On the stability conjecture for geodesic flows of manifold without conjugate points - Archive ouverte HAL
Article Dans Une Revue Annales Henri Lebesgue Année : 2021

On the stability conjecture for geodesic flows of manifold without conjugate points

Résumé

We study the C 2-structural stability conjecture from Mañé's viewpoint for geodesics flows of compact manifolds without conjugate points. The structural stability conjecture is an open problem in the category of geodesic flows because the C 1 closing lemma is not known in this context. Without the C 1 closing lemma, we combine the geometry of manifolds without conjugate points and a recent version of Franks' Lemma from Mañé's viewpoint to prove the conjecture for compact surfaces, for compact three dimensional manifolds with quasi-convex universal coverings where geodesic rays diverge, and for n-dimensional, generalized rank one manifolds.
Fichier principal
Vignette du fichier
Stab_Submitted.pdf (330.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01662529 , version 1 (24-12-2017)

Identifiants

Citer

Ludovic Rifford, Rafael Ruggiero. On the stability conjecture for geodesic flows of manifold without conjugate points. Annales Henri Lebesgue, 2021, 4, ⟨10.5802/ahl.87⟩. ⟨hal-01662529⟩
399 Consultations
512 Téléchargements

Altmetric

Partager

More