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We study relaxation of nonconvex integrals of the calculus 
of variations in the setting of Cheeger–Sobolev spaces when 
the integrand does not have polynomial growth and can take 
infinite values.

1. Introduction

In this paper we are concerned with relaxation of integrals of type
ˆ

X

L(x,∇μu(x))dμ(x), (1.1)

* Corresponding author.
E-mail addresses: omar.anza-hafsa@unimes.fr (O. Anza Hafsa), jean-philippe.mandallena@unimes.fr

(J.-P. Mandallena).

http://dx.doi.org/10.1016/j.bulsci.2017.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bulsci
mailto:omar.anza-hafsa@unimes.fr
mailto:jean-philippe.mandallena@unimes.fr
http://dx.doi.org/10.1016/j.bulsci.2017.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bulsci.2017.09.002&domain=pdf


where (X, d, μ) is a metric measure space, with (X, d) a length space, i.e., the distance 
between any two points equals infimum of lengths of curves connecting the points, sep-
arable and compact, satisfying a weak (1, p)-Poincaré inequality with p > 1 and such 
that μ is a doubling positive Radon measure on X, u ∈ W 1,p

μ (X; Rm) with m � 1 an
integer and ∇μu is the μ-gradient of u, and L : X ×M → [0, ∞] is a Borel measurable
integrand not necessarily convex with respect to ξ ∈ M, where M denotes the space of 
all m ×N matrices with N � 1 an integer. Such a relaxation problem in such a metric
measure setting was studied for the first time in [10] (see also [14,39,2,27,3,40,43,35] and 
the references therein) when L has p-growth, i.e., there exist α, β > 0 such that for every 
x ∈ X and every ξ ∈ M,

α|ξ|p � L(x, ξ) � β(1 + |ξ|p), (1.2)

where it is proved (see [10, Theorem 2.21 and Corollary 2.27]) that if (1.2) holds then 
the relaxation of (1.1) with respect to the norm of Lp

μ(X; Rm) is given by

ˆ

X

QμL(x,∇μu(x))dμ(x),

where u ∈ W 1,p
μ (X; Rm) and QμL : X ×M → [0, ∞], called the μ-quasiconvexification

of L, is defined by

QμL(x, ξ) := lim
ρ→0

inf

⎧⎪⎨⎪⎩ −
ˆ

Qρ(x)

L(y, ξ + ∇μw(y))dμ(y) : w ∈ W 1,p
μ,0(Qρ(x);Rm)

⎫⎪⎬⎪⎭ (1.3)

where Qρ(x) is the open ball centered at x ∈ X with radius ρ > 0, and, for each open
set A of X, W 1,p

μ,0(A; Rm) is the closure of Lip0(A; Rm) with respect to W 1,p
μ -norm with

Lip0(A; Rm) :=
{
u ∈ Lip(X; Rm) : u = 0 on X \ A

}
, where Lip(X; Rm) is the class of

Lipschitz functions from X to Rm (see §3.1 for more details).
Our motivation for developing relaxation, and more generally calculus of variations, in 

the setting of metric measure spaces comes from applications to hyperelasticity. In fact, 
the interest of considering a general measure is that its support can be interpretated as 
a hyperelastic structure together with its singularities like for example thin dimensions, 
corners, junctions, etc. Such mechanical singular objects naturally lead to develop cal-
culus of variations in the setting of metric measure spaces. Indeed, for example, a low 
multi-dimensional structures can be described by a finite number of smooth compact 
manifolds Si of dimension ki on which a superficial measure μi = Hki |Si

is attached.
Such a situation leads to deal with the finite union of manifolds Si, i.e., X = ∪iSi,
together with the finite sum of measures μi, i.e., μ =

∑
i μi, whose mathematical frame-

work is that of metric measure spaces (for more examples, we refer the reader to [14,
50,20] and [22, Chapter 2, §10] and the references therein). In this way, having in mind 



the two basic conditions of hyperelasticity, i.e., “the non-interpenetration of the matter” 
and “the necessity of an infinite amount of energy to compress a finite piece of matter 
into a point”, it is then of interest to study relaxation of nonconvex integrals of type 
(1.1) when the integrand does not have p-growth and can take infinite values: this is 
the general purpose of the present paper. Note that although our framework needs some 
“convexity” assumptions (see especially (2.7) which implies that domain of L(x, ·) is con-
vex) it is consistent with the two above conditions of hyperelasticity (see [6, §2.2] and 
[11, §9]). Nevertheless, this dose of convexity makes our framework not consistent with 
another condition of hyperelasticity that is “frame-indifference” (see [11, Remark 9.1]). 
(For more details on the theory of hyperelasticity we refer the reader to [42].)

For related works in the Euclidean case, i.e., when (X, d, μ) = (Ω, | · − · |, LN ) where
Ω is a bounded open subset of RN and LN is the Lebesgue measure, we refer the reader
to [47,48,4,5,49,1,8,41,18,44,45] and the references therein.

Generally speaking, in this paper our main contribution (see §2.1, §2.2 and §2.3 for 
more details and more precisely Theorem 2.7) is to prove that for p > κ, with κ :=
ln(Cd)
ln(2) where Cd � 1 is the doubling constant, see (2.1), if L is radially uniformly upper

semicontinuous, i.e., there exists a ∈ L1
μ(X; ]0, ∞]) such that

lim
t→1−

sup
x∈X

sup
ξ∈Lx

L(x, tξ) − L(x, ξ)
a(x) + L(x, ξ) � 0,

where Lx denotes the effective domain of L(x, ·), and if L has G-growth, i.e., there exist
α, β > 0 such that for every x ∈ X and every ξ ∈ M,

αG(x, ξ) � L(x, ξ) � β(1 + G(x, ξ)), (1.4)

where G : X × M → [0, ∞] is a Borel measurable and p-coercive integrand satisfying 
some “convexity” assumptions, see (2.6), (2.7), (2.10) and (2.11), then the relaxation of 
(1.1) with respect to the norm of Lp

μ(X; Rm) is given by
ˆ

X

Q̂μL(x,∇μu(x))dμ(x),

where Q̂μL : X ×M → [0, ∞] is defined by

Q̂μL(x, ξ) := lim
t→1−

QμL(x, tξ).

Moreover, we also prove (see Corollary 2.8) that if, in addition, QμG = G and, for each
x ∈ X, QμL(x, ·) is lower semicontinuous on the interior int(Lx) of Lx, then

Q̂μL(x, ξ) =

⎧⎪⎨⎪⎩
QμL(x, ξ) if x ∈ X and ξ ∈ int(Lx)
lim
t→1−

QμL(x, tξ) if x ∈ X and ξ ∈ ∂Lx

∞ otherwise.



In the p-growth (and finite) case, i.e., when (1.2) holds, which was already studied 
in [10], it is not necessary to assume that L is radially uniformly upper semicontinuous, 
so that the relaxed integrand is simply given by (1.3). The main novelty of the paper is 
to deal, in the setting of metric measure spaces, with the relaxation of functionals with 
non-finite integrands satisfying non-homogeneous growth conditions of type (1.4), and to 
establish an integral representation of corresponding relaxed functionals in this context.

The plan of the paper is as follows. The main result (see Theorem 2.7 and also Corol-
lary 2.8) is given in Section 2. The proof of Theorem 2.7 is established in Section 4, 
whereas Corollary 2.8, which is a consequence of Theorem 2.7, is proved at the end 
of Section 2. Section 3 is devoted to several auxiliary results needed for proving Theo-
rem 2.7.

Notation. The open and closed balls centered at x ∈ X with radius ρ > 0 are denoted 
by:

Qρ(x) :=
{
y ∈ X : d(x, y) < ρ

}
;

Qρ(x) :=
{
y ∈ X : d(x, y) � ρ

}
.

For x ∈ X and ρ > 0 we set

∂Qρ(x) := Qρ(x) \Qρ(x) =
{
y ∈ X : d(x, y) = ρ

}
.

For A ⊂ X, the diameter of A (resp. the distance from a point x ∈ X to the subset A) 
is defined by diam(A) := supx,y∈A d(x, y) (resp. dist(x, A) := infy∈A d(x, y)).

The symbol −́ stands for the mean-value integral

−
ˆ

B

fdμ = 1
μ(B)

ˆ

B

fdμ.

2. Main results

2.1. Setting of the problem

Let (X, d, μ) be a metric measure space, where (X, d) is a length space which is 
separable and compact, and μ is a positive Radon measure on X. In what follows, we 
assume that μ is doubling, i.e., there exists a constant Cd � 1 (called doubling constant)
such that

μ (Qρ(x)) � Cdμ
(
Q ρ (x)

)
(2.1)
2



for all x ∈ X and all ρ > 0, and X enjoys a weak (1, p)-Poincaré inequality with 
1 < p < ∞, i.e., there exist CP > 0 and σ � 1 such that for every x ∈ X and every
ρ > 0,

−
ˆ

Qρ(x)

∣∣∣∣∣∣∣f − −
ˆ

Qρ(x)

fdμ

∣∣∣∣∣∣∣ dμ � ρCP

⎛⎜⎝ −
ˆ

Qσρ(x)

gpdμ

⎞⎟⎠
1
p

(2.2)

for every f ∈ Lp
μ(X) and every p-weak upper gradient g ∈ Lp

μ(X) for f . (For the definition
of the concept of p-weak upper gradient, see Definition 3.2.) As μ is doubling, for each 
Qr(x̄) with r > 0 and x̄ ∈ X we have

μ(Qρ(x))
μ(Qr(x̄)) � 4−κ

(ρ
r

)κ
(2.3)

for all x ∈ Qr(x̄) and all 0 < ρ � r, where κ := ln(Cd)
ln(2) (see [30, Lemma 4.7]).

From now on, we suppose p > κ and we fix an integer m � 1.
Let O(X) be the class of open subsets of X and let E : W 1,p

μ (X; Rm) ×O(X) → [0, ∞]
be the variational integral defined by

E(u,A) :=
ˆ

A

L(x,∇μu(x))dμ(x), (2.4)

where L : X ×M → [0, ∞] is a Borel measurable integrand not necessarily convex with 
respect to ξ ∈ M, where M denotes the space of all m × N matrices with N � 1 an
integer.

The space W 1,p
μ (X; Rm) denotes the class of p-Cheeger–Sobolev functions from X to 

Rm and ∇μu is the μ-gradient of u (see §3.1 for more details).
Let E : W 1,p

μ (X; Rm) ×O(X) → [0, ∞] be the “relaxed” variational functional of the 
variational integral E with respect to the strong convergence in Lp

μ(X; Rm), i.e.,

E(u,A) := inf
{

lim
n→∞

E(un, A) : un

Lp
μ→ u

}
.

The object of the paper is to study the problem of finding an integral representation for 
E(·, X) in the case where L does not have p-growth and can take infinite values.

2.2. General growth and ru-usc condition

Let G : X × M → [0, ∞] be a Borel measurable integrand which is p-coercive, i.e., 
there exists c > 0 such that for every x ∈ X and every ξ ∈ M,

G(x, ξ) � c|ξ|p, (2.5)



and for which there exists r > 0 such that

sup
|ξ|�r

G(·, ξ) ∈ L1
μ(X). (2.6)

Remark 2.1. If sup|ξ|�r G(·, ξ) ∈ L∞
μ (X) then (2.6) is satisfied. In particular, this latter

condition holds when G depends only on ξ and is convex.

We also assume that there exists γ > 0 such that for every x ∈ X, every t ∈]0, 1[ and 
every ξ, ζ ∈ M,

G(x, tξ + (1 − t)ζ) � γ(1 + G(x, ξ) + G(x, ζ)). (2.7)

Remark 2.2. If (2.7) holds and if 0 ∈ int
(
{ξ ∈ M : G(·, ξ) ∈ L1

μ(X)}
)

then (2.6) is
verified, see [8, Lemma 4.1].

Remark 2.3. If (2.7) holds then the effective domain Gx of G(x, ·) is convex.

Let G, G : W 1,p
μ (X; Rm) → [0, ∞] be the integral functionals defined by:

G(u) :=
ˆ

X

G(x,∇μu(x))dμ(x); (2.8)

G(u) := inf
{

lim
n→∞

G(un) : un

Lp
μ→ u

}
. (2.9)

Let us denote the effective domains of the functionals G and G by G and G respectively. 
We furthermore assume that:

G = G; (2.10)

if u ∈ G then lim
r→0

−
ˆ

Qr(x)

∣∣G(y,∇μu(x)) −G(x,∇μu(x)
∣∣dμ(y) = 0 for μ-a.a. x ∈ X. (2.11)

Remark 2.4. The assumptions (2.11) is satisfied in the following cases:

(1) if G(·, ξ) ∈ L1
μ(X) for all ξ ∈ M then (2.11) holds;

(2) if G only depends on ξ then (2.11) holds;
(3) if G(x, ξ) = G1(x) + G2(ξ) for all x ∈ X and all ξ ∈ M and if G1 ∈ L1

μ(X) then
(2.11) holds;

(4) if G(x, ξ) = G1(x)G2(ξ) for all x ∈ X and all ξ ∈ M and if G1 ∈ L1
μ(X) then (2.11)

holds.



Throughout the paper, we assume that L has G-growth, i.e., there exist α, β > 0 such 
that for every x ∈ X and every ξ ∈ M,

αG(x, ξ) � L(x, ξ) � β(1 + G(x, ξ)). (2.12)

Remark 2.5. If (2.7) and (2.12) hold then the effective domain Lx of L(x, ·) is equal to
Gx, and so is convex.

Remark 2.6. If (2.12) is satisfied then the effective domain of the functional E(·, X) is 
equal to S, and so to S when (2.10) holds.

When G(x, ·) ≡ | · |p we say that L has p-growth. The p-growth case was already 
studied in [10]. The object of this paper is to deal with the G-growth case. For this, in 
addition, we need to suppose that L is radially uniformly upper semicontinuous (ru-usc), 
i.e., there exists a ∈ L1

μ(X; ]0, ∞]) such that

lim
t→1−

Δa
L(t) � 0 (2.13)

with Δa
L : [0, 1] →] −∞, ∞] given by

Δa
L(t) := sup

x∈X
sup
ξ∈Lx

L(x, tξ) − L(x, ξ)
a(x) + L(x, ξ) .

(For more details on the concept of ru-usc, see §3.3.)

2.3. Integral representation theorem

In what follows p > κ, where κ := ln(Cd)
ln(2) with Cd � 1 given by the inequality (2.1),

and m � 1. Let QμL : X ×M → [0, ∞], called the μ-quasiconvexification of L, be given
by

QμL(x, ξ) := lim
ρ→0

inf

⎧⎪⎨⎪⎩ −
ˆ

Qρ(x)

L(y, ξ + ∇μw(y))dμ(y) : w ∈ W 1,p
μ,0(Qρ(x);Rm)

⎫⎪⎬⎪⎭ , (2.14)

where, for each A ∈ O(X), W 1,p
μ,0 (A; Rm) is the closure of Lip0(A; Rm) with respect to

W 1,p
μ -norm with Lip0(A; Rm) :=

{
u ∈ Lip(X; Rm) : u = 0 on X \A

}
, where Lip(X; Rm)

is the class of Lipschitz functions from X to Rm (see §3.1 for more details). The main 
result of the paper is the following.



Theorem 2.7. If (2.5), (2.6), (2.7), (2.10), (2.11), (2.12) and (2.13) hold then

E(u,X) =

⎧⎪⎨⎪⎩
ˆ

X

Q̂μL(x,∇μu(x))dμ(x) if u ∈ G

∞ if u ∈ W 1,p
μ (X;Rm) \G,

(2.15)

where Q̂μL : X ×M → [0, ∞] is given by

Q̂μL(x, ξ) = lim
t→1−

QμL(x, tξ).

As a consequence of Theorem 2.7, we have

Corollary 2.8. Under the hypotheses of Theorem 2.7, if QμG = G and if, for each x ∈ X,
QμL(x, ·) is lsc on the interior int(Lx) of the effective domain Lx of L(x, ·), then (2.15)
holds and

Q̂μL(x, ξ) =

⎧⎪⎨⎪⎩
QμL(x, ξ) if x ∈ X and ξ ∈ int(Lx)
lim
t→1−

QμL(x, tξ) if x ∈ X and ξ ∈ ∂Lx

∞ otherwise.
(2.16)

Proof. As QμG = G we have QμLx = Lx for all x ∈ X, where QLx denotes the effective
domain of QμL(x, ·). Moreover, from (2.7) is easily seen that Lx is convex for all x ∈ X,
hence (3.38) holds, and (2.16) follows from Theorem 3.23. �
3. Auxiliary results

3.1. The p-Cheeger–Sobolev spaces

Let p > 1 be a real number, let (X, d, μ) be a metric measure space, where (X, d) is a 
length space which is separable and compact, and μ is a positive Radon measure on X. 
We begin with the concept of upper gradient introduced by Heinonen and Koskela (see 
[33]).

Definition 3.1. A Borel function g : X → [0, ∞] is said to be an upper gradient for 
f : X → R if |f(c(1)) − f(c(0))| �

´ 1
0 g(c(s))ds for all continuous rectifiable curves

c : [0, 1] → X.

The concept of upper gradient has been generalized by Cheeger as follows (see [19, 
Definition 2.8]).

Definition 3.2. A function g ∈ Lp
μ(X) is said to be a p-weak upper gradient for f ∈ Lp

μ(X)
if there exist {fn}n ⊂ Lp

μ(X) and {gn}n ⊂ Lp
μ(X) such that for each n � 1, gn is an

upper gradient for fn, fn → f in Lp
μ(X) and gn → g in Lp

μ(X).



Denote the algebra of Lipschitz functions from X to R by Lip(X). (As X is compact, 
every Lipschitz function from X to R is bounded.) From Cheeger and Keith (see [19, 
Theorem 4.38] and [38, Definition 2.1.1 and Theorem 2.3.1]) we have

Theorem 3.3. If μ is doubling, i.e., (2.1) holds, and X enjoys a weak (1, p)-Poincaré in-
equality, i.e., (2.2) holds, then there exists a countable family {(Xk, ξk)}k of μ-measurable
disjoint subsets Xk of X with μ(X \ ∪kXk) = 0 and of functions ξk = (ξk1 , · · · , ξkN(k)) :
X → RN(k) with ξki ∈ Lip(X) satisfying the following properties:

(a) there exists an integer N � 1 such that N(k) ∈ {1, · · · , N} for all k;
(b) for every k and every f ∈ Lip(X) there is a unique Dk

μf ∈ L∞
μ (Xk; RN(k)) such that

for μ-a.e. x ∈ Xk,

lim
ρ→0

1
ρ
‖f − fx‖L∞

μ (Qρ(x)) = 0,

where fx ∈ Lip(X) is given by fx(y) := f(x) +Dk
μf(x) ·(ξk(y) −ξk(x)); in particular

Dk
μfx(y) = Dk

μf(x) for μ-a.a.y ∈ Xk;

(c) the operator Dμ : Lip(X) → L∞
μ (X; RN ) given by

Dμf :=
∑
k

1Xk
Dk

μf,

where 1Xk
denotes the characteristic function of Xk, is linear and, for each f, g ∈

Lip(X), one has

Dμ(fg) = fDμg + gDμf ;

(d) for every f ∈ Lip(X), Dμf = 0 μ-a.e. on every μ-measurable set where f is constant.

Remark 3.4. Theorem 3.3 is true without the assumption that (X, d) is a length space.

Let Lip(X; Rm) := [Lip(X)]m and let ∇μ : Lip(X; Rm) → L∞
μ (X; M) given by

∇μu :=

⎛⎜⎝ Dμu1
...

Dμum

⎞⎟⎠ with u = (u1, · · · , um).

From Theorem 3.3(c) we see that for every u ∈ Lip(X; Rm) and every f ∈ Lip(X), 
one has

∇μ(fu) = f∇μu + Dμf ⊗ u. (3.1)



Definition 3.5. The p-Cheeger–Sobolev space W 1,p
μ (X; Rm) is defined as the completion 

of Lip(X; Rm) with respect to the norm

‖u‖W 1,p
μ (X;Rm) := ‖u‖Lp

μ(X;Rm) + ‖∇μu‖Lp
μ(X;M). (3.2)

Taking Proposition 3.7(a) below into account, since ‖∇μu‖Lp
μ(X;M) � ‖u‖W 1,p

μ (X;Rm)
for all u ∈ Lip(X; Rm) the linear map ∇μ from Lip(X; Rm) to Lp

μ(X; M) has a unique
extension to W 1,p

μ (X; Rm) which will still be denoted by ∇μ and will be called the
μ-gradient.

Remark 3.6. When X is a the closure of a bounded open subset Ω of RN and μ is 
the Lebesgue measure on Ω, we retrieve the (classical) Sobolev spaces W 1,p(Ω; Rm). If
X is a compact manifold M and if μ is the superficial measure on M , we obtain the 
(classical) Sobolev spaces W 1,p(M ; Rm) on the compact manifold M . For more details 
on the various possible extensions of the classical theory of the Sobolev spaces to the 
setting of metric measure spaces, we refer to [31, §10-14] (see also [19,46,29,30]).

The following proposition (whose proof is given below, see also [10, Proposition 2.28]) 
provides useful properties for dealing with calculus of variations in the metric measure 
setting.

Proposition 3.7. Under the hypotheses of Theorem 3.3, we have:

(a) the μ-gradient is closable in W 1,p
μ (X; Rm), i.e., for every u ∈ W 1,p

μ (X; Rm) and every 
A ∈ O(X), if u(x) = 0 for μ-a.a. x ∈ A then ∇μu(x) = 0 for μ-a.a. x ∈ A;

(b) X enjoys a p-Sobolev inequality, i.e., there exist CS > 0 and χ � 1 such that

⎛⎜⎝ ˆ

Qρ(x)

|v|χpdμ

⎞⎟⎠
1
χp

� ρCS

⎛⎜⎝ ˆ

Qρ(x)

|∇μv|pdμ

⎞⎟⎠
1
p

(3.3)

for all 0 < ρ � ρ0, with ρ0 > 0, and all v ∈ W 1,p
μ,0(Qρ(x); Rm), where, for each

A ∈ O(X), W 1,p
μ,0 (A; Rm) is the closure of Lip0(A; Rm) with respect to W 1,p

μ -norm
defined in (3.2) with

Lip0(A;Rm) :=
{
u ∈ Lip(X;Rm) : u = 0 on X \A

}
;

(c) X satisfies the Vitali covering theorem, i.e., for every A ⊂ X and every family F
of closed balls in X, if inf{ρ > 0 : Qρ(x) ∈ F} = 0 for all x ∈ A then there exists
a countable disjoint subfamily G of F such that μ(A \ ∪Q∈GQ) = 0; in other words,
A ⊂

(
∪Q∈G Q

)
∪N with μ(N) = 0;

(d) for every u ∈ W 1,p
μ (X; Rm) and μ-a.e. x ∈ X there exists ux ∈ W 1,p

μ (X; Rm) such
that:



∇μux(y) = ∇μu(x) for μ-a.a. y ∈ X; (3.4)

lim
ρ→0

1
ρ
‖u− ux‖L∞

μ (Qρ(x);Rm) = 0 if p > κ, (3.5)

where κ := ln(Cd)
ln(2) with Cd � 1 given by the inequality (2.1);

(e) for every x ∈ X, every ρ > 0 and every τ ∈]0, 1[ there exists a Urysohn function
ϕ ∈ Lip(X) for the pair (X \Qρ(x), Qτρ(x))1 such that

‖Dμϕ‖L∞
μ (X;RN ) � θ

ρ(1 − τ)

for some θ > 0;
(f) for μ-a.e. x ∈ X,

lim
τ→1−

lim
ρ→0

μ(Qτρ(x))
μ(Qρ(x)) = lim

τ→1−
lim
ρ→0

μ(Qτρ(x))
μ(Qρ(x)) = 1. (3.6)

Remark 3.8. As μ is a Radon measure, if X satisfies the Vitali covering theorem, i.e., 
Proposition 3.7(c) holds, then for every A ∈ O(X) and every ε > 0 there exists a 
countable family {Qρi

(xi)}i∈I of disjoint open balls of A with xi ∈ A, ρi ∈]0, ε[ and
μ(∂Qρi

(xi)) = 0 such that μ
(
A \ ∪i∈IQρi

(xi)
)

= 0.

Proof of Proposition 3.7. Firstly, X satisfies the Vitali covering theorem, i.e., the prop-
erty (c) holds, because μ is doubling (see [25, Theorem 2.8.18]). Secondly, the closabil-
ity of the μ-gradient in Lip(X; Rm), given by Theorem 3.3(d), can be extended from 
Lip(X; Rm) to W 1,p

μ (X; Rm) by using the closability theorem of Franchi, Hajłasz and
Koskela (see [26, Theorem 10]). Thus, the property (a) is satisfied. Thirdly, according to 
Cheeger (see [19, §4, p. 450] and also [32,34]), since μ is doubling and X enjoys a weak 
(1, p)-Poincaré inequality, we can assert that there exist c > 0 and χ > 1 such that for 
every 0 < ρ � ρ0, with ρ0 � 0, every v ∈ W 1,p

μ,0(X; Rm) and every p-weak upper gradient
g ∈ Lp

μ(X; Rm) for v,

⎛⎜⎝ ˆ

Qρ(x)

|v|χpdμ

⎞⎟⎠
1
χp

� ρc

⎛⎜⎝ ˆ

Qρ(x)

|g|pdμ

⎞⎟⎠
1
p

. (3.7)

On the other hand, from Cheeger (see [19, Theorems 2.10 and 2.18]), for each w ∈
W 1,p

μ (X) there exists a unique p-weak upper gradient for w, denoted by gw ∈ Lp
μ(X)

and called the minimal p-weak upper gradient for w, such that for every p-weak upper 

1 Given a metric space (X, d), by a Urysohn function from X to R for the pair (X\V, K), where K ⊂ V ⊂ X
with K compact and V open, we mean a continuous function ϕ : X → R such that ϕ(x) ∈ [0, 1] for all 
x ∈ X, ϕ(x) = 0 for all x ∈ X \ V and ϕ(x) = 1 for all x ∈ K.



gradient g ∈ Lp
μ(X) for w, gw(x) � g(x) for μ-a.a. x ∈ X. Moreover (see [19, §4] and

also [13, §B.2, p. 363], [16] and [28, Remark 2.15]), there exists θ � 1 such that for every
w ∈ W 1,p

μ (X) and μ-a.e. x ∈ X,

1
θ
gw(x) � |Dμw(x)| � θgw(x). (3.8)

As for v = (vi)i=1,··· ,m ∈ W 1,p
μ (X; Rm) we have ∇μv = (Dμvi)i=1,··· ,m, it follows that

1
θ
|gv(x)| � |∇μv(x)| � θ|gv(x)| (3.9)

for μ-a.a. x ∈ X, where gv := (gvi)i=1,··· ,m is naturally called the minimal p-weak upper
gradient for v. Combining (3.7) with (3.9) we obtain the property (b). Fourthly, from 
Björn (see [16, Corollary 4.6(ii)] we see that for every k, every u ∈ W 1,p

μ (X; Rm) and
μ-a.e. x ∈ Xk,

∇μux(y) = ∇μu(x) for μ-a.a. y ∈ Xk,

where ux ∈ W 1,p
μ (X; Rm) is given by

ux(y) := u(y) − u(x) −∇μu(x) · (ξk(y) − ξk(x)),

and if p > κ then u is L∞
μ -differentiable at x, i.e.,

lim
ρ→0

1
ρ
‖u(y) − ux(y)‖L∞

μ (Qρ(x);Rm) = 0.

Hence the property (d) is verified. Fifthly, given ρ > 0, τ ∈]0, 1[ and x ∈ X, there exists 
a Urysohn function ϕ ∈ Lip(X) for the pair (X \Qρ(x)), Qτρ(x)) such

‖Lipϕ‖L∞
μ (X) � 1

ρ(1 − τ) ,

where for every y ∈ X,

Lipϕ(y) := lim
d(y,z)→0

|ϕ(y) − ϕ(z)|
d(y, z) .

But, since μ is doubling and X enjoys a weak (1, p)-Poincaré inequality, from Cheeger 
(see [19, Theorem 6.1]) we have Lipϕ(y) = gϕ(y) for μ-a.a. y ∈ X, where gϕ is the
minimal p-weak upper gradient for ϕ. Hence

‖Dμϕ‖L∞
μ (X;RN ) � θ
ρ(1 − τ)



because |Dμϕ(y)| � θ|gϕ(y)| for μ-a.a. y ∈ X. Consequently the property (e) holds.
Finally, as (X, d) is a length space, from Colding and Minicozzi (see [21] and [19, Propo-
sition 6.12]) we can assert that there exists δ > 0 such that for every x ∈ X, every ρ > 0
and every τ ∈]0, 1[,

μ(Qρ(x) \Qτρ(x)) � 2δ(1 − τ)δμ(Qρ(x)),

which implies the property (f). �
The following result comes from Hajłasz and Koskela (see [34, Theorem 5.1] and [30, 

Theorem 9.7 and Remark 9.8]).

Theorem 3.9. Assume that the assumptions of Theorem 3.3 hold and let κ := ln(Cd)
ln(2)

where Cd � 1 is given by the inequality (2.1). If p > κ then for every r > 0 and every
x̄ ∈ X there exists C(r, ̄x) > 0 such that

|u(y) − u(z)| � C(r, x̄)d(y, z)1−
κ
p

⎛⎜⎝ ˆ

Qr(x̄)

|∇μu|pdμ

⎞⎟⎠
1
p

for all u ∈ W 1,p
μ (X; Rm) and all y, z ∈ Qr(x̄).

Proof of Theorem 3.9. Since (X, d, μ) is a compact (and so complete) doubling metric 
space, (X, d, μ) is proper, i.e., every closed ball is compact (see [36, Lemma 4.1.14]). 
Moreover, as (X, d) is a length space, from [30, Theorem 9.7 and Remark 9.8] we can 
assert that there exists c > 0 such that

|w(y) − w(z)| � cr
κ
p d(y, z)1−

κ
p

⎛⎜⎝ −
ˆ

Qr(x̄)

gpwdμ

⎞⎟⎠
1
p

(3.10)

for all w ∈ W 1,p
μ (X), all x̄ ∈ X, all r > 0 and all y, z ∈ Qr(x̄), where gw ∈ Lp

μ(X)
denotes the minimal p-weak upper gradient for w. On the other hand, from (2.3) it is 
easy to see that for every r > 0 and every x̄ ∈ X there exists θ(r, ̄x) > 0 such that

μ(Qr(x̄)) � θ(r, x̄)rκ.

Moreover, by the left inequality in (3.8) we have −́
Qρ(x) g

p
wdμ � αp −́

Qρ(x) |Dμw|pdμ.
Thus, for each r > 0, each x̄ ∈ X and each y, z ∈ Qr(x̄), (3.10) can be rewritten as
follows

|w(y) − w(z)| � C(r, x̄)d(y, z)1−
κ
p

⎛⎜⎝ ˆ
|Dμw|pdμ

⎞⎟⎠
1
p

Qr(x̄)



with C(r, ̄x) = cα
θ(r,x̄) > 0. It follows that for every r > 0 and every x̄ ∈ X, we have

|u(y) − u(z)| � C(r, x̄)d(y, z)1−
κ
p

m∑
i=1

⎛⎜⎝ ˆ

Qr(x̄)

|Dμui|pdμ

⎞⎟⎠
1
p

� C(r, x̄)d(y, z)1−
κ
p

⎛⎜⎝ ˆ

Qr(x̄)

m∑
i=1

|Dμui|pdμ

⎞⎟⎠
1
p

= C(r, x̄)d(y, z)1−
κ
p

⎛⎜⎝ ˆ

Qr(x̄)

|∇μu|pdμ

⎞⎟⎠
1
p

for all u ∈ W 1,p
μ (X; Rm) and all y, z ∈ Qr(x̄), and the proof is complete. �

Denote the space of continuous functions from X to Rm by C(X; Rm). As a conse-
quence of Theorem 3.9 we have

Corollary 3.10. Under the assumptions of Theorem 3.3, if p > κ then W 1,p
μ (X; Rm)

continuously embeds into C(X; Rm), i.e., W 1,p
μ (X; Rm) ⊂ C(X; Rm) and there exists 

K0 > 0 such that

‖u‖C(X;Rm) � K0‖u‖W 1,p
μ (X;Rm) (3.11)

for all u ∈ W 1,p
μ (X; Rm). Moreover, there exists K1 > 0 such that

|u(y) − u(z)| � K1d(y, z)1−
κ
p ‖∇μu‖Lp

μ(X;M) (3.12)

for all u ∈ W 1,p
μ (X; Rm) and all y, z ∈ X.

Proof of Corollary 3.10. Applying Theorem 3.9 with r = diam(X) and for a fixed x̄ =
x0 ∈ X, where diam(X) = sup{d(y, z) : y, z ∈ X} < ∞ because (X, d) is compact, we
see that

|u(y) − u(z)| � C (diam(X), x0) d(y, z)1−
κ
p ‖∇μu‖Lp

μ(X;M)

� C (diam(X), x0) diam(X)1−
κ
p ‖∇μu‖Lp

μ(X;M) (3.13)

for all u ∈ W 1,p
μ (X; Rm) and all y, z ∈ X. Hence (3.12) holds with K1 = C (diam(X), x0)

and every u ∈ W 1,p
μ (X; Rm) is (1 − κ

p )-Hölder continuous. In particular, it follows that
W 1,p

μ (X; Rm) ⊂ C(X; Rm). On the other hand, given any u ∈ W 1,p
μ (X; Rm) and any 

y ∈ X, we have |u(y)|p � 2p (|u(y) − u(z)|p + |u(z)|p) for all z ∈ X, and consequently



μ(X)
1
p |u(y)| � 21+ 1

p

⎛⎝ˆ
X

|u(y) − u(z)|pdμ(z)

⎞⎠ 1
p

+ 21+ 1
p ‖u‖Lp

μ(X;Rm). (3.14)

But, by (3.13) we have

⎛⎝ˆ
X

|u(y) − u(z)|pdμ(z)

⎞⎠ 1
p

� μ(X)
1
pC (diam(X), x0) diam(X)1−

κ
p ‖∇μu‖Lp

μ(X;M).

(3.15)

Hence, combining (3.14) and (3.15) we deduce that for every y ∈ X,

|u(y)| � 21+ 1
pC (diam(X), x0) diam(X)1−

κ
p ‖∇μu‖Lp

μ(X;M) + 21+ 1
p

μ(X)
1
p

‖u‖Lp
μ(X;Rm)

� K0‖u‖W 1,p
μ (X;Rm)

with K0 = sup
{

21+ 1
pC (diam(X), x0) diam(X)1−

κ
p , 21+ 1

p

μ(X)
1
p

}
, and (3.11) follows. �

As a consequence of Corollary 3.10 we have the following L∞
μ -compactness result in

the framework of the p-Cheeger–Sobolev spaces with p > κ.

Corollary 3.11. Under the assumptions of Theorem 3.3, if p > κ and if u ∈ W 1,p
μ (X; Rm)

and {un}n ⊂ W 1,p
μ (X; Rm) are such that

lim
n→∞

‖un − u‖Lp
μ(X;Rm) = 0 and sup

n�1
‖∇μun‖Lp

μ(X;M) < ∞, (3.16)

then, up to a subsequence,

lim
n→∞

‖un − u‖L∞
μ (X;Rm) = 0. (3.17)

Proof of Corollary 3.11. From (3.16) we deduce that supn�1 ‖un‖W 1,p
μ (X;Rm) < ∞, and

using Corollary 3.10 we can assert that supn�1 ‖un‖C(X;Rm) < ∞, i.e., {un}n is bounded
in C(X; Rm) with (X, d) a compact metric space. On the other hand, using (3.12) it 
is easy to see that {un}n is equicontinuous, and (3.17) follows from Arzelà–Ascoli’s
theorem. �
3.2. The De Giorgi–Letta lemma

Let X = (X, d) be a metric space, let O(X) be the class of open subsets of X and let 
B(X) be the class of Borel subsets of X, i.e., the smallest σ-algebra containing the open 



(or equivalently the closed) subsets of X. The following result is due to De Giorgi and 
Letta (see [24] and also [17, Lemma 3.3.6, p. 105]).

Lemma 3.12. Let S : O(X) → [0, ∞] be an increasing set function, i.e., S(A) � S(B)
for all A, B ∈ O(X) such A ⊂ B, satisfying the following four conditions:

(a) S(∅) = 0;
(b) S is superadditive, i.e., S(A ∪ B) � S(A) + S(B) for all A, B ∈ O(X) such that

A ∩B = ∅;
(c) S is subadditive, i.e., S(A ∪B) � S(A) + S(B) for all A, B ∈ O(X);
(d) there exists a finite Radon measure ν on X such that S(A) � ν(A) for all A ∈ O(X).

Then, S can be uniquely extended to a finite positive Radon measure on X which is 
absolutely continuous with respect to ν.

3.3. Integral representation of the Vitali envelope of a set function

What follows was first developed in [15,12] (see also [37]). Here we only recall what 
is needed for proving Theorem 2.7. Let (X, d) be a metric space, let O(X) be the class 
of open subsets of X and let μ be a positive finite Radon measure on X. We begin with 
the concept of differentiability with respect to μ of a set function.

Definition 3.13. We say that a set function Θ : O(X) → R is differentiable with respect 
to μ if

dμΘ(x) := lim
ρ→0

Θ(Qρ(x))
μ(Qρ(x)) (3.18)

exists and is finite for μ-a.e. x ∈ X.

Remark 3.14. It is easy to see that the limit in (3.18) exists and is finite if and only if 
−∞ < d+

μ Θ � d−μ Θ < ∞, where d−μ Θ : X → [−∞, ∞[ and d+
μ Θ : X →] − ∞, ∞] are 

given by:

d−μ Θ(x) := lim
ρ→0

d−μ Θ(x, ρ) with d−μ Θ(x, ρ) := inf
{

Θ(Q)
μ(Q) : Q ∈ Ba(X,x, ρ)

}
; (3.19)

d+
μ Θ(x) := lim

ρ→0
d+
μ Θ(x, ρ) with d+

μ Θ(x, ρ) := sup
{

Θ(Q)
μ(Q) : Q ∈ Ba(X,x, ρ)

}
, (3.20)

where Ba(X, x, ρ) denotes the class of open balls Q of X such that x ∈ Q, diam(Q) ∈]0, ρ[
and μ(∂Q) = 0, where ∂Q := Q \Q. We then have dμΘ = d−μ Θ = d+

μ Θ.

Remark 3.15. In (3.19) and (3.20) we can replace Ba(X, x, ρ) by Ba(A, x, ρ) whenever 
A ∈ O(X) and x ∈ A.



For each ε > 0 and each A ∈ O(X), we denote the class of countable families {Qi :=
Qρi

(xi)}i∈I of disjoint open balls of A with xi ∈ A, ρi = diam(Qi) ∈]0, ε[ and μ(∂Qi) = 0
such that μ(A \ ∪i∈IQi) = 0 by Vε(A).

Definition 3.16. Given Θ : O(X) → R, for each ε > 0 we define Θε : O(X) → [−∞, ∞]
by

Θε(A) := inf
{∑

i∈I

Θ(Qi) : {Qi}i∈I ∈ Vε(A)
}
. (3.21)

By the Vitali envelope of Θ we denote the set function Θ∗ : O(X) → [−∞, ∞] defined 
by

Θ∗(A) := sup
ε>0

Θε(A) = lim
ε→0

Θε(A). (3.22)

The interest of Definition 3.16 comes from the following integral representation result 
whose proof is given below.

Theorem 3.17. Let Θ : O(X) → R be a set function satisfying the following two condi-
tions:

(a) there exists a finite Radon measure ν on X which is absolutely continuous with
respect to μ such that |Θ(A)| � ν(A) for all A ∈ O(X);

(b) Θ is subadditive, i.e., Θ(A) � Θ(B) + Θ(C) for all A, B, C ∈ O(X) with B, C ⊂ A,
B ∩ C = ∅ and μ(A \B ∪ C) = 0.

Then Θ is differentiable with respect to μ, dμΘ ∈ L1
μ(X) and

Θ∗(A) =
ˆ

A

dμΘ(x)dμ(x)

for all A ∈ O(X).

As a direct consequence, we have

Corollary 3.18. Let Θ : O(X) → R be a set function satisfying the assumptions (a) and
(b) of Theorem 3.17. Then Θ and Θ∗ are differentiable with respect to μ and dμΘ∗ = dμΘ.

Proof of Theorem 3.17. First of all, from (a) we see that −dμν � d−μ Θ � d+
μ Θ � dμν.

Hence d−μ Θ, d+
μ Θ ∈ L1

μ(X) because ν is a finite Radon measure which is absolutely
continuous with respect to the finite Radon measure μ. So λ−(A), λ+(A) ∈ R for all
A ∈ O(X), where λ−, λ+ : O(X) → R are given by:



λ−(A) :=
ˆ

A

d−μ Θ(x)dμ(x);

λ+(A) :=
ˆ

A

d+
μ Θ(x)dμ(x).

In what follows, we consider Θ∗ : O(X) → R defined by

Θ∗(A) := inf
ε>0

sup
{∑

i∈I

Θ(Qi) : {Qi}i∈I ∈ Vε(A)
}
. (3.23)

(It is clear that Θ∗ � Θ∗. In fact, we are going to prove that under the assumptions (a)
and (b) of Theorem 3.17 we have Θ∗(A) = Θ∗(A) =

´
A
dμΘ(x)dμ(x) for all A ∈ O(X).)

We divide the proof into three steps.

Step 1: proving that Θ∗ = λ− and Θ∗ = λ+. Define θ−, θ+ : O(X) → R by:

θ−(A) := Θ(A) − λ−(A);
θ+(A) := Θ(A) − λ+(A).

In what follows, θ∗ (resp. θ∗) is defined by (3.22) (resp. (3.23)) with Θ replaced by θ−

(resp. θ+).

Substep 1-1: an auxiliary lemma.

Lemma 3.19. Under the assumption (a) of Theorem 3.17 we have θ∗ = θ
∗ = 0.

Proof of Lemma 3.19. We only prove that θ∗ = 0. (The proof of θ∗ = 0 follows from
similar arguments and is left to the reader.)

First of all, from the assumption (a) it is clear that

|θ−(A)| � ν̂(A) (3.24)

for all A ∈ O(X), where ν̂ := ν + |ν| is absolutely continuous with respect to μ (with |ν|
denoting the total variation of ν).

Secondly, we can assert that

d−μ θ
− = 0, (3.25)

where for any set function s : O(X) → R, the function d−μ s : X → [−∞, ∞[ (resp. 
d+
μ s : X →] −∞, ∞]) is defined by (3.19) (resp. (3.20)) with Θ replaced by s. Indeed, for 

any x ∈ X, it is easily seen that

d−μ Θ(x, ρ) − d+
μ λ

−(x, ρ) � d−μ θ
−(x, ρ) � d−μ Θ(x, ρ) − d−μ λ

−(x, ρ).



for all ρ > 0, and letting ρ → 0, we obtain

d−μ Θ(x) − d+
μ λ

−(x) � d−μ θ
−(x) � d−μ Θ(x) − d−μ λ

−(x).

But d−μ λ−(x) = d+
μ λ

−(x) = d−μ Θ(x), hence d−μ θ
−(x) = 0.

Finally, to conclude we prove that (3.24) and (3.25) imply θ∗ = 0. For this, we are 
going to prove the following two assertions:

if d−μ θ− � 0 then θ∗ � 0; (3.26)

under (3.24), if d−μ θ− � 0 then θ∗ � 0. (3.27)

Proof of (3.26). Fix A ∈ O(X). Fix any ε > 0. Then d−μ θ
− < ε, and so in particular

limρ→0 d
−
μ θ

−(x, ρ) < ε for all x ∈ A. Hence, for each x ∈ A there exists {ρx,n}n ⊂]0, ε[
with ρx,n → 0 as n → ∞ such that d−μ θ−(x, ρx,n) < ε for all n � 1. Taking Remark 3.15
into account, it follows that for each x ∈ A and each n � 1 there is Qx,n ∈ Ba(A, x, ρx,n)
such that for each x ∈ A and each n � 1,

θ−(Qx,n)
μ(Qx,n) < ε. (3.28)

Moreover, since diam
(
Qx,n

)
= diam(Qx,n) � ρx,n for all x ∈ A and all n � 1, we have

inf
{
diam

(
Qx,n

)
: n � 1

}
= 0 (where Qx,n denotes the closed ball corresponding to the

open ball Qx,n). Let F0 be the family of closed balls of X given by

F0 :=
{
Qx,n : x ∈ A and n � 1

}
.

As X satisfies the Vitali covering theorem, from the above we deduce that there exists 
a disjoint countable subfamily {Qi}i∈I0 of closed balls of F0 (with Qi ⊂ A, μ(∂Qi) = 0
and diam(Qi) ∈]0, ε[) such that μ

(
A \∪i∈I0Qi

)
= 0, which means that {Qi}i∈I0 ∈ Vε(A).

From (3.28) we see that θ−(Qi) < εμ(Qi) for all i ∈ I0, hence∑
i∈I0

θ−(Qi) � ε
∑
i∈I0

μ(Qi) = εμ(A).

Consequently θ−,ε(A) � εμ(A) for all ε > 0, where θ−,ε is defined by (3.21) with Θ
replaced by θ−, and letting ε → 0 we obtain θ∗(A) � 0.

Proof of (3.27). Fix A ∈ O(X). By Egorov’s theorem, there exists a sequence {Bn}n of
Borel subsets of A such that:

lim
n→∞

μ(A \Bn) = 0; (3.29)

lim
ε→0

sup
∣∣d−μ θ−(x) − d−μ θ

−(x, ε)
∣∣ = 0 for all n � 1. (3.30)
x∈Bn



As ν̂ is absolutely continuous with respect to μ, by (3.29) we have

lim
n→∞

ν̂(A \Bn) = 0. (3.31)

Moreover, as d−μ θ− � 0, from (3.30) we deduce that

lim
ε→0

inf
x∈Bn

d−μ θ
−(x, ε) � 0 for all n � 1. (3.32)

Fix any n � 1 and any ε > 0. By definition of θ−,ε, there exists {Qi}i∈I ∈ Vε(A) such
that

θ−,ε(A) >
∑
i∈I

θ−(Qi) − ε. (3.33)

Set In :=
{
i ∈ I : Qi ∩Bn �= ∅

}
. Using (3.24) we have∑

i∈I

θ−(Qi) =
∑
i∈In

θ−(Qi) +
∑

i∈I\In

θ−(Qi) �
∑
i∈In

θ−(Qi) −
∑

i∈I\In

ν̂(Qi)

�
∑
i∈In

θ−(Qi)
μ(Qi)

μ(Qi) − ν̂

(
∪

i∈I\In
Qi

)
,

and, choosing xi ∈ Qi ∩ Bn for each i ∈ In and noticing that ∪i∈I\In Qi ⊂ A \ Bn, it
follows that ∑

i∈I

θ−(Qi) �
∑
i∈In

d−μ θ
−(xi, ε)μ(Qi) − ν̂(A \Bn)

� inf
x∈Bn

d−μ θ
−(x, ε)

∑
i∈In

μ(Qi) − ν̂(A \Bn).

Taking (3.33) into account, we conclude that

θ−,ε(A) � inf
x∈Bn

d−μ θ
−(x, ε)

∑
i∈In

μ(Qi) − ν̂(A \Bn) − ε

for all ε > 0 and all n � 1, which gives θ∗(A) � 0 by letting ε → 0 and using (3.32) and
then by letting n → ∞ and using (3.31). �
Substep 1-2: using Lemma 3.19. As λ− and λ+ are absolutely continuous with respect
to μ, it is easy to see that:

θ∗ = Θ∗ − λ−;
θ
∗ = Θ∗ − λ+.

Hence Θ∗ = λ− and Θ∗ = λ+ by Lemma 3.19.



Step 2: proving that Θ∗ = Θ∗. We only need to prove that Θ∗ � Θ∗. For this, it is
sufficient to show that for each open ball Q of X with μ(∂Q) = 0, one has

Θ(Q) � Θ∗(Q). (3.34)

Fix any ε > 0. By definition of Θε, there exists {Qi}i∈I ∈ Vε(Q) such that∑
i∈I

Θ(Qi) � Θε(Q) + ε. (3.35)

Since μ
(
Q \ ∪i∈IQi

)
= 0 there is a sequence {In}n of finite subsets of I such that

lim
n→∞

μ

(
Q \ ∪

i∈In
Qi

)
= lim

n→∞
μ

(
∪

i∈I\In
Qi

)
= 0. (3.36)

Fix any n � 1. As Θ is subadditive by assumption (b), we have

Θ
(

∪
i∈In

Qi

)
�
∑
i∈In

Θ(Qi).

Moreover, μ 
(
Q \

[
(∪i∈InQi) ∪ (Q \ ∪i∈InQi)

])
= 0 because μ(∂Qi) = 0 for all i ∈ In, so

that

Θ(Q) � Θ
(

∪
i∈In

Qi

)
+ Θ

(
Q \ ∪

i∈In
Qi

)
by using again the subadditivity of Θ, and consequently

∑
i∈In

Θ(Qi) � Θ(Q) − Θ
(
Q \ ∪

i∈In
Qi

)
.

Thus, using the assumption (a), we get∑
i∈I

Θ(Qi) =
∑

i∈I\In

Θ(Qi) +
∑
i∈In

Θ(Qi)

�
∑

i∈I\In

Θ(Qi) + Θ(Q) − Θ
(
Q \ ∪

i∈In
Qi

)

� Θ(Q) − ν

(
∪

i∈I\In
Qi

)
− ν

(
Q \ ∪

i∈In
Qi

)
.

But, ν(∂Qi) = 0 for all i ∈ In because ν is absolutely with respect to μ, so that

ν

(
Q \ ∪ Qi

)
= ν

(
Q \ ∪ Qi

)
= ν

(
∪ Qi

)
,

i∈In i∈In i∈I\In



and thus ∑
i∈I

Θ(Qi) � Θ(Q) − 2ν
(

∪
i∈I\In

Qi

)
. (3.37)

Combining (3.35) with (3.37) we conclude that

Θ(Q) � Θε(Q) + 2ν
(

∪
i∈I\In

Qi

)
+ ε,

and (3.34) follows by letting n → ∞ and using (3.36) and then by letting ε → 0.

Step 3: end of the proof. From steps 1 and 2 we have
ˆ

X

d−μ Θ(x)dμ(x) = Θ∗(X) = Θ∗(X) =
ˆ

X

d+
μ Θ(x)dμ(x).

Thus 
´
X

(d+
μ Θ(x) − d−μ Θ(x))dμ(x) = 0. But d+

μ Θ � d−μ Θ, i.e., d+
μ Θ − d−μ Θ � 0, hence

d+
μ Θ − d−μ Θ = 0, i.e., d+

μ Θ = d−μ Θ, and the proof of Theorem 3.17 is complete. �
3.4. Ru-usc integrands

Let (X, d, μ) be a metric space measure, where μ is a positive Radon measure on X, 
and let L : X × M → [0, ∞] be a Borel measurable integrand. For each x ∈ X, we 
denote the effective domain of L(x, ·) by Lx and, for each a ∈ L1

loc,μ(X; ]0, ∞]), we define
Δa

L : [0, 1] →] −∞, ∞] by

Δa
L(t) := sup

x∈X
sup
ξ∈Lx

L(x, tξ) − L(x, ξ)
a(x) + L(x, ξ) .

(When (X, d) is compact, L1
loc,μ(X; ]0, ∞]) can be replaced by L1

μ(X; ]0, ∞]).)

Definition 3.20. We say that L is radially uniformly upper semicontinuous (ru-usc) if 
there exists a ∈ L1

loc,μ(X; ]0, ∞]) such that

lim
t→1−

Δa
L(t) � 0.

The concept of ru-usc integrand was introduced in [1] and then developed in [6–8,
41,9,11]. (Recently, this concept was used by Duerinckx and Gloria in [23] to deal with 
stochastic homogenization of unbounded nonconvex integrals with convex growth.)

Remark 3.21. If L is ru-usc then limt→1− L(x, tξ) � L(x, ξ) for all x ∈ X and all ξ ∈ Lx.
On the other hand, if there exist x ∈ X and ξ ∈ Lx such that L(x, ·) is lsc at ξ then,
for each a ∈ L1

loc(U ; ]0, ∞]), limt→1− Δa
L(t) � 0, and so if in addition L is ru-usc then

limt→1− Δa
L(t) = 0 for some a ∈ L1

loc,μ(X; ]0, ∞]).



Remark 3.22. If, for every x ∈ X, L(x, ·) is convex and 0 ∈ Lx, then L is ru-usc.

The interest of Definition 3.20 comes from the following theorem. (For a proof we 
refer to [6, Theorem 3.5].) Recall that L̂ : X ×M → [0, ∞] is defined by

L̂(x, ξ) := lim
t→1−

L(x, tξ).

Theorem 3.23. If L is ru-usc and if for every x ∈ X,

tLx ⊂ int(Lx) for all t ∈]0, 1[ (3.38)

and L(x, ·) is lsc on int(Lx), where int(Lx) denotes the interior of Lx, then:

(a) L̂(x, ξ) =

⎧⎪⎨⎪⎩
L(x, ξ) if ξ ∈ int(Lx)
lim
t→1−

L(x, tξ) if ξ ∈ ∂Lx

∞ otherwise;
(b) L̂ is ru-usc;
(c) for every x ∈ X, L̂(x, ·) is the lsc envelope of L(x, ·).

For each ρ > 0, let Hρ
μL : X ×M → [0, ∞] be given by

Hρ
μL(x, ξ) := inf

⎧⎪⎨⎪⎩ −
ˆ

Qρ(x)

L(y, ξ + ∇μw(y))dμ(y) : w ∈ W 1,p
μ,0(Qρ(x);Rm)

⎫⎪⎬⎪⎭ .

Then, we have

QμL(x, ξ) := lim
ρ→0

Hρ
μL(x, ξ)

for all x ∈ X and all ξ ∈ M. The following proposition shows that ru-usc is conserved 
under μ-quasiconvexification.

Proposition 3.24. If L is ru-usc then QμL is ru-usc.

Proof of Proposition 3.24. Fix any t ∈ [0, 1], any x ∈ X and any ξ ∈ QμLx where QμLx

denotes the effective domain of QμL(x, ·). Then QμL(x, ξ) = limρ→0 Hρ
μL(x, ξ) < ∞ and

without loss of generality we can suppose that Hρ
μL(x, ξ) < ∞ for all ρ > 0.

Fix any ρ > 0. By definition, there exists {wn}n ⊂ W 1,p
μ,0(Qρ(x); Rm) such that:

Hρ
μL(x, ξ) = lim

n→∞
−
ˆ

Qρ(x)

L(y, ξ + ∇μwn(y))dμ(y); (3.39)

ξ + ∇μwn(y) ∈ Ly for all n � 1 and μ-a.a. y ∈ Qρ(x). (3.40)



Moreover, for every n � 1,

Hρ
μL(x, tξ) � −

ˆ

Qρ(x)

L
(
y, t(ξ + ∇μwn(y))

)
dμ(y)

since twn ∈ W 1,p
μ,0(Qρ(x); Rm), and so

Hρ
μL(x, tξ) −Hρ

μL(x, ξ)

� lim
n→∞

−
ˆ

Qρ(x)

(
L(y, t(ξ + ∇μwn(y))) − L(y, ξ + ∇μwn(y))

)
dμ(y). (3.41)

But L is ru-usc, i.e., there exists a ∈ L1
loc,μ(X; ]0, ∞]) such that limt→1− Δa

L(t) � 0 with
Δa

L : [0, 1] →] − ∞, ∞] defined by Δa
L(t) := supz∈X supξ∈Lz

L(z,tξ)−L(z,ξ)
a(z)+L(z,ξ) . So, taking

(3.40) into account, for every n � 1 and μ-a.e. y ∈ Qρ(x),

L
(
y, t(ξ + ∇μwn(y))

)
− L

(
y, ξ + ∇μwn(y)

)
� Δa

L(t)
(
a(y) + L(y, ξ + ∇μw

ρ
n(y))

)
.

Hence

−
ˆ

Qρ(x)

(
L(y, t(ξ + ∇μwn(y))) − L(y, ξ + ∇μwn(y))

)
dμ

� Δa
L(t)

⎛⎜⎝ −
ˆ

Qρ(x)

a(y)dμ + −
ˆ

Qρ(x)

L(y, ξ + ∇μwn(y))dμ

⎞⎟⎠
for all n � 1. Letting n → ∞ and using (3.39) and (3.41), it follows that

Hρ
μL(x, tξ) −Hρ

μL(x, ξ) � Δa
L(t)

⎛⎜⎝ −
ˆ

Qρ(x)

a(y)dμ(y) + Hρ
μL(x, ξ)

⎞⎟⎠ (3.42)

for all ρ > 0, and so

QμL(x, tξ) −QμL(x, ξ) � Δa
L(t)

(
a(x) + QμL(x, ξ)

)
by letting ρ → 0 in (3.42), which implies that Δa

QμL
(t) � Δa

L(t) for all t ∈ [0, 1], and the
proof is complete. �
4. Proof of the integral representation theorem

This section is devoted to the proof of Theorem 2.7 which is divided into six steps.



Step 1: integral representation of the E. For each u ∈ W 1,p
μ (X; Rm) we consider the set 

function Su : O(X) → [0, ∞] given by

Su(A) := E(u,A).

Recall that G is the effective domain of the functional u 
→
´
X
G(x, ∇μu(x))dμ(x).

Step 1 consists of proving the following lemma.

Lemma 4.1. If (2.5), (2.6), (2.7), (2.12) and (2.13) hold then

Su(A) =
ˆ

A

λu(x)dμ(x)

for all u ∈ G and all A ∈ O(X) with λu ∈ L1
μ(X) given by

λu(x) = lim
ρ→0

Su(Qρ(x))
μ(Qρ(x)) .

Proof of Lemma 4.1. Fix u ∈ G. Using the right inequality in (2.12) we see that

Su(A) � βμ(A) + β

ˆ

A

G(x,∇μu(x))dμ(x) < ∞ (4.1)

for all A ∈ O(X). Thus, the condition (d) of Lemma 3.12 is satisfied with ν = β
(
1 +

G(x, ∇μu(x))
)
dμ (which is absolutely continuous with respect to μ). On the other hand,

it is easily seen that the conditions (a) and (b) of Lemma 3.12 are satisfied. Hence, the 
proof is completed provided we prove the condition (c) of Lemma 3.12, i.e.,

Su(A ∪B) � Su(A) + Su(B) for all A,B ∈ O(X). (4.2)

Indeed, by Lemma 3.12, the set function Su can be (uniquely) extended to a (finite)
positive Radon measure which is absolutely continuous with respect to μ, and the the-
orem follows by using Radon–Nikodym’s theorem and then Lebesgue’s differentiation 
theorem.

Remark 4.2. In fact, Lemma 4.1 establishes that for every u ∈ G, E(u, ·) can be uniquely 
extended to a finite positive Radon measure on X which is absolutely continuous with 
respect to μ.

Substep 1-2: an auxiliary result for proving Lemma 4.1. To show (4.2) we need the 
following lemma.



Lemma 4.3. If U, V, Z, T ∈ O(X) are such that Z ⊂ U and T ⊂ V , then

Su(Z ∪ T ) � Su(U) + Su(V ). (4.3)

Proof of Lemma 4.3. Let {un}n and {vn}n be two sequences in W 1,p
μ (X; Rm) such that:

‖un − u‖Lp
μ(X;Rm) → 0; (4.4)

‖vn − u‖Lp
μ(X;Rm) → 0; (4.5)

lim
n→∞

ˆ

U

L(x,∇μun(x))dμ(x) = Su(U) < ∞; (4.6)

lim
n→∞

ˆ

V

L(x,∇μvn(x))dμ(x) = Su(V ) < ∞. (4.7)

Since L is p-coercive (see (2.5) and the left inequality in (2.12)), from (4.6) and (4.7)
we see that supn ‖∇μun‖Lp

μ(X;M) < ∞ and supn ‖∇μvn‖Lp
μ(X;M) < ∞. As p > κ, taking

(4.4) and (4.5) into account, by Corollary 3.11 we can assert, up to a subsequence, that:

‖un − u‖L∞
μ (X;Rm) → 0; (4.8)

‖vn − u‖L∞
μ (X;Rm) → 0. (4.9)

Fix δ ∈]0, dist(Z, ∂U)[ with ∂U := U \U , fix any q � 1 and consider W−
i , W+

i ⊂ X given 
by:

W−
i :=

{
x ∈ X : dist(x, Z) � δ

3 + (i− 1)δ
3q

}
;

W+
i :=

{
x ∈ X : δ3 + iδ

3q � dist(x, Z)
}

,

where i ∈ {1, · · · , q}. For every i ∈ {1, · · · , q} there exists a Urysohn function ϕi ∈
Lip(X) for the pair (W+

i , W−
i ). Fix any n � 1 and define wi

n ∈ W 1,p
μ (X; Rm) by

wi
n := ϕiun + (1 − ϕi)vn. (4.10)

Fix any t ∈]0, 1[. Setting Wi := X \ (W−
i ∪W+

i ) and using Theorem 3.3(d) and (3.1) we 
have

∇μ(twi
n) = t∇μw

i
n

=

⎧⎪⎨⎪⎩
t∇μun in W−

i

(1 − t) t
1−tDμϕi ⊗ (un − vn) + t

(
ϕi∇μun + (1 − ϕi)∇μvn

)
in Wi

t∇ v in W+.
μ n i



Noticing that Z ∪T = ((Z ∪T ) ∩W−
i ) ∪ (W ∩Wi) ∪ (T ∩W+

i ) with (Z ∪T ) ∩W−
i ⊂ U ,

T ∩ W+
i ⊂ V and W := T ∩ {x ∈ U : δ

3 < dist(x, Z) < 2δ
3 } we deduce that for every 

i ∈ {1, · · · , q},
ˆ

Z∪T

L(x, t∇μw
i
n)dμ �

ˆ

U

L(x, t∇μun)dμ +
ˆ

V

L(x, t∇μvn)dμ

+
ˆ

W∩Wi

L(x, t∇μw
i
n)dμ. (4.11)

Fix any i ∈ {1, · · · , q}. From the right inequality in (2.12) and the inequality (2.7) we 
see that

ˆ

W∩Wi

L(x, t∇μw
i
n)dμ � βμ(W ∩Wi) + β

ˆ

W∩Wi

G(x, t∇μw
i
n)dμ

� β(1 + γ)μ(W ∩Wi)

+βγ

ˆ

W∩Wi

G(x, ϕi∇μun + (1 − ϕi)∇μvn)dμ

+βγ

ˆ

W∩Wi

G

(
x,

t

1 − t
Dμϕi ⊗ (un − vn)

)
dμ,

and by using again the inequality (2.7) and the left inequality in (2.12) we obtain
ˆ

W∩Wi

L(x, t∇μw
i
n)dμ � β(1 + γ + γ2)μ(W ∩Wi)

+βγ2

α

⎛⎝ ˆ

W∩Wi

L(x,∇μun)dμ +
ˆ

W∩Wi

L(x,∇μvn)dμ

⎞⎠
+βγ

ˆ

W∩Wi

G

(
x,

t

1 − t
Dμϕi ⊗ (un − vn)

)
dμ. (4.12)

On the other hand, we have∣∣∣∣ t

1 − t
Dμϕi(x) ⊗ (un(x) − vn(x))

∣∣∣∣ � t

1 − t
‖Dμϕi‖L∞

μ (X)‖un − vn‖L∞
μ (X;Rm)

for μ-a.a. x ∈ X. But limn→∞ ‖un − vn‖L∞
μ (X;Rm) = 0 by (4.8) and (4.9), hence for each

t ∈]0, 1[ and each i ∈ {1, · · · , q} there exists nt,i � 1 such that∣∣∣∣ t
Dμϕi(x) ⊗ (un(x) − vn(x))

∣∣∣∣ � r
1 − t



for μ-a.a. x ∈ X and all n � nt,i with r > 0 given by (2.6). Hence
ˆ

W∩Wi

G

(
x,

t

1 − t
Dμϕi ⊗ (un − vn)

)
dμ �

ˆ

W∩Wi

sup
|ξ|�r

G(x, ξ)dμ(x) (4.13)

for all n � Nt,q with Nt,q = max{nt,i : i ∈ {1, · · · , q}}. Moreover, we have:

ˆ

U

L(x, t∇μun)dμ �
ˆ

U

L(x,∇μun)dμ + Δa
L(t)

⎛⎝ˆ
U

a(x)dμ(x) +
ˆ

U

L(x,∇μun)dμ

⎞⎠ ;

(4.14)
ˆ

V

L(x, t∇μvn)dμ �
ˆ

V

L(x,∇μvn)dμ + Δa
L(t)

⎛⎝ˆ
V

a(x)dμ(x) +
ˆ

V

L(x,∇μvn)dμ

⎞⎠ ,

(4.15)

where a ∈ L1
μ(X; ]0, ∞]) is given by (2.13) (and limt→1− Δa

L(t) � 0 because L is ru-usc).
Taking (4.13) into account and substituting (4.12), (4.14) and (4.15) into (4.11) and 

then averaging these inequalities, it follows that for every q � 1, every t ∈]0, 1[ and every
n � Nt,q, there exists in,t,q ∈ {1, · · · , q} such that

ˆ

Z∪T

L(x,∇μ(twin,t,q
n ))dμ

�
ˆ

U

L(x,∇μun)dμ + Δa
L(t)

⎛⎝ˆ
U

a(x)dμ(x) +
ˆ

U

L(x,∇μun)dμ

⎞⎠
+
ˆ

V

L(x,∇μvn)dμ + Δa
L(t)

⎛⎝ˆ
V

a(x)dμ(x) +
ˆ

V

L(x,∇μvn)dμ

⎞⎠
+ c

q

⎛⎝ˆ
X

sup
|ξ|�r

G(x, ξ)dμ +
ˆ

U

L(x,∇μun)dμ +
ˆ

V

L(x,∇μvn)dμ

⎞⎠
with c = max

{
β(1 + γ + γ2) +1, βγ

2

α

}
, where 

´
X

sup|ξ|�r G(x, ξ)dμ < ∞ by (2.6). Thus,
letting n → ∞, t → 1− and q → ∞ and using (4.6) and (4.7), we get

lim
q→∞

lim
t→1−

lim
n→∞

ˆ

Z∪T

L(x,∇μ(twin,t,q
n ))dμ � Su(U) + Su(V ). (4.16)

On the other hand, taking (4.10) into account and using (4.4) and (4.5) we see that

lim lim lim ‖twin,t,q
n − u‖Lp

μ(X;Rm) = 0.

q→∞ t→1− n→∞



By diagonalization, there exist increasing mappings n 
→ tn and n 
→ qn with tn → 1−
and qn → ∞ such that:

lim
n→∞

ˆ

Z∪T

L(x,∇μŵn)dμ � lim
n→∞

ˆ

Z∪T

L(x,∇μŵn)dμ

� lim
q→∞

lim
t→1−

lim
n→∞

ˆ

Z∪T

L(x,∇μ(twin,t,q
n ))dμ;

lim
n→∞

‖ŵn − u‖Lp
μ(X;Rm) = 0,

where ŵn := tnw
in,tn,qn
n . Hence

Su(Z ∪ T ) � lim
q→∞

lim
t→1−

lim
n→∞

ˆ

Z∪T

L(x,∇μ(twin,t,q
n ))dμ,

and (4.3) follows from (4.16). �
Substep 1-2: end of the proof of Lemma 4.1. We now prove (4.2). Fix A, B ∈ O(X). Fix 
any ε > 0 and consider C, D ∈ O(X) such that C ⊂ A, D ⊂ B and

βμ(E) + β

ˆ

E

gu(x)dμ(x) < ε

with E := A ∪ B \ C ∪D. Then Su(E) � ε by (4.1). Let Ĉ, D̂ ∈ O(X) be such that
C ⊂ Ĉ, Ĉ ⊂ A, D ⊂ D̂ and D̂ ⊂ B. Applying Lemma 4.3 with U = Ĉ ∪ D̂, V = T = E

and Z = C ∪D (resp. U = A, V = B, Z = Ĉ and T = D̂) we obtain

Su(A ∪B) � Su(Ĉ ∪ D̂) + ε
(
resp. Su(Ĉ ∪ D̂) � Su(A) + Su(B)

)
,

and (4.2) follows by letting ε → 0. �
Step 2: another formula for E. Let E0 : W 1,p

μ (X; Rm) ×O(X) → [0, ∞] given by

E0(u,A) := inf
{

lim
n→∞

E(un, A) : W 1,p
μ,0(A;Rm) � un − u

Lp
μ→ 0
}
.

Step 2 consists of proving the following lemma.

Lemma 4.4. If (2.5), (2.6), (2.7), (2.12) and (2.13) hold then for every u ∈ G and every 
A ∈ O(X), one has:

E(u,A) � E0(u,A); (4.17)

E0(tu,A) �
(
1 + Δa

L(t)
)
E(u,A) + Δa

L(t)‖a‖L1 (A) for all t ∈]0, 1[, (4.18)

μ



where a ∈ L1
μ(X; ]0, ∞]) is given by (2.13). As a direct consequence we have

E(u,A) = lim
t→1−

E0(tu,A) (4.19)

for all u ∈ G and all A ∈ O(X).

Proof of Lemma 4.4. Fix u ∈ G and A ∈ O(X). Clearly, E0(u; A) � E(u, A) because
W 1,p

μ,0(A; Rm) ⊂ W 1,p
μ (X; Rm). So (4.17) is satisfied. Thus, it remains to prove (4.18). Let 

{un}n ⊂ W 1,p
μ (X; Rm) be such that:

un → u in Lp
μ(X;Rm); (4.20)

lim
n→∞

ˆ

A

L(x,∇μun(x))dμ(x) = E(u,A) < ∞. (4.21)

Remark 4.5. Without loss of generality we can always suppose that E(u, A) < ∞. So, 
in fact, if we furthermore assume that (2.10) is satisfied, Lemma 4.4 remains true if we 
replace “u ∈ G” by “u ∈ W 1,p

μ (X; Rm)”.

Since L is p-coercive (see (2.5) and the left inequality in (2.12)), from (4.21) we see 
that supn ‖∇μun‖Lp

μ(X;M) < ∞. As p > κ, taking (4.20) into account, by Corollary 3.11
we can assert, up to a subsequence, that:

‖un − u‖L∞
μ (X;Rm) → 0. (4.22)

Fix δ > 0 and set Aδ := {x ∈ A : dist(x, ∂A) > δ} with ∂A := A \A. Fix any n � 1 and
any q � 1 and consider W−

i , W+
i ⊂ X given by

W−
i :=

{
x ∈ X : dist(x,Aδ) � δ

3 + (i−1)δ
3q

}
;

W+
i :=

{
x ∈ X : δ

3 + iδ
3q � dist(x,Aδ)

}
,

where i ∈ {1, · · · , q}. (Note that W−
i ⊂ A.) For every i ∈ {1, · · · , q} there exists a 

Urysohn function ϕi ∈ Lip(X) for the pair (W+
i , W−

i ). Define wi
n : X → Rm by

wi
n := ϕiun + (1 − ϕi)u. (4.23)

Then wi
n − u ∈ W 1,p

μ,0(A; Rm). Fix any t ∈]0, 1[. Setting Wi := X \ (W−
i ∪W+

i ) ⊂ A and 
using Theorem 3.3(d) and (3.1) we have

∇μ(twi
n) = t∇μw

i
n

=

⎧⎪⎨⎪⎩
t∇μun in W−

i

(1 − t) t
1−tDμϕi ⊗ (un − u) + t

(
ϕi∇μun + (1 − ϕi)∇μu

)
in Wi

t∇ u in W+.
μ i



Noticing that A = W−
i ∪Wi ∪ (A ∩W+

i ) we deduce that for every i ∈ {1, · · · , q},
ˆ

A

L(x, t∇μw
i
n)dμ �

ˆ

A

L(x, t∇μun)dμ +
ˆ

A∩W+
i

L(x, t∇μu)dμ (4.24)

+
ˆ

Wi

L(x, t∇μw
i
n)dμ.

Fix any q ∈ {1, · · · , q}. From the right inequality in (2.12) and the inequality (2.7) we 
see that

ˆ

Wi

L(x, t∇μw
i
n)dμ � βμ(Wi) + β

ˆ

Wi

G(x, t∇μw
i
n)dμ

� β(1 + γ)μ(Wi)

+βγ

ˆ

Wi

G(x, ϕi∇μun + (1 − ϕi)∇μu)dμ

+βγ

ˆ

Wi

G

(
x,

t

1 − t
Dμϕi ⊗ (un − u)

)
dμ,

and by using again the inequality (2.7) and the left inequality in (2.12) we obtain
ˆ

Wi

L(x, t∇μw
i
n)dμ � β(1 + γ + γ2)μ(Wi)

+βγ2

α

⎛⎝ˆ

Wi

L(x,∇μun)dμ +
ˆ

Wi

L(x,∇μu)dμ

⎞⎠
+βγ

ˆ

Wi

G

(
x,

t

1 − t
Dμϕi ⊗ (un − u)

)
dμ. (4.25)

Remark 4.6. As u ∈ G and (2.12) holds, we have 
´
E
L(x, ∇μu)dμ < ∞ for all E ∈ O(X).

On the other hand, we have∣∣∣∣ t

1 − t
Dμϕi(x) ⊗ (un(x) − u(x))

∣∣∣∣ � t

1 − t
‖Dμϕi‖L∞

μ (X)‖un − u‖L∞
μ (X;Rm)

for μ-a.a. x ∈ X. But limn→∞ ‖un − u‖L∞
μ (X;Rm) = 0 by (4.22), hence for each i ∈

{1, · · · , q} there exists ni � 1 such that∣∣∣∣ t
Dμϕi(x) ⊗ (un(x) − u(x))

∣∣∣∣ � r
1 − t



for μ-a.a. x ∈ X and all n � ni with r > 0 given by (2.6). Hence

ˆ

Wi

G

(
x,

t

1 − t
Dμϕi ⊗ (un − u)

)
dμ �

ˆ

Wi

sup
|ξ|�r

G(x, ξ)dμ(x) (4.26)

for all n � Nq with Nq = max{ni : i ∈ {1, · · · , q}}. Moreover, we have:

ˆ

A

L(x, t∇μun)dμ �
ˆ

A

L(x,∇μun)dμ + Δa
L(t)

⎛⎝ˆ
A

a(x)dμ(x) +
ˆ

A

L(x,∇μun)dμ

⎞⎠ ;

(4.27)ˆ

A∩W+
i

L(x, t∇μu)dμ �
ˆ

A∩W+
i

L(x,∇μu)dμ

+ Δa
L(t)

⎛⎜⎝ ˆ

A∩W+
i

a(x)dμ(x) +
ˆ

A∩W+
i

L(x,∇μu)dμ

⎞⎟⎠ , (4.28)

where a ∈ L1
μ(X; ]0, ∞]) is given by (2.13) (and limt→1− Δa

L(t) � 0 because L is ru-usc).
Taking (4.26) into account and substituting (4.25), (4.27) and (4.28) into (4.24) and 

then averaging these inequalities, it follows that for every q � 1 and every n � Nq, there
exists in,q ∈ {1, · · · , q} such that

ˆ

A

L(x,∇μ(twin,q
n ))dμ

�
ˆ

A

L(x,∇μun)dμ + Δa
L(t)

⎛⎝ˆ
A

a(x)dμ(x) +
ˆ

A

L(x,∇μun)dμ

⎞⎠
+ 1

q

⎡⎣ˆ
A

L(x,∇μu)dμ + Δa
L(t)

⎛⎝ˆ
A

a(x)dμ(x) +
ˆ

A

L(x,∇μu)dμ

⎞⎠⎤⎦
+ c

q

⎛⎝ˆ
A

sup
|ξ|�r

G(x, ξ)dμ +
ˆ

A

L(x,∇μun)dμ +
ˆ

A

L(x,∇μu)dμ

⎞⎠
with c = max

{
β(1 + γ + γ2) + 1, βγ

2

α

}
, where 

´
A

sup|ξ|�r G(x, ξ)dμ < ∞ by (2.6). Thus,
letting n → ∞ and q → ∞ and using (4.21), we get

lim
q→∞

lim
n→∞

ˆ
L(x,∇μ(twin,q

n ))dμ �
(
1 + Δa

L(t)
)
E(u,A) + Δa

L(t)
ˆ

a(x)dμ(x). (4.29)

A A



On the other hand, taking (4.23) into account and using (4.20) we see that

lim
q→∞

lim
n→∞

‖twin,q
n − tu‖Lp

μ(X;Rm) = 0.

By diagonalization, there exists an increasing mapping n 
→ qn with qn → ∞ such that:

lim
n→∞

ˆ

A

L(x,∇μŵn)dμ � lim
n→∞

ˆ

A

L(x,∇μŵn)dμ � lim
q→∞

lim
n→∞

ˆ

A

L(x,∇μ(twin,q
n ))dμ;

lim
n→∞

‖ŵn − u‖Lp
μ(X;Rm) = 0,

where ŵn := tw
in,qn
n is such that ŵn − tu ∈ W 1,p

μ,0(A; Rm). Hence

E0(tu,A) � lim
q→∞

lim
n→∞

ˆ

A

L(x,∇μ(twin,q
n ))dμ,

and (4.18) follows from (4.29).
From (4.18) we deduce that

lim
t→1−

E0(tu,A) � E(u,A).

Moreover, from (4.17) we have

E(u,A) � lim
t→1−

E(tu,A) � lim
t→1−

E0(tu,A),

which gives (4.19). �
Step 3: using the Vitali envelope. For each u ∈ W 1,p

μ (X; Rm) we consider the set function 
m̂u : O(X) → [0, ∞] defined by

m̂u(A) := lim
t→1−

mtu(A), (4.30)

where, for each z ∈ W 1,p
μ (X; Rm), mz : O(X) → [0, ∞] is given by

mz(A) := inf
{
E(v,A) : v − z ∈ W 1,p

μ,0(A;Rm)
}
. (4.31)

For each ε > 0 and each A ∈ O(X), denote the class of countable families {Qi :=
Qρi

(xi)}i∈I of disjoint open balls of A with xi ∈ A, ρi = diam(Qi) ∈]0, ε[ and μ(∂Qi) = 0
such that μ(A \ ∪i∈IQi) = 0 by Vε(A), consider m̂ε

u : O(X) → [0, ∞] given by

m̂ε
u(A) := inf

{∑
m̂u(Qi) : {Qi}i∈I ∈ Vε(A)

}
,

i∈I



and define m̂∗
u : O(X) → [0, ∞] by

m̂∗
u(A) := sup

ε>0
m̂ε

u(A) = lim
ε→0

m̂ε
u(A).

The set function m̂∗
u is called the Vitali envelope of m̂u, see §3.3 for more details. (Note 

that as X satisfies the Vitali covering theorem, see Proposition 3.7(c) and Remark 3.8, 
we have Vε(A) �= ∅ for all A ∈ O(X) and all ε > 0.)

Step 3 consists of proving the following lemma.

Lemma 4.7. If (2.5), (2.6), (2.7), (2.12) and (2.13) hold then

E(u,A) = m̂∗
u(A) (4.32)

for all u ∈ G and all A ∈ O(X).

Proof of Lemma 4.7. Fix u ∈ G. Given any A ∈ O(X), it is easy to see that mtu(A) �
E0(tu, A) for all t ∈]0, 1[, hence

m̂u(A) = lim
t→1−

mtu(A) � lim
t→1−

E0(tu,A) = E(u,A)

by Lemma 4.4, and consequently

m̂∗
u(A) � E(u,A)

because in the proof of Lemma 4.1 it is established that E(u, ·) can be uniquely extended 
to a finite positive Radon measure on X, see Remark 4.2. Hence, to establish (4.32), it 
remains to prove that

E(u,A) � m̂∗
u(A) (4.33)

with m̂∗
u(A) < ∞. Fix any ε > 0. By definition of m̂ε

u(A) there exists {Qi}i∈I ∈ Vε(A)
such that ∑

i∈I

m̂u(Qi) � m̂ε
u(A) + ε

2 . (4.34)

Fix any t > 0. For each i ∈ I, by definition of mtu(Qi) there exists vit ∈ W 1,p
μ (Qi; Rm)

such that vit − tu ∈ W 1,p
μ,0(Qi; Rm) and

E(vit, Qi) � mtu(Qi) + εμ(Qi)
2μ(A) . (4.35)

Define uε
t : X → Rm by

uε
t :=

{
tu in X \A
vi in Qi.
t



Then uε
t − tu ∈ W 1,p

μ,0(A; Rm). Moreover, because of Proposition 3.7(a), ∇μu
ε
t (x) =

∇μv
i
t(x) for μ-a.e. x ∈ Qi. From (4.35) we see that

E(uε
t , A) �

∑
i∈I

mtu(Qi) + ε

2 ,

hence limt→1− E(uε
t , A) � m̂ε

u(A) + ε by using (4.34), and consequently

lim
ε→0

lim
t→1−

E(uε
t , A) � m̂∗

u(A). (4.36)

On the other hand, we have

‖uε
t − u‖p

Lχp
μ (X;Rm) � 2p

[
‖uε

t − tu‖p
Lχp

μ (X;Rm) + ‖tu− u‖p
Lχp

μ (X;Rm)

]

= 2p

⎡⎢⎣
⎛⎝ˆ

A

|uε
t − tu|χpdμ

⎞⎠ 1
χ

+ (1 − t)p‖u‖p
Lχp

μ (X;Rm)

⎤⎥⎦

= 2p

⎡⎢⎣
⎛⎝∑

i∈I

ˆ

Qi

|vit − tu|χpdμ

⎞⎠ 1
χ

+ (1 − t)p‖u‖p
Lχp

μ (X;Rm)

⎤⎥⎦

� 2p

⎡⎢⎣∑
i∈I

⎛⎝ˆ
Qi

|vit − tu|χpdμ

⎞⎠ 1
χ

+ (1 − t)p‖u‖p
Lχp

μ (X;Rm)

⎤⎥⎦
with χ � 1 given by (3.3). As X enjoys a p-Sobolev inequality, see Proposition 3.7(b),
and diam(Qi) ∈]0, ε[ for all i ∈ I, we have

∑
i∈I

⎛⎝ˆ
Qi

|vit − tu|χpdμ

⎞⎠ 1
χ

� εpCp
S

∑
i∈I

ˆ

Qi

|∇μv
i
t − t∇μu|pdμ

with CS > 0 given by (3.3), hence

∑
i∈I

⎛⎝ˆ
Qi

|vit − tu|χpdμ

⎞⎠ 1
χ

� 2pεpCp
S

⎛⎝∑
i∈I

ˆ

Qi

|∇μv
i
t|pdμ + tp

ˆ

A

|∇μu|pdμ

⎞⎠ ,

and consequently

‖uε
t − u‖p

Lχp
μ (X;Rm) � 22pεpCp

S

⎛⎝∑
i∈I

ˆ

Qi

|∇μv
i
t|pdμ + tp

ˆ

A

|∇μu|pdμ

⎞⎠
+ 2p(1 − t)p‖u‖p χp m . (4.37)
Lμ (X;R )



Taking (2.5), the left inequality in (2.12), (4.34) and (4.35) into account, from (4.37) we 
deduce that

lim
t→1−

‖uε
t − u‖p

Lχp
μ (X;Rm) � 2pCp

Sε
p

⎛⎝ 1
αc

(m̂ε
u(A) + ε) +

ˆ

A

|∇μu|pdμ

⎞⎠ ,

which gives

lim
ε→0

lim
t→1−

‖uε
t − u‖p

Lχp
μ (X;Rm) = 0 (4.38)

because limε→0 m̂ε
u(A) = m̂∗

u(A) < ∞. According to (4.36) and (4.38), by diagonalization
there exists a mapping ε 
→ tε, with tε → 1− as ε → 0, such that:

lim
ε→0

‖wε − u‖p
Lχp

μ (X;Rm) = 0; (4.39)

lim
ε→0

E(wε, A) � m̂∗
u(A) (4.40)

with wε := uε
tε . Since χp � p, wε → u in Lp

μ(X; Rm) by (4.39), and (4.33) follows from
(4.40) by noticing that E(u; A) � limε→0 E(wε, A). �
Step 4: differentiation with respect to μ. This step consists of applying Theorem 3.17
(with Θ = m̂u where u ∈ S). More precisely, Step 4 consists of proving the following 
lemma.

Lemma 4.8. If (2.6), (2.7) and the left inequality in (2.12) hold then

m̂∗
u(A) =

ˆ

A

lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x)) dμ(x) (4.41)

for all u ∈ S and all A ∈ O(X). As a consequence, if furthermore (2.5), the right 
inequality in (2.12) and (2.13) hold then

E(u,A) =
ˆ

A

lim
ρ→0

lim
t→1−

mtu(Qρ(x))
μ(Qρ(x)) dμ(x) (4.42)

for all u ∈ S and all A ∈ O(X).

Proof of Lemma 4.8. Fix u ∈ S. The integral representation of E(u, ·) in (4.42) follows 
from (4.41) by using Lemma 4.7 and the definition of m̂u in (4.30). So, we only need to 
establish (4.41). For this, it is sufficient to prove that m̂u is subadditive and there exists 
a finite Radon measure ν on X which is absolutely continuous with respect to μ such 
that



m̂u(A) � ν(A) (4.43)

for all A ∈ O(X), and then to apply Theorem 3.17. For each t ∈]0, 1[, from the definition 
of mtu in (4.31), it is easy to see that for every A, B, C ∈ O(X) with B, C ⊂ A, B∩C = ∅

and μ(A \B ∪ C) = 0,

mtu(A) � mtu(B) + mtu(C),

and so

lim
t→1−

mtu(A) � lim
t→1−

mtu(B) + lim
t→1−

mtu(C), i.e., m̂u(A) � m̂u(B) + m̂u(C),

which shows the subadditivity of m̂u. On the other hand, given any t ∈]0, 1[, by using 
the right inequality in (2.12) we have

mtu(A) � βμ(A) + β

ˆ

A

G(x, t∇μu(x))dμ(x).

But, from (2.7) we see that G(x, t∇μu(x)) � γ
(
1 + G(x, ∇μu(x)) + G(x, 0)

)
for μ-a.a.

x ∈ X, hence

mtu(A) � βμ(A) + βγμ(A) + βγ

ˆ

A

(
G(x,∇μu(x)) + G(x, 0)

)
dμ(x).

Letting t → 1−, we conclude that

m̂u(A) � c

⎛⎝μ(A) +
ˆ

A

(
G(x,∇μu(x)) + G(x, 0)

)
dμ(x)

⎞⎠ ,

with c := β(1 + γ). Thus (4.43) is satisfied with the Radon measure ν := c(1 +
G(x, ∇μu(x)) + G(x, 0))dμ which is necessarily finite since u ∈ S and G(·, 0) ∈ L1

μ(X)
because G(·, 0) � sup|ξ|�r G(·, ξ) and sup|ξ|�r G(·, ξ) ∈ L1

μ(X) by (2.6). �
Step 5: linking the relaxed integrand to the differentiation of the Vitali envelope. Ac-
cording to (4.42), the proof of Theorem 2.7 will be completed (see Substep 5-2 and also 
Step 6) if we prove that for each u ∈ S and μ-a.e. x ∈ X, we have:

lim
ρ→0

lim
t→1−

mtu(Qρ(x))
μ(Qρ(x)) � lim

t→1−
lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) ,

i.e., lim
ρ→0

m̂u(Qρ(x)) � lim lim
ρ→0

mtux
(Qρ(x)) ; (4.44)
μ(Qρ(x)) t→1− μ(Qρ(x))



lim
ρ→0

lim
t→1−

mtu(Qρ(x))
μ(Qρ(x)) � lim

t→1−
lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) ,

i.e., lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x)) � lim

t→1−
lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) , (4.45)

where ux ∈ W 1,p
μ (Ω; Rm) is given by Proposition 3.7(d) (and satisfies (3.4) and (3.5)).

Substep 5-1: proof of (4.44) and (4.45). We only give the proof of (4.44). As the proof 
of (4.45) uses the same method, details are left to the reader.

Fix u ∈ S. Fix any ε > 0, any τ ∈]0, 1[, any ρ ∈]0, ε[, any t ∈]0, 1[ and any s ∈]t, 1[. 
By definition of msu(Qτρ(x)), where there is no loss of generality in assuming that
μ(∂Qτρ(x)) = 0, there exists w : X → Rm such that w − su ∈ W 1,p

μ,0(Qτρ(x); Rm) and
ˆ

Qτρ(x)

L(y,∇μw(y))dμ(y) � msu(Qτρ(x)) + εμ(Qτρ(x)). (4.46)

By Proposition 3.7(e) there is a Urysohn function ϕ ∈ Lip(X) for the pair (X \
Qρ(x), Qτρ(x)) such that

‖Dμϕ‖L∞
μ (X;RN ) � θ

ρ(1 − τ) (4.47)

for some θ > 0 (which does not depend on ρ). Define v ∈ W 1,p
μ (Qρ(x); Rm) by

v := ϕ
t

s
u + (1 − ϕ) t

s
ux.

Then v − t
sux ∈ W 1,p

μ,0(Qρ(x); Rm). Using Theorem 3.3(d) and (3.1) we have

∇μ(sv) =
{

∇μ(tu) in Qτρ(x)
tDμϕ⊗ (u− ux) + s

(
ϕ t

s∇μu + (1 − ϕ) t
s∇μu(x)

)
in Qρ(x) \Qτρ(x)

=
{

∇μ(tu) in Qτρ(x)
(1 − t) t

1−tDμϕ⊗ (u− ux) + t
(
ϕ∇μu + (1 − ϕ)∇μu(x)

)
in Qρ(x) \Qτρ(x).

As t
sw − tu ∈ W 1,p

μ,0(Qτρ(x);Rm) we have sv + ( t
sw − tu) − tux ∈ W 1,p

μ,0(Qρ(x); Rm).
Noticing that μ(∂Qτρ(x)) = 0 and, because of Proposition 3.7(a), ∇μ( t

sw − tu)(y) = 0
for μ-a.e. y ∈ Qρ(x) \Qτρ(x), we see that

mtux
(Qρ(x))

μ(Qτρ(x)) � 1
μ(Qτρ(x))

ˆ

Qρ(x)

L

(
y,∇μ(sv) + ∇μ

( t
s
w − tu

))
dμ

= 1
μ(Qτρ(x))

ˆ

Q (x)

L

(
y,∇μ(tu) + ∇μ

( t
s
w − tu

))
dμ
τρ



+ 1
μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

L(y,∇μ(sv))dμ

= 1
μ(Qτρ(x))

ˆ

Qτρ(x)

L

(
y,

t

s
∇μw

)
dμ

+ 1
μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

L(y,∇μ(sv))dμ.

It follows that

mtux
(Qρ(x))

μ(Qτρ(x)) � 1
μ(Qτρ(x))

ˆ

Qρ(x)

L(y,∇μw)dμ

+Δa
L

(
t

s

)⎛⎜⎝ μ(Qρ(x))
μ(Qτρ(x)) −

ˆ

Qρ(x)

adμ + 1
μ(Qτρ(x))

ˆ

Qρ(x)

L(y,∇μw)dμ

⎞⎟⎠
+ 1
μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

L(y,∇μ(sv))dμ,

where a ∈ L1
μ(X; ]0, ∞]) is given by (2.13) (and limr→1− Δa

L(r) � 0 because L is ru-usc).
Taking (4.46), (2.7) and the right inequality in (2.12) into account we deduce that

mtux
(Qρ(x))

μ(Qτρ(x)) �
(

1 + Δa
L

(
t

s

))(
msu(Qτρ(x))
μ(Qτρ(x)) + ε

)
+Δa

L

(
t

s

)
μ(Qρ(x))
μ(Qτρ(x)) −

ˆ

Qρ(x)

adμ

+ c

μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

G

(
y,

t

1 − t
Dμϕ⊗ (u− ux)

)
dμ

+ c

μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

(
G(y,∇μu) + G(y,∇μu(x))

)
dμ

+c

(
μ(Qρ(x))
μ(Qτρ(x)) − 1

)
with c := β + βγ + βγ2, where γ > 0 and β > 0 given by (2.7) and (2.12) respectively. 
Thus, noticing that μ(Qρ(x)) � μ(Qτρ(x)) and letting s → 1−, we obtain

mtux
(Qρ(x)) �

(
1 + lim

−
Δa

L

(
t
))(

m̂u(Qτρ(x)) + ε

)

μ(Qρ(x)) s→1 s μ(Qτρ(x))



+ lim
s→1−

Δa
L

(
t

s

)
μ(Qρ(x))
μ(Qτρ(x))

−
ˆ

Qρ(x)

adμ

+ c

μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

G

(
y,

t

1 − t
Dμϕ⊗ (u− ux)

)
dμ

+ c

μ(Qτρ(x))

ˆ

Qρ(x)\Qτρ(x)

(
G(y,∇μu) + G(y,∇μu(x))

)
dμ

+c

(
μ(Qρ(x))
μ(Qτρ(x)) − 1

)
. (4.48)

On the other hand, by (4.47) we have∣∣∣∣ t

1 − t
Dμϕ(y) ⊗ (u(y) − ux(y))

∣∣∣∣ � t

1 − t
‖Dμϕ‖L∞

μ (X)‖u− ux‖L∞
μ (Qρ(x);Rm)

� tθ

(1 − t)(1 − τ)
1
ρ
‖u− ux‖L∞

μ (Qρ(x);Rm)

for μ-a.a. y ∈ Qρ(x) \ Qτρ(x). But, since p > κ, limρ→0
1
ρ‖u − ux‖L∞

μ (Qρ(x);Rm) = 0 by
(3.5), hence there exists ρ0 > 0 (which depends on t and τ) such that∣∣∣∣ t

1 − t
Dμϕ(y) ⊗ (u(y) − ux(y))

∣∣∣∣ � r

for μ-a.a. y ∈ Qρ(x) \Qτρ(x) and all ρ ∈]0, ρ0[ with r > 0 given by (2.6). Hence
ˆ

Qρ(x)\Qτρ(x)

G

(
y,

t

1 − t
Dμϕ⊗ (u− ux)

)
dμ �

ˆ

Qρ(x)\Qτρ(x)

sup
|ξ|�r

G(y, ξ)dμ(y) (4.49)

for all ρ ∈]0, ρ0[. Moreover, it easy to see that:

ˆ

Qρ(x)\Qτρ(x)

sup
|ξ|�r

G(y, ξ)dμ(y) � μ(Qρ(x)) −
ˆ

Qρ(x)

∣∣∣∣∣ sup
|ξ|�r

G(y, ξ) − sup
|ξ|�r

G(x, ξ)

∣∣∣∣∣ dμ(y)

+ μ (Qρ(x) \Qτρ(x)) sup
|ξ|�r

G(x, ξ); (4.50)

ˆ

Qρ(x)\Qτρ(x)

G(y,∇μu(y))dμ(y) � μ(Qρ(x)) −
ˆ

Qρ(x)

∣∣G(y,∇μu(y)) −G(x,∇μu(x))
∣∣dμ(y)

+ μ (Qρ(x) \Qτρ(x))G(x,∇μu(x)); (4.51)ˆ

Qρ(x)\Qτρ(x)

G(y,∇μu(x))dμ(y) � μ(Qρ(x)) −
ˆ

Qρ(x)

∣∣G(y,∇μu(x)) −G(x,∇μu(x))
∣∣dμ(y)

+ μ (Qρ(x) \Qτρ(x))G(x,∇μu(x)). (4.52)



Combining (4.49) with (4.50), (4.51) and (4.52) we deduce that

mtux
(Qρ(x))

μ(Qρ(x)) �
(

1 + lim
s→1−

Δa
L

(
t

s

))(
m̂u(Qτρ(x))
μ(Qτρ(x)) + ε

)
+ lim

s→1−
Δa

L

(
t

s

)
μ(Qρ(x))
μ(Qτρ(x)) −

ˆ

Qρ(x)

a(y)dμ(y)

+c
μ(Qρ(x))
μ(Qτρ(x)) −

ˆ

Qρ(x)

∣∣∣∣∣ sup
|ξ|�r

G(y, ξ) − sup
|ξ|�r

G(x, ξ)

∣∣∣∣∣ dμ(y)

+c
μ(Qρ(x))
μ(Qτρ(x)) −

ˆ

Qρ(x)

∣∣G(y,∇μu(y)) −G(x,∇μu(x))
∣∣dμ(y)

+c
μ(Qρ(x))
μ(Qτρ(x)) −

ˆ

Qρ(x)

∣∣G(y,∇μu(x)) −G(x,∇μu(x))
∣∣dμ(y)

+c

(
μ(Qρ(x))
μ(Qτρ(x)) − 1

)
sup
|ξ|�r

G(x, ξ)

+2c
(

μ(Qρ(x))
μ(Qτρ(x)) − 1

)
G(x,∇μu(x))

+c

(
μ(Qρ(x))
μ(Qτρ(x)) − 1

)
. (4.53)

As sup|ξ|�r G(·, ξ) ∈ L1
μ(X) by (2.6), and μ is a doubling measure, we have

lim
η→0

−
ˆ

Qη(x)

∣∣∣∣∣ sup
|ξ|�r

G(y, ξ) − sup
|ξ|�r

G(x, ξ)

∣∣∣∣∣ dμ(y) = 0. (4.54)

In the same way, as u ∈ S, i.e., G(·, ∇μu(·)) ∈ L1
μ(X) (and μ is a doubling measure) we

can assert that

lim
η→0

−
ˆ

Qη(x)

∣∣G(y,∇μu(y)) −G(x,∇μu(x))
∣∣dμ(y) = 0, (4.55)

and by (2.11) we have

lim
η→0

−
ˆ ∣∣G(y,∇μu(x)) −G(x,∇μu(x))

∣∣dμ(y) = 0. (4.56)

Qη(x)



Moreover, since a ∈ L1
μ(X; ]0, ∞]), it is clear that

lim
η→0

−
ˆ

Qη(x)

a(y)dμ(y) = a(x). (4.57)

Letting ρ → 0 in (4.53) and using (4.54), (4.55), (4.56) and (4.57) we see that

lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) �
(

1 + lim
s→1−

Δa
L

(
t

s

))(
lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x)) + ε

)
+ lim

s→1−
Δa

L

(
t

s

)
lim
ρ→0

μ(Qρ(x))
μ(Qτρ(x))a(x)

+c

(
μ(Qρ(x))
μ(Qτρ(x)) − 1

)
sup
|ξ|�r

G(x, ξ)

+2c
(

lim
ρ→0

μ(Qρ(x))
μ(Qτρ(x)) − 1

)
G(x,∇μu(x))

+c

(
lim
ρ→0

μ(Qρ(x))
μ(Qτρ(x)) − 1

)
. (4.58)

Letting t → 1− and τ → 1− in (4.58) and using (3.6) we deduce that

lim
t→1−

lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) �
(

1 + lim
t→1−

lim
s→1−

Δa
L

(
t

s

))(
lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x)) + ε

)
+ lim

t→1−
lim

s→1−
Δa

L

(
t

s

)
a(x). (4.59)

But, by diagonalization there exists a mapping s 
→ ts with ts → 1− as s → 1− such
that:

lim
s→1−

ts
s

= 1;

lim
t→1−

lim
s→1−

Δa
L

(
t

s

)
� lim

s→1−
Δa

L

(
ts
s

)
.

But limr→1− Δa
L(r) � 0 because L is ru-usc, hence

lim
t→1−

lim
s→1−

Δa
L

(
t

s

)
� 0,

and so from (4.59) we conclude that

lim
t→1−

lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) � lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x)) + ε,

and (4.44) follows by letting ε → 0.



Substep 5-2: establishing the relaxation formula. By (4.44) and (4.45) we have

lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x))

= lim
t→1−

lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x))
.

On the other hand, it is easily seen that

lim
ρ→0

mtux
(Qρ(x))

μ(Qρ(x)) = QμL(x,∇μu(x)),

where QμL is the μ-quasiconvexification of L defined in (2.14). Hence

lim
ρ→0

m̂u(Qρ(x))
μ(Qρ(x)) = QμL(x,∇μu(x)).

Step 6: end of the proof. From (2.12) we see that

αG(u) � E(u,X) � β
(
1 + G(u)

)
for all u ∈ W 1,p

μ (X; Rm), where G is defined (2.9). Hence, E(u, X) = ∞ if u ∈
W 1,p

μ (X; Rm) \S, where S is the effective domain of G, and (2.15) follows because it is 
assumed that S = S, where S denotes the effective domain of G defined in (2.8). �
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