fig. 8), we ob-
serve a variation between 2.83 10−4 to −2.11 10−5 GPa. This parameter is smaller
than S1. It can be explained by the fact that the second visco-elastic element is mostly
used to fit the different phenomena happening in the wooden sample during the hy-
grothermal treatment. In this part of the curve, the decrease of the strain is less impor-
tant than on the first part. S2 is almost constant for very low MFA which corresponds
to tension wood and for high MFA which corresponds to normal wood. The transition
between tension wood and normal wood follows a step function.

The value of τmat
1 is almost constant between species and between tension and

normal wood. The mean value of this parameter is for Urihada maple: 199.5± 0.5
s−1, for Konara oak: 199.9± 4.10−3s−1, for Keyaki: 199.9± 9.10−4 s−1. This pa-
rameter was left free during the fitting part in order to check if it stayed constant. It is
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Fig. 7 Microscopic views of crosscut section of tested wood [5]. A: Urihada maple TW; B: Urihada maple
NW; C: Konara oak TW; D: Konara oak NW; E: Keyaki wood TW; F: Keyaki wood NW. Scale bar is 10
µm.

linked to the maturation of the wood and should not be affected by the type of wood
(TW or NW).

The parameter τHT R
1 (Fig. 9) increases with MFA but the variability is very high

and the correlation is not very clear. This can be due to the fact that this parameter
is linked to the amorphous part, called matrix, of the cell wall and so to its chemical
composition. That can explain why this parameter behaves in the same way between
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TW and NW. The parameter τHT R
1 is still in discussion and remains less important

that S1 and S2.

5 Conclusion

Experiments performed on Urihada maple, Konara oak and Keyaki wood allow to fit
the developed one dimensional model of hygrothermal recovery. The chosen model
included an elastic element, a deformation mechanism and two visco-elastic elements
also called Kelvin-Voigt model. This model allows a fitting of tension wood sample



which means samples with G-layer and with high longitudinal tension growth stress.
This model helps us to clarify the effect of the increase of temperature corresponding
to the longitudinal contraction of tension wood. The use of two visco-elastic elements
allows the understanding of contraction of tension wood due to the repetitive change
of temperature and moisture contents during the hygrothermal treatments. We have
seen that a serie of four mechanical elements is needed to describe the elastic behav-
ior of a TW sample, its deformation and its visco-elastic changes while it undergoes
cutting and heat treatments.
The fitting with experimental data showed that the two compliances of the two visco-
elastic elements are the most important parameters that the evolution of longitudinal
strain during the hygrothermal treatment. The other parameters are linked to the in-
ternal chemical composition of wood cell wall.
The model can also fit normal wood with lignified fibers but it is almost impossible to
explain the meaning of parameters especially the two compliance used in both visco-
elastic elements which are negative. A new model for normal wood samples is now
planned to understand the behavior of these samples during hygrothermal treatments.
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Appendix

First case: ε = 0

During the two first steps of the modelling, the stress is null (ε = 0). On a step time
∆ t = ti− ti−1, we can write that:

ε = S0σ +α +∑
k

ε
V
k (17)

From this equation 17, it is possible to write ∆σ :

∆ε = S0∆σ +∆α +∑
k

∆ε
V
k (18)

In this case, ∆ε = 0, so we obtain:

∆σ = S−1
0

(
∆α +∑

k
∆ε

V
k

)
(19)

with ∆εV
k from equation 15.So the equation will be:

∆σ =

[
S0 +∑

k

[[
exp
(
−τ
−1
k ti

)[
exp
(
−τ
−1
k ti−1

)]−1−1
]

τkSk

∆ t

]]−1

[
−∆α−∑

k

[
exp
(
−τ
−1
k ti

)[
exp
(
−τ
−1
k ti−1

)]−1−1
]][

ε
V
k (ti−1)−Skσ(ti−1)

]
.

(20)

Using equation 19, we can write that σ(ti) = σ(ti−1)+∆σ .



Second case: σ = 0

During the fourth step of the modelling ∆σ = 0, equation 18 becomes:

∆ε = ∆α +∑
k

∆ε
V
k (21)

with ∆εV
k from equation 15.

Using equation 21, we can write that ε(ti) = ε(ti−1)+∆ε .




