Conference Papers Year : 2018

Exponential convergence of testing error for stochastic gradient methods

Abstract

We consider binary classification problems with positive definite kernels and square loss, and study the convergence rates of stochastic gradient methods. We show that while the excess testing loss (squared loss) converges slowly to zero as the number of observations (and thus iterations) goes to infinity, the testing error (classification error) converges exponentially fast if low-noise conditions are assumed.
Fichier principal
Vignette du fichier
colt2018.pdf (735.69 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-01662278 , version 1 (12-12-2017)
hal-01662278 , version 2 (28-06-2018)
hal-01662278 , version 3 (20-11-2018)

Identifiers

Cite

Loucas Pillaud-Vivien, Alessandro Rudi, Francis Bach. Exponential convergence of testing error for stochastic gradient methods. Conference on Learning Theory (COLT), Jul 2018, Stockholm, Sweden. ⟨hal-01662278v3⟩
333 View
526 Download

Altmetric

Share

More