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EXPONENTIAL CONVERGENCE OF TESTING ERROR
FOR STOCHASTIC GRADIENT METHODS

LOUCAS PILLAUD-VIVIEN, ALESSANDRO RUDI, FRANCIS BACH

ABSTRACT. We consider binary classification problems with positive definite kernels and square loss, and study
the convergence rates of stochastic gradient methods. We show that while the excess testing loss (squared loss)
converges slowly to zero as the number of observations (and thus iterations) goes to infinity, the testing error
(classification error) converges exponentially fast if low-noise conditions are assumed. To achieve these rates of
convergence we show sharper high-probability bounds with respect to the number of observations for stochastic
gradient descent.

1. INTRODUCTION

Stochastic gradient methods are now ubiquitous in machine learning, both from the practical side, as a
simple algorithm that can learn from a single or a few passes over the data [BLC05], and from the theoretical
side, as it leads to optimal rates for estimation problems in a variety of situations [NY83, PJ92].

They follow a simple principle [RM51]: to find a minimizer of a function F defined on a vector space
from noisy gradients, simply follow the negative stochastic gradient and the algorithm will converge to
a stationary point, local minimum or global minimum of F (depending on the properties of the function
F ), with a rate of convergence that decays with the number of gradient steps n typically as O(1/

√
n), or

O(1/n) depending on the assumptions which are made on the problem [PJ92, NV08, NJLS09, SSSS07,
Xia10, BM11, BM13, DFB17].

On the one hand, these rates are optimal for the estimation of the minimizer of a function given access to
noisy gradients [NY83], which is essentially the usual machine learning set-up where the function F is the
expected loss, e.g., logistic or hinge for classification, or least-squares for regression, and the noisy gradients
are obtained from sampling a single pair of observations.

On the other hand, although these rates as O(1/
√
n) or O(1/n) are optimal, there are a variety of extra

assumptions that allow for faster rates, even exponential rates.
First, for stochastic gradient from a finite pool, that is for F = 1

k

∑k
i=1 Fi, a sequence of works

starting from SAG [LSB12], SVRG [JZ13], SAGA [DBLJ14], have shown explicit exponential convergence.
However, these results, once applied to machine learning where the function Fi is the loss function associated
with the i-th observation of a finite training data set of size k, say nothing about the loss on unseen data (test
loss). The rates we present in this paper are on unseen data.

Second, assuming that at the optimum all stochastic gradients are equal to zero, then for strongly-convex
problems (e.g., linear predictions with low-correlated features), linear convergence rates can be obtained
for test losses [Sol98, SL13]. However, for supervised machine learning, this has limited relevance as
having zero gradients for all stochastic gradients at the optimum essentially implies prediction problems
with no uncertainty (that is, the output is a deterministic function of the input). Moreover, we can only get
an exponential rate for strongly-convex problems and thus this imposes a parametric noiseless problem,
which limits the applicability (even if the problem was noiseless, this can only reasonably be in a non-
parametric way with neural networks or positive definite kernels). Our rates are on noisy problems and on
infinite-dimensional problems where we can hope that we approach the optimal prediction function with
large numbers of observations. For prediction functions described by a reproducing kernel Hilbert space,
and for the square loss, the excess testing loss (equal to testing loss minus the minimal testing loss over all
measurable prediction functions) is known to converge to zero at a subexponential rate typically greater than
O(1/n) [DB16, DFB17], these rates being optimal for the estimation of testing losses.
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Going back to the origins of supervised machine learning with binary labels, we will not consider getting
to the optimal testing loss (using a convex surrogate such as logistic, hinge or least-squares) but the testing
error (number of mistakes in predictions), also referred to as the 0-1 loss.

It is known that the excess testing error (testing error minus the minimal testing error over all measurable
prediction functions) is upper bounded by a function of the excess testing loss [Zha04, BJM06], but always
with a loss in the convergence rate (e.g., no difference or taking square roots). Thus a slow rate in O(1/n) or
O(1/

√
n) on the excess loss leads to a slow(er) rate on the excess testing error.

Such general relationships between excess loss and excess error have been refined with the use of margin
conditions, which characterize how hard the prediction problems are [MT99]. Simplest input points are
points where the label is deterministic (i.e., conditional probabilities of the label are equal to zero or one),
while hardest points are the ones where the conditional probabilities are equal to 1/2. Margin conditions
quantify the mass of input points which are hardest to predict, and lead to improved transfer functions from
testing losses to testing errors, but still no exponential convergence rates [BJM06].

In this paper, we consider the strongest margin condition, that is conditional probabilities are bounded
away from 1/2, but not necessarily equal to 0 or 1. This assumption on the learning problem has been used
in the past to show that regularized empirical (convex) risk minimization leads to exponential convergence
rates [AT07, KB05]. Our main contribution is to show that stochastic gradient descent also achieves similar
rates (see an empirical illustration in Figure 2 in the Appendix A). This requires several side contributions
that are interesting on their own, that is, a new and simple formalization of the learning problem that
allows exponential rates of estimation (regardless of the algorithms used to find the estimator) and a new
concentration result for averaged stochastic gradient descent (SGD) applied to least-squares, which is finer
than existing work [BM13].

The paper is organized as follows: in Section 2, we present the learning set-up, namely binary clas-
sification with positive definite kernels, with a particular focus on the relationship between errors and
losses. Our main results rely on a generic condition for which we give concrete examples in Section 3. In
Section 4, we present our version of stochastic gradient descent, with the use of tail averaging [JKK+16],
and provide new deviation inequalities, which we apply in Section 5 to our learning problem, leading to ex-
ponential convergence rates for the testing errors. We conclude in Section 6 by providing several avenues for
future work. Finally, synthetic experiments illustrating our results can be found in Section A of the Appendix.

Main contributions of the paper. We would like to underline that our main contributions are in the two
following results; (a) we show in Theorem 4 the exponential convergence of stochastic gradient descent on
the testing error, and (b) this result strongly rests on a new deviation inequality stated in Corollary 1 for
stochastic gradient descent for least-square problems. This last result is interesting on its own and gives
an improved high-probability result which does not depend on the dimension of the problem and has a
tighter dependence on the strongly convex parameter –through the effective dimension of the problem, see
[CDV07, DB16].

2. PROBLEM SET-UP

In this section, we present the general machine learning set-up, from generic assumptions to more specific
assumptions.

2.1. Generic assumptions
We consider a measurable set X and a probability distribution ρ on data (x, y) ∈ X× {−1, 1}; we denote

by ρX the marginal probability on x, and by ρ(±1|x) the conditional probability that y = ±1 given x. We
have E(y|x) = ρ(1|x) − ρ(−1|x). Our main margin condition is the following (and independent of the
learning framework):

(A1) |E(y|x)| > δ almost surely for some δ ∈ (0, 1].

This margin condition (often referred to as a low-noise condition) is commonly used in the theoretical study
of binary classification [MT99, AT07, KB05], and usually takes the following form: ∀δ > 0, P(|E(y|x)| <
δ) = O(δα) for α > 0. Here, however, δ is a fixed constant. Our stronger margin condition (A1) is necessary
to show exponential convergence rates but we give also explicit rates in the case of the latter low-noise
condition. This extension is derived in Appendix J and more precisely in Corollary 4. Note that the smaller
the α, the larger the mass of inputs with hard-to-predict labels. Our condition corresponds to α = +∞, and
simply states that for all inputs, the problem is never totally ambiguous, and the degree of non-ambiguity is
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bounded from below by δ. When δ = 1, then the label y ∈ {−1, 1} is a deterministic function of x, but our
results apply for all δ ∈ (0, 1] and thus to noisy problems (with low noise). Note that problems like image
classification or object recognition are well characterized by (A1). Indeed, the noise in classifying an image
between two disparate classes (cars/pedestrians, bikes/airplanes) is usually way smaller that 1/2.

We will consider learning functions in a reproducing kernel Hilbert space (RKHS) H with kernel function
K : X× X→ R and dot-product 〈·, ·〉H. We make the following standard assumptions on H:

(A2) H is a separable Hilbert space and there exists R > 0, such that for all x ∈ X, K(x, x) 6 R2.

For x ∈ X, we consider the function Kx : X → R defined as Kx(x′) = K(x, x′). We have the classical
reproducing property for g ∈ H, g(x) = 〈g,Kx〉H [STC04, SS02]. We will consider other norms, beyond
the RKHS norm ‖g‖H, that is theL2-norm (always with respect to ρX), defined as ‖g‖2L2

=
∫
X
g(x)2dρX(x),

as well as the L∞-norm ‖ · ‖L∞ on the support of ρX. A key property is that (A2) implies ‖g‖L∞ 6 R‖g‖H.
Finally, we will consider observations with standard assumptions:

(A3) The observations (xn, yn) ∈ X× {−1, 1}, n ∈ Z∗ are independent and identically distributed with
respect to the distribution ρ.

2.2. Ridge regression
In this paper, we focus primarily on least-squares estimation to obtain estimators. We define g∗ as the

minimizer over L2 of

E(y − g(x))2 =

∫
X×{−1,1}

(y − g(x))2dρ(x, y).

We always have g∗(x) = E(y|x) = ρ(1|x)− ρ(−1|x), but we do not require g∗ ∈ H. We also consider the
ridge regression problem [CDV07] and denote by gλ the unique (when λ > 0) minimizer in H of

E(y − g(x))2 + λ‖g‖2H.
The function gλ always exists for λ > 0 and is always an element of H. When H is dense in L2 our results
depend on the L∞-error ‖gλ − g∗‖∞, which is weaker than ‖gλ − g∗‖H which itself only exists when
g∗ ∈ H (which we do not assume). When H is not dense we simply define g̃∗ as the orthonormal projector
for the L2 norm on H of g∗ = E(y|x) so that our bound will the depend on ‖gλ − g̃∗‖∞. Note that g̃∗ is the
minimizer of E(y − g(x))2 with respect to g in the closure of H in L2.

Moreover our main technical assumption is:

(A4) There exists λ > 0 such that almost surely, sign(E(y|x))gλ(x) >
δ

2
.

In the assumption above, we could replace δ/2 by any multiplicative constants in (0, 1) times δ (instead
of 1/2). Note that with (A4), λ depends on δ and on the probability measure ρ, which are both fixed
(respectively by (A1) and the problem), so that λ is fixed too. It implies that for any estimator ĝ such that
‖gλ − ĝ‖L∞ < δ/2, the predictions from ĝ (obtained by taking the sign of ĝ(x) for any x), are the same as
the sign of the optimal prediction sign(E(y|x)). Note that a sufficient condition is ‖gλ − ĝ‖H < δ/(2R)
(which does not assume that g∗ ∈ H), see next subsection.

Note that more generally, for all problems for which (A1) is true and ridge regression (in the population
case) is so that ‖gλ−g∗‖L∞ tends to zero as λ tends to zero then (A4) is satisfied, since ‖gλ−g∗‖L∞ 6 δ/2
for λ small enough, together with (A1) then implies (A4).

In Section 3, we provide concrete examples where (A4) is satisfied and we then present the SGD algorithm
and our convergence results. Before we relate excess testing losses to excess testing errors.

2.3. From testing losses to testing error
Here we provide some results that will be useful to prove exponential rates for classification with squared

loss and stochastic gradient descent. First we define the 0-1 loss defining the classification error:

R(g) = ρ({(x, y) : sign(g(x)) 6= y}),
where signu = +1 for u ≥ 0 and −1 for u < 0. In particular denote by R∗ the so-called Bayes risk
R∗ = R(E (y|x)) which is the minimum achievable classification error [DGL13].

A well known approach to bound the testing errors by testing losses is via transfer functions. In particular
we recall the following result [DGL13, BJM06], let g∗(x) be equal to E (y|x) a.e., then

R(g)− R∗ ≤ φ(‖g − g∗‖2L2), ∀g ∈ L2(dρX),
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with φ(u) =
√
u (or φ(u) = uβ , with β ∈ [1/2, 1], depending on some properties of ρ [BJM06]. While

this result does not require (A1) or (A4), it does not readily lead to exponential rates since the squared loss
excess risk has minimax lower bounds that are polynomial in n [CDV07].

Here we follow a different approach, requiring via (A4) the existence of gλ having the same sign as g∗
and with absolute value uniformly bounded from below. Then we can bound the 0-1 error with respect to the
distance in H of the estimator ĝ from gλ as shown in the next lemma (proof in Appendix C). This will lead
to exponential rates when the distribution satisfies a margin condition (A1) as we prove in the next section
and in Section 5. Note also that for the sake of completeness we recalled in Appendix D that exponential
rates could be achieved for kernel ridge regression.
Lemma 1 (From approximately correct sign to 0-1 error)

Let q ∈ (0, 1). Under (A1), (A2), (A4), ĝ ∈ H a random function such that
∥∥ĝ − gλ∥∥H < δ

2R , with
probability at least 1− q. Then

R(ĝ) = R∗, with probability at least 1− q, and in particular E[R(ĝ)− R∗] ≤ q.

In the next section we provide sufficient conditions and explicit settings naturally satisfying (A4).

3. CONCRETE EXAMPLES AND RELATED WORK

In this section we illustrate specific settings that naturally satisfy (A4). We start by the following simple
result showing that the existence of g∗ ∈ H such that g∗(x) = E (y|x) a.e. on the support of ρX, is sufficient
to have (A4) (proof in Appendix E.1).
Proposition 1

Under (A1), assume that there exists g∗ ∈ H such that g∗(x) := E (y|x) on the support of ρX, then for

any δ, there exists λ > 0 satisfying (A4), that is, sign(E(y|x))gλ(x) >
δ

2
.

We are going to use the proposition above to derive more specific settings. In particular we consider the case
where the positive and negative classes are separated by a margin that is strictly positive. Let X ⊆ Rd and
denote by S the support of the probability ρX and by S+ = {x ∈ X : g∗(x) > 0} the part associated to the
positive class, and by S− the one associated with the negative class. Consider the following assumption:
(A5) There exists µ > 0 such that minx∈S+,x′∈S− ‖x− x′‖ ≥ µ.

Denote by W s,2 the Sobolev space of order s defined with respect to the L2 norm, on Rd (see [AF03] and
Appendix E.2). We also introduce the following assumption:
(A6) X ⊆ Rd and the kernel is such that W s,2 ⊆ H, with s > d/2.

An example of kernel such that H = W s,2, with s > d/2 is the Abel kernel K(x, x′) = e−
1
σ ‖x−x

′‖, for
σ > 0. In the following proposition we show that if there exist two functions in H, one matching E (y|x) on
S+ and the second matching E (y|x) on S− and if the kernel satisfies (A6), then (A4) is satisfied.

Proposition 2

Under (A1), (A5), (A6), if there exist two functions g∗+, g
∗
− ∈ W s,2 such that g∗+(x) = E (y|x) on S+

and g∗−(x) = E (y|x) on S−, then (A4) is satisfied.

Finally we are able to introduce another setting where (A4) is naturally satisfied (the proof of the proposition
above and the example below are given in Appendix E.2).
Example 1 (Independent noise on the labels)

Let ρX be a probability distribution on X ⊆ Rd and let S+, S− ⊆ X be a partition of the support of ρX
satisfying ρX(S+), ρX(S−) > 0 and (A5). Let n ∈ Z∗. For 1 ≤ i ≤ n, xi independently sampled from
ρX and the label yi defined by the law

yi =

{
ζi if xi ∈ S+

−ζi if xi ∈ S−,

with ζi independently distributed as ζi = −1 with probability p ∈ [0, 1/2) and ζi = 1 with probability
1− p. Then (A1) is satisfied with δ = 1− 2p and (A4) is satisfied as soon as (A2) and (A6) are, that is,
the kernel is bounded and H is rich enough (see an example in Appendix E Figure 4).
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Finally note that the results of this section can be easily generalized from X = Rd to any Polish space, by
using a separating kernel [DVRT14, RCDVR14] instead of (A6).

4. STOCHASTIC GRADIENT DESCENT

We now consider the stochastic gradient algorithm to solve the ridge regression problem with a fixed
strictly positive regularization parameter λ. We consider solving the regularized problem with regularization
‖g − g0‖2H through stochastic approximation starting from a function g0 ∈ H (typically 0).1 Denote by
F : H→ R, the functional

F (g) = E(Y − g(X))2 = E(Y − 〈KX , g〉)2,

where the last identity is due to the reproducing property of the RKHS H. Note that F has the following
gradient∇F (g) = −2E [(Y − 〈KX , g〉)KX ]. We consider also Fλ = F+λ‖·−g0‖2H, for which∇Fλ(g) =
∇F (g) + 2λ(g − g0), and we have for each pair of observation (xn, yn) that Fλ(g) = E

[
Fn,λ(g)

]
=

E(〈g,Kxn〉 − yn)2 + λ‖g − g0‖2H, with Fn,λ(g) = (〈g,Kxn〉 − yn)2 + λ‖g − g0‖2H.
Denoting Σ = E

[
Kxn ⊗Kxn

]
the covariance operator defined as a linear operator from H to H (see

[FBJ04] and references therein), we have the optimality conditions for gλ and g̃∗:

Σgλ − E (ynKxn) + λ(gλ − g0) = 0, E [(yn − g̃∗(xn))Kxn ] = 0,

see [CDV07] or Appendix F.1 for the proof of the last identity. Let (γn)n>1 be a positive sequence; we
consider the stochastic gradient recursion2 in H started at g0:

gn = gn−1 −
γn
2
∇Fn,λ(gn−1) = gn−1 − γn [(〈Kxn , gn−1〉 − yn)Kxn + λ(gn−1 − g0)] . (1)

We are going to consider Polyak-Ruppert averaging [PJ92], that is ḡn = 1
n+1

∑n
i=0 gi, as well as the

tail-averaging estimate ḡtail
n = 1

bn/2c
∑n
i=bn/2c gi, studied by [JKK+16]. For the sake of clarity, all the

results in the main text are for the tail averaged estimate but note that all of them have been also proved for
the full average in Appendix I.

As explained earlier (see Lemma 1), we need to show the convergence of gn to gλ in H-norm. We are
going to consider two cases: (1) for the non-averaged recursion (γn) is a decreasing sequence, with the
important particular case γn = γ/nα, for α ∈ [0, 1]; (2) for the averaged or tail-averaged functions (γn) is a
constant sequence equal to γ. For all the proofs of this section see Appendix G. In the next subsection we
reformulate the recursion in Eq. (1) as a least-squares recursion converging to gλ.

4.1. Reformulation as noisy recursion
We can first reformulate the SGD recursion equation in Eq. (1) as a regular least-squares SGD recursion

with noise, with the notation ξn = yn − g̃∗(xn), which satisfies E
[
ξnKxn

]
= 0. This is the object of the

following lemma (for the proof see Appendix F.2.):

Lemma 2
The SGD recursion can be rewritten as follows:

gn − gλ =
[
I − γn(Kxn ⊗Kxn + λI)

]
(gn−1 − gλ) + γnεn, (2)

with the noise term εk = ξkKxk + (g̃∗(xk)− gλ(xk))Kxk − E [(g̃∗(xk)− gλ(xk))Kxk ] ∈ H.

We are thus in presence of a least-squares problem in the Hilbert space H, to estimate a function gλ ∈ H

with a specific noise εn in the gradient and feature vector Kx. In the next section, we will consider the
generic recursion above, which will require some bounds on the noise. In our setting, we have the following
almost sure bounds and the noise (see Lemma 9 of Appendix G):

‖εn‖H 6 R(1 + 2‖g̃∗ − gλ‖L∞)

E
[
εn ⊗ εn

]
4 2

(
1 + ‖g̃∗ − gλ‖2∞

)
Σ,

where Σ = E
[
Kxn ⊗Kxn

]
is the covariance operator.

1Note that g0 is the initialization of the recursion, and is not the limit of gλ when λ tends to zero (this limit being g̃∗).
2The complexity of n steps of the recursion isO(n2) if using kernel functions orO(τn) when using explicit feature representations,

with τ the complexity of computing dot-products and adding feature vectors.
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4.2. SGD for general Least-Square problems
We now consider results on (averaged) SGD for least-squares that are interesting on their own. As said

before, we show results in two different settings depending on the step-size sequence. First, we consider (γn)
as a decreasing sequence, second we take (γn) constant but prove the convergence of the (tail-)averaged
iterates.

Since the results we need could be of interest (even for finite-dimensional models), in this section, we
study the following general recursion:

ηn = (I − γHn)ηn−1 + γnεn, (3)

We make the following assumptions:
(H1) We start at some η0 ∈ H.
(H2) (Hn, εn)n>1 are i.i.d. and Hn is a positive self-adjoint operator so that almost surely Hn < λI ,

and H := EHn.
(H3) Noise: Eεn = 0, ‖εn‖H 6 c1/2 almost surely and E(εn ⊗ εn) 4 C, with C commuting with H .

Note that one consequence of this assumption is E‖εn‖2H 6 trC.

(H4) For all n > 1, E
[
HnCH

−1Hn

]
4 γ−10 C and γ 6 γ0.

(H5) A is a positive self-adjoint operator which commutes with H .
Note that we will later apply the results of this section to Hn = Kxn ⊗Kxn + λI , H = Σ + λI , C = Σ
and A ∈ {I,Σ}. We first consider the non-averaged SGD recursion, then the (tail-)averaged recursion. The
key difference with existing bounds is the need for precise probabilistic deviation results.

For least-squares, one can always separate the impact of the initial condition η0 and of the noise terms εk,
namely ηn = ηbias

n + ηvariance
n , where ηbias

n is the recursion with no noise (εk = 0), and ηvariance
n is the recursion

started at η0 = 0. The final performance will be bounded by the sum of the two separate performances (see,
e.g.,[DB15]). Hence all of our bounds will depend on these two. See more details in Appendix G.

4.3. Non-averaged SGD
In this section, we prove results for the recursion defined by Eq. (3) in the case where for α ∈ [0, 1],

γn = γ/nα. These results extend the ones of [BM11] by providing deviation inequalities, but are limited to
least-squares. For general loss functions and in the strongly-convex case, see also [KT09].

Theorem 1 (SGD, decreasing step size: γn = γ/nα)
Assume (H1), (H2), (H3), γn = γ/nα, γλ < 1 and denote by ηn ∈ H the n-th iterate of the recursion

in Eq. (3). We have for t > 0, n > 1 and α ∈ (0, 1),

‖gn − gλ‖H 6 exp

(
− γλ

1− α
(
(n+ 1)1−α − 1

))
‖g0 − gλ‖H + Vn,

almost surely for n large enough 3, with P (Vn > t) 6 2 exp

(
− t2

8γtrC/λ+ γc1/2t
· nα

)
.

We can make the following observations:
• The proof technique (see Appendix G.1 for the detailed proof) relies on the following scheme: we

notice that ηn can be decomposed in two terms, (a) the bias: obtained from a product of n contractant
operators, and (b) the variance: a sum of increments of a martingale. We treat separately the two
terms. For the second one, we prove almost sure bounds on the increments and on the variance that
lead to a Bernstein-type concentration result on the tail P(Vn > t). Following this proof technique,
the coefficient in the latter exponential is composed of the variance bound plus the almost sure
bound of the increments of martingale times t.

• Note that we only presented in Theorem 1 the case where α ∈ (0, 1). Indeed, we only focused on the
case where we had exponential convergence (see the whole result in the Appendix: Proposition 6).
Actually, that there are three different regimes. For α = 0 (constant step-size), the algorithm is not
converging, as the tail probability bound on P (Vn > t) is not dependent on n. For α = 1, confirming
results from [BM11], there is no exponential forgetting of initial conditions. And for α ∈ (0, 1),
the forgetting of initial conditions and the tail probability are converging to zero exponentially
fast, respectively, as exp(−Cn1−α) and exp(−Cnα), for a constant C, hence the natural choice of
α = 1/2 in our experiments.
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4.4. Averaged and Tail-averaged SGD with constant step-size
In the subsection, we take: ∀n > 1, γn = γ. We first start with a result on the variance term, whose proof

extends the work of [DFB17] to deviation inequalities which are sharper than the ones from [BM13].

Theorem 2 (Convergence of the variance term in averaged SGD)
Assume (H1), (H2), (H3), (H4), (H5) and consider the average of the n+ 1 first iterates of the sequence
defined in Eq. (3): η̄n = 1

n+1

∑n
i=0 ηi. Assume η0 = 0. We have for t > 0, n > 1:

P
(∥∥∥A1/2η̄n

∥∥∥
H

> t
)
6 2 exp

[
− (n+ 1)t2

Et

]
, (4)

where Et is defined with respect to the constants introduced in the assumptions:

Et = 4tr(AH−2C) +
2c1/2‖A1/2‖op

3λ
· t. (5)

The work that remains to be done is to bound the bias term of the recursion η̄bias
n . We have done it for the full

averaged sequence (see Appendix I.1 Theorem 6) but as it is quite technical and could lower a bit the clarity
of the reasoning, we have decided to leave it in the Appendix. We present here another approach and consider
the tail-averaged recursion, η̄tail

n = 1
bn/2c

∑n
i=bn/2c ηi (as proposed by [JKK+16, Sha11]). For this, we use

the simple almost sure bound ‖ηbias
i ‖H 6 (1 − λγ)i‖η0‖H, such that ‖η̄tail, bias

n ‖H 6 (1 − λγ)n/2‖η0‖H.
For the variance term, we can simply use the result above for n and n/2, as η̄tail

n = 2η̄n− η̄n/2. This leads to:

Corollary 1 (Convergence of tail-averaged SGD)
Assume (H1), (H2), (H3), (H4), (H5) and consider the tail-average of the sequence defined in Eq. (3):
η̄tail
n = 1

bn/2c
∑n
i=bn/2c ηi. We have for t > 0, n > 1:∥∥∥A1/2η̄tail

n

∥∥∥
H

6 (1− γλ)n/2‖A1/2‖op‖η0‖H + Ln , with (6)

P(Ln > t) 6 4 exp
(
−(n+ 1)t2/(4Et)

)
, (7)

where Ln is defined in the proof (see Appendix G.3) and is the variance term of the tail-averaged recursion.

We can make the following observations on the two previous results:

• The proof technique (see Appendix G.2 and G.3 for the detailed proofs) relies on concentration
inequality of Bernstein type. Indeed, we notice that (in the setting of Theorem 2) η̄n is a sum of
increments of a martingale. We prove almost sure bounds on the increments and on the variance
(following the proof technique of [DFB17]) that lead to a Bernstein type concentration result on the
tail P(Vn > t). Following the proof technique summed-up before, we see that Et is composed of
the variance bound plus the almost sure bound times t.

• Remark that classically, A and C are proportional to H for excess risk predictions. In the finite
d-dimensional setting this leads us to the usual variance bound proportional to the dimension d:
tr(AH−2C) ∼= trI = d. The result is general in the sense that we can apply it for all matrices A
commuting with H (this can be used to prove results in L2 or in H).

• Finally, note that we improved the variance bound with respect to the strong convexity parameter λ
which is usually of the order 1/λ2 (see [Sha11]), and is here tr(AH−2C). Indeed, in our setting,
we will apply it for A = C = Σ and H = Σ + λI , so that tr(AH−2C) is upper bounded by the
effective dimension tr(Σ(Σ + λI)−1) which can be way smaller than 1/λ2 (see [CDV07, DB16]).

• The complete proof for the full average is written in Appendix I.1 and more precisely in Theorem 6.
In this case the initial conditions are not forgotten exponentially fast though.

5. EXPONENTIALLY CONVERGENT SGD FOR CLASSIFICATION ERROR

In this section we want to show our main results, on the error made (on unseen data) by the n-th iterate of
the regularized SGD algorithm. Hence, we go back to the original SGD recursion defined in Eq. (2). Let us
recall it:

gn − gλ =
[
I − γn(Kxn ⊗Kxn + λI)

]
(gn−1 − gλ) + γnεn,

with the noise term εk = ξkKxk + (g̃∗(xk) − gλ(xk))Kxk − E [(g̃∗(xk)− gλ(xk))Kxk ] ∈ H. Like in
the previous section we are going to state two results in two different settings, the first one for SGD with
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decreasing step-size (γn = γ/nα) and the second one for tail averaged SGD with constant step-size. For all
the proofs of this section see the Appendix (section H).

5.1. SGD with decreasing step-size
In this section, we focus on decreasing step-sizes γn = γ/nα for α ∈ (0, 1), which lead to exponential

convergence rates. Results for α = 1 and α = 0 can be derived in a similar way (but do not lead to
exponential rates).
Theorem 3

Assume (A1), (A2), (A3), (A4) and γn = γ/nα, α ∈ (0, 1) for any n and γλ < 1. Let gn be the
n-th iterate of the recursion defined in Eq. (2), as soon as n satisfies exp

(
− γλ

1−α
(
(n+ 1)1−α − 1

))
6

δ/(5R‖g0 − gλ‖H), then

R(gn) = R∗, with probability at least 1− 2 exp

(
− δ2

CR
· nα

)
,

with CR = 2α+7γR2trΣ
(
1 + ‖g̃∗ − gλ‖2∞

)
/λ+ 8γR2δ(1 + 2‖g̃∗ − gλ‖∞)/3, and in particular

E[R(gn)− R∗] 6 2 exp

(
− δ2

CR
· nα

)
.

Note that Theorem 3 shows that with probability at least 1− 2 exp
(
− δ2

CR
· nα

)
, the predictions of gn are

perfect. We can also make the following observations:
• The idea of the proof (see Appendix H.1 for the detailed proof) is the following: we know that as

soon as ‖gn − gλ‖H 6 δ/(2R), the predictions of gn are perfect (Lemma 1). We just have to apply
Theorem 1 for to the original SGD recursion and make sure to bound each term by δ/(4R). Similar
results for non-averaged SGD could be derived beyond least-squares (e.g., hinge or logistic loss)
using results from [KT09].

• Also note that the larger the α, the smaller the bound. However, it is only valid for n larger that a
certain quantity depending of λγ. A good trade-off is α = 1/2, for which we get an excess error of
2 exp

(
− δ2

CR
n1/2

)
, which is valid as soon as n > log(10R‖g0 − gλ‖H/δ)/(4λ2γ2). Notice also

that we should go for large γλ to increase the factor in the exponential and make the condition
happen as soon as possible.

• If we want to emphasize the dependence of the bound on the important parameters, we can write
that: E[R(gn)− R∗] . 2 exp

(
−λδ2nα/R2

)
.

• When the condition on n is not met, then we still have the usual bound obtained by taking directly
the excess loss [BJM06] but we lose exponential convergence.

5.2. Tail averaged SGD with constant step-size
We now consider the tail-averaged recursion4, with the following result:

Theorem 4

Assume (A1), (A2), (A3), (A4) and γn = γ for any n, γλ < 1 and γ 6 γ0 = (R2 + 2λ)−1. Let
gn be the n-th iterate of the recursion defined in Eq. (2), and ḡtail

n = 1
bn/2c

∑n
i=bn/2c gi, as soon as

n > 2/(γλ) ln(5R‖g0 − gλ‖H/δ), then

R(ḡtail
n ) = R∗, with probability at least 1− 4 exp

(
−δ2KR(n+ 1)

)
,

with K−1R = 29R2
(
1 + ‖g̃∗ − gλ‖2∞

)
tr(Σ(Σ + λI)−2) + 32δR2(1 + 2‖g̃∗ − gλ‖∞)/(3λ), and in

particular
E[R(ḡtail

n )− R∗] 6 4 exp
(
−δ2KR(n+ 1)

)
.

Theorem 4 shows that with probability at least 1−4 exp
(
−δ2KR(n+ 1)

)
, the predictions of ḡtail

n are perfect.
We can also make the following observations:

• The idea of the proof (see Appendix H.2 for the detailed proof) is the following: we know that as
soon as ‖ḡtail

n − gλ‖H 6 δ/(2R), the predictions of ḡtail
n are perfect (Lemma 1). We just have to

apply Corollary 1 to the original SGD recursion, and make sure to bound each term by δ/(4R).

4The full averaging result corresponding to Theorem 4 is proved in Appendix I.2, Theorem 7.
8



• If we want to emphasize the dependence of the bound on the important parameters, we can write
that: E[R(gn)− R∗] . 2 exp

(
−λ2δ2n/R4

)
. Note that the λ2 could be made much smaller with

assumptions on the decrease of eigenvalues of Σ (it has been shown [CDV07] that if the decay
happens at speed 1/nβ : trΣ(Σ + λI)−2 6 λ−1trΣ(Σ + λI)−1 6 R2/λ1+1/β).

• We want to take γλ as big as possible to satisfy quickly the condition. In comparison to the
convergence rate in the case of decreasing step-sizes, the dependence on n is improved as the
convergence is really an exponential of n (and not of some power of n as in the previous result).

• Finally, the complete proof for the full average is contained in Appendix I.2 and more precisely in
Theorem 7.

6. CONCLUSION

In this paper, we have shown that stochastic gradient could be exponentially convergent, once some
margin conditions are assumed; and even if a weaker margin condition is assumed, fast rates can be achieved
(see Appendix J). This is obtained by running averaged stochastic gradient on a least-squares problem, and
proving new deviation inequalities.

Our work could be extended in several natural ways: (a) our work relies on new concentration results
for the least-mean-squares algorithm (i.e., SGD for square loss), it is natural to extend it to other losses,
such as the logistic or hinge loss; (b) going beyond binary classification is also natural with the square
loss [CRR16, OBLJ17] or without [TCKG05]; (c) in our experiments, we use regularization, but we have
experimented with unregularized recursions, which do exhibit fast convergence, but for which proofs
are usually harder [DB16]; finally, (d) in order to avoid the O(n2) complexity, extending the results
of [RCR17, RR17] would lead to a subquadratic complexity.
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Organization of the Appendix
A. Experiments

where the experiments and their settings are explained.
B. Probabilistic lemmas

where concentration inequalities in Hilbert spaces used in section G are recalled.
C. From H to 0-1 loss

where, from high probability bound for ‖ · ‖H, we derived bound for the 0-1 error.
D. Proofs of Exponential rates for Kernel Ridge Regression

where exponential rates for Kernel Ridge Regression are proven (Theorem 5).
E. Proofs and additional results about concrete examples

where additional results and croncrete examples to satisfy (A4) are given.
F. Preliminaries for Stochastic Gradient Descent

where the SGD recursion is derived.
G. Proof of stochastic gradient descent results

where high probability bounds for the general SGD recursion are shown (Theorems 1 and 2).
H. Exponentially convergent SGD for classification error

where exponential convergence of test error are shown (Theorems 3 and 4).
I. Extension for the full averaged case

where previous results are extended for full averaged SGD (instead of tail-averaged).
J. Convergence under weaker margin assumption

where previous results are extended in the case of a weaker margin assumption.

APPENDIX A. EXPERIMENTS

To illustrate our results, we consider one-dimensional synthetic examples (X = [0, 1]) for which our
assumptions are easily satisfied. Indeed, we consider the following set-up that fulfils our assumptions:

• (A1), (A3) We consider here X ∼ U ([0, (1− ε)/2] ∪ [(1 + ε)/2, 1]) and with the notations of
Example 1, we take S+ = [0, (1− ε)/2] and S− = [(1 + ε)/2, 1]. For 1 ≤ i ≤ n, xi independently
sampled from ρX we define yi = 1 if xi ∈ S+ and yi = −1 if xi ∈ S−.

• (A2) We take the kernel to be the exponential kernel K(x, x′) = exp(−|x − x′|) for which the
RKHS is a Sobolev space H = W s,2, with s > d/2, which is dense in L2 [AF03].

• (A4) With this setting we could find a closed form for gλ and checked that it verified (A4). Indeed
we could solve the optimality equation satisfied by gλ :

∀z ∈ [0, 1],

∫ 1

0

K(x, z)gλ(x)dρX(x) + λgλ(z) =

∫ 1

0

K(x, z)gρ(x)dρX(x),

the solution being a linear combination of exponentials in each set : [0, (1− ε)/2], [(1− ε)/2, (1 +
ε)/2] and [(1 + ε)/2, 1].

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

1.5

ǫ

gλ

ρX

[y|x]

FIGURE 1. Representing the ρX density (uniform with ε-margin), the best estimator, i.e.,
E(x|y) and gλ used for the simulations (λ = 0.01).

In the case of SGD with decreasing step size, we computed only the test error E(R(gn) − R∗)). For
tail averaged SGD with constant step size, we computed the test error as well as the training error, the test
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loss (which corresponds to the L2 loss :
∫ 1

0
(gn(x)− gλ(x))2dρ(x)) and the training loss. In all cases we

computed the errors of the n-th iterate with respect to the calculated gλ, taking g0 = 0. For any n > 1,

gn = gn−1 − γn
[
(gn−1(xn)− yn)Kxn + λgn−1

]
.

We can use representants to find the recursion on the coefficients. Indeed, if gn =
∑n
i=1 a

n
i Kxi , then the

following recursion for the (ani ) reads :

for i 6 n− 1, ani = (1− γnλ)an−1i

ann = −γn(

n−1∑
i=1

an−1i K(xn, xi)− yn).

From (ani ), we can also compute the coefficients of ḡn and ḡtail
n that we note āni and ān,tail

i respectively:

āni =
∑n
k=i

aki
n+1 and ān,tail

i = 1
bn/2c

∑n
k=bn/2c a

k
i . To show our theoretical results we have decided to

present the following figures:
• For the exponential convergence of the averaged and tail averaged cases, we plotted the error

log10 E(R(gn)− R∗)) as a function of n. With this scale and following our results it goes as a line
after a certain n (Figures 2 and 3 right).

• We recover the results of [DFB17] that show convergence at speed 1/n for the loss (Figure 2 left).
We adapted the scale to compare with the error plot.
• For Figure 3 left, we plotted − log(− log(E(R(gn)− R∗))) of the excess error with respect to the

log of n to show a line of slope −1/2. It meets our theoretical bound of the form exp(−K
√
n),

Note that for the plots where we plotted the expected excess errors, i.e., E(R(gn)− R∗), we plotted the
mean of the errors over 1000 replications until n = 200, whereas for the plots where we plotted the losses,
i.e., a function of ‖gn − g∗‖2, we plotted the mean of the loss over 100 replications until n = 2000.

0 500 1000 1500 2000

n
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−1

0

lo
g
10

‖g

n
−
g λ
‖2 2 train_loss

test_loss

0 50 100 150 200

n

−5

−4

−3

−2

−1

0

lo
g
10

(R

(g
n
)
−
R

∗ ) train_error

test_error

FIGURE 2. Showing linear convergence for the L01 errors in the case of margin of width ε. Left
figure corresponds to the test and training loss in the averaged case whereas the right one corresponds
to the error in the same setting. Note that the y-axis is the same while the x-axis is different of a
factor 10. The fact that the error plot is a line after a certain n matches our theoretical results. We
took the following parameters : ε = 0.05, γ = 0.25, λ = 0.01.

We can make the following observations:
First remark that between plots of losses and errors (Figure 2 left and right resp.), there is a factor 10

between the numbers of samples (200 for errors and 2000 for losses) and another factor 10 between errors
and losses (10−4 for errors and 10−3 for losses). That underlines well our theoretical result which is the
difference between exponential rates of convergence of the excess error and 1/n rate of convergence of the
loss.

Moreover, we see that even if the excess error with tail averaging seems a bit faster, we have linear rates
too for the convergence of the excess error in the averaged case. Finally, we remark that the error on the train
set is always below the one for a unknown test set (of what seems to be close to a factor 2).

APPENDIX B. PROBABILISTIC LEMMAS

In this section we recall two fundamental results for concentration inequalities in Hilbert spaces shown in
[Pin94].
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FIGURE 3. Left plot shows the error in the non-averaged case for γn = γ/
√
n and right compares

the test error between averaged and tail averaged case. We took the following parameters : ε = 0.05,
γ = 0.25, λ = 0.01.

Proposition 3
Let (Xk)k∈N be a sequence of vectors of H adapted to a non decreasing sequence of σ-fields (Fk)

such that E [Xk|Fk−1] = 0, supk6n ‖Xk‖ 6 an and
∑n
k=1 E

[
‖Xk‖2|Fk−1

]
6 b2n for some sequences

(an), (bn) ∈
(
R∗+
)N

. Then, for all t > 0, n > 1,

P

(∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥ > t

)
6 2 exp

(
t

an
−
(
t

an
+
b2n
a2n

)
ln

(
1 +

tan
bn

))
. (8)

Proof : As E [Xk|Fk−1] = 0, the Fj-adapted sequence (fj) defined by fj =
∑j
k=1Xk is a martingale and so is

the stopped-martingale (fj∧n). By applying Theorem 3.4 of [Pin94] to the martingale (fj∧n), we have the result.

Corollary 2
Let (Xk)k∈N be a sequence of vectors of H adapted to a non decreasing sequence of σ-fields (Fk)

such that E [Xk|Fk−1] = 0, supk6n ‖Xk‖ 6 an and
∑n
k=1 E

[
‖Xk‖2|Fk−1

]
6 b2n for some sequences

(an), (bn) ∈
(
R∗+
)N

. Then, for all t > 0, n > 1,

P

(∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥ > t

)
6 2 exp

(
− t2

2 (b2n + ant/3)

)
. (9)

Proof : We apply 3 and simply notice that

t

an
−
(
t

an
+
b2n
a2n

)
ln

(
1 +

tan
bn

)
= − b

2
n

a2n

((
1 +

ant

b2n

)
ln

(
1 +

ant

b2n

)
− ant

b2n

)
= − b

2
n

a2n
φ

(
ant

b2n

)
,

where φ(u) = (1 + u) ln(1 + u)− u for u > 0. Moreover φ(u) >
u2

2 (1 + u/3)
, so that:

t

an
−
(
t

an
+
b2n
a2n

)
ln

(
1 +

tan
bn

)
6 − b

2
n

a2n

(ant/b
2
n)2

2 (1 + ant/3b2n)
= − t2

2 (b2n + ant/3)
.

APPENDIX C. FROM H TO 0-1 LOSS

In this section we prove Lemma 1. Note that (A4) requires the existence of gλ having the same sign of g∗
almost everywhere on the support of ρX and with absolute value uniformly bounded from below. In Lemma 1
we prove that we can bound the 0-1 error with respect to the distance in H of the estimator ĝ form gλ.
Proof of Lemma 1 : Denote by W the event such that

∥∥ĝ − gλ∥∥H < δ/(2R). Note that for any f ∈ H,

f(x) = 〈f,Kx〉H ≤
∥∥Kx

∥∥
H

∥∥f∥∥
H
≤ R

∥∥f∥∥
H
,

for any x ∈ X. So for ĝ ∈W , we have

|ĝ(x)− gλ(x)| ≤ R
∥∥ĝ − gλ∥∥H < δ/2 ∀x ∈ X.
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Let x be in the support of ρX. By (A4) |gλ(x)| ≥ δ/2 a.e.. Let ĝ ∈ W and x ∈ X such that gλ(x) > 0, we
have

ĝ(x) = gλ(x)− (gλ(x)− ĝ(x)) ≥ gλ(x)− |gλ(x)− ĝ(x)| > 0,

so sign(ĝ(x)) = sign(gλ(x)) = +1. Similarly let ĝ ∈W and x ∈ X such that gλ(x) < 0, we have

ĝ(x) = gλ(x) + (ĝ(x)− gλ(x)) ≤ gλ(x) + |gλ(x)− ĝ(x)| < 0,

so sign(ĝ(x)) = sign(gλ(x)) = −1. Finally note that for any ĝ ∈ H, by (A4), either gλ(x) > 0 or gλ(x) < 0
a.e., so sign(ĝ(x)) = sign(gλ(x)) a.e.

Now note that by (A1), (A4) we have that sign(g∗(x)) = sign(gλ(x)) a.e., where g∗(x) := E (y|x). So
when ĝ ∈W , we have that sign(ĝ(x)) = sign(gλ(x)) = sign(g∗(x)) a.e., so

R(ĝ) = ρ({(x, y) : sign(ĝ(x)) 6= y}) = ρ({(x, y) : sign(g∗(x)) 6= y}) = R
∗.

Finally note that
E[R(ĝ)] = E[R(ĝ)1W ] + E[R(ĝ)1Wc ],

where 1W is 1 on the set W and 0 outside, W c is the complement set of W . So, when ĝ ∈W , we have

E[R(ĝ)1W ] = R
∗E[1W ] ≤ R

∗,

while
E[R(ĝ)1Wc ] ≤ E[1Wc ] ≤ q.

APPENDIX D. EXPONENTIAL RATES FOR KERNEL RIDGE REGRESSION

D.1. Results
In this section, we first specialize some results already known in literature about the consistency of kernel

ridge least-squares regression (KRLS) in H-norm [CDV07] and then we derive exponential classification
learning rates. Let (xi, yi)

n
i=1 be n examples independently and identically distributed according to ρ, that is

Assumption (A3). Denote by Σ, Σ̂ the linear operators on H defined by

Σ̂ =
1

n

n∑
i=1

Kxi ⊗Kxi , Σ =

∫
X

(Kx ⊗Kx)dρX(x),

referred to as the covariance and empirical (non-centered) covariance operators (see [FBJ04] and references
therein). We recall that the KRLS estimator ĝλ ∈ H, which minimizes the regularized empirical risk, is
defined as follows in terms of Σ̂,

ĝλ = (Σ̂ + λI)−1

(
1

n

n∑
i=1

yiKxi

)
.

Moreover we recall that the population regularized estimator gλ is characterized by see ([CDV07])

gλ = (Σ + λI)−1 (E[yKx]) .

The following lemma bounds the empirical regularized estimator with respect to the population one in terms
of λ, n and is essentially contained in the work of [CDV07]; here we rederive it in a subcase (see below for
the proof).
Lemma 3

Under assumption (A2), (A3) for any λ > 0, note un = ‖ 1n
∑n
i=1 yiKxi − E[yKx]‖H and vn =

‖Σ− Σ̂‖op, we have:

‖ĝλ − gλ‖H ≤
un
λ

+
Rvn
λ2

.

By using deviation inequalities for un, vn in Lemma 3 and then applying Lemma 1, we obtain the following
exponential bound for kernel ridge regression (see complete proof below):
Theorem 5

Under (A1),(A2),(A3),(A4) we have that for any n ∈ Z,

R(ĝλ)− R∗ = 0 with probability at least 1− 4 exp

(
−C0λ

4δ2

R8
n

)
.

Moreover, E[R(ĝλ)− R∗] ≤ 4 exp
(
−C0λ

4δ2n/R8
)
, with C−10 := 72(1 + λR2)2.
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The result above is a refinement of Thm. 2.6 from [YRC07]. We improved the dependency in n and removed
the requirements that g∗ ∈ H or g∗ = Σrw for a w ∈ L2(dρX) and r > 1/2. Similar results exist for
losses that are usually considered more suitable for classification, like the hinge or logistic loss and more
generally losses that are non-decreasing [KB05]. With respect to this latter work, our analysis uses the
explicit characterization of the kernel ridge regression estimator in terms of linear operators on H [CDV07].
This, together with (A4), allows us to use analytic tools specific to reproducing kernel Hilbert spaces, leading
to proofs that are comparatively simpler, with explicit constants and a clearer problem setting (consisting
essentially in (A1), (A4) and no assumptions on E (y|x)).

Finally note that the exponent of λ could be reduced by using a refined analysis under additional regularity
assumption of ρX and E (y|x) (as source condition and intrinsic dimension from [CDV07]), but it is beyond
the scope of this paper.

D.2. Proofs
Here we prove that Kernel Ridge Regression achieves exponential classification rates under assump-

tions (A1), (A4). In particular by Lemma 3 we bound
∥∥ĝλ − gλ∥∥H in high probability and then we use

Lemma 1 that gives exponential classfication rates when
∥∥ĝλ − gλ∥∥H is small enough in high probability.

Proof of Lemma 3 : Denote by Σ̂λ the operator Σ̂ + λI and with Σλ the operator Σ + λI . We have

ĝλ − gλ = Σ̂−1
λ

(
1

n

n∑
i=1

yiKxi

)
− Σ−1

λ (E[yKx])

= Σ̂−1
λ

(
1

n

n∑
i=1

yiKxi − E[yKx]

)
+ (Σ̂−1

λ − Σ−1
λ )E[yKx].

For the first term, since
∥∥Σ̂−1

λ

∥∥
op
≤ λ−1, we have

∥∥Σ̂−1
λ

(
1

n

n∑
i=1

yiKxi − E[yKx]

)∥∥
H
≤
∥∥Σ̂−1

λ

∥∥
op

∥∥ 1

n

n∑
i=1

yiKxi − E[yKx]
∥∥
H

≤ 1

λ

∥∥ 1

n

n∑
i=1

yiKxi − E[yKx]
∥∥
H
.

For the second term, since ‖Σ−1
λ ‖op ≤ λ−1 and ‖E[yKx]‖ ≤ E[‖yKx‖] ≤ R, we have∥∥(Σ̂−1

λ − Σ−1
λ )E[yKx]

∥∥
H

=
∥∥Σ̂−1

λ (Σ− Σ̂)Σ−1
λ E[yKx]

∥∥
H

≤
∥∥Σ̂−1

λ

∥∥
op

∥∥Σ− Σ̂
∥∥

op

∥∥Σ−1
λ

∥∥
op

∥∥E[yKx]
∥∥
H
≤ R

λ2

∥∥Σ− Σ̂
∥∥

op
.

Proof of Theorem 5 : Let τ > 0. By Lemma 2 we know that

‖ĝλ − gλ‖H ≤
un
λ

+
Rvn
λ2

,

with un = ‖ 1
n

∑n
i=1(yiKxi − E[yKx])‖H and vn = ‖Σ − Σ̂‖op. For un we can apply Pinelis inequality

(Thm. 3.5, [Pin94]), since (xi, yi)
n
i=1 are sampled independently according to the probability ρ and that yiKxi −

E[yKx] is zero mean. Since ∥∥ 1

n
(yiKxi − E[yKx])

∥∥
H
≤ 2R

n

a.e. and H is a Hilbert space, then we apply Pinelis inequality with b2∗ = 4R2

n
and D = 1, obtaining

un ≤
√

8R2τ

n
,

with probability at least 1−2e−τ . Now, denote by
∥∥·∥∥

HS
the Hilbert-Schmidt norm and recall that

∥∥·∥∥ ≤ ∥∥·∥∥
HS

.
To bound vn we apply again the Pinelis inequality [RBV10] considering that the space of Hilbert-Schmidt
operators is again a Hilbert space and that Σ̂ = 1

n

∑n
i=1Kxi ⊗Kxi , that (xi)

n
i=1 are independently sampled

from ρX and that E[Kxi ⊗Kxi ] = Σ. In particular we apply it with D = 1 and b2∗ = 4R4

n
, so

vn =
∥∥Σ− Σ̂

∥∥ ≤ ∥∥Σ− Σ̂
∥∥
HS
≤
√

8R4τ

n
,

with probability 1− 2e−τ . Finally we take the intersection bound of the two events obtaining, with probability at
least 1− 4e−τ ,

‖ĝλ − gλ‖H ≤
√

8R2τ

λ2n
+

√
8R6τ

λ4n
.
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By selecting τ = δ2

9R2(

√
8R2

λ2n
+

√
8R6

λ4n
)2

, we obtain ‖ĝλ − gλ‖H ≤ δ
3R

, with probability 1− 4e−τ . Now we can

apply Lemma 1 to have the exponential bound for the classification error.

APPENDIX E. PROOFS AND ADDITIONAL RESULTS ABOUT CONCRETE EXAMPLES

In the next subsection we prove that g∗ ∈ H is sufficient to satisfy (A4), while in subsection E.2 we prove
that specific settings naturally satisfy (A4).

E.1. From g∗ ∈ H to (A4)
Here we assume that there exists g∗ ∈ H such that g∗(x) = E (y|x) a.e. on the support of ρX. First we

introduce A(λ), that is a quantity related to the approximation error of gλ with respect to g∗ and we study
its behavior when λ→ 0. Then we express

∥∥gλ − g∗∥∥H in terms of A(λ). Finally we prove that for any δ
given by (A1), there exists λ such that (A4) is satisfied.

Let (σt, ut)t∈Z be an eigenbasis of Σ with σ1 ≥ σ2 ≥ · · · ≥ 0, and let αj = 〈g∗, uj〉 we introduce the
following quantity

A(λ) =
∑
t:σt≤λ

α2
t .

Lemma 4
Under (A2), A(λ) is decreasing for any λ > 0 and

lim
λ→0

A(λ) = 0.

Proof : Under (A2) and the linearity of trace, we have that∑
j∈N

σj = tr(Σ) =

∫
tr (Kx ⊗Kx) dρX(x) =

∫
〈Kx,Kx〉H dρX(x) =

∫
K(x, x)dρX(x) ≤ R2.

Denote by tλ ∈ Z, the number min{t ∈ Z | σt ≤ λ}. Since the (σj)j∈Z is a non-decreasing summable sequence,
then it converges to 0, then

lim
λ→0

tλ =∞.

Finally, since (α2
j )j∈Z is a summable sequence we have that

lim
λ→0

A(λ) = lim
λ→0

∑
t:σt≤λ

α2
t = lim

λ→0

∑
j=tλ

α2
j = lim

t→∞

∞∑
j=t

α2
j = 0.

Here we express
∥∥gλ − g∗∥∥H in terms of

∥∥g∗∥∥H and of A(
√
λ).

Lemma 5
Under (A2), for any λ > 0 we have∥∥gλ − g∗∥∥H ≤√√λ∥∥g∗∥∥2H +A(

√
λ).

Proof : Denote by Σλ the operator Σ + λI . Note that since g∗ ∈ H, then

E[yKx] = E[g∗(x)Kx] = E[(Kx ⊗Kx)g∗] = E[Kx ⊗Kx]g∗ = Σg∗,

then gλ = Σ−1
λ E[yKx] = Σ−1

λ Σg∗. So we have∥∥gλ − g∗∥∥H =
∥∥Σ−1

λ Σg∗ − g∗
∥∥
H

=
∥∥(Σ−1

λ Σ− I)g∗
∥∥
H

= λ
∥∥Σ−1

λ g∗
∥∥
H
.

Moreover

λ
∥∥(Σ + λI)−1g∗

∥∥
H
≤
√
λ
∥∥(Σ + λI)−1/2

∥∥√λ∥∥(Σ + λI)−1/2g∗
∥∥
H
≤
√
λ
∥∥(Σ + λI)−1/2g∗

∥∥
H
.

Now we express
√
λ
∥∥(Σ + λI)−1/2g∗

∥∥
H

in terms of A(λ). We have that

λ
∥∥(Σ + λI)−1/2g∗

∥∥2
H

= λ
〈
g∗, (Σ + λI)−1g∗

〉
= λ

〈
g∗,

∑
j∈Z

(σj + λ)−1uj ⊗ uj

 g∗

〉

=
∑
j∈Z

λα2
j

σj + λ
.
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Now divide the series in two parts∑
j∈Z

λα2
j

σj + λ
= S1(λ) + S2(λ), S1(λ) =

∑
j:σj≥

√
λ

λα2
j

σj + λ
, S2(λ) =

∑
j:σj<

√
λ

λα2
j

σj + λ
.

For each term in S1, since j is selected such that σj ≥
√
λ we have that λ(σj + λ)−1 ≤ λ(

√
λ + λ)−1 ≤

λ/
√
λ ≤
√
λ, so

S1(λ) ≤
√
λ

∑
j:σj≥

√
λ

α2
j ≤
√
λ
∑
j∈Z

α2
j =
√
λ
∥∥g∗∥∥2.

For S2, we have that λ(σj + λ)−1 ≤ 1, so

S2(λ) ≤
∑

j:σj<
√
λ

α2
j = A(

√
λ).

Proof of Proposition 1 : By Lemma 5 we have that∥∥gλ − g∗∥∥H ≤√√λ∥∥g∗∥∥2H +A(
√
λ).

Now note that the r.h.s. is non-decreasing in λ, and is 0 when λ→ 0, due to Lemma 4. Then there exists λ such
that

∥∥gλ − g∗∥∥H < δ
2R

.
Since |f(x)| ≤ R

∥∥f∥∥
H

for any f ∈ H when the kernel satisfies (A2) and moreover (A1) holds, we have that
for any x ∈ X such that g∗(x) > 0 we have

gλ(x) = g∗(x)− (g∗(x)− gλ(x)) ≥ g∗(x)− |g∗(x)− gλ(x)| ≥ δ −R
∥∥gλ − g∗∥∥ ≥ δ/2,

so sign(g∗(x)) = sign(gλ(x)) = +1 and sign(g∗(x))gλ(x) ≥ δ/2. Analogously for any x ∈ X such that
g∗(x) < 0 we have

gλ(x) = g∗(x) + (gλ(x)− g∗(x)) ≤ g∗(x) + |g∗(x)− gλ(x)| ≤ −δ +R
∥∥gλ − g∗∥∥ ≤ −δ/2,

so sign(g∗(x)) = sign(gλ(x)) = −1 and sign(g∗(x))gλ(x) ≥ δ/2. Note finally that g∗(x) = 0 on a zero
measure set by (A4).

E.2. Examples
In this subsection we first introduce some notation and basic results about Sobolev spaces, then we prove

Prop. 2 and Example 1.
In what follows denote by At the t-fattening of a set A ⊆ Rd, that is At =

⋃
x∈P Bt(x) where Bt(x) is

the open ball of ray t centered in x. We denote by W s,2(Rd) the Sobolev space endowed with norm∥∥f∥∥
W s,2 =

{
f ∈ L1(Rd) ∩ L2(Rd)

∣∣∣∣ ∫
Rd

F(f)(ω)2(1 + ‖ω‖2)s/2dω <∞
}
.

Finally we define the function φs,t : X→ R, that will be used in the proofs as follows

φs,t(x) = qd,δ t
−d 1{0}t(x) (1− ‖x/t‖2)s−d/2,

with qd,s = π−d/2Γ(1 + s)/Γ(1 + s− d/2) and t > 0, s ≥ d/2. Note that φs,t(x) is supported on {0}ε/2,
satisfies ∫

Rd
φs,t(y)dy = 1

and it is continuous and belongs to W s,2(Rd).

Proposition 4

Let P,N two compact subsets of Rd with Hausdorff distance at least ε > 0. There exists gP,N ∈W s,2

such that
gP,N (x) = 1, ∀ x ∈ P, qP,N (x) = 0, ∀ x ∈ N.

In particular gP,N = 1Pε/2 ∗ φs,ε/2.
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FIGURE 4. Pictorial representation of a model in 1D satisfying Example 1, (p = 0.15).
Blue: ρX, green: E (y|x), red: gλ.

Proof : Denote by vε,s the function (1− ‖2x/ε‖2)s−d/2. We have

gP,N (x) = qd,s(ε/2)−d
∫
Rd

1Pε/2(x− y) 1{0}ε/2(y) vε,s(y) dy

= qd,s(ε/2)−d
∫
{0}ε/2

1Pε/2(x− y) vε,s(y) dy

= qd,s(ε/2)−d
∫
{x}ε/2

1Pε/2(y) vε,s(y − x) dy

Now when x ∈ P , then {x}ε/2 ⊆ Pε/2, so

gP,N (x) = qd,s(ε/2)−d
∫
{x}ε/2

1Pε/2(y) vε,s(y − x) dy

= qd,s(ε/2)−d
∫
{x}ε/2

vε,s(y − x)dy = qd,sε
−d
∫
{0}ε/2

vε,s(y)dy

= qd,s(ε/2)−d
∫
Rd

1{0}ε/2(y)vε,s(y)dy =

∫
Rd
φs,ε/2(y)dy = 1.

Conversely, when x ∈ N , then {x}ε/2 ∩ Pε/2 = ∅, so

gP,N (x) = qd,s(ε/2)−d
∫
{x}ε/2

1Pε/2(y) vε,s(y − x) dy = 0.

Now we prove that gP,N ∈ W s,2. First note that Pε/2 is compact whenever P is compact. This implies that
1Pε/2 is in L2(Rd). Since gδ is the convolution of an L2(Rd) function and a W s,2, then it belongs to W s,2.

Proof of Proposition 2 : Since we are under (A5), we can apply Prop. 4 that prove the existence two functions
qS+,S− , qS−,S+ ∈ W

s,2 with the property to be respectively equal to 1 on S+, 0 on S−, and 1 on S−, 0 on S+.
Since W s,2 is a Banach algebra [AF03], then gh ∈W s,2 for any g, h ∈W s,2. So in particular

g∗ = g∗+qS+,S− − g∗−qS−,S+ ,

belongs to W s,2 (and so to H) and is equal to E (y|x) a.e. on the support of ρX by definition. Finally, (A4) is
satisfied, by Prop. 1.

Proof of Example 1 : By definition of y, we have that

E (y|x) = (1− 2p)g(x), g(x) = 1S+ − 1S− .

In particular note that (A1) is satisfied with δ = 1− 2p > 0 since p ∈ [0, 1/2). Moreover note that E (y|x) is
constant δ on S+ and −δ on S−. Note now that there exists two functions in W s,2 ⊆ H (due to (A6)) that are,
respectively δ on S+ and −δ on S−. They are exactly g∗+ := δqS+,S− and g∗− = −δqS−,S+ , from Prop. 4. So we
can apply Prop. 2, that given g∗+, g∗− guarantees that (A4) is satisfied. See an example in Figure 4.
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APPENDIX F. PRELIMINARIES FOR STOCHASTIC GRADIENT DESCENT

In this section we show two preliminary results on stochastic gradient descent.

F.1. Proof of the optimality condition on g∗
In this subsection we prove the optimality condition on g∗:

E [(yn − g̃∗(xn))Kxn ] = 0.

Let us recall that as H is not necessarily dense in L2, we have defined g̃∗ as the orthonormal projector for
the L2 norm on H of g∗ = E(y|x) which is the minimizer over all g ∈ L2 of E(y − g(x))2. Let F be the
linear space H̄L2 equipped with the L2 norm, remark that g̃∗ verifies g̃∗ = argmin

g∈F
‖g − g∗‖2L2

and that

g∗ − g̃∗ = PH⊥(g∗) ∈ F⊥.

E [(yn − g̃∗(xn))Kxn ] = E [(yn − E(yn|xn) + E(yn|xn)− g̃∗(xn))Kxn ]

= E [(yn − E(yn|xn))Kxn ] + E [(g∗(xn)− g̃∗(xn))Kxn ]

= E [PH⊥(g∗)(xn)Kxn ]

= 0,

where the last equality is true because we have < PH⊥(g∗),K(·, z) >L2= 0 and,

‖E [PH⊥(g∗)(xn)Kxn ] ‖2H =

∥∥∥∥∫
x

PH⊥(g∗)(x)Kxdρ(x)

∥∥∥∥2
H

=

∫
z

PH⊥(g∗)(z)

∫
x

PH⊥(g∗)(x)K(x, z)dρ(x)︸ ︷︷ ︸
=0

 dρ(z) = 0.

F.2. Proof of Lemma 2: reformulation of SGD as noisy recursion
Let n > 1 and g0 ∈ H, we start form the SGD recursion defined by (1):

gn = gn−1 − γn
[
(〈Kxn , gn−1〉 − yn)Kxn + λ(gn−1 − g0)

]
= gn−1 − γn

[
Kxn ⊗Kxngn−1 − ynKxn + λ(gn−1 − g0)

]
= gn−1 − γn

[
Kxn ⊗Kxngn−1 − g̃∗(xn)Kxn − ξnKxn + λ(gn−1 − g0)

]
,

leading to (using the optimality conditions for gλ and g∗):

gn − gλ = gn−1 − gλ − γn
[
Kxn ⊗Kxn(gn−1 − gλ) + λ(gn−1 − g0)

+ (Kxn ⊗Kxn)gλ − g̃∗(xn)Kxn

]
+ γnξnKxn

= gn−1 − gλ − γn
[
Kxn ⊗Kxn(gn−1 − gλ) + λ(gn−1 − g0)

+ (Kxn ⊗Kxn − Σ)gλ + Σgλ − g̃∗(xn)Kxn

]
+ γnξnKxn

= gn−1 − gλ − γn
[
Kxn ⊗Kxn(gn−1 − gλ) + λgn−1 + (Kxn ⊗Kxn − Σ)gλ

− λgλ + E [g̃∗(xn)Kxn ]− g̃∗(xn)Kxn

]
+ γnξnKxn

= gn−1 − gλ − γn
[
(Kxn ⊗Kxn + λI)(gn−1 − gλ) + (Kxn ⊗Kxn − Σ)gλ

+ E [g̃∗(xn)Kxn ]− g̃∗(xn)Kxn

]
+ γnξnKxn

=
[
I − γn(Kxn ⊗Kxn + λI)

]
(gn−1 − gλ)

+ γn [ξnKxn + (Σ−Kxn ⊗Kxn)gλ + g̃∗(xn)Kxn − E [g̃∗(xn)Kxn ]]

=
[
I − γn(Kxn ⊗Kxn + λI)

]
(gn−1 − gλ)

+ γn [ξnKxn − (Kxn ⊗Kxn)gλ + g̃∗(xn)Kxn + Σgλ − E [g̃∗(xn)Kxn ]]

=
[
I − γn(Kxn ⊗Kxn + λI)

]
(gn−1 − gλ)

+ γn [ξnKxn + (g̃∗(xn)− gλ(xn))Kxn − E [(g̃∗(xn)− gλ(xn))Kxn ]] .
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APPENDIX G. PROOF OF STOCHASTIC GRADIENT DESCENT RESULTS

Let us recall for the Appendix the SGD recursion defined in Eq. (3):

ηn = (I − γHn)ηn−1 + γnεn,

for which we assume (H1), (H2), (H3),(H4), (H5).
Notations. We define the following notations, which will be useful during all the proofs of the section:

• the following contractant operators: for i > k,

M(i, k) = (I − γHi) · · · (I − γHk), and M(i, i+ 1) = I,

• the following sequences Zk = M(n, k + 1)εk and Wn =
∑n
k=1 γkZk.

then,
ηn = M(n, n)ηn−1 + γnεn (10)

ηn = M(n, 1)η0 +

n∑
k=1

γkM(n, k + 1)εk, (11)

Note that in all this section, when there is no ambiguity, we will use ‖ · ‖ instead of ‖ · ‖H.

G.1. Non-averaged SGD - Proof of Theorem 1

In this section, we define the three following sequences: αn =
n∏
i=1

(1− γiλ),

βn =

n∑
k=1

γ2k

n∏
i=k+1

(1− γiλ)2 and ζn = sup
k6n

γk

n∏
i=k+1

(1− γiλ).

We can decompose ηn in two terms:

ηn = M(n, 1)η0︸ ︷︷ ︸
Biais term

+ Wn︸︷︷︸
Noise term

, (12)

• The biais term represents the speed at which we forget initial conditions. It is the product of n
contracting operators

‖M(n, 1)η0‖ 6
n∏
i=1

(1− γiλ)‖η0‖ = αn‖η0‖.

• The noise term Wn which is a martingale. We are going to show by using a concentration inequality
that the probability of the event {‖Wn‖ ≥ t} goes to zero exponentially fast.

G.1.1. General result for all (γn). As Wn =
∑n
k=1 γkZk, we want to apply Corollary 2 of section B to

(γkZk)k∈N that is why we need the following lemma:

Lemma 6
We have the following bounds:

sup
k6n
‖γkZk‖ 6 c1/2ζn, and (13)

n∑
k=1

E
[
‖γkZk‖2|Fk−1

]
6 trCβn, (14)

where c and C are defined by (H3).

Proof : First, ‖γkZk‖ = γk ‖M(n, k + 1)εk‖ ≤ γk ‖M(n, k + 1)‖op ‖εk‖ ≤ γk
αn
αk
‖εk‖ 6 ζnc

1/2.

Second,
n∑
k=1

E
[
‖γkZk‖2|Fk−1

]
6

n∑
k=1

α2
n

α2
k

γ2
k E ‖εk‖2

6
n∑
k=1

α2
n

α2
k

γ2
k trC.
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Hence,
n∑
k=1

E
[
‖γkZk‖2|Fk−1

]
6

n∑
k=1

γ2
k

n∏
i=k+1

(1− γiλ)2trC

= trCβn.

Proposition 5
We have the following inequality: for t > 0, n > 1,

‖ηn‖ 6 αn‖η0‖+ Vn, with (15)

P (Vn > t) 6 2 exp

(
− t2

2(trCβn + c1/2ζnt/3)

)
. (16)

Proof : We just need to apply Lemma 6 and Corollary 2 to the martingale Wn and Vn = ‖Wn‖ for all n.

G.1.2. Result for γn = γ/nα. We now derive estimates of αn, βn and ζn to have explicit bound for the
previous result in the case where γn =

γ

nα
for α ∈ [0, 1]. Some of the estimations are taken from [BM11].

Lemma 7

In the interesting particular case where γn =
γ

nα
for α ∈ [0, 1]:

• for α = 1, i.e γn =
γ

n
, then ζn =

γ

1− γλ
αn, and we have the following estimations for

γλ < 1/2:

(i) αn 6
1

nγλ
, (ii) βn 6

2(1− γλ)

1− 2γλ

4γλγ2

n2γλ
, (iii) ζn 6

γ

(1− λγ)nγλ
.

• for α = 0, i.e γn = γ, then ζn = γ, and we have the following:
(i) αn = (1− γλ)n, (ii) βn 6

γ

λ
, (iii) ζn = γ.

• for α ∈ ]0, 1[ , ζn = max

{
γn,

γ

1− γλ
αn

}
, and we have the following estimations:

(i) αn 6 exp

(
− γλ

1− α
(
(n+ 1)1−α − 1

))
,

(ii) Denoting Lα = 2λγ
1−α21−α

(
1−

(
3
4

)1−α)
, we distinguish three cases:

– α > 1/2, βn 6 γ2 2α
2α−1 exp

(
−Lαn1−α

)
+ 2αγ

λnα ,
– α = 1/2, βn 6 γ2 ln(3n) exp

(
−Lαn1−α

)
+ 2αγ

λnα ,
– α < 1/2, βn 6 γ2 n

1−2α

1−2α exp
(
−Lαn1−α

)
+ 2αγ

λnα .

(iii) ζn 6 max
{

γ
1−γλ exp

(
− γλ

1−α
(
(n+ 1)1−α − 1

))
, γ
nα

}
.

Note that in this case for n large enough we have the following estimations:

(i) αn 6 exp

(
− γλ

21−α(1− α)
n1−α

)
, (ii) βn 6

2α+1γ

λnα
, (iii) ζn 6

γ

nα
.

Proof : First we show for α ∈ [0, 1] the equality for ζn. Denote ak = γk
∏n
i=k+1(1 − γiλ), we want to find

ζn = supk6n ak. We show for γn =
γ

nα
that (ak)k>1 decreases then increases so that ζn = max{a1, an}. Let

k 6 n− 1,
ak+1

ak
=

γk+1

γk

1

(1− γk+1λ)

=
1

γk
γk+1

− γkλ

Hence,
ak
ak+1

− 1 =
γk
γk+1

− γkλ− 1. Take α ∈ ]0, 1[, in this case where γn =
γ

nα
,

ak
ak+1

− 1 =

(
1 +

1

k

)α
− γλ

kα
− 1.
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A rapid study of the function fα(x) =

(
1 +

1

x

)α
− γλ

xα
− 1 in R?+ shows that it decreases until x? =

(γλ)
1

(α−1) − 1 then increases. This concludes the proof for α ∈ ]0, 1[. By a direct calculation for α = 1,
ak
ak+1

− 1 =
1− γλ
k

> 0 thus ak is non increasing and ζn = a1 =
γ

1− γλαn. Similarly, for α = 0,
ak
ak+1

− 1 = γλ < 0 thus ak is increasing and ζn = an = γn.

We show now the different estimations we have for αn, βn and ζn for the three cases above.
• for α = 1,

lnαn =

n∑
i=1

ln

(
1− γλ

i

)
6 −γλ

n∑
i=1

1

i
6 −γλ lnn

αn 6
1

nγλ
.

Then,

βn = γ2
n∑
k=1

1

k2

n∏
i=k+1

(
1− γλ

i

)2

βn 6 γ2
n∑
k=1

1

k2
exp

(
−2γλ

n∑
i=k+1

1

i

)

6 γ2
n∑
k=1

1

k2
exp

(
−2γλ ln

(
n+ 1

k + 1

))

6 γ2
n∑
k=1

1

k2

(
k + 1

n+ 1

)2γλ

6 4γλγ2
n∑
k=1

1

k2

(
k

n

)2γλ

6
4γλγ2

n2γλ

n∑
k=1

k2γλ−2,

Moreover for γλ <
1

2
,

n∑
k=1

k2γλ−2 6 1− 1

2γλ− 1
=

2(1− γλ)

1− 2γλ
, hence,

βn 6
2(1− γλ)

1− 2γλ

4γλγ2

n2γλ

Finally,

ζn =
γ

1− γλαn 6
γ

1− γλ
1

nγλ
.

• for α = 0,

αn =

n∏
i=1

(1− γλ) = (1− γλ)n.

Then,

βn = γ2
n∑
k=1

n∏
i=k+1

(1− γλ)2 = γ2
n∑
k=1

(1− γλ)2(n−k) 6
1

1− (1− λγ)2
6
γ

λ
.

Finally,

ζn = γn = γ.

• for α ∈]0, 1[,

lnαn =

n∑
i=1

ln

(
1− γλ

iα

)
6 −γλ

n∑
i=1

1

iα
6 −γλ (n+ 1)1−α − 1

1− α

αn 6 exp

(
− γλ

1− α
(
(n+ 1)1−α − 1

))
.
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To have an estimation on βn, we are going to split it into two sums. Let m ∈ J1, nK,

βn =

n∑
k=1

γ2
k

n∏
i=k+1

(1− γiλ)2 =

m∑
k=1

γ2
k

n∏
i=k+1

(1− γiλ)2 +

n∑
k=m+1

γ2
k

n∏
i=k+1

(1− γiλ)2

βn 6
m∑
k=1

γ2
k exp

(
−2λ

n∑
i=m+1

γi

)
+
γm
λ

n∑
k=m+1

n∏
i=k+1

(1− γiλ)2 λγk

6
n∑
k=1

γ2
k exp

(
−2λ

n∑
i=m+1

γi

)

+
γm
λ

n∑
k=m+1

[
n∏

i=k+1

(1− γiλ)2 −
n∏

i=k+1

(1− γiλ)2 (1− γkλ)

]

6
n∑
k=1

γ2
k exp

(
−2λ

n∑
i=m+1

γi

)
+
γm
λ

n∑
k=m+1

[
n∏

i=k+1

(1− γiλ)2 −
n∏
i=k

(1− γiλ)2
]

6
n∑
k=1

γ2
k exp

(
−2λ

n∑
i=m+1

γi

)
+
γm
λ

(
1−

n∏
i=m+1

(1− γiλ)2
)

6
n∑
k=1

γ2
k exp

(
−2λ

n∑
i=m+1

γi

)
+
γm
λ
.

By taking γn =
γ

nα
and m = bn

2
c, we get:

βn 6 γ2
n∑
k=1

1

k2α
exp

−2λγ

n∑
i=bn

2
c+1

1

iα

+
2αγ

λnα

6 γ2
n∑
k=1

1

k2α
exp

(
− 2λγ

1− α

(
(n+ 1)1−α −

(n
2

+ 1
)1−α))

+
2αγ

λnα

6 γ2
n∑
k=1

1

k2α
exp

(
− 2λγ

1− αn
1−α

((
1 +

1

n

)1−α

−
(

1

2
+

1

n

)1−α
))

+
2αγ

λnα

6 γ2
n∑
k=1

1

k2α
exp

(
− 2λγ

1− αn
1−α21−α

(
1−

(
3

4

)1−α
))

+
2αγ

λnα
.

Calling Sαn =
∑n
k=1

1
k2α

and noting that: for α > 1/2, Sαn 6 2α
2α−1

, α = 1/2, Sαn 6 ln(3n) and

α < 1/2, Sαn 6 n1−2α

1−2α
we have the expected result.

Finally,

ζn 6 max

{
γ

1− γλ exp

(
− γλ

1− α
(
(n+ 1)1−α − 1

))
,
γ

nα

}
.

With this estimations we can easily show the Theorem 1. In the following we recall the main result of this
Theorem and give an extension for α = 0 and α = 1 that cannot be found in the main text.
Proposition 6 (SGD, decreasing step size: γn = γ/nα)

Assume (H1), (H2), (H3), γn = γ/nα, γλ < 1 and denote by ηn ∈ H the n-th iterate of the recursion
in Eq. (3). We have for t > 0, n > 1,

• for α = 1 and γλ < 1/2, ‖gn − gλ‖H 6
‖g0 − gλ‖H

nγλ
+ Vn, almost surely, with

P (Vn > t) 6 2 exp

(
− t2

43/2(trC)γ2/((1− 2γλ)nγλ) + 4tc1/2γ/3
· nγλ

)
;

• for α = 0, ‖gn − gλ‖H 6 (1− γλ)n‖g0 − gλ‖H + Vn, almost surely, with

P (Vn > t) 6 2 exp

(
− t2

2γ(trC/λ+ tc1/2/3)

)
;
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• for α ∈ (0, 1), ‖gn− gλ‖H 6 exp
(
− γλ

1−α
(
(n+ 1)1−α − 1

))
‖g0− gλ‖H +Vn, almost surely

for n large enough 5, with

P (Vn > t) 6 2 exp

(
− t2

γ(2α+2trC/λ+ 2c1/2t/3)
· nα

)
.

Proof of Theorem 1 : We apply Proposition 5, and the bound found on αn, βn and ζn in Lemma 7 to get the results.

G.2. Averaged SGD for the variance term (η0 = 0) - Proof of Theorem 2
We consider the same recursion but with γn = γ:

ηn = (I − γHn)ηn−1 + γεn,

started at η0 = 0 and with assumptions (H1), (H2), (H3),(H4), (H5).
However, in this section, we consider the averaged:

η̄n =
1

n+ 1

n∑
i=0

ηi.

Thus, we get

η̄n =
1

n+ 1

n∑
i=0

γ

i∑
k=1

M(i, k + 1)εk =
γ

n+ 1

n∑
k=1

( n∑
i=k

M(i, k + 1)
)
εk =

γ

n+ 1

n∑
k=1

Z̄k.

Our the goal is to bound P (‖η̄n‖ > t) using Propostion 3 that is going to lead us to some Bernstein

concentration inquality. Calling, as above, Z̄k =

n∑
i=k

M(i, k + 1)εk, and as E
[
Z̄k|Fk−1

]
= 0 we just need

to bound, supk6n ‖Z̄k‖ and
∑n
k=1 E

[
‖Z̄k‖2|Fk−1

]
. For a more general result, we consider in the following

lemma (A1/2Z̄k)k.

Lemma 8

Assuming (H1), (H2), (H3),(H4), (H5), we have the following bounds for Z̄k =

n∑
i=k

M(i, k + 1)εk:

sup
k6n
‖A1/2Z̄k‖ 6

c1/2‖A‖1/2op

γλ
(17)

n∑
k=1

E
[
‖A1/2Z̄k‖2|Fk−1

]
6 n

1

γ2
1

1− γ/2γ0
tr
(
AH−2 · C

)
. (18)

Proof : First ‖A1/2Z̄k‖ 6 ‖A‖1/2op ‖Z̄k‖ and we have, almost surely, ‖εk‖ 6 c1/2 and Hn < λI , thus for all k, as
γλ 6 1, I − γHk 4 (1− γλ)I . Hence, ‖M(i, k + 1)‖op 6 (1− γλ)i−k and,

‖Z̄k‖ 6 ‖εk‖
n∑
i=k

‖M(i, k + 1)‖op 6 c1/2
n∑
i=k

(1− γλ)i−k 6
c1/2

γλ

Second, we need an upper bound on E
[
‖A1/2Z̄k‖2|Fk−1

]
, we are going to find it in two steps:

• Step 1: we first show that the upper bound depends of the trace of some operator involving H−1.

E
[
‖A1/2Z̄k‖2|Fk−1

]
6 2

n∑
i=k

tr
(
A (γH)−1 E [M(i, k + 1)CM(i, k + 1)∗]

)
,

• Step 2: we then upperbound this sum to a telescopic one involving H−2 to finally show:

E
[
‖A1/2Z̄k‖2|Fk−1

]
6

1

γ2

1

1− γ/2γ0
tr
(
AH−2C

)
.
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Step 1: We write,

E
[
‖A1/2Z̄k‖2|Fk−1

]
= E

 ∑
k6i,j6n

〈
A1/2M(i, k + 1)εk, A

1/2M(j, k + 1)εk
〉
|Fk−1


= E

 ∑
k6i,j6n

〈M(i, k + 1)εk, AM(j, k + 1)εk〉 |Fk−1


=

∑
k6i,j6n

E [tr (M(i, k + 1)∗AM(j, k + 1) · εk ⊗ εk)]

=
∑

k6i,j6n

tr (E [M(i, k + 1)∗AM(j, k + 1)] · E [εk ⊗ εk]) .

We have E [εk ⊗ εk] 4 C so that as every operators are positive semi-definite,

E
[
‖A1/2Z̄k‖2|Fk−1

]
6

∑
k6i,j6n

tr (E [M(i, k + 1)∗AM(j, k + 1)] · C) .

We now bound the last expression by dividing it into two terms, notingM(i, k) = M i
k for more compact notations

(only until the end of the proof),∑
k6i,j6n

tr
(
E
[
M i
k+1
∗
AM j

k+1

]
· C
)

=
n∑
i=k

tr
(
E
[
M i
k+1
∗
AM i

k+1

]
· C
)

+ 2
∑

k6i<j6n

tr
(
E
[
M i
k+1
∗
AM j

k+1

]
· C
)
.

Moreover, ∑
k6i<j6n

tr
(
E
[
M i
k+1
∗
AM j

k+1

]
· C
)

=
∑

k6i<j6n

tr
(
E
[
M i
k+1
∗
A (I − γH)j−iM i

k+1

]
· C
)

=

n∑
i=k

tr

(
E

[
M i
k+1
∗
A

n∑
j=i+1

(I − γH)j−iM i
k+1

]
· C

)

=

n∑
i=k

tr
(
E
[
M i
k+1
∗
A
[
(I − γH)

(
I − (I − γH)n−i

)
(γH)−1

]
M i
k+1

]
· C
)

6
n∑
i=k

tr
(
E
[
M i
k+1
∗
A
[
(γH)−1 − I

]
M i
k+1

]
· C
)

6
n∑
i=k

tr
(
E
[
M i
k+1
∗
A (γH)−1M i

k+1

]
· C
)
−

n∑
i=k

tr
(
E
[
M i
k+1
∗
AM i

k+1

]
· C
)
.

Hence,

∑
k6i,j6n

tr
(
E
[
M i
k+1
∗
AM j

k+1

]
· C
)

=

n∑
i=k

tr
(
E
[
M i
k+1
∗
AM i

k+1

]
· C
)

+ 2
∑

k6i<j6n

tr
(
E
[
M i
k+1
∗
AM j

k+1

]
· C
)

6 2

n∑
i=k

tr
(
E
[
M i
k+1
∗
A (γH)−1M i

k+1

]
· C
)
−

n∑
i=k

tr
(
E
[
M i
k+1
∗
AM i

k+1

]
· C
)

6 2

n∑
i=k

tr
(
E
[
M i
k+1
∗
A (γH)−1M i

k+1

]
· C
)

6 2

n∑
i=k

tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

This concludes step 1.
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Step 2: Let us now try to bound
n∑
i=k

tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

. We will do so by bounding it by a

telescopic sum. Indeed,

E
[
M i+1
k+1C (γH)−1M i+1

k+1

∗
]

= E
[
M i
k+1 (I − γHi+1)C (γH)−1 (I − γHi+1)M i

k+1
∗
]

= E
[
M i
k+1E

[
C (γH)−1 − CH−1Hi+1 −Hi+1CH

−1 + γHi+1CH
−1Hi+1

]
M i
k+1
∗
]

= E
[
M i
k+1C (γH)−1M i

k+1
∗
]
− 2E

[
M i
k+1CM

i
k+1
∗
]

+ γE
[
M i
k+1E

[
Hi+1CH

−1Hi+1

]
M i
k+1
∗
]
,

such that, by multiplying the previous equality by A (γH)−1 and taking the trace we have,

tr
(
A (γH)−1 E

[
M i+1
k+1C (γH)−1M i+1

k+1

∗
])

= tr
(
A (γH)−1 E

[
M i
k+1C (γH)−1M i

k+1
∗
])

− 2tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

+ γtr
(
A (γH)−1 E

[
M i
k+1E

[
Hi+1CH

−1Hi+1

]
M i
k+1
∗
])
,

And as E
[
HkCH

−1Hk
]
4 γ−1

0 C we have,

γtr
(
A (γH)−1 E

[
M i
k+1E

[
Hi+1CH

−1Hi+1

]
M i
k+1
∗
])

6 γ/γ0tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])
,

thus,

tr
(
A (γH)−1 E

[
M i+1
k+1C (γH)−1M i+1

k+1

∗
])

6 tr
(
A (γH)−1 E

[
M i
k+1C (γH)−1M i

k+1
∗
])

− 2tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

+ γ/γ0tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

6
1

2− γ
γ0

(
tr
(
A (γH)−1 E

[
M i
k+1C (γH)−1M i

k+1
∗
])
− tr

(
A (γH)−1 E

[
M i+1
k+1C (γH)−1M i+1

k+1

∗
]))

.

If we take all the calculations from the beginning,

E
[
‖A1/2Z̄k‖2|Fk−1

]
6

∑
k6i,j6n

tr
(
E
[
M i
k+1
∗
AM j

k+1

]
· C
)

6 2

n∑
i=k

tr
(
A (γH)−1 E

[
M i
k+1CM

i
k+1
∗
])

6
2

2− γ/γ0

n∑
i=k

tr
(
A (γH)−1 E

[
M i
k+1C (γH)−1M i

k+1
∗
])

−tr
(
A (γH)−1 E

[
M i+1
k+1C (γH)−1M i+1

k+1

∗
])

6
2

2− γ/γ0
tr
(
A (γH)−1 E

[
Mk
k+1C (γH)−1Mk

k+1

∗])
6

1

γ2

1

1− γ/2γ0
tr
(
AH−2 · C

)
,

which concludes the proof if we sum this inequality from 1 to n.

We can now prove Theorem 2:

Proof of Theorem 2 : We apply Corollary 2 to the sequence
(

γ

n+ 1
A1/2Zk

)
k6n

thanks to Lemma 8. We have:

sup
k6n
‖ γ

n+ 1
A1/2Zk‖ 6

c1/2‖A1/2‖
(n+ 1)λ

n∑
k=1

E
[
‖ γ

n+ 1
A1/2Zk‖2|Fk−1

]
6

1

n+ 1

1

1− γ/2γ0
tr
(
AH−2 · C

)
,
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so that,

P
(∥∥∥A1/2η̄n

∥∥∥ > t
)

= P

(∥∥∥∥∥
n∑
k=1

γ

n+ 1
A1/2Zk

∥∥∥∥∥ > t

)
6 2 exp

− t2

2

(
tr(AH−2·C)

(n+1)(1−γ/2γ0)
+ c1/2‖A1/2‖t

3λ(n+1)

)


P
(∥∥∥A1/2η̄n

∥∥∥ > t
)
6 2 exp

− (n+ 1)t2

2tr(AH−2·C)
(1−γ/2γ0)

+ 2‖A1/2‖c1/2t
3λ

 .

G.3. Tail-averaged SGD - Proof of Corollary 1
We now prove the result for tail-averaging that allow us to relax the assumption that η0 = 0. The proof

relies on the fact that the bias term can easily be bounded as ‖η̄tail, bias
n ‖H 6 (1 − λγ)n/2‖η0‖H. For the

variance term, we can simply use the Theorem 2 for n and n/2, as η̄tail
n = 2η̄n − η̄n/2.

Proof Proof of Corollary 1 : Let n > 1 and n an even number for the sake of clarity (the case where n is an odd
number can be solved similarly),

A1/2η̄tail
n =

1

n/2

n∑
k=n/2

A1/2ηk

=
1

n/2

n∑
k=n/2

A1/2M(k, 1)η0 +
1

n/2

n∑
k=n/2

A1/2Wk

=
1

n/2

n∑
k=n/2

A1/2M(k, 1)η0 + 2A1/2Wn −A1/2Wn/2.

Hence, ∥∥∥A1/2η̄tail
n

∥∥∥ 6

∥∥∥∥∥∥ 1

n/2

n∑
k=n/2

A1/2M(k, 1)η0

∥∥∥∥∥∥+ 2
∥∥∥A1/2Wn

∥∥∥+
∥∥∥A1/2Wn/2

∥∥∥
6

1

n/2

n∑
k=n/2

∥∥∥A1/2M(k, 1)
∥∥∥
op
‖η0‖+ 2

∥∥∥A1/2Wn

∥∥∥+
∥∥∥A1/2Wn/2

∥∥∥ ,
Let Ln = 2

∥∥∥A1/2Wn

∥∥∥+
∥∥∥A1/2Wn/2

∥∥∥,∥∥∥A1/2η̄tail
n

∥∥∥ 6
1

n/2

n∑
k=n/2

‖A1/2‖op(1− γλ)k ‖η0‖+ Ln∥∥∥A1/2η̄tail
n

∥∥∥ 6 (1− γλ)n/2‖A1/2‖op ‖η0‖+ Ln,

And finally for t > 0,

P(Ln > t) = P(2
∥∥∥A1/2Wn

∥∥∥+
∥∥∥A1/2Wn/2

∥∥∥ > t)

6 P
(

2
∥∥∥A1/2Wn

∥∥∥ > t
)

+ P
(∥∥∥A1/2Wn/2

∥∥∥ > t
)

6 2

[
exp

(
− (n+ 1)(t/2)2

Et/2

)
+ exp

(
− (n/2 + 1)t2

Et

)]
.

Let us remark that Et/2 6 Et. Hence,

P(Ln > t) 6 2

[
exp

(
− (n+ 1)t2

4Et

)
+ exp

(
− (n+ 1)t2

2Et

)]
6 4 exp

(
− (n+ 1)t2

4Et

)
.

APPENDIX H. EXPONENTIALLY CONVERGENT SGD FOR CLASSIFICATION ERROR

In this section we prove the results for the error in the case of SGD. Let us recall the recursion:

gn − gλ =
[
I − γn(Kxn ⊗Kxn + λI)

]
(gn−1 − gλ) + γnεn,

with the noise term εk = ξkKxk + (g̃∗(xk)− gλ(xk))Kxk − E [(g̃∗(xk)− gλ(xk))Kxk ] ∈ H. This is the
same recursion as in Eq (3):
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ηn = (I − γHn)ηn−1 + γnεn,

with Hn = Kxn ⊗Kxn + λI and ηn = gn − gλ. First we begin by showing that for this recursion and
assuming (A2), (A3), we can show (H1), (H2), (H3),(H4).
Lemma 9 (Showing (H1), (H2), (H3),(H4) for SGD recursion.)

Let us assume (A2), (A3),
• (H1) We start at some g0 − gλ ∈ H.
• (H2) (Hn, εn) i.i.d. and Hn is a positive self-adjoint operator so that almost surely Hn < λI ,

with H = EHn = Σ + λI .
• (H3) We have the two following bounds on the noise:

‖εn‖ 6 R(1 + 2‖g̃∗ − gλ‖L∞) = c1/2

Eεn ⊗ εn 4 2
(
1 + ‖g̃∗ − gλ‖2∞

)
Σ = C

E‖εn‖2 6 2
(
1 + ‖g̃∗ − gλ‖2∞

)
trΣ = trC.

• (H4) We have:

E
[
HkCH

−1Hk

]
4

(
R2 + 2λ

)
C = γ−10 C .

Proof : (H1), (H2) are obviously satisfied.
Let us show (H3):

‖εn‖ = ‖ξnKxn + (g̃∗(xn)− gλ(xn))Kxn − E [(g̃∗(xn)− gλ(xn))Kxn ] ‖
6 (|ξn|+ |g̃∗(xn)− gλ(xn)|)‖Kxn‖+ E [|g̃∗(xn)− gλ(xn)|‖Kxn‖]
6 (1 + ‖g̃∗ − gλ‖∞)R+ ‖g̃∗ − gλ‖∞R
= R(1 + 2‖g̃∗ − gλ‖∞)

We have 6:

εn ⊗ εn 4 2ξnKxn ⊗ ξnKxn + 2 ((g̃∗(xn)− gλ(xn))Kxn − E [(g̃∗(xn)− gλ(xn))Kxn ])

⊗ ((g̃∗(xn)− gλ(xn))Kxn − E [(g̃∗(xn)− gλ(xn))Kxn ])

Moreover, E[ξnKxn ⊗ ξnKxn ] = E[ξ2nKxn ⊗Kxn ] 4 Σ, And,

E[((g̃∗(xn)− gλ(xn))Kxn − E [(g̃∗(xn)− gλ(xn)Kxn ])

⊗ ((g̃∗(xn)− gλ(xn))Kxn − E [(g̃∗(xn)− gλ(xn))Kxn ])]

= E
[
(g̃∗(xn)− gλ(xn))2(xn)Kxn ⊗Kxn

]
− E [(g̃∗(xn)− gλ(xn))Kxn ]

⊗ E [(g̃∗(xn)− gλ(xn))Kxn ]

4 E
[
(g̃∗(xn)− gλ(xn))2(xn)Kxn ⊗Kxn

]
4 ‖g̃∗ − gλ‖2∞Σ.

So that,
Eεn ⊗ εn 4 2

(
1 + ‖g̃∗ − gλ‖2∞

)
Σ

Finally Eεn ⊗ εn 4 2
(
1 + ‖g̃∗ − gλ‖2∞

)
Σ, we have trEεn ⊗ εn 6 2

(
1 + ‖g̃∗ − gλ‖2∞

)
trΣ, thus

trEεn ⊗ εn = Etrεn ⊗ εn = E‖εn‖2 6 2
(
1 + ‖g̃∗ − gλ‖2∞

)
trΣ.

To conclude the proof of this lemma, let us show (H4). We have:

E
[
(Kxk ⊗Kxk + λI)Σ(Σ + λI)−1(Kxk ⊗Kxk + λI)

]
= E

[
Kxk ⊗KxkΣ(Σ + λI)−1Kxk ⊗Kxk

]
+ λΣΣ(Σ + λI)−1 + λΣ

Moreover, λΣΣ(Σ + λI)−1 = λΣ(Σ + λI − λI)(Σ + λI)−1 = λΣ− λ2Σ(Σ + λI)−1 4 λΣ, and similarly,

E
[
Kxk ⊗KxkΣ(Σ+λI)−1Kxk ⊗Kxk

]
= E

[
(Kxk ⊗Kxk )2

]
−λE

[
Kxk ⊗Kxk (Σ+λI)−1Kxk ⊗Kxk

]
4

R2Σ.
Finally we obtain E

[
(Kxk⊗Kxk+λI)Σ(Σ+λI)−1(Kxk⊗Kxk+λI)

]
4 R2Σ+λΣ+λΣ = (R2+2λ)Σ.

6We use the following inequality: for all a and b ∈ H, (a + b) ⊗ (a + b) 4 2a ⊗ a + 2b ⊗ b. Indeed, for all x ∈ H,
〈x, (a+ b)⊗ (a+ b)x〉 = (〈a+ b, x〉)2 = (〈a, x〉+ 〈b, x〉)2 6 2〈a, x〉2 + 2〈b, x〉2 = 2〈x, (a⊗ a)x〉+ 2〈x, (b⊗ b)x〉.
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H.1. SGD with decreasing step-size: proof of Theorem 3
Proof of Theorem 3 : Let us apply Theorem 1 to gn − gλ. We assume (A2), (A3) and A = I , such that (A2), (A3),

we can show that (H1), (H2), (H3),(H4), (H5) are verified (Lemma 9). Let δ correspond to the one of (A4). We
have for t = δ/(4R), n > 1:

‖gn − gλ‖H 6 exp

(
− γλ

1− α
(
(n+ 1)1−α − 1

))
‖g0 − gλ‖H + ‖Wn‖H, a.s, with

P (‖Wn‖H > δ/(4R)) 6 2 exp

(
− δ2

CR
nα
)
, CR = γ(2α+6R2trC/λ+ 8Rc1/2δ/3).

Then if n is such that exp
(
− γλ

1−α

(
(n+ 1)1−α − 1

))
6

δ

5R‖g0 − gλ‖H
,

‖gn − gλ‖H 6
δ

5R
+

δ

4R
, with probability 1− 2 exp

(
− δ2

CR
nα
)
,

‖gn − gλ‖H <
δ

2R
, with probability 1− 2 exp

(
− δ2

CR
nα
)
.

Now assume (A1), (A4), we simply apply Lemma 1 to gn with q = 2 exp
(
− δ2

CR
nα
)

And

CR = γ(2α+6R2trC/λ+ 8Rc1/2δ/3)

CR == γ

(
2α+7R2trΣ

(
1 + ‖g̃∗ − gλ‖2∞

)
λ

+
8R2δ(1 + 2‖g̃∗ − gλ‖∞)

3

)
.

H.2. Tail averaged SGD with constant step-size: proof of Theorem 4
Proof of Theorem 4 : Let us apply Corollary 1 to gn− gλ. We assume (A2), (A3) and A = I , such that (H1), (H2),

(H3),(H4), (H5) are verified (Lemma 9). Let δ correspond to the one of (A4). We have for t = δ/(4R), n > 1:∥∥∥ḡtail
n − gλ

∥∥∥
H

6 (1− γλ)n/2‖g0 − gλ‖H + Ln ,with

P(Ln > t) 6 4 exp
(
−(n+ 1)t2/(4Et)

)
.

Then as soon as (1− γλ)n/2 6
δ

5R‖g0 − gλ‖H
,

∥∥∥ḡtail
n − gλ

∥∥∥
H

6
δ

5R
+

δ

4R
, with probability 1− 4 exp

(
−(n+ 1)δ2/(64R2Eδ/(4R))

)
,∥∥∥ḡtail

n − gλ
∥∥∥
H

<
δ

2R
, with probability 1− 4 exp

(
−(n+ 1)δ2/(64R2Eδ/(4R))

)
.

Now assume (A1), (A4), we simply apply Lemma 1 to ḡtail
n with q = 4 exp

(
−(n+ 1)δ2/KR)

)
. And

KR = 64R2Eδ/(4R) = 64R2

(
4tr(H−2C) +

2c1/2

3λ
· δ

4R

)
= 512R2 (1 + ‖g̃∗ − gλ‖2∞

)
tr((Σ + λI)−2Σ) +

32δR2(1 + 2‖g̃∗ − gλ‖∞)

3λ
.

APPENDIX I. EXTENSION OF COROLLARY 1 AND THEOREM 4 FOR THE FULL AVERAGED CASE.

I.1. Extension of Corollary 1 for the full averaged case.
Let us recall the SGD abstract recursion defined in Eq. (3) that we are going to further apply with

ηn = gn − gλ, Hn = Kxn ⊗Kxn + λI and H = Σ + λI:

ηn = (I − γHn)ηn−1 + γnεn,

ηn = M(n, 1)η0︸ ︷︷ ︸
ηbias
n

+

n∑
k=1

γkM(n, k + 1)εk︸ ︷︷ ︸
ηvariance
n

.
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Notations. The second term, ηvariance
n , is treated by Theorem 2 of the article. Now consider that η0 6= 0 and

let us bound the initial condition term i.e., ηbias
n = M(n, 1)η0. Let us define also an auxiliary sequence (un)

that follows the same recursion as ηbias
n but with H:

ηbias
n = (I − γHn)ηbias

n−1

un = (I − γH)un−1, u0 = ηbias
0 = η0.

We define wn = ηbias
n − un and as always we consider the first n average of each of these sequences that we

are going to denote w̄n, η̄bias
n and ūn respectively.

Note ε̃n = (H −Hn)ηbias
n−1 and H̃n = H , then wn follows the recursion : w0 = 0, and

wn = (I − γH̃n)wn−1 + γε̃n. (19)

Thus, wn follows the same recursion as Eq.(3) with (H̃n, ε̃n). We thus have the following corollary:
Corollary 3

Assume that the sequence (wn) defined in Eq. (19) verifies (H1), (H2), (H3), (H4) and (H5) with
(H̃n, ε̃n), then for t > 0, n > 1:

P
(∥∥∥A1/2w̄n

∥∥∥
H

> t
)
6 2 exp

[
− (n+ 1)t2

Ẽt

]
,

where Ẽt is defined with respect to the constants introduced in the assumptions (with a tilde):

Ẽt = 4tr(AH−2C̃) +
2c̃1/2‖A1/2‖op

3λ
· t.

Proof : Apply Theorem 2 to the sequence (wn) defined in Eq. (19).

Now, we can decompose ηn in three terms: ηn = ηbias
n + ηvariance

n = wn +un + ηvariance
n . We can thus state

the following general result:
Theorem 6

Assume (H1), (H2), (H3), (H4), (H5) for both (Hn, εn) and (H̃n, ε̃n), and consider the average of the
sequence defined in Eq. (3). We have for t > 0, n > 1:∥∥∥A1/2η̄n

∥∥∥
H

6

∥∥A1/2
∥∥ ‖η0‖H

(n+ 1)γλ
+ Ln ,with (20)

P(Ln > t) 6 4 exp

(
− (n+ 1)t2

max(Et, Ẽt)

)
. (21)

Proof of Theorem 6 : As η̄n = η̄bias
n + η̄variance

n = w̄n + ūn + η̄variance
n , we are going to bound ūn, then the sum

w̄n + η̄variance
n .

First, ‖ūn‖ =

∥∥∥∥∥ 1

n+ 1

n∑
k=0

uk

∥∥∥∥∥ 6
1

n+ 1

n∑
k=0

‖uk‖ 6
1

n+ 1

n∑
k=0

(1− γλ)k ‖η0‖ 6
‖η0‖

(n+ 1)γλ
.

Thus, we have: ∥∥∥A1/2η̄n

∥∥∥ 6

∥∥∥A1/2
∥∥∥ ‖η0‖

(n+ 1)γλ
+
∥∥∥A1/2w̄n

∥∥∥+
∥∥∥A1/2η̄variance

n

∥∥∥ ,
Let Ln =

∥∥∥A1/2w̄n

∥∥∥+
∥∥∥A1/2η̄variance

n

∥∥∥, for t > 0,

P(Ln > t) = P(
∥∥∥A1/2w̄n

∥∥∥+
∥∥∥A1/2η̄variance

n

∥∥∥ > t)

6 P
(∥∥∥A1/2w̄n

∥∥∥ > t
)

+ P
(∥∥∥A1/2η̄variance

n

∥∥∥ > t
)

6 2

[
exp

[
− (n+ 1)t2

Ẽt

]
+ exp

[
− (n+ 1)t2

Et

]]
.

Hence,

P(Ln > t) 6 4 exp

(
− (n+ 1)t2

max(Et, Ẽt)

)
.
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I.2. Extension of Theorem 4 for the full averaged case.
Same situation here, we want to apply full averaged SGD instead of the tail-averaged technique.

Theorem 7

Assume (A1), (A2), (A3), (A4) and γn = γ for any n, γλ < 1 and γ 6 γ0 = (R2 + λ)−1. Let ḡn be the

average of the first n iterate of the SGD recursion defined in Eq. (2), as soon as: n >
5R‖g0 − gλ‖H

λγδ
,

then

R(ḡtail
n ) = R∗, with probability at least 1− 4 exp

(
−δ2KR(n+ 1)

)
,

and in particular
ER(ḡtail

n )− R∗ 6 4 exp
(
−δ2KR(n+ 1)

)
,

with

K−1R = max


128R2

(
1 + ‖g̃∗ − gλ‖2∞

)
tr((Σ + λI)−2Σ) +

8R2(1 + 2‖g̃∗ − gλ‖∞)

3λ

64R4‖g0 − gλ‖Htr((Σ + λI)−2Σ) +
16R4‖g0 − gλ‖H

3λ
.


Proof of Theorem 7 : We want to apply Theorem 6 to the SGD recursion. We thus want to check that assumptions

(H1), (H2), (H3), (H4), (H5) are verified for both (Hn, εn) and (H̃n, ε̃n). For the recursion involving (Hn, εn),
this corresponds to Lemma 9. For the recursion involving (H̃n = H, ε̃n = (H −Hn)M(n− 1, 1)(g0 − gλ),
this corresponds to the following lemma:

Lemma 10 (Showing (H1), (H2), (H3), (H4) for the auxiliary recursion.)

Let us assume (A2), (A3),
• (H1) We start at some g0 − gλ ∈ H.
• (H2) (H̃n, ε̃n) i.i.d. and H̃n is a positive self-adjoint operator so that almost surely H̃n < λI , with H =

EH̃n = Σ + λI .
• (H3) We have the two following bounds on the noise:

‖ε̃n‖ 6 2R2‖g0 − gλ‖H = c̃1/2

Eε̃n ⊗ ε̃n 4 R2‖g0 − gλ‖HΣ = C̃

E‖ε̃n‖2 6 R2‖g0 − gλ‖HtrΣ = trC̃.

• (H4) We have:

E
[
H̃kC̃H

−1H̃k
]

4
(
R2 + λ

)
C̃ = γ̃0

−1C̃ .

Proof : (H1), (H2) are obviously satisfied.
Let us show (H3): For the first one:

‖ε̃n‖ = ‖(H −Hn)M(n− 1, 1)(g0 − gλ)‖
6 ‖(Σ−Kxn ⊗Kxn)‖ ‖M(n− 1, 1)‖ ‖g0 − gλ‖

6 2R2‖g0 − gλ‖H.

‖ε̃n‖ = ‖(H −Hn)M(n− 1, 1)(g0 − gλ)‖
6 ‖(Σ−Kxn ⊗Kxn)‖ ‖M(n− 1, 1)‖ ‖g0 − gλ‖

6 2R2‖g0 − gλ‖H.

And for the second inquality:

E [ε̃n ⊗ ε̃n|Fn−1] = E
[
(Σ−Kxn ⊗Kxn) ηbias

n ⊗ ηbias
n (Σ−Kxn ⊗Kxn) |Fn−1

]
= Σηbias

n ⊗ ηbias
n Σ− 2Σηbias

n ⊗ ηbias
n Σ + E

[
Kxn ⊗Kxnη

bias
n ⊗ ηbias

n Kxn ⊗Kxn

]
= −Σηbias

n ⊗ ηbias
n Σ + E

[
〈Kxn , η

bias
n 〉2Kxn ⊗Kxn

]
4 R2‖g0 − gλ‖HΣ.
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Finally, we have for (H4) :

E
[
H̃kC̃H

−1H̃k
]

= HC̃ = R2‖g0 − gλ‖H(Σ2 + λΣ) 4 R2‖g0 − gλ‖H(‖Σ‖op + λ)Σ

4
(
R2 + λ

)
C̃ = γ̃0

−1C̃.

Let us apply now Theorem 6 to gn − gλ. We assume (A2), (A3) and A = I , such that (H1), (H2), (H3),
(H4), (H5) are verified for both problems ((Hn, εn) and (H̃n, ε̃n)) (Lemma 9,10). Let δ correspond to the one of
Assumption (A4). We have for t = δ/(4R), n > 1:

‖ḡn − gλ‖H 6
‖g0 − gλ‖H
(n+ 1)γλ

+ Ln ,with

P(Ln > t) 6 4 exp

(
− (n+ 1)t2

max(Et, Ẽt)

)
.

Then as soon as
1

(n+ 1)λγ
6

δ

5R‖g0 − gλ‖H
,

‖ḡn − gλ‖H 6
δ

5R
+

δ

4R
, with probability 1− 4 exp

(
− (n+ 1)δ2

16R2 max(Eδ/4R, Ẽδ/4R)

)
,

‖ḡn − gλ‖H <
δ

2R
, with probability 1− 4 exp

(
− (n+ 1)δ2

16R2 max(Eδ/4R, Ẽδ/4R)

)
.

Now assume (A1), (A4), we now only have to apply Lemma 1 to the estimator ḡn with the probability

q = 4 exp

(
− (n+ 1)δ2

16R2 max(Eδ/4R, Ẽδ/4R)

)
. And,

K−1
R = 16R2 max(Eδ/4R, Ẽδ/4R)

= max


128R2 (1 + ‖g̃∗ − gλ‖2∞

)
tr((Σ + λI)−2Σ) +

8R2(1 + 2‖g̃∗ − gλ‖∞)

3λ

64R4‖g0 − gλ‖Htr((Σ + λI)−2Σ) +
16R4‖g0 − gλ‖H

3λ
.

APPENDIX J. CONVERGENCE RATE UNDER WEAKER MARGIN ASSUMPTION

We make the following assumptions:

(A7) ∀δ > 0, P (|g∗| 6 2δ) 6 δα.
(A8) There exists 7 γ > 0 such that ∀λ > 0, ‖g∗ − gλ‖∞ 6 λγ .
(A9) The eigenvalues of Σ decrease as 1/nβ for β > 1.

Note that (A7) is weaker than (A1) and to balance this we need a stronger condition on gλ than (A4) which
is (A8). (A9) is just a technical assumption needed to give explicit rate. The following Corollary corresponds
to Theorem 4 with the new assumptions. Note that it could also be shown for the full average sequence ḡn.

Corollary 4 (Explicit onvergence rate under weaker margin condition)

Assume (A2), (A3), (A7), (A8) and (A9). Let γn = γ for any n, γλ < 1 and γ 6 γ0 = (R2 + 2λ)−1.
Let ḡtail

n be the n-th iterate of the recursion defined in Eq. (2), and ḡtail
n = 1

bn/2c
∑n
i=bn/2c gi, as soon as

n >
2

γλ
ln(

5R‖g0 − gλ‖H
δ

), then

E
[
R(ḡtail

n )−R∗
]
6

Cα,β
nα·qγ,β

.

Proof : The proof technique follows the one of [AT07].
Let δ, λ > 0, such that ‖g∗ − gλ‖∞ 6 δ. Remark that ∀j ∈ N,
P
(
sign(g∗(X))gλ(X) 6 2jδ

)
6 P

(
|gλ(X)| 6 2jδ

)
6 P

(
|g∗(X)| 6 2j+1δ

)
6 2αjδα.

Note A0 = {x ∈ X| sign(g∗)gλ 6 δ} and for j > 1, Aj = {x ∈ X| 2j−1δ < sign(g∗)gλ 6 2jδ}. Then,

7This assumption is verified for the following source condition ∃g ∈ H, r > 0 s.t. PH(g) = Σrg∗. If the additionnal assumption
(A9) is verified then (A8) is verified with γ =

r−1/2
2r+1/β

[CDV07].
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E
[
R(ḡtail

n )−R∗
]

=
∑
j∈N

E
[(
R(ḡtail

n )−R∗
)
1Aj

]
= E

[(
R(ḡtail

n )−R∗
)
1sign(g∗)gλ6δ

]
+
∑
j>1

E
[(
R(ḡtail

n )−R∗
)
1Aj

]
6 P (sign(g∗(X))gλ(X) 6 δ) +

∑
j>1

E
[(
R(ḡtail

n )−R∗
)
12j−1δ<sign(g∗(X))gλ(X)62jδ

]

6 δα +
∑
j>1

EX

Ex1,...,xn
(R(ḡtail

n )−R∗
)
12j−1δ<sign(g∗(X))gλ(X)︸ ︷︷ ︸
Theorem 4

|x1, . . . , xn


·1sign(g∗(X))gλ(X)62jδ

]
6 δα + 4

∑
j>1

P
(

sign(g∗(X))gλ(X) 6 2jδ
)

exp
(
−(2jδ)2KR(δ)(n+ 1)

)
6 δα + 4δα

∑
j>1

2αj exp
(
−(2jδ)2KR(δ)(n+ 1)

)
,

and KR(δ)−1 = 29R2 (1 + ‖g̃∗ − gλ‖2∞
)

tr(Σ(Σ +λI)−2) +
32δR2(1 + 2‖g̃∗ − gλ‖∞)

3λ
. Let us now choose

δ as a function of n to cancel the dependence on n in the exponential term. In the following, as we assumed
(A8), we chose λ = δ1/γ such that ‖g∗ − gλ‖∞ 6 λγ = δ. Second, (A9) implies (see [CDV07]) that

tr(Σ(Σ + λI)−2) 6
β

(β − 1)λ1+1/β
. For δ small enough, we have:

KR(δ)−1 6 210 βR2

(β − 1)δ
1+1/β
γ

+ 32δ(γ−1)/γR2

KR(δ)−1 6 211 βR2

(β − 1)
· δ−(β+1)/βγ

Hence, if we take δ2δ(β+1)/βγ = 1/n, i.e., δ = n−γ/(2γ+1+1/β), we have:

E
[
R(ḡtail

n )−R∗
]
6

1 +
∑
j>1 2αj+2 exp

(
−4j(β − 1)/(211βR2)

)
nαγ/(2γ+1+1/β)

.

As the sum converges, we have proved the result.
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