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STATISTICAL ESTIMATION IN A RANDOMLY STRUCTURED

BRANCHING POPULATION

MARC HOFFMANN AND ALINE MARGUET

Abstract. We consider a binary branching process structured by a stochastic trait that evolves

according to a diffusion process that triggers the branching events, in the spirit of Kimmel’s

model of cell division with parasite infection. Based on the observation of the trait at birth of
the first n generations of the process, we construct nonparametric estimator of the transition of

the associated bifurcating chain and study the parametric estimation of the branching rate. In

the limit n → ∞, we obtain asymptotic efficiency in the parametric case and minimax optimality
in the nonparametric case.

Mathematics Subject Classification (2010): 62G05, 62M05, 60J80, 60J20, 92D25.
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1. Introduction

1.1. Motivation. The study of structured populations, with a strong input from evolutionary or
cell division modelling in mathematical biology (see for instance the textbooks [29, 32] and the
references therein) has driven the statistics of branching Markov processes over the last few years.
Several models have been considered, with data processed either in discrete or continuous time.
In this context, one typically addresses the inference of critical parameters like branching rates,
modelled as functions of biological traits like age, size and so on. In many cases, this approach is
linked to certain piecewise deterministic Markov models or bifurcating Markov chains (BMC) in
discrete time. These models are well understood from a probabilist point of view (in discrete time
Guyon [19], Bitseki-Penda et al. [8, 9], in continuous time Bansaye and Méléard [4], Bansaye et al.
[3] or more recently Marguet [28] for a general approach). For the statistical estimation, we refer
to [10, 16, 17, 23, 5], and the references therein, see also Bitseki-Penda and Olivier [31], de Saporta
et al. [14, 15], Azäıs et al. [1] or recently Bitseki-Penda and Roche [7]. In these models, the traits
of a population between branching events like cell division evolve through time according to a dy-
namical system. The next logical step is to replace this deterministic evolution by a random flow,
that allows one to account for traits that may have their own random evolution according to some
exogeneous input. A paradigmatic example is Kimmel’s model (see Kimmel [24] and Bansaye [2])
where the trait is given by a density of parasites within a cell that evolve according to a diffusion
process. The statistical analysis of such models is the topic of the present paper.

We consider a population model with binary division triggered by a trait x ∈ X where X ⊆ R is
an open (possibly unbounded) interval. The trait φx(t) of each individual evolves according to

(1) dφx(t) = r(φx(t))dt+ σ(φx(t))dWt, φx(0) = x,

where r, σ : X → X are regular functions and (Wt)t≥0 is a standard Brownian motion. Each
individual with trait x dies according to a killing or rather division rate x 7→ B(x), i.e. an
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individual with trait φx(t) at time t dies with probability B(φx(t))dt during the interval [t, t+ dt].
At division, a particle with trait y is replaced by two new individuals with trait at birth given
respectively by θy and (1− θ)y where θ is drawn according to κ(y)dy for some probability density
function κ(y) on [0, 1].The model is described by the traits of the population, formally given as a
Markov process

(2) X(t) = (X1(t), X2(t), . . .), t ≥ 0

with values in
⋃
k≥1 X

k, where the Xi(t) denote the (ordered) traits of the living particles at time
t. Its distribution is entirely determined by an initial condition at t = 0 and by the parameters
(r, σ,B, κ).

1.2. Statistical setting by reduction to a bifurcating Markov chain model. We assume
we have data at branching events (i.e. at cell division) and we wish to make inference on the
parameters of the model. Using the Ulam-Harris-Neveu notation, for m ≥ 0, let Gm = {0, 1}m
(with G0 = {∅}) and introduce the infinite genealogical tree

T =
⋃
m∈N

Gm.

For u ∈ Gm, set |u| = m and define the concatenation u0 = (u, 0) ∈ Gm+1 and u1 = (u, 1) ∈ Gm+1.
For n ≥ 0, let Tn =

⋃n
m=0 Gm denote the genealogical tree up to the n-th generation and |Tn|

denote its cardinality. We denote by Xu the trait at birth of an individual u ∈ T. From the
branching events, we assume that we observe

Xn = (Xu)u∈Un ,

where Un ⊆ Tn is what we call a regular incomplete tree, that is a connected subtree of Tn that
contains at least one individual at the n-th generation (see the formal definition 8 in Section 2.2
below) and with cardinality of order 2%n for some 0 ≤ % ≤ 1. This observation scheme is moti-
vated by typical datasets available in biological experiments, see e.g. Robert et al. [34] and the
refrences therein: when moving from generation m − 1 to m (for m = 1, . . . , n) we possibly lose
some information, quantified by %, due to experimental anomalies or simply because of the design
of the experimental process (for instance, in the extreme case % = 0, it may well happen that one
observes only a single lineage of the bifurcating process due to experimental constraints, as some
datasets studied in [34]). We thus have approximately 2%n random variables with value in X with a
certain Markov structure. Asymptotics are taken as n grows to infinity. An example of trajectory
is represented on Figure 1 with the associated genealogy.

There are several objects of interest that we may try to infer from the data Xn. First, one may
notice that the Markov structure of X in (2) turns (Xu, u ∈ T) into a bifurcating Markov chain
according to the terminology introduced Basawa and Zhou [5], later highlighted by Guyon [19]. A
bifurcating Markov chain is specified by 1) a measurable state space, here X (endowed with its
Borel sigma-field) with a Markov kernel P from X to X × X and 2) a filtered probability space(
Ω,F, (Fm)m≥0,P

)
. Following Guyon, [19], Definition 2, we have the

Definition 1. A bifurcating Markov chain (BMC) is a family (Xu)u∈T of random variables with
value in X such that Xu is F|u|-measurable for every u ∈ T and

(3) E
[ ∏
u∈Gm

ψu(Xu, Xu0, Xu1)
∣∣Fm] =

∏
u∈Gm

Pψu(Xu)
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Figure 1. Example of a trajectory and its associated genealogy.

for every m ≥ 0 and any family of (bounded) measurable functions (ψu)u∈Gm , where Pψ(x) =∫
X×X ψ(x, y1, y2)P(x, dy1dy2) denotes the action of P on ψ.

The distribution of (Xu)u∈T is thus entirely determined by P and an initial distribution for X∅.
A key role for understanding the asymptotic behavior of the bifurcating Markov chain is the so-
called tagged-branch chain, that consists in picking a lineage at random in the population (Xu)u∈T:
it is a Markov chain with value in X defined by Y0 = X∅ and for m ≥ 1:

Ym = X∅ε1...εm ,

where (εm)m≥1 is a sequence of independent Bernoulli random variables with parameter 1/2,
independent of (Xu)u∈T, with transition

(4) Q = (P0 + P1)/2

obtained from the marginal transitions of P:

P0(x, dy) =

∫
y1∈X

P(x, dy dy1) and P1(x, dy) =

∫
y0∈X

P(x, dy0dy).

Guyon proves in [19] that if (Ym)m≥0 is ergodic with invariant measure ν(dx) on X, then a con-
vergence of the type

(5)
1

|Tn|
∑
u∈Tn

ψ(Xu, Xu0, Xu1)→
∫
X

Pψ(x)ν(dx)

holds as n→∞ for appropriate test functions g, almost surely and appended with appropriate cen-
tral limit theorems (Theorem 19 in [19]). Under appropriate regularity assumptions, an analogous
result shall hold when Tn is replaced by a regular incomplete tree Un.

1.3. Main results. In this context, there are several quantities that can be inferred from the data
Xn as n grows and that are important in order to understand the dynamics of (Xu)u∈T. Under
suitable assumptions on the stochastic flow (1), the transition Q admits an invariant measure ν
and we have fast convergence of the tagged-chain (Ym)m≥1 to equilibrium. This enables us to
construct in a first part nonparametric estimators of ν and Q with an optimal rate of convergence
and reveals the structure of the underlying BMC.
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However, estimators of ν and Q do not give us any insight about the parameters (r, σ,B, κ) of the
model. In a second part, we investigate the inference of the division rate x 7→ B(x) as a function
of the trait x ∈ X when the other parameters r, σ and κ(x) are known. This seemingly stringent
assumption is necessary given the observation scheme Xn. If extraneous data were available,
estimators of the parameters r, σ and κ could be obtained in a relatively straightforward manner:

i) As soon as a discretisation of the values of the flow are available, standard techniques
about inference in ergodic diffusions can be applied to recover x 7→ r(x) and x 7→ σ(x)2,
see for instance [22, 25].

ii) The fact that an individual u distributed its traits to its offspring in a conservative way
enables one to recover the fraction θu distributed among the children. Indeed the individual
u born at bu with lifespan du − bu has trait φXu(du − bu) at its time of death. It follows
that its children have trait at birth given by

Xu0 = θuφXu(du − bu), Xu1 = (1− θu)φXu(du − bu),

where the θu are drawn independently from the distribution κ(x)dx and therefore, the

relationship
Xu0

Xu1
= θu

1−θu identifies θu. In turn, the estimation of x 7→ κ(x) reduces to a

standard density estimation problem from data (θu)u∈Un , see for instance [21].

The identification and estimation of the branching rate x 7→ B(x) from data Xn is more delicate
and is the topic of the second part of the paper. Under minimal regularity assumptions developed
in Section 2 below, it is not difficult to obtain an explicit representation of the transition Q(x, dy) =
QB(x, dy) = qB(x, y)dy that reads

(6) qB(x, y) =

∫ 1

0

(κ(z) + κ(1− z)
2z

)
B(y/z)σ(y/z)−2E

[ ∫ ∞
0

e−
∫ t
0
B(φx(s))dsdL

y/z
t (φx)

]
dz,

where Lyt (φx) denotes the local time at t in y of the semimartingale (φx(t))t≥0. Assuming (r, σ, κ)
known (or identified by extraneous observation schemes) we study the estimation of x 7→ B(x)
when B belongs to a parametric class of functions {Bϑ, ϑ ∈ Θ} for some regular subset of the
Euclidean space Rd. Under a certain ordering property (Definition 15 in Section 3.2 below) that
ensures identifiability of the model and suitable standard regularity properties, we realise a standard
maximum likelihood proxy estimation of B thanks to (6) by maximising the contrast

ϑ 7→
∏
u∈U?n

qBϑ(Xu− , Xu), ϑ ∈ Θ,

(with U?n = Un \G0 and where u− denotes the unique parent of u) and we prove that it achieves
asymptotic efficiency and discuss its practical implementation. It is noteworthy that for the para-
metric estimation of B, there is no straightforward contrast minimisation procedure (at least we
could not find any) whereas qB(x, y) is explicit. The fairly intricate dependence of B in the
representation (6) makes however the whole scheme relatively delicate, both mathematically and
numerically.

Clearly, other observation schemes are relevant in the context of cell division modelling. For in-
stance, one could consider a (large) time T > 0 and observe the branching process Xt defined in (2)
for every t ∈ [0, T ]. This entails the possibility to extract the times (Tu) at which branching events
occur, like e.g. in [23]. However, the continuous time setting is drastically different and introduce
the additional difficulty of bias sampling, an issue we avoid in the present context. Alternatively,
one could consider the augmented statistical experiment where one observes (Xu, Tu)u∈Un , but
the underlying mathematical structure is presumably not simpler. Our results show in particular
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that for the parametric estimation of the branching rate B, although the times at which branching
event occur are statistically informative, their observation is not necessary to obtain optimal rates
of convergence as soon as (r, σ, κ) are known.

1.4. Organisation of the paper. Section 2.1 is devoted to the construction of the stochastic
model, our assumptions and the accompanying statistical experiments. In particular, we have a
nice structure enough so that explicit representations of P and Q are available (Proposition 5).
We give a first result on the geometric ergodicity of the model via an explicit Lyapunov function
in Proposition 6 and derive in Proposition 9 a rate of convergence for the variance of empirical
measures of the data Xn = (Xu)u∈Un against test functions ϕ(Xu) or ψ(Xu− , Xu) with a sharp
control in terms of adequate norms for ϕ,ψ that do not follow from the standard application
of the geometric ergodicity of Proposition 6. This is crucial for the subsequent applications to
the nonparametric estimation of Q and its invariant measure ν that are given in Theorem 12 of
Section 3.1. Section 3.2 is devoted to the parametric estimation of the branching rate, where an
asymptotically efficient result is proved for a maximum likelihood estimator in Theorem 22. It is
based on a relatively sharp study of the transition Q, thanks to local time properties of the stochastic
flow that triggers the branching events. Section 4 is devoted to the numerical implementation of
the parametric estimator of B. In particular, in order to avoid the computational cost of the
explicit computation of qϑ(Xu− , Xu), we take advantage of our preceding results and implement
a nonparametric estimator on Monte-Carlo simulations instead, resulting in a feasible procedure
for practical purposes. The proofs are postponed to Section 5 and an Appendix Section 6 contains
useful auxiliary results.

2. A cell division model structured by a stochastic flow

2.1. Assumptions and well-posedness of the stochastic model.

Dynamics of the traits. Remember that X ⊆ R is an open, possibly unbounded interval. The flow
is specified by r, σ : X→ X which are measurable and that satisfy the following assumption:

Assumption 2. For some r1, σ1, σ2 > 0, we have |r(x)| ≤ r1(1 + |x|) and σ1 ≤ σ(x) ≤ σ2, for
every x ∈ X. Moreover, for some r2 > 0, we have sgn(x)r(x) < 0 for |x| ≥ r2 (with sgn(x) =
1{x>0} − 1{x≤0}).

Under Assumption 2, there is a unique strong solution to (1) (for instance [30], Theorem 5.2.1.).
We denote by (Φx(t), t ≥ 0) the unique solution to (1) with initial condition x ∈ X. In particular,
(Φx(t), t ≥ 0) is a strong Markov process and is ergodic (cf. [25], Theorem 1.16.). Note that when
X is bounded, the drift condition sgn(x)r(x) < 0 for large enough x can be dropped.

Division events. An individual with trait x dies at an instantaneous rate x 7→ B(x), where B :
X→ [0,∞) satisfies the following condition:

Assumption 3. The function x 7→ B(x) is continuous. Moreover, for some b1, b2 > 0 and γ ≥ 0,
we have b1 ≤ B(x) ≤ b2 |x|γ + b1 for every x ∈ X.

Under Assumptions 2 and 3, the process X in (2) is well defined and the size of the population
does not explode in finite time almost-surely, see for instance Marguet [28]. Note that the lower
bounds for σ and B are not needed for the well-posedness of X but rather for later statistical
purposes.



6 MARC HOFFMANN AND ALINE MARGUET

Fragmentation of the trait at division. Finally, we make an additional set of assumptions on the
fragmentation distribution κ(z)dz that ensures in particular the non-degeneracy of the process.

Assumption 4. We have

supp(κ) ⊂ [ε, 1− ε] for some 0 < ε < 1/2,
infz∈[ε,1−ε] κ(z) ≥ δ.

This assumption is slightly technical and may presumably be relaxed. We emphasize that the
density κ(z) needs not be symmetric.

Representations of P and Q. Under Assumptions 2, 3 and 4, we obtain closed-form formulae for
the transition P defined via (3) and the mean or marginal transition Q of the BMC (Xu)u∈T,
see (4) that also gives the transition probability of the discrete Markov chain with value in X

corresponding to the trait at birth along an ancestral lineage. These representations are crucial
for the subsequent analysis of the variance of the estimators of P and of the invariant measure ν.

Proposition 5. Work under Assumptions 2, 3 and 4. For every x, y, y1, y2 ∈ X, we have

P(x, dy1dy2) = p(x, y1, y2)dy1dy2 and Q(x, dy) = q(x, y)dy,

with

(7) p(x, y1, y2) =
κ
(
y1/(y1 + y2)

)
y1 + y2

B (y1 + y2)σ(y1 + y2)−2E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdLy1+y2

t (φx)
]

and

(8) q(x, y) =

∫ 1

0

κ̃(z)

z
B(y/z)σ(y/z)−2E

[ ∫ ∞
0

e−
∫ t
0
B(φx(s))dsdL

y/z
t (φx)

]
dz,

where κ̃(z) = 1
2 (κ(z) + κ(1− z)) and Lyt (φx) denotes the local time at t in y of the semimartingale

(φx(t))t≥0.

Notice that in the case of a symmetric fragmentation kernel, we have κ̃ = κ.

2.2. Convergence of empirical measures. We study the convergence of empirical means of the
form

(9) MUn(ψ) =
1

|U?n|
∑
u∈U?n

ψ(Xu− , Xu)

towards νQ(ψ) if Un is a rich enough incomplete tree, for test functions ψ : X × X → R. (If
ϕ : X → R we set MUn(ϕ) = |Un|−1

∑
u∈Un ϕ(Xu) → ν(ϕ) and we have a formal correspondence

between the two expressions by writing ψ(x, y) = ϕ(y) as a function of the second variable.) In
order to derive nonparametric estimators of ν and Q by means of kernel functions ψ that shall
depend on n, we need sharp estimates in terms of ψ, see Remark 1) after Proposition 9 below.

Convergence of Q to equilibrium. Assumptions 2, 3 and 4 imply a drift condition for the Lyapunov
function V (x) = x2 on X and a minorisation condition over a small set so that in turn Q is
geometrically ergodic.

Let Q = Q(ri, bi, σi, γ, ε, δ, i = 1, 2) be the class of all transitions Q = Q(r, σ,B, κ) defined over X
that satisfy Assumptions 2, 3 and 4 with appropriate constants. An invariant probability measure
for Q is a probability ν on X such that νQ = ν, where νQ(dy) =

∫
x∈X ν(dx)Q(x, dy). Define

Qr(x, dy) =

∫
Q(x, dz)Qr−1(z, dy) with Q0(x, dy) = δx(dy)
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for the r-th iteration of Q. For ϕ : X→ R, we set

|ϕ|V = sup
x∈X

|ϕ(x)|
1 + V (x)

and write ν(ϕ) =
∫
X
ϕ(x)ν(dx) when no confusion is possible.

Proposition 6 (Convergence to equilibrium). Work under Assumptions 2, 3 and 4. Then any
Q ∈ Q admits an invariant probability distribution ν. Moreover, for V (x) = x2, there exist C =
C(Q) > 0 and ρ = ρ(Q) ∈ (0, 1) such that for every m ≥ 1, the bound∣∣Qmϕ− ν(ϕ)

∣∣
V
≤ Cρm

∣∣ϕ− ν(ϕ)
∣∣
V

holds as soon as |ϕ|V <∞. Moreover, supQ∈Q C(Q) <∞ and supQ∈Q ρ(Q) < 1.

In particular, if |ϕ|∞ = supx∈X |ϕ(x)| is finite, we have |Qmϕ(x)− ν(ϕ)| ≤ Cρm(1 + V (x))|ϕ−
ν(ϕ)|∞ for every x ∈ X.

Sharp controls of empirical variances. Proposition 6 is the key ingredient in order to control the rate
of convergence of empirical means of the form (9) for appropriate observation schemes Un ⊂ Tn.

We need some notation. We denote by | · |1 the usual L1-norm w.r.t. the Lebesgue measure on
X×X. For a function ψ = X×X→ R we set ψ?(x) = supy∈X |ψ(x, y)| and ψ?(y) = supx∈X |ψ(x, y)|
and define

|ψ|∧1 = min
(∫

X×X
|ψ(x, y)|dxdy,

∫
X

sup
x∈X
|ψ(x, y)|dy

)
.

Note in particular that when ψ(x, y) = ϕ(y) is a function of y only, we may have that |ψ?|1 =∫
X
|ϕ(y)|dy is finite while ψ is not integrable on X×X as a function of two variables. For a positive

measure ρ on X, let also

|ψ|ρ =

∫
X×X

|ψ(x, y)|ρ(dx)dy + |ψ|∧1.

We write Pµ for the law of (Xu)u∈T with initial distribution µ for X∅. Remember that V (x) = x2

from Proposition 6. We shall further restrict our study to transitions Q ∈ Q for which the geometric
rate of convergence to equilibrium ρ = ρ(Q) given in Proposition 6 satisfies ρ(Q) ≤ 1/2. Let
Q1/2 ⊂ Q denote the set of such transitions.

Remark 7. It is delicate to check in general that ρ ≤ 1/2 but it is for instance satisfied in the
following example:

i) φx(t) is an Ornstein-Uhlenbeck process on X = R: we have r(x) = −βx and σ(x) = σ for
every x ∈ X and some β, σ > 0,

ii) the division rate is constant: we have B(x) = b for every x ∈ X and some b > 0,
iii) the fragmentation distribution is uniform: we have κ(z) = 1/(1− 2ε) on [ε, 1− ε] for some

ε > 0.

Adapting the proof of Proposition 24 below to this special case and using the explicit formula of ρ
given Theorem 1.2 in [20], we show in Appendix 6.1 that for B small enough, we have ρ < 1/2 in
this example.

Finally we consider observation schemes Un that satisfy a certain sparsity condition that we
quantify in the following definition

Definition 8. A regular incomplete tree is a subset Un ⊆ Tn (for n ≥ 1) such that

(i) u ∈ Un implies u− ∈ Un,
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(ii) We have 0 < lim infn→∞ 2−n%
∣∣Un ∩ Gn

∣∣ ≤ lim supn→∞ 2−n%
∣∣Un ∩ Gn

∣∣ < ∞ for some
0 ≤ % ≤ 1.

Proposition 9. Work under Assumptions 2, 3 and 4. Let µ be a probability measure on X such
that µ(V 2) < ∞. Let ψ : X × X → R a bounded function such that ψ? is compactly supported. If
Un is a regular incomplete tree, the following estimate holds true:

Eµ
[(
MUn(ψ)− ν(Qψ)

)2]
. |Un|−1

(
|ψ2|µ+ν + |ψ?ψ|µ +

(
1 + µ(V 2)

)
|ψ?|1|ψ|ν

)
,

where the symbol . means up to an explicitly computable constant that depends on Q and on
supp(ψ?) only. Moreover, the estimate is uniform in Q ∈ Q1/2.

Several remarks are in order: 1) We have a sharp order in terms of the test functions ψ, that
behave no worse than

∫
X2 ψ

2 under minimal regularity on ν which is satisfied, see Lemma 27 below
(and of course µ, although this restriction could be relaxed). This behaviour is the one expected
for instance in the IID case and is crucial for the subsequent statistical application of Theorem 12
where the functions ψ will be kernel depending on n. 2) The proof heavily relies on the techniques
developed in Biteski Penda et al. [8] or Guyon [19] (more specifically, Theorems 11 and 12 of [19]
or Theorem 2.11 and 2.1 of [8], see also [10, 7]). However, we need a slight refinement here, in
order to obtain a sharp control in terms of the trial function ψ, similar to the behaviour of

∫
X2 ψ

2,
while the aformentioned references would give a term of order supx,y |ψ(x, y)| that would not be
sufficiently sharp for the nonparametric statistical analysis. 3) Proposition 9 has an analog in [17]
for piecewise deterministic growth-fragmentation models, but our proof is somewhat simpler here
and sharper (we do not pay the superfluous logarithmic term in [17]). 4) Finally, note that in
Proposition 9, the observation Un must be deterministic (or at least independent of (Xu)u∈Tn)
otherwise biased selection may occur that would result in completely different behaviours of the
empirical means (like for instance if Un is allowed to contain stopping times on the tree).

3. Statistical estimation

3.1. Nonparametric estimation of Q and ν. Under Assumptions 2, 3 and 4, any Q(x, dy) =
q(x, y)dy admits an invariant probability measure ν(dx) = ν(x)dx, the regularity of ν(x) being
inherited from that of Q via ν(x) =

∫
X
q(z, x)ν(dz).

Fix (x0, y0) ∈ X × X. We are interested in constructing estimators of q(x0, y0) and ν(x0) from
the observation Xn when both functions satisfy some Hölder regularity properties in the vicinity
of (x0, y0). To that end, we need approximating kernels.

Definition 10. A function G : X → R is a kernel of order k if it is compactly supported and
satisfies

∫
X
x`G(x)dx = 1{`=0} for ` = 0, . . . , k.

The construction and numerical tractability of approximating kernels is documented in numerous
textbooks, see for instance Tsybakov [36, Chapter 1]. For bandwidth parameters h, h1, h2 > 0, we
set

Gh(y) = h−1G(h−1y)

and

G⊗2
h1,h2

(x, y) = h−1
1 h−1

2 G(h−1
1 x)G(h−1

2 y
)

and obtain approximations of ν(y0) and q(x0, y0) by setting

Gh ? ν(y0) =

∫
X

Gh(y0 − y)ν(y)dy
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and

Gh ? q(x0, y0) =

∫
X×X

G⊗2
h1,h2

(x0 − x, y0 − y)ν(x)q(x, y)dxdy.

The convergence of MUn(ϕ) to ν(ϕ) suggests to pick ϕ = Gh(x0−·). Then MUn(Gh(x0−·)) is close
to Gh ? ν(x0) for small enough h and can be used as a proxy of ν(x0). We obtain the estimator

ν̂n(x0) = MUn
(
Gh(x0 − ·)

)
,

specified by the choice of h > 0 and the kernel G. Likewise, with ψ = Gh1,h2(x0 − ·, y0 − ·), an
estimator of q(x0, y0) is obtained by considering the quotient estimator with numerator MUn(ψ)
that is close to Gh1,h2

?
(
ν(·)q(·, ·)

)
(x0, y0) and denominator ν̂n,h(x0) in order to balance the

superfluous weight ν(x0) in the numerator. We obtain the estimator

q̂n(x0, y0) =
MUn

(
G⊗2
h1,h2

(x0 − ·, y0 − ·)
)

MUn
(
Gh(x0 − ·)

)
∨$ ,

specified by the choice of h, h1, h2 > 0, a threshold $ > 0 and the kernel G. In order to quantify the
kernel approximation, we introduce anisotropic Hölder classes. For α > 0, we write α = bαc+ {α}
with bαc an integer and 0 < {α} ≤ 1.

Definition 11. Let α, β > 0 and Vx0
and Vy0

be bounded neighbourhoods of x0 and y0.

i) The function ϕ : Vx0 → R belongs to the Hölder class Hα(x0) if

(10) |ϕ(bαc)(y)− ϕ(bαc)(x)| ≤ C|y − x|{α} for every x, y ∈ Vx0
.

ii) The function ψ : Vx0 × Vy0 → R belongs to the anisotropic Hölder class Hα,β(x0, y0) if

x 7→ ψ(x, y0) ∈ Hα(x0) and y 7→ ψ(x0, y) ∈ Hβ(y0)

hold simultaneously.

We obtain a semi-norm on Hα(x0) by setting |ϕ|Hα(x0) = supx∈Vx0
|ϕ(x)|+ cα(ϕ), where cα(ϕ)

is the smallest constant for which (10) holds. Likewise, we equip Hα,β(x0, y0) with the semi-norm
|ψ|Hα,β(x0,y0) = |ψ(·, y0)|Hα(x0) + |ψ(x0, ·)|Hβ(y0). The space Hα,β(x0, y0) is appended with (semi)
Hölder balls

Hα,β(x0, y0)(R) =
{
ψ : X× X→ R, |ψ|Hα,β(x0,y0) ≤ R

}
, R > 0.

We are ready to state our convergence result over transitions Q that belong to

Qα,β1/2(R) = Q1/2 ∩Hα,β(x0, y0)(R), R > 0,

with a slight abuse of notation.

Theorem 12. Work under Assumptions 2, 3 and 4. Assume that the initial distribution µ is
absolutely continuous w.r.t. the Lebesgue measure with a locally bounded density function and
satisfies µ(V 2) <∞.

Let α, β > 0. Specify ν̂n(y0) by a kernel of order k > max{α, β} and h = |Un|−1/(2β+1) and
q̂n(x0, y0) with the same kernel and h1 = |Un|−s(α,β)/(α∧β)(2s(α,β)+1), h2 = |Un|−s(α,β)/β(2s(α,β)+1)

and $ = $n → 0. Then, if Un is an %-regular incomplete tree, for every R > 0,

sup
Q∈Qα,β

1/2
(R)

(
Eµ
[(
ν̂n(y0)− ν(y0)

)2])1/2
. |Un|−β/(2β+1)

and

sup
Q∈Qα,β

1/2
(R)

(
Eµ
[(
q̂n(x0, y0)− q(x0, y0)

)2])1/2
. $−1

n |Un|−s(α,β)/(2s(α,β)+1)
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hold true, where s(α, β)−1 = (α ∧ β)−1 + β−1 is the effective anisotropic smoothness associated
with (α, β).

Several remarks are in order: 1) We obtain an optimal result in the minimax sense for esti-
mating ν(y0) and in the case β ≥ α for estimating q(x0, y0). This stems from the fact that the
representation ν(x) =

∫
X
ν(y)q(y, x)dy henceforth q ∈ Hα,β implies that ν ∈ Hβ . In turn, the

numerator of q̂n(x0, y0) is based on the estimation of the function ν(x)q(x, y) ∈ Hα∧β,β . 2) In the
estimation of q(x0, y0), we have a superfluous term $−1

n in the error that can be taken arbitrarily
small, and that comes from the denominator of the estimator. It can be removed, however at a
significant technical cost. Alternatively, one can get rid of it by weakening the error loss: it is not
difficult to prove(

Eµ
[(
q̂n(x0, y0)− q(x0, y0)

)p])1/p
. |Un|−s(α,β)/(2s(α,β)+1) for every 0 < p < 2,

and the result of course also holds in probability. 3) The assumption that µ is absolutely continuous
can also be removed. 4) Finally, a slightly annoying fact is that the estimators ν̂n(x0) and q̂n(x0, y0)
require the knowledge of (α, β) to be tuned optimally, and this is not reasonable in practice. It is
possible to tune our estimators in practice by cross-validation in the same spirit as in [23], but an
adaptive estimation theory still needs to be established. This lies beyond the scope of the paper,
and requires concentration inequalities, a result we do not have here, due to the fact that the model
is not uniformly geometrically ergodic (otherwise, we could apply the same strategy as in [10, 7]).

3.2. Parametric estimation of the division rate. In order to conduct inference on the division
rate x 7→ B(x), we need more stringent assumptions on the model so that we can apply the results
of Proposition 9. The main difficulty lies in the fact that we need to apply Proposition 9 to test
functions of the form ψ(x, y) = log q(x, y) when applied to the loglikelihood of the data, and that
these functions are possibly unbounded.

A stochastic trait model as a diffusion on a compact with reflection at the boundary. We circumvent
this difficulty by assuming that the trait φx(t) of each individual evolves in a bounded interval
with reflections at the boundary and with no loss of generality, we take X = [0, L] for some L > 0.
The dynamics of the traits now follows

dφx(t) = r(φx(t))dt+ σ(φx(t))dWt + d`t,(11)

where the solution (`t)t≥0 to `t =
∫ t

0
(1{φx(s)=0} + 1{φx(s)=L})d`s accounts for the reflection at the

boundary and (Wt)t≥0 is a standard Brownian motion. Under Assumption 2 (that reduces here to
the boundedness of r, σ and the ellipticity of σ) there exists a unique strong solution to (11), see
for instance Theorem 4.1. in [35].

A slight modification of Proposition 5 gives the following explicit formulae for the transitions P

and Q. Remember that by Assumption 4, we have supp(κ) ⊂ [ε, 1− ε]. Define

D =
{

0 < y1 ≤ εL, ε
1−εy1 ≤ y2 ≤ 1−ε

ε y1

}
∪
{
εL ≤ y1 ≤ (1− ε)L, ε

1−εy1 ≤ y2 ≤ L−y1

y1

}
.

Then the explicit formula for p(x, y1, y2) given in (7) remains unchanged provided (x, y1, y2) ∈ X×D
and it vanishes outside of X×D. For q(x, y), the formula (8) now becomes

(12) q(x, y) =

∫ 1

y/L

κ̃(z)

z
B(y/z)σ(y/z)−2E

[∫ ∞
0

e−
∫ t
0
B(φx(s))dsdL

y/z
t (φx)

]
dz,
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for (x, y) ∈ X× [0, (1− ε)L] and 0 otherwise.

Adapting the proof of Proposition 6 to the case of a diffusion living on a compact interval (for-
mally replacing [−w,w] by [0, L] in the proof of Proposition 24 below) one checks that Proposition
6 remains valid in this setting (applying for instance Theorem 4.3.16 in [11]). In turn, Proposition
9 also holds true in the case of a reflected diffusion. For parametric estimation, the control on the
variance of MUn(ψ) is less demanding and we will simply need the following

Corollary 13. Work under Assumptions 2, 3 and 4 in the case of a reflected diffusion on [0, L]
for the evolution of the trait (φx(t), t ≥ 0). Let ψ : X×X→ R. Then, for any probability measure
µ, if Un is a %-regular incomplete tree, we have

sup
Q∈Q1/2

Eµ
[
(MUn(ψ)− ν(Qψ))2

]
. |Un|−1 sup

x,y
ψ(x, y)2.

Maximum likelihood estimation. From now on, we fix a triplet (r0, σ0, κ0) and we let the division
rate x 7→ B(x) belong to a parametric class

B =
{
B : X→ R, B(x) = B0(ϑ, x), x ∈ X, ϑ ∈ Θ

}
,

where x 7→ B0(x, ϑ) is known up to the parameter ϑ ∈ Θ, and Θ ⊂ Rd for some d ≥ 1 is a compact
subset of the Euclidean space. In this setting, the model is entirely characterised by ϑ which is
our parameter of interest. A first minimal stability requirement of the parametric model is the
following

Assumption 14. We have Q(B) = {Q = Q(r0, σ0, B, κ), B ∈ B} ⊂ Q1/2.

A second minimal requirement is the identifiability of the class B, namely the fact that the map

B 7→ Q(r0, σ0, B, κ0)

from B to Q is injective. This is satisfied in particular if B satisfies a certain orderliness property.

Definition 15. A class B of functions from X → [0,∞) is orderly if ϕ1, ϕ2 ∈ B implies either
ϕ1(x) ≤ ϕ2(x) for every x ∈ X or ϕ2(x) ≤ ϕ1(x) for every x ∈ X.

Proposition 16. Let B be orderly in the sense of Definition 15 and Q(B) ⊂ Q for some (r0, σ0, κ0).
Then B 7→ Q(r0, σ0, B, κ0) is injective.

We further stress the dependence on ϑ by introducing a subscript in the notation whenever
relevant. We formally obtain a statistical experiment

En =
{
Pnϑ, ϑ ∈ Θ

}
by letting Pnϑ denote the law of Xn = (Xu, u ∈ Un) under Pϑ with initial condition X∅ distributed

according to νϑ on the product space X|Un| endowed with its Borel sigma-field. Therefore, the
process is supposed to be stationary for simplicity. The experiment En is dominated by the
Lebesgue measure on X|Tn| and we obtain a likelihood-type function by setting

(13) Ln
(
ϑ, (Xu, u ∈ Un)

)
=
∏
u∈U?n

qϑ(Xu− , Xu).

Taking any maximiser of (13) we obtain a maximum likelihood estimator

ϑ̂n ∈ argmax
ϑ∈Θ

Ln
(
ϑ,Xn

)
provided a maximiser exists. As noted by a referee, in the case where we observe the full tree, i.e.
Un = Tn and thus % = 1 in Definition 8, we have access to the observation (Xu, Xu0 + Xu1) for
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every u ∈ Tn−1. Going back to the expression of the transition density of the bifurcating process
itself in (7), we may alternatively maximise the contrast

ϑ 7→
∏
u∈T∗n

pBϑ(Xu, Xu0, Xu1)

=
∏
u∈T?n

κ
(
Xu0/(Xu0 +Xu1)

)
(Xu0 +Xu1)σ(Xu0 +Xu1)2

Bϑ (Xu0 +Xu1)E
[ ∫ ∞

0

e−
∫ t
0
Bϑ(φXu (s))dsdLXu0+Xu1

t (φXu)
]
,

or equivalently

ϑ 7→
∏
u∈T∗n

Bϑ (Xu0 +Xu1)E
[ ∫ ∞

0

e−
∫ t
0
Bϑ(φXu (s))dsdLXu0+Xu1

t (φXu)
]
.

In particular, the latter contrast does not depend on κ which is merely a nuisance parameter
here and that can be ignored, in this specific setting, where one can observe the complete tree
(Xu, u ∈ Tn).

Convergence results and asymptotic efficiency. We first have an existence and consistency result

of ϑ̂n under the following non-degeneracy assumption that strengthens Assumption 3.

Assumption 17. The function B0 : Θ × X → [0,∞) is continuous and for some positive b3, b4,
we have

0 < b3 ≤ inf
ϑ,x

B0(ϑ, x) ≤ sup
ϑ,x

B0(ϑ, x) ≤ b4

Moreover, the class B =
{
B0(ϑ, ·), ϑ ∈ Θ

}
is orderly in the sense of Definition 15.

Theorem 18. Work under Assumptions 2, 4, 14 and 17. Then, for every ϑ ∈ Θ, ϑ̂n converges to
ϑ in probability as n→∞.

Our next result gives an explicit rate of convergence and asymptotic normality for ϑ̂n. We need
further regularity assumptions.

Assumption 19. The set Θ has non empty interior and, for every x ∈ X the map ϑ 7→ B0(ϑ, x)
is three times continuously differentiable. Moreover, for every 1 ≤ i, j, k ≤ d:

sup
ϑ,x
|∂ϑiB0(ϑ, x)|+ sup

ϑ,x
|∂2
ϑiϑjB0(ϑ, x)|+ sup

ϑ,x
|∂3
ϑiϑjϑk

B0(ϑ, x)| <∞.

Introduce the Fisher information operator Ψ(ϑ) = νϑQϑ

(
(∂ϑ log qϑ)(∂ϑ log qϑ)T

)
at point ϑ ∈ Θ

as the d× d-matrix with entries:

Ψ(ϑ)i,j = νϑQϑ

(∂ϑiqϑ ∂ϑjqϑ
q2
ϑ

)
=

∫
X×X

∂ϑiqϑ(x, y) ∂ϑjqϑ(x, y)

qϑ(x, y)2
νϑ(x)qϑ(x, y)dxdy,

for 1 ≤ i, j ≤ d.

Assumption 20. For every ϑ in the interior of Θ, the matrix Ψ(ϑ) is nonsingular.

Although standard in regular parametric estimation, Assumption 20 is not obviously satisfied
even if we have the explicit formula (12), for qϑ(x, y), due to its relatively intricate form. We can
however show that it is satisfied in the special case of a trait evolving as a reflected diffusion with
constant drift. More general parametrisations are presumably possible, adapting the proof delayed
until Appendix 6.5.
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Proposition 21. Assume d = 1, B0(ϑ, x) = ϑ for every x ∈ X, with Θ = [ϑ1, ϑ2] ⊂ (0,∞),
r(x) = r1 < 0 and σ(x) = σ0 > 0 for every x ∈ X. Let κ(z) = (1 − 2ε)−1 for every z ∈ [ε, 1 − ε].
There exists an explicit open interval I ⊂ (0, 1/2) such that Assumption 20 is satisfied as soon as
ε ∈ I.

We are ready to state our final result on asymptotic normality of ϑ̂n.

Theorem 22. Work under Assumptions 2, 4, 14, 17, 19 and 20. For every ϑ in the interior of
Θ, if Un is a %-regular incomplete tree, we have∣∣Un∣∣1/2(ϑ̂n − ϑ)→ N

(
0,Ψ(ϑ)−1

)
in distribution as n → ∞, where N(0,Ψ(ϑ)−1) denote the d-dimensional Gaussian distribution
with mean 0 and covariance the inverse of the Fisher matrix Ψ(ϑ).

Several remarks are in order: 1) Although asymptotically optimal, the practical implementation

of ϑ̂n is a challenging question that we plan to address in a systematic way. 2) As for classical
estimation in diffusion processes (see e.g. [13, 18]), the assumptions of Theorem 22, especially
Assumption 20 are standard. However, the fact that they hold true in the simple case of Proposition
21 and a glance at the proof is an indication that they are certainly true in wider generality.

4. Numerical implementation

We consider the implementation of the estimator ϑ̂n in the case of a branching population
structured by a trait drawn according to a Brownian motion reflected on [0, 1], namely

φx(t) = x+Wt + `t, `t =

∫ t

0

(1{φx(s)=0} + 1{φx(s)=1})d`s, t ≥ 0,

where (Wt)t≥0 is a standard Brownian motion. We pick κ(z) = (1 − 2ε)−11[ε,1−ε](z) so that
an individual with trait x at division splits into two individuals with traits Ux and (1 − U)x
respectively, where U is uniformly distributed on [ε, 1− ε]. We pick ε = 10−4.

4.1. Generation of simulated data. We test our estimation procedure on simulated data. Given
a division rate B and an initial trait x0 ∈ R, we construct a dataset constituted of a full tree of
size |Tn| = 2n+1 − 1 using a queue.

Initialisation step. We begin with one individual in the queue with trait x0 at time 0. It is the
ancestor of the population

While step. While the queue is not empty, we pick u in the queue,

i) we simulate the dynamics (φXu(t), 0 ≤ t ≤ T ) for the trait of u using the Euler scheme for
reflected stochastic differential equations of [26] with initial condition Xu and time step
∆t until time T , for some T sufficiently large,

ii) we draw the lifetime ζu of u by rejection sampling,
iii) if |u| ≤ n−1, we add to the queue two new individuals with respective traits at birth given

by Xu0 = ηx and Xu1 = (1− η)x where η is a realisation of a uniform random variable on
[ε, 1− ε] and x = φXu(ζu) is the trait of u at division,

iv) we add the pairs (Xu, Xu0) and (Xu, Xu1) to the dataset,
v) we remove the individual u from the queue.
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Figure 2. The contrast Ln
(
ϑ, (Xu, u ∈ Tn)

)
for n = 14 and B(x, ϑ) ≡ 2 with

∆ϑ = 0.05 (left) and ∆ϑ = 0.01 (right). We look at the results only for ∆ϑ = 0.05
because for smaller values of the increment, the noise due to computational errors
is too important compared to the different values of the contrast.

4.2. Implementation of the maximum likelihood type contrast. We pick Un = Tn. For
a given dataset Xn, we approximate Ln

(
ϑ, (Xu, u ∈ Tn)

)
using, for a given ϑ, the nonparametric

estimator q̂n(Xu− , Xu) introduced in Section 3.1.

More specifically, we implement q̂n(x0, y0) =
MUn

(
G⊗2
h1,h2

(x0−·,y0−·)
)

MUn

(
Gh(x0−·)

)
∨$

for every (x0, y0) on a grid of

mesh n−1
1 × n−1

2 of [0, 1]× [0, 1] with n1 = n2 = 200, G(x) = (2π)−1/2 exp(−x2/2), h = 2|Tn|−1/3,

h1 = h2 = 10−1 · h1/2, $ = 10−6. We next use an interpolation scheme with splines provided
by the package Interpolations in Julia [6] to compute the value of the transition at each point
of the dataset (Xu− , Xu) ∈ Xn. For synthetic data, we pick n = 19, resulting in a tree of size
220 − 1 = 1 048 575 with initial value x0 = 0.5 and ∆t = 5× 10−4.

4.3. Results. We consider the following parametric classes B0(ϑ, x) = ϑ and B1(ϑ, x) = 1 + ϑx.
We compute 300 Monte-Carlo samples of size |Tn| = 215 − 1 = 32 767 for ϑ = ϑ1 = 2 and
ϑ = ϑ2 = 15 in both cases. Therefore, we apply our results to four different cases. In each case,
we approximate qϑ(Xu− , Xu) for different values of ϑ ∈ Θ = [ϑmin, ϑmax] and we compute the

corresponding ϑ̂n. We progressively reduce the increment ∆ϑ for the choice of ϑ until the contrast
of likelihood starts to be noisy (see Figure 2), adapting at each level the choice for the upper and
lower bounds of Θ. The results are displayed in Table 1. We recover the parameter in all four
cases, with various accuracies. The most accurate value is obtained for B1 with a small value of
the parameter, i.e. ϑ = 2. We did not reach the optimal accuracy |T?n|−1/2 ≈ 6 × 10−3. One
could presumably obtain a better accuracy by choosing a finer discretisation of [0, 1]× [0, 1] for the
computation of the q̂n. But this choice leads to an important increase of the computational time.
The results in the case of a linear division rate are less accurate. Those results could also probably
be improved using a cross-validation procedure for the choice of the bandwidth parameters h, h1, h2.
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B ϑ Mean Std Dev. ϑmin ϑmax ∆ϑ
B0 2 1.9908 0.0845 1.8 2.2 0.05

15 15.029 0.4763 14 16 0.25
B1 2 2.1392 0.3485 1.375 3 0.125

15 15.023 0.6425 13.75 16.5 0.25

Table 1. Results for B in B1 and B2. For each parametric class of functions
B1 and B2, we display the results for ϑ = 2 and ϑ = 15. The third and fourth
columns corresponds respectively to the mean value and the standard deviation

of ϑ̂n, computed with 300 different data sets of size 2n+1 − 1 = 32767. The fifth
and sixth columns correspond to a 95% confidence interval. The last column
corresponds to the value of the step for the discretisation of Θ, which limits the
accuracy of the result.

5. Proofs

5.1. Proof of Proposition 5. We first prove (7). By (3), for any bounded ψ : X3 → R and
x ∈ X, we have

Pψ(x) = E
[ ∫ 1

0

κ(z)

∫ ∞
0

ψ
(
x, zφx(t), (1− z)φx(t)

)
B
(
φx(t)

)
e−

∫ t
0
B(φx(s))dsdtdz

]
=

∫
R

∫ 1

0

ψ
(
x, y0,

1−z
z y0

)
B
(
y0/z

)
σ(y0/z)

−2E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdL

y0/z
t (φx)

]κ(z)

z
dzdy0(14)

=

∫
D

ψ
(
x, y0, y1

)κ(y0/(y0 + y1)
)

y0 + y1

B (y0 + y1)

σ(y0 + y1)2
E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdLy0+y1

t (φx)
]
dy0dy1,

where we set y1 = 1−z
z y0 in order to obtain the last line and where (Lyt (φx))t≥0 is the local time

of φx at y ∈ X. The integral is taken over the domain

D =
{

(y0, y1) ∈ R2, ε
1−εy0 ≤ y1 ≤ 1−ε

ε y0

}
⊂ supp

(
(y0, y1) 7→ κ(y0/(y0 + y1))

)
therefore the above integral is well defined and the representation (7) is proved. We turn to (8).
From (14), we get

P0ϕ(x) =

∫
R

∫ 1

0

ϕ(y0)B
(
y0/z

)
σ(y0/z)

−2E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdL

y0/z
t (φx)

]κ(z)

z
dzdy0

and

P1ϕ(x) =

∫
R

∫ 1

0

ϕ
(

1−z
z y0

)
B
(
y0/z

)
σ(y0/z)

−2E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdL

y0/z
t (φx)

]κ(z)

z
dzdy0

=

∫
R

∫ 1

0

ϕ
(
y1

)
B
(
y1/z̄

)
σ(y1/z̄)

−2E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdL

y1/z̄
t (φx)

]κ(1− z̄)
z̄

dz̄dy1,

where the second equality is given by two successive changes of variables y1 = 1−z
z y0 and z̄ = 1−z.

Finally,

Qϕ(x) = 1
2

(
P0ϕ(x) + P1ϕ(x)

)
=

∫
R

∫ 1

0

ϕ(y)B
(
y/z
)
σ(y/z)−2E

[ ∫ ∞
0

e−
∫ t
0
B(φx(s))dsdL

y/z
t (φx)

] κ̃(z)

z
dzdy,
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where κ̃(z) = 1
2 (κ(z) + κ(1 − z)). Since supp(κ) ⊂ [ε, 1 − ε], the above integrals are well defined

and (8) is established.

5.2. Proof of Proposition 6. The proof goes along a classical path: we establish a drift and a
minorisation condition in Proposition 23 and 24 below, and then apply for instance Theorem 1.2.
in [20], see also the references therein.

Proposition 23 (Drift condition). Let V (x) = x2. Work under Assumptions 2, 3 and 4. There
exist explicitly computable 0 < v1 = v1(ε) < 1 and v2 = v2(ε, r1, r2, σ1, σ2, b1) > 0 such that

QV (x) ≤ v1V (x) + v2.

Proposition 24 (Minorisation condition). Work under Assumption 2, 3 and 4. For large enough
w > 0, there exists λ ∈ (0, 1) and a probability measure µ on X such that

inf
{x,|x|≤w}

Q(x,A) ≥ λµ(A)

for every Borel set A ⊂ X.

Proof of Proposition 23. Fix x ∈ X and let m(κ) =
∫ 1

0
z2κ̃(z)dz. By Itô formula, we obtain the

decomposition

QV (x) =

∫ 1

0

κ̃(z)

∫ ∞
0

E
[
z2φx(t)2B

(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dtdz = m(κ)(I + II + III + IV ),

where

I = x2

∫ ∞
0

E
[
B
(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dt,

II = 2

∫ ∞
0

E
[ ∫ t

0

φx(u)r(φx(u))duB
(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dt,

III =

∫ ∞
0

E
[ ∫ t

0

σ
(
φx(u)

)2
duB

(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dt,

IV = 2

∫ ∞
0

E
[ ∫ t

0

φx(u)σ
(
φx(u)

)
dWuB

(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dt.

First, note that
∫∞

0
B(φx(t))e−

∫ t
0
B(φx(s))dsdt = 1 holds since B(φx(t)) ≥ b1 > 0 by Assumption 3,

therefore I = x2 by Fubini’s theorem. We turn to II. By Fubini’s theorem again:

II = 2E
[ ∫ ∞

0

φx(u)r
(
φx(u)

)( ∫ ∞
u

B
(
φx(t)

)
e−

∫ t
0
B(φx(s))dsdt

)
du
]

= 2E
[ ∫ ∞

0

φx(u)r
(
φx(u)

)
e−

∫ u
0
B(φx(s))dsdu

]
= 2

∫
R
zr(z)σ(z)−2E

[ ∫ ∞
0

e−
∫ t
0
B(φx(s))dsdLzt (φx)

]
dz.

where we used again that e−
∫∞
0
B(φx(s))ds = 0 since B(φx(t)) ≥ b1 > 0 by Assumption 3 for the

second equality and the occupation times formula for the last equality. By Assumption 2 we have
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zr(z) < 0 for |z| ≥ r2, therefore:

II ≤ 2

∫ r2

−r2
zr(z)σ(z)−2E

[ ∫ ∞
0

e−
∫ t
0
B(φx(s))dsdLzt (φx)

]
dz

≤ 2r1r2(1 + r1)σ−2
1

∫ r2

−r2
E
[ ∫ ∞

0

e−
∫ t
0
B(φx(s))dsdLzt (φx)

]
dz

≤ 2r1r2(1 + r1)σ−2
1

∫ ∞
0

e−b1tP
(
− r2 ≤ φx(t) ≤ r2

)
dt ≤ 2r1r2(1 + r1)σ−2

1 b−1
1 .

using successively Assumption 2, 3 and the occupation times formula. For the term III, by Fubini’s
theorem, we have

III =

∫ ∞
0

E
[
σ
(
φx(u)

)2 ∫ ∞
u

B
(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
du

=

∫ ∞
0

E
[
σ(φx(u))2e−

∫ u
0
B(φx(s))ds

]
du

and this last quantity is less than σ2
2

∫∞
0
e−b1tdt = σ2

2b
−1
1 by Assumption 2 and 3. Similarly for

the term IV, we have

IV = 2E
[ ∫ ∞

0

σ
(
φx(u)

) ∫ ∞
u

B
(
φx(t)

)
e−

∫ t
0
B(φx(s))dsdtdWu

]
= 2E

[ ∫ ∞
0

σ
(
φx(u)

)
e−

∫ u
0
B(φx(s))dsdWu

]
and this last quantity vanishes. Putting the estimates for I, II, III and IV together, we conclude

QV (x) ≤ m(κ)x2 +m(κ)(2r1r2(1 + r1)σ−2
1 + σ2

2)b−1
1 .

Since supp(κ) ⊂ [ε, 1−ε], we have m(κ) ≤ (1−ε)2 < 1 and this completes the proof with v1 = m(κ)
and v2 = m(κ)(2r1r2(1 + r1)σ−2

1 + σ2
2)b−1

1 .
�

Proof of Proposition 24. Step 1). Let x ∈ [−w,w] and A ⊂ X be a Borel set. Applying Assumption

3, introducing the event W(φx(t)) = {2w ≤ φx(t) ≤ 2w
√

(1− ε)/ε)}, applying Fubini’s theorem
and a change of variable, we successively obtain

Q(x,A) =

∫ 1

0

κ̃(z)

∫ ∞
0

E
[
1{zφx(t)∈A}B

(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dtdz

≥ b1
∫ 1

0

κ̃(z)

∫ ∞
0

E
[
1W(φx(t))1{zφx(t)∈A}e

−
∫ t
0
B
(
φx(s)

)
ds
]
dtdz

= b1

∫ ∞
0

E
[
1W(φx(t))e

−
∫ t
0
B(φx(s))ds

∫ φx(t)

0

1{y∈A}κ̃
(
y/φx(t)

)
φx(t)−1dy

]
dt.

Using again Fubini’s theorem, we get

Q(x,A) ≥
∫
R

1{y∈A}f(x, y)dy,

with f(x, y) = b1
∫∞

0
E
[
1W(φx(t))1{y≤φx(t)}e

−
∫ t
0
B(φx(s))dsκ̃

(
y/φx(t)

)
φx(t)−1

]
dt.
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Step 2). We now prove that f is bounded below independently of x. By Assumption 4, κ̃
(
y/φx(t)

)
>

δ for all y ∈ [εφx(t), (1− ε)φx(t)] so that

f(x, y) ≥ δb1
∫ ∞

0

E
[
1W(φx(t))1{εφx(t)≤y≤(1−ε)φx(t)}e

−
∫ t
0
B(φx(s))dsφx(t)−1

]
dt.

Next, as W(φx(t))
⋂{εφx(t) ≤ y ≤ (1 − ε)φx(t)} ⊇ W(φx(t))

⋂{2w√ε(1− ε) ≤ y ≤ 2w(1 − ε)},
we get

f(x, y) ≥ δb1

2w
√

(1− ε)/ε
1{

2w
√
ε(1−ε)≤y≤2w(1−ε)

}h(x, y),

where h(x, y) =
∫∞

0
E
[
1W(φx(t))e

−
∫ t
0
B(φx(s))ds

]
dt. Let ∆ = (1 +

√
(1− ε)/ε)w denote the mid-

point of the interval [2w, 2w
√

(1− ε)/ε]. Let also T xy = inf {t > 0, φx(t) ≥ y} denote the exit time
of the interval (inf X, y) by (φx(t))t≥0. It follows that

h(x, y) ≥ E
[ ∫ ∞

Tx∆

1W(φx(t))e
−

∫ t
0
B(φx(s))dsdt

]
=

∫ ∞
0

E
[
1W(φx(t+Tx∆))e

−
∫ t+Tx∆
0 B(φx(s))ds

]
dt

=

∫ ∞
0

E
[
1W(φx(t+Tx∆))e

−
∫ Tx∆
0 B(φx(s))dse−

∫ t
0
B(φx(s+Tx∆))ds

]
dt

≥
∫ ∞

0

E
[
1W(φx(t+Tx∆))e

−Tx∆(b2∆γ+b1)e−
∫ t
0
B(φx(s+Tx∆))ds

]
dt,

by Assumption 3 and because φx(s) ≤ ∆ for every s ≤ T x∆. Applying the strong Markov property,
we further obtain

(15) h(x, y) ≥
∫ ∞

0

E
[
1W(φ∆(t))e

−Tx∆(b2∆γ+b1)e−
∫ t
0
B(φ∆(s))ds

]
dt

since φx(T x∆) = ∆ for x ≤ w < ∆. Introduce next T∆
W = inf{t ≥ 0, φ∆(t) /∈ [2w, 2w

√
(1− ε)/ε]},

i.e. the exit time of [2w, 2w
√

(1− ε)/ε] by (φ∆(t))t≥0. By (15) and Assumption 3 again, it follows
that

h(x, y) ≥ E
[ ∫ T∆

W

0

1W(φ∆(t))e
−Tx∆(b2∆γ+b1)e−

∫ t
0

(b2|φx(s)|γ+b1)dsdt
]

≥ E

[∫ T∆
W

0

1W(φ∆(t))e
−Tx∆(b2∆γ+b1)e−tv3dt

]
,

using that φx(t) ≤ 2w
√

(1− ε)/ε for t ≤ T∆
W and where v3 = b2(2w

√
(1− ε)/ε)γ + b1. Since

∆ > −w, the event {T x∆ ≤ T−w∆ } holds almost-surely for every x ∈ [−w,w] and therefore

(16) h(x, y) ≥ E
[ ∫ T∆

W

0

e−T
−w
∆ (b2∆γ+b1)e−tv3dt

]
≥ v−1

3 E
[
e−T

−w
∆ (b2∆γ+b1)

]
E
[
1− e−T∆

Wv3
]
.

by the independence of T∆
W and T−w∆ . Furthermore, for every a, x ∈ X with x < a, we have

P (T xa <∞) = lim
u→−∞

s(u)− s(x)

s(u)− s(a)
,

where s(x) =
∫ x

inf X
exp(−2

∫ y
inf X

r(z)σ(z)−2dz)dy, is the scale function associated to (φx(t))t≥0.
By the classical Feller classification of scalar diffusions (see e.g. Revuz and Yor [33]), we have
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the equivalence P (T xa <∞) = 0 if only if
∫

inf X
s(x)dx = 0 but that latter property contradicts

Assumption 2. Therefore, there exist w1, δ1 > 0 such that P(T−w∆ ≤ w1) > δ1. It follows that

(17) E
[
e−T

−w
∆ (b2∆γ+b1)

]
≥ E

[
e−w1(b2∆γ+b1)1{T−w∆ ≤w1}

]
≥ δ1e−w1(b2∆γ+b1)

and since T∆
W > 0 almost surely, there exists δ2 > 0, independent of x, such that

(18) E
[
1− e−T∆

Wv3
]
> δ2.

Back to (16), putting together (17) and (18), we obtain

h(x, y) ≥ v−1
3 δ1e

−w1(b2∆γ+b1)δ2

and eventually

f(x, y) ≥ δb1δ1δ2

2w
√

(1− ε)/εv3

1{
2w
√
ε(1−ε)≤y≤2w(1−ε)

}e−w1(b2∆γ+b1).

Step 3). Define the probability measure µ(dy) = f(y)dy on X by

f(y) =
1

2w
(
1− ε−

√
ε(1− ε)

)1{
2w
√
ε(1−ε)≤y≤2w(1−ε)

},
and let λ = (1 − ε −

√
ε(1− ε)) b1δδ1δ2√

(1−ε)/εv3

e−w1(b2∆γ+b1). We may assume that 0 < λ < 1 (the

lower bound remains valid if we replace δ by δ′ < δ for instance) and we thus have established

Q(x,A) ≥ λµ(A),

for an arbitrary Borel set A ⊂ X. The proof of Proposition 24 is complete. �

5.3. Proof of Proposition 9.

Preparations. We first state a useful estimate on the local time of Lyt (φx) as t → ∞. Its proof is
delayed until Appendix 6.2.

Lemma 25. Work under Assumption 2. For every compact K ⊂ X and for every t ≥ 0, we have

sup
x∈X,y∈K

E [Lyt (φx)] . 1 + t3/2,

up to a constant that only depends on r1, r2 and σ2. In particular, for every c > 0, the function

y 7→
∫ ∞

0

e−ct sup
x∈X

E [Lyt (φx)] dt

is well-defined and locally bounded, uniformly over Q.

Lemma 25 enables us to obtain estimates on the action of P and Q on functions ψ : X×X→ R
with nice behaviours that will prove essential for obtaining Proposition 9. We set

Qψ(x) =

∫
X

ψ(x, y)q(x, y)dy, P(ψ ⊗ ψ)(x) =

∫
X×X

ψ(x, y1)ψ(x, y2)p(x, y1, y2)dy1dy2,

where p(x, y1, y2) and q(x, y) are given in Proposition 5.

Lemma 26. Work under Assumptions 2, 3 and 4. Let ψ : X× X → R be bounded and such that
ψ? has compact support. There exists a constant csupp(ψ?) depending on supp(ψ?) (and Q) such
that, for i = 0, 1:

(19) |Piψ(x)| ≤ csupp(ψ?)

∫
X

|ψ(x, y)|dy
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and

|P(ψ ⊗ ψ)(x)| ≤ csupp(ψ?)ψ
?(x)

∫
X

|ψ(x, y)|dy.

Note in particular that (19) implies in turn the estimates

(20) |Qψ(x)| ≤ csupp(ψ?)

∫
X

|ψ(x, y)|dy,

and, for i = 0, 1:

|QPiψ(x)| ≤ c2supp(ψ?)|ψ|1 ∧ csupp(ψ?)

∣∣ ∫
X

ψ?(y)dy
∣∣ . |ψ|∧1.

Proof. By Assumption 3, we have

|P0ψ(x)| =
∣∣∣ ∫ 1

0

κ(z)

∫ ∞
0

E
[
ψ(x, zφx(t))B

(
φx(t)

)
e−

∫ t
0
B(φx(s))ds

]
dtdz

∣∣∣
≤
∫ 1

0

κ(z)

∫ ∞
0

E
[∣∣ψ(x, zφx(t))

∣∣(b2 |φx(t)|γ + b1
)
e−b1t

]
dtdz

≤
∫ 1

0

κ(z)

∫ ∞
0

E
[∣∣ψ(x, zφx(t))

∣∣(b2 |φx(t)|γ + b1
) ∫ ∞

t

b1e
−b1sds

]
dtdz.

Next, by Fubini’s theorem and the occupation times formula, we derive

|P0ψ(x)| ≤
∫ 1

0

κ(z)

∫ ∞
0

b1e
−b1s

∫ s

0

E
[
|ψ(x, zφx(t))|(b2|φx(t)|γ + b1)

]
dtdsdz

≤
∫ 1

0

κ(z)

∫ ∞
0

b1e
−b1s

∫
R
|ψ(x, zy)|(b2|y|γ + b1)σ(y)−2E[Lys(φx)]dydsdz

=

∫ 1

0

κ(z)z−1

∫ ∞
0

b1e
−b1s

∫
R
|ψ(x, y)|(b2|y/z|γ + b1)σ(y/z)−2E[Ly/zs (φx)]dydsdz

≤ csupp(ψ?)

∫
R
|ψ(x, y)|dy,

and (19) is proved for i = 0 with

csupp(ψ?) = sup
y∈supp(ψ?),x∈X,z∈[ε,1−ε]

b1(b2|y/z|γ + b1)σ(y/z)−2z−1

∫ ∞
0

e−b1sE[Ly/zs (φx)]ds.

This last quantity is finite by Lemma 25. Following the same steps as for P1 we get (19) for i = 1.
For the second estimate, we have

|P(ψ ⊗ ψ)(x)| ≤
∫ 1

0

κ(z)

∫ ∞
0

E
[∣∣ψ(x, zφx(t)

)
ψ
(
x, (1− z)φx(t)

)∣∣B(φx(t))e−
∫ t
0
B(φx(s))ds

]
dtdz

≤
∣∣P0ψ(x)

∣∣ sup
y

∣∣ψ(x, y)
∣∣

and we conclude by applying (20). �
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Completion of proof of Proposition 9. Without loss of generality, we may assume that ν(Qψ) = 0,
the general case being obtained by considering the function ψ(x, y)− ν(Qψ). Of course, the com-
pact support property is lost by adding a constant and one has to be careful when revisiting the
estimates of Step 2) to Step 4) below. They exhibit additional error terms that all have the right
order using Lemma 26 and the fact that P1 = Q1 = 1.

By (ii) of Definition 8 we may (and will) assume that for some 0 ≤ % ≤ 1 and some positive
constants c1, c2 that do not depend on n, we have

c12%m ≤
∣∣Gm ∩ Un

∣∣ ≤ c22%m for every m = 1, . . . , n.

We first consider the case % > 0. The case % = 0 requires a slightly different method and will be
handled in a second phase.

Step 1). We start with a standard preliminary decomposition, see for instance [8, 9], expanding
the sum in u ∈ U?n.

We have

Eµ[MUn(ψ)2] = |U?n|−2Eµ
[( n∑
m=1

∑
u∈Gm∩Un

ψ(Xu− , Xu)
)2]

≤ |U?n|−2
( n∑
m=1

(
Eµ
[( ∑

u∈Gm∩Un

ψ(Xu− , Xu)
)2])1/2)2

by triangle inequality. Thus Proposition 9 amounts to control

Eµ
[( ∑
u∈Gm∩Un

ψ(Xu− , Xu)
)2]

= Im + IIm,

with

Im = Eµ
[ ∑
u∈Gm∩Un

ψ(Xu− , Xu)2
]
,

IIm = Eµ
[ ∑
u,v∈Gm∩Un,u6=v

ψ(Xu− , Xu)ψ(Xv− , Xv)
]
,

and the convention
∑
∅ = 0.

Step 2). The control of the term Im is straightforward: by Lemma 26 we have

I1 = |G1 ∩ U1|µ(Qψ2) ≤ c22%csupp(ψ?)

∫
X×X

ψ(x, y)2µ(dx)dy for m = 1,

Im = |Gm ∩ Um|µ(Qmψ2) ≤ c22%m(c2supp(ψ?)|ψ2|1 ∧ csupp(ψ?)|ψ2
?|1) for m ≥ 2,

therefore Im . 2%m|ψ2|µ holds for every m ≥ 1. In the case ν(Qψ) 6= 0, we replace |ψ2|µ by |ψ2|µ+ν .

Step 3). We further decompose the main term IIm = IIIm + IVm, having

IIIm = Eµ
[ ∑
w∈Gm−1∩Un,(w0,w1)∈U2

n

ψ(Xw, Xw0)ψ(Xw, Xw1)
]
,

IVm = Eµ
[ ∑
u,v∈Gm−1∩Un,u 6=v

∑
ui,vj∈Un,i,j=0,1

ψ(Xu, Xui)ψ(Xv, Xvj)
]
.
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The control of IIIm is straightforward:

IIIm = Eµ
[ ∑
w∈Gm−1∩Un

P(ψ ⊗ ψ)(Xw)
]

= |Gm−1 ∩ Un|µ
(
Qm−1P(ψ ⊗ ψ)

)
.

In the same way as for the term Im, by Lemma 26, one readily checks that |IIIm| . 2%(m−1)|ψ?ψ|µ.

Step 4). We now turn to the main term IVm. Writing here u ∧ v for the most common recent an-
cestor of u and v, conditioning w.r.t. F|u∧v|+1 and using the conditional independence of (Xu, Xui)
and (Xv, Xvj) given F|u∧v|+1 thanks to the BMC property (3), we successively obtain

IVm = Eµ
[ ∑
u,v∈Gm−1∩Un,u6=v

∑
ui,vj∈Un,i,j=0,1

Eµ
[
ψ(Xu, Xui)ψ(Xv, Xvj)

∣∣F|u∧v|+1

] ]
= Eµ

[ ∑
u,v∈Gm−1∩Un,u6=v

∑
ui,vj∈Un,i,j=0,1

Eµ
[
ψ(Xu, Xui)

∣∣F|u∧v|+1

]
Eµ
[
ψ(Xv, Xvj)

∣∣F|u∧v|+1

] ]
= Eµ

[ ∑
u,v∈Gm−1∩Un,u6=v

∑
ui,vj∈Un,i,j=0,1

Eµ
[
Piψ(Xu)

∣∣F|u∧v|+1

]
Eµ
[
Pjψ(Xv)

∣∣F|u∧v|+1

] ]
= Eµ

[ ∑
u,v∈Gm−1∩Un,u6=v

∑
ui,vj∈Un,i,j=0,1

Qm−2−|u∧v|Piψ(Xu∗)Q
m−2−|u∧v|Pjψ(Xv∗)

]
,

where u∗ (respectively v∗) is the descendant of u ∧ v which is an ancestor of u (respectively v).
Conditioning further w.r.t. F|u∧v| we obtain

IVm = Eµ
[ ∑
u,v∈Gm−1∩Un,u6=v

∑
ui,vj∈Un,i,j=0,1

P
(
Qm−2−|u∧v|Piψ ⊗ Qm−2−|u∧v|Pjψ

)
(Xu∧v)

]
=

∑
u,v∈Gm−1∩Un,u 6=v

∑
ui,vj∈Un,i,j=0,1

µ
(
Q|u∧v|P(Qm−2−|u∧v|Piψ ⊗ Qm−2−|u∧v|Pjψ)

)
=

m−1∑
l=1

∑
u,v∈Gm−1∩Un,|u∧v|=m−l−1

∑
ui,vj∈Un,i,j=0,1

µ
(
Qm−l−1P(Ql−1Piψ ⊗ Ql−1Pjψ)

)
,

obtaining the last term by rearranging the sum u, v ∈ Gm−1 that expands over indexes |u|−|u∧v| =
m−1−|u∧v| that vary from 1 to m−1. By Lemma 26 and Proposition 6 one obtains the following
estimates for all i, j = 0, 1:

|µ
(
Qm−2P (Piψ ⊗ Pjψ)

)
| . |ψ?|1|ψ|∧1 for l = 1,

and for l ≥ 2:

|µ
(
Qm−l−1P(Ql−1Piψ ⊗ Ql−1Pjψ)

)
| . |ψ|2∧1 ∧ ρ2(l−1)|ψ?|21 µ

(
Qm−l−1P((1 + V )⊗ (1 + V ))

)
.

In the case ν(Qψ) 6= 0, we replace |ψ|∧1 by |ψ|ν . We claim that

(21) µ
(
Qm−l−1P((1 + V )⊗ (1 + V ))

)
. 1 + µ(V 2)

and postpone the proof of (21) to Step 6 below. Notice also that for l = 1, . . . ,m− 1,∣∣{u 6= v ∈ Gm−1 ∩ Un, |u ∧ v| = m− l − 1}
∣∣ . 2%m × 2l,

where 2%m is an upper bound for the number of choices for u (the first descendant in generation
m− 1 of the ancestor from generation m− l−1) and 2l is the (order of the) number of choices of v
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(the second descendant, satisfying u ∧ v ∈ Gm−l−1) in the worst case where there is a full subtree
with l generations. It follows that for any p ≥ 1:

|IVm| . 2%m|ψ?|1|ψ|∧1 + 2%m
∞∑
l=1

2l
(
|ψ|2∧1 ∧ ρ2(l−1)|ψ?|21

(
1 + µ(V 2)

))
≤ 2%m|ψ?|1|ψ|∧1 + 2%m

(
|ψ|2∧1

p∑
l=1

2l + |ψ?|21
(
1 + µ(V 2)

) ∞∑
l=p+1

2−l(2ρ)2l
)

. 2%m|ψ?|1|ψ|∧1 + 2%m
(
|ψ|2∧12p + |ψ?|21

(
1 + µ(V 2)

)
2−p

)
where we crucially used the fact that ρ ≤ 2−1. Then, taking the infimum over all p ≥ 1, we get

|IVm| . 2%m|ψ?|1|ψ|∧1 + 2%m|ψ?|1|ψ|∧1

(
1 + µ(V 2)

)
inf
p≥1

( |ψ|∧1

|ψ?|1
2p +

|ψ?|1
|ψ|∧1

2−p
)
.

As |ψ|∧1 ≤ |ψ?|1, we get that infp≥1

(
|ψ|∧1

|ψ?|1 2p + |ψ?|1
|ψ|∧1

2−p
)
. 1 and

|IVm| . 2ρm
(
1 + µ(V 2)

)
|ψ?|1|ψ|∧1.

Step 5). Putting together the estimates obtained for Im in Step 2, IIIm in Step 3 and IVm in Step
4, and recalling IIm = IIIm + IVm we eventually derive:

Eµ
[( ∑
u∈Gm∩Un

ψ(Xu− , Xu)
)2]
. 2%m

(
|ψ2|µ + |ψ?ψ|µ +

(
1 + µ(V 2)

)
|ψ?|1|ψ|∧1

)
.

In the case ν(Qψ) 6= 0, we replace |ψ2|µ by |ψ2|µ+ν and |ψ|∧1 by |ψ|ν as follows from Step 2 and 4.
Taking square root, summing in 1 ≤ m ≤ n, taking square again and normalising by |U?n|−2 which
is of order 2−2%n, we obtain Proposition 9.

Step 6). It remains to establish (21). We only sketch the argument which is similar to the proof
of Proposition 23. First, one obtains

P((1 + V )⊗ (1 + V )) . 1 + QV (x) + QV 2(x),

and it follows that

µ(Qm−l−1P
(
(1 + V )⊗ (1 + V ))

)
. 1 + µ(Qm−lV ) + µ(Qm−lV 2)

. 1 + µ(V ) + µ(Qm−lV 2)

by Proposition 23. Applying Itô’s formula and using Assumptions 2 and 3 on can check that

QV 2(x) . 1 + V (x)2 + QV (x) . 1 + V (x)2

by Proposition 23 again. We obtain (21) by integrating w.r.t. µ. Finally the case % = 0 has to be
treated separately mainly for notational reason, the proof following the same line as in the case
% > 0. We delay it until Appendix 6.3.

5.4. Proof of Theorem 12.
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Preparations. We first establish local estimates on the invariant density ν.

Lemma 27. Work under Assumptions 2, 3 and 4. Let Q ∈ Q and let ν be the associated invariant
density of Proposition 6. Let x0 ∈ X. There exist positive constants ci = ci(x0,Q) and a bounded
neighbourhood Vx0

with non-empty interior such that

0 < c1 ≤ inf
x∈Vx0

ν(x) ≤ sup
x∈Vx0

ν(x) ≤ c2.

Moreover, 0 < infQ∈Q c1(x0,Q) ≤ supQ∈Q c2(x0,Q) <∞.

Proof. Let Vx0 = [a, b] ⊂ X be a bounded neighbourhood of x0 and

Vεx0
=
[
a/(1− ε) ∧ a/ε, b/ε ∨ b/(1− ε)

]
.

Let x ∈ Vx0 . By Proposition 5, using Assumptions 2 and 3, we obtain

ν(x) =

∫
X

ν(y)q(y, x)dy

=

∫
X

ν(y)

∫ 1

0

κ̃(z)

z
B(x/z)σ(x/z)−2E

[ ∫ ∞
0

e−
∫ t
0
B(φy(s))dsdL

x/z
t (φy)

]
dzdy

≤
∫
X

ν(y)

∫ 1

0

(b2|x/z|γ + b1)
κ̃(z)

z
σ−2

1 E
[ ∫ ∞

0

e−b1tdL
x/z
t (φy)

]
dzdy.

Noticing that for all z ∈ [ε, 1− ε] and x ∈ Vx0 , x/z ∈ Vεx0
and using Assumption 4, we get

ν(x) ≤ (b2|x|γ + b1)ε−(1+γ)σ−2
1

∫
X

ν(y) sup
x∈Vεx0

E
[ ∫ ∞

0

e−b1tdLxt (φy)
]
dy

= (b2|x|γ + b1)ε−(1+γ)σ−2
1 b1

∫
X

ν(y)

∫ ∞
0

e−b1t sup
x∈Vεx0

E
[
Lxt (φy)

]
dtdy,

where the last equality comes from the integration by parts formula, see Appendix 6.4 for a detailed
version. By Lemma 25, we have supx∈Vεx0

E
[
Lxt (φy)

]
. 1 + t3/2 uniformly over Q and the first

part of the lemma follows. For the second part of the lemma, we have

ν(x) ≥ b1σ−2
2

∫
X

ν(y) inf
x∈Vεx0

E
[ ∫ ∞

0

e−b2
∫ t
0
|φy(s)|γds−b1tdLxt (φy)

]
dy

≥ b1σ−2
2

∫
[−N,N ]∩X

ν(y) inf
x∈Vεx0

E
[ ∫ T

0

e−(b2M
γ+b1)tdLxt (φy)1{supt≤T |φy(t)|≤M}

]
dy

≥ b1σ−2
2 e−(b2M

γ+b1)T

∫
[−N,N ]∩X

ν(y) inf
x∈Vεx0

E
[
LxT (φy)1{supt≤T |φy(t)|≤M}

]
dy

for arbitrary constants M,N, T > 0. Since E
[
LxT (φy)1{supt≤T |φy(t)|≤M}

]
↑ E
[
LxT (φy)

]
uniformly in

(x, y) ∈ Vx0 × [−N,N ] as M grows, pick M large enough so that for every y ∈ [−N,N ] ∩ X, we
have

inf
x∈Vεx0

E
[
LxT (φy)1{supt≤T |φy(t)|≤M}

]
≥ 1

2 inf
x∈Vεx0

E
[
LxT (φy)

]
.

Next, we use the fact that Assumption 2 implies that the law of the random variable φy(t) admits
a density ρt(y, x) w.r.t. the Lebesgue measure and that this density is bounded away from zero on
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compact sets in (y, x), see for instance [13, 18]. In turn E
[
LxT (φy)

]
=
∫ T

0
ρt(y, x)dt ≥ τT > 0 for

some τT depending also on M and N and we infer

ν(x) ≥ τT
2
b1σ
−2
2 e−(b2M

γ+b1)T

∫
[−N,N ]∩X

ν(y)dy

and we obtain the result by taking N sufficiently large. The proof is complete. �

Completion of proof of Theorem 12. Step 1). Write ν̂n(y0)− ν(y0) = I + II, with

I =
1

|Un|
∑
u∈Un

Gh(y0 −Xu)− ν(QGh(y0 − ·)) and II = Gh ? ν(y0)− ν(y0).

We plan to apply Proposition 9 to I with ψ(x, y) = ϕ(y) = Gh(y0− y). By Lemma 27, ν is locally
bounded and we check that

|ψ2|µ+ν .
∫
X

|Gh(y0 − y)2|dy . h−1

∫
R
G(y)2dy . h−1,

|ψ?ψ|µ . sup
y
|Gh(y)|

∫
R
|Gh(y0 − y)|dy . h−1,

and

|ψ?|1|ψ|∧1 .
(∫

X

|Gh(y0 − y)|dy
)2

. 1.

Therefore, by Proposition 9, we have Eµ[I2] . |Un|−1h−1 and this term is of order |Un|−2β/(2β+1)

from the choice of h. For the term II, Lemma 27 and the representation ν(x) =
∫
X
ν(y)q(y, x)dy

show that ν ∈ Hβ(y0) as soon as q ∈ Hα,β(x0, y0). Then, by classical kernel approximation (see
e.g. Chapter 1 of the book by Tsybakov [36]) we have that II2 . h2β since the order k of the
kernel G satisfies k > β, and thus II2 has the same order as I2 from the choice of h.

Step 2). For the estimation of q(x0, y0), write

q̂n(x0, y0)− q(x0, y0) = I + II,

with

I =
MUn

(
G⊗2
h1,h2

(x0 − ·, y0 − ·)
)
− ν(x0)q(x0, y0)

MUn
(
Gh(x0 − ·)

)
∨$n

,

and

II =
q(x0, y0)

(
ν(x0)−MUn

(
Gh(x0 − ·)

)
∨$n

)
MUn

(
Gh(x0 − ·)

)
∨$n

.

We have
∣∣I∣∣ ≤ III + IV, with

III = $−1
n

∣∣MUn
(
G⊗2
h1,h2

(x0 − ·, y0 − ·)
)
−G⊗2

h1,h2
? ν(x0)q(x0, y0)

∣∣
and

IV = $−1
n

∣∣G⊗2
h1,h2

? ν(x0)q(x0, y0)− ν(x0)q(x0, y0)
∣∣.

We plan to apply Proposition 9 to bound III with ψ(x, y) = Gh1,h2(x0−x, y0− y). Using Lemma
27 and the fact that µ is absolutely continuous, we have |ψ|µ+ν . |ψ|1. It readily follows that

|ψ2|µ+ν . |Gh1(x0 − ·)2|1|Gh2(y0 − ·)2|1 . h−1
1 h−1

2 ,
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|ψ?ψ|µ . |Gh1
(x0 − ·) sup

y
|Gh2

(y0 − y)|Gh1
(x0 − ·)Gh2

(y0 − ·)|1

= |Gh1
(x0 − ·)2|1 sup

y
|Gh2

(y0 − y)||Gh2
(y0 − ·)|1 . h−1

1 h−1
2 ,

and

|ψ?|1|ψ|1 . sup
x
|Gh1

(x0 − x)||Gh2
(y0 − ·)|21|Gh1

(x0 − ·)|1 . h−1
1 .

We conclude

Eµ
[
III2

]
. $−2

n |Un|−1h−1
1 h−1

2 ,

and this term has order $−2
n |Un|−2s(α,β)/(2s(α,β)+1) from the choice of h1 and h2. By kernel

approximation and the fact that G has order k > max{α, β}, noting that (x, y) 7→ µ(x)q(x, y) ∈
Hα∧β,β , we have

|IV | . hα∧β1 + hβ2 . $
−1
n |Un|−s(α,β)/(2s(α,β)+1)

from the choice of h1, h2.

We turn to the term II. We plan to use(
ν(x0)−MUn

(
Gh(x0 − ·)

)
∨$n

)2
.
(
ν(x0)−MUn

(
Gh(x0 − ·)

))2
+ 1{

MUn (Gh(x0−·))<$n
}.

Pick n large enough so that 0 < $n ≤ τ(x0) = 1
2 infQ∈Q,x∈Vx0

ν(x), a choice which is possible by

Lemma 27. Since {MUn(Gh(x0) − ·) < $n} ⊂ {MUn(Gh(x0 − ·)) − ν(x0) < −τ(x0)}, we further
infer

Eµ
[(
ν(x0)−MUn

(
Gh(x0 − ·)

)
∨$n

)2]
≤Eµ

[(
ν(x0)−MUn

(
Gh(x0 − ·)

))2]
+ Pµ

(∣∣ν(x0)−MUn
(
Gh(x0 − ·)

)∣∣ ≥ τ(x0)
)

.Eµ
[(
ν(x0)−MUn

(
Gh(x0 − ·)

))2]
.

Applying Step 1) of the proof, we derive

Eµ
[
II2
]
. $−2

n |Un|−2β/(2β+1)

and this term has negligible order. The proof of Theorem 12 is complete.

5.5. Proof of Proposition 16. Let s(x) =
∫ x

0
exp

(
−2
∫ y

0
r(z)
σ(z)2 dz

)
and m(x) = 2

σ(x)2s′(x) . Con-

sider the infinitesimal generator L associated to the diffusion process (11), written in its divergence
form

Lf(x) =
1

m(x)

d

dx

( 1

s(x)

d

dx
f(x)

)
, f ∈ D(L),

with domain D(L) densely defined on twice continuously differentiable functions f satisfying the
boundary condition f ′(0) = f ′(L) = 0. By Itô formula and Fubini’s theorem, for f ∈ D(L), we
have ∫

X

f(y)q(x, y)dy = −
∫ 1

0

κ̃(z)E
[ ∫ ∞

0

f (zφx(t))
d

dt
e−

∫ t
0
B(φx(s))dsdt

]
dz

=

∫ 1

0

κ̃(z)fz(x)dz +

∫ 1

0

κ̃(z)E
[ ∫ ∞

0

Lfz (φx(t)) e−
∫ t
0
B(φx(s))dsdt

]
dz,
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where we set fz(x) = f(zx) for z ∈ [ε, 1 − ε] since supp(κ̃) ⊂ [ε, 1 − ε] by Assumption 4. Pick

f(x) =
∫ x

0
exp

(
2ε−1

∫ y
0
e

2
∫ uε−1

0
|r(v)|
σ(v)2

dv
s(u)−1du

)
dy, and note that

f ′′(zx) =
2

εs(zx)
exp

(
2

∫ zxε−1

0

|r(v)|
σ(v)2

dv
)
f ′(zx).

It follows that for z ≥ ε and every x ∈ X, we have

Lfz(x) =
z

m(x)

zs(x)f ′′(zx)− s′(x)f ′(zx)

s2(x)

=
zf ′(zx)

m(x)s(x)2

(2zs(x)

εs(zx)
e

2
∫ zxε−1

0
|r(v)|
σ(v)2

dv − e−2
∫ x
0

r(v)

σ(v)2
dv
)
> 0.

Now let B1, B2 : X → [0,∞) be two functions in an orderly class B according to Definition
15 and write qB1

and qB2
for the associated transition densities. With no loss of generality, we

may (and will) assume that B1(x) ≤ B2(x) for every x ∈ X. Assume that qB1
= qB2

. Since
supp(κ̃) ⊂ [ε, 1− ε], we have∫

X

f(y)
(
qB1

(x, y)− qB2
(x, y)

)
dy

=

∫ 1−ε

ε

κ̃(z)E
[ ∫ ∞

0

Lfz(φx(t))
(
e−

∫ t
0
B1(φx(s))ds − e−

∫ t
0
B2(φx(s))ds

)]
dtdz = 0.

Our choice of f and the property B1 ≤ B2 implies that the integrand is non-negative. It follows
that

κ̃(z)
(
e−

∫ t
0
B1(φx(s))ds − e−

∫ t
0
B2(φx(s))ds

)
= 0

dzdt⊗ P-a.s. Picking z such that κ̃(z) > 0, we obtain
∫ t

0
B1(φx(s))ds =

∫ t
0
B2(φx(s))ds P-a.s. for

every t ≥ 0 by continuity of the integrand in t. By the occupation times formula, it follows that∫
X

(
B1(y)− B2(y)

)
Lyt (φx)dy = 0, almost-surely, and by the ordering property, B1(y) = B2(y) for

every y such that Lyt (φx) > 0, i.e. for y ∈ [inf0≤s≤t φx(s), sup0≤s≤t φx(s)] → X as t → ∞. The
proof of Proposition 16 is complete.

5.6. Proof of Theorem 18.

Preparation for the proof. We first establish uniform bounds for qϑ(x, y). Remember that in the
reflected case, we have X = [0, L] and supp(κ) ⊂ [ε, 1− ε] under Assumption 4.

Lemma 28. Work under Assumptions 2, 4 and 17. For sufficiently small η > 0, we have:

0 < inf
x∈X,y∈Xη,ϑ∈Θ

qϑ(x, y) ≤ sup
x,y∈X,ϑ∈Θ

qϑ(x, y) <∞,

where Xη = [0, (1− ε)L− η].

Proof. The proof is close to that of Lemma 27. Let x ∈ X and y ∈ Xη. We have

inf
ϑ∈Θ

qϑ(x, y) ≥ b3σ−2
2

∫ 1−ε

ε∨yL−1

κ̃(z)

z
E
[ ∫ ∞

0

e−b4tdL
y/z
t (φx)

]
dz

≥ b3σ−2
2 b4

∫ 1−ε

ε∨yL−1

κ̃(z)

z

∫ ∞
0

e−b4tE
[
L
y/z
t (φx)

]
dtdz

≥ (1− ε)−1b3σ
−2
2 b4

η

L

∫ ∞
0

e−b4t inf
x,y∈X

E
[
Lyt (φx)

]
dt



28 MARC HOFFMANN AND ALINE MARGUET

According to [12], Section 5, proof of Lemma 5.37, the law of φx(t) is absolutely continuous with
density y 7→ ρt(x, y) that can be taken continuous and that satisfies infx,y∈X ρt(x, y) > 0 for every
t > 0. Therefore

inf
x,y∈X

E
[
Lyt (φx)

]
= inf
x,y∈X

∫ t

0

ρs(x, y)ds > 0

and the result follows. The upper bound readily follows from

sup
ϑ∈Θ

qϑ(x, y) ≤ b4σ−2
1

(∫ 1−ε

ε

κ̃(z)

z
dz
)

sup
x,y∈X

E
[ ∫ ∞

0

e−b3tdLyt (φx)
]

≤ ε−1b4σ
−2
1 sup

x,y∈X
E
[ ∫ ∞

0

e−b3tdLyt (φx)
]

= ε−1b4σ
−2
1 b3 sup

x,y∈X

(∫ ∞
0

e−b3tE
[
Lyt (φx)

]
dt
)

which is finite by Lemma 25. �

Completion of proof of Theorem 18. This proof is classical (see for instance van der Vaart [37]
Theorem 5.14). We nevertheless give it for self-containedness. For a ∈ Θ, let

M(a, ϑ) =

∫
X

νϑ(dx)

∫
X

log qa(x, y)qϑ(x, y)dy.

First, a 7→M(a, ϑ) has a unique maximum at a = ϑ, as stems from the inequality log(x) ≤ 2(
√
x−1)

for x ≥ 0. Indeed

M(a, ϑ)−M(ϑ, ϑ) =

∫
X

νϑ(dx)

∫
X

log
qa(x, y)

qϑ(x, y)
qϑ(x, y)dy

≤
∫
X

νϑ(dx)
( ∫

X

2
√
qa(x, y)

√
qϑ(x, y)dy − 2

)
≤ −

∫
X

νϑ(dx)

∫
X

(√
qa(x, y)−

√
qϑ(x, y)

)2

dy ≤ 0.

Next, writing mU(x, y) = supa∈U log qa(x, y), we prove that for every a 6= ϑ ∈ Θ, there exists a
neighbourhood Ua of a such that:

(22) νϑ
(
QϑmUa

)
< νϑ

(
Qϑ log qϑ

)
= M(ϑ, ϑ).

Pick a decreasing sequence of open balls (U`(a))`≥1 around a with vanishing diameters. For
every x, y ∈ X we have mU`(a)(x, y) ↓ log qa(x, y) by continuity of a 7→ log qa(x, y) thanks to the

continuity of B0 according to Assumption 17. By Lemma 28, we also have νϑ
(
QϑmU

)
< ∞ for

any U ⊂ Θ therefore

νϑ
(
QϑmUl(a)

)
↓ νϑ

(
Qϑ log qa) = M(a, ϑ) ≤M(ϑ, ϑ)

by monotone convergence with equality only if a = ϑ, and this proves the existence of Ua such
that (22) holds. We are now ready to prove the consistency result. For η′ > 0, the compact ball

Cη′(ϑ) = {a ∈ Θ, |a− ϑ| ≥ η′}
can be covered by finitely many open neighbourhoods Ua1

, . . .Uap with ai ∈ Cη′(ϑ) and such that
(22) holds for every Uai . For η > 0, let

m
(η)
U (x, y) = sup

a∈U
log qa(x, y)1{qa(x,y)≥η}.
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Abbreviating Ln(a, (Xu)u∈Un) by Ln(a), it follows that

|U?n|−1 sup
a∈Cη′ (ϑ)

logLn(a) ≤ max
1≤i≤p

|U?n|−1
∑
u∈T?n

m
(η)
Uai

(Xu− , Xu)

→ max
1≤i≤p

νϑ
(
QϑmUai

)
<M(ϑ, ϑ)(23)

in probability as n → ∞ and letting η → 0, as stems from Corollary 13 and the fact that

supx,y∈Xη mUai
(x, y) < ∞ by Lemma 28. Finally, if ϑ̂n ∈ Cη′(ϑ), then, by definition of ϑ̂n,

we have

|U?n|−1 sup
a∈Cη′ (ϑ)

logLn(a) ≥ |U?n|−1 logLn(ϑ̂n) ≥ |U?n|−1 logLn(ϑ) >M(ϑ, ϑ)− εn,

where εn → 0 in probability, as follows from Corollary 13. We conclude the proof by noticing that{
ϑ̂n ∈ Cη′(ϑ)

}
⊂
{
|U?n|−1 sup

a∈Cη′ (ϑ)

Ln(a) ≥M(ϑ, ϑ)− εn
}

and the fact that the probability of this last event converges to 0 by (23) as n→∞.

5.7. Proof of Theorem 22.

Preparation for the proof. We start by proving some useful estimates on the gradient and Hessian
of log qϑ. Let

Γϑ = ∇ϑ log qϑ = (∂ϑ1
log qϑ, . . . , ∂ϑd log qϑ) , Γϑ,i = ∂ϑi log qϑ, 1 ≤ i ≤ d.

Lemma 29. Work under Assumptions 2, 4, 17 and 19. For every 1 ≤ i, j ≤ d and η > 0, we have

sup
x∈X,y∈Xη,ϑ∈Θ

|Γϑ,i(x, y)| <∞, sup
x∈X,y∈Xη,ϑ∈Θ

|∂ϑΓϑ(x, y)i,j | <∞, sup
x∈X,y∈Xη,ϑ∈Θ

∥∥∂2
ϑΓϑ(x, y)

∥∥ <∞
where ‖·‖ corresponds to the operator norm for the Hessian ∂2

ϑΓϑ(x, y).

Proof. According to Lemma 28, since

Γϑ(x, y) =
∂ϑqϑ(x, y)

qϑ(x, y)

componentwise, it suffices to show |∂ϑiqϑ(x, y)| . 1 in order to establish the first bound. Recall
that for (x, y) ∈ X× [0, (1− ε)L],

qϑ(x, y) =

∫ 1

y/L

κ̃(z)

z
B0(ϑ, y/z)σ(y/z)−2E

[∫ ∞
0

e−
∫ t
0
B0(ϑ,φx(s))dsdL

y/z
t (φx)

]
dz.

Taking the derivative with respect to ϑi yields

∂ϑiqϑ(x, y) =

∫ 1

y/L

κ̃(z)

z
∂ϑiB0(ϑ, y/z)σ(y/z)−2 E

[ ∫ ∞
0

e−
∫ t
0
B0(ϑ,φx(s))dsdL

y/z
t (φx)

]
dz

−
∫ 1

y/L

κ̃(z)

z
B0(ϑ, y/z)σ(y/z)−2 E

[ ∫ ∞
0

e−
∫ t
0
B0(ϑ,φx(s))ds

(∫ t

0

∂ϑiB0(ϑ, φx(s))ds
)
dL

y/z
t (φx)

]
.

By Assumption 2, 17 and 19,

|∂ϑiqϑ(x, y)| .
∫ 1

y/L

E
[ ∫ ∞

0

(1 + t)e−
∫ t
0
B0(ϑ,φx(s))dsdL

y/z
t (φx)

]
κ̃(z)dz.



30 MARC HOFFMANN AND ALINE MARGUET

Next, by Assumption 17,

E
[ ∫ ∞

0

(1 + t)e−
∫ t
0
B0(ϑ,φx(s))dsdL

y/z
t (φx)

]
≤ E

[ ∫ ∞
0

(1 + t)e−b3tdL
y/z
t (φx)

]
=

∫ ∞
0

(1− b3(1 + t))e−b3tE[L
y/z
t (φx)]dt,

where the last equality comes from the integration by parts formula (see Appendix 6.4). This last
term is bounded by Lemma 25 and |∂ϑiqϑ(x, y)| . 1 follows. We turn to the second bound: clearly,
for 1 ≤ i, j ≤ d

∂ϑΓϑ(x, y)i,j =
∂2
ϑiϑj

qϑ(x, y)qϑ(x, y)− ∂ϑiqϑ(x, y)∂ϑjqϑ(x, y)

qϑ(x, y)2

and thanks to Lemma 28 and the first bound, we only need to show |∂2
ϑiϑj

qϑ(x, y)| . 1 in order

to obtain the second bound. Define ωt(y, z, ϑ) = 1[yL−1,1](z)
κ̃(z)

zσ(y/z)2 exp(−
∫ t

0
B0(ϑ, φx(s))ds). We

have

∂2
ϑiϑjqϑ(x, y) =

∫ 1

0

∂2
ϑiϑjB0(ϑ, y/z)E

[ ∫ ∞
0

ωt(y, z, ϑ)dL
y/z
t (φx)

]
dz

+

∫ 1

0

B0(ϑ, y/z)E
[ ∫ ∞

0

ωt(y, z, ϑ)

∫ t

0

∂ϑiB0(ϑ, φx(s))ds

∫ t

0

∂ϑjB0(ϑ, φx(s))ds dL
y/z
t (φx)

]
dz

−
∑

(`,`′)∈{(i,j),(j,i)}

∫ 1

0

∂ϑ`B0(ϑ, y/z)E
[ ∫ ∞

0

ωt(y, z, ϑ)

∫ t

0

∂ϑ`′B0(ϑ, φx(s))dsdL
y/z
t (φx)

]
dz

+

∫ 1

0

B0(ϑ, y/z)E
[ ∫ ∞

0

ωt(y, z, ϑ)

∫ t

0

∂2
ϑiϑjB0(ϑ, φx(s))dsdL

y/z
t (φx)

]
dz

and we proceed in the same way as for the first estimate, using repeatedly Assumption 2, 17 and
19. The proof of the third bound is analogous. �

Completion of proof of Theorem 22. This proof is classical (see for instance van der Vaart [37]

Theorem 5.41). We nevertheless give it for self-containedness. By definition of ϑ̂n and a Taylor
expansion around ϑ, we have

0 =
∑
u∈U?n

Γϑ̂n(Xu− , Xu)

=
∑
u∈U?n

(
Γϑ(Xu− , Xu) + ∂ϑΓϑ(Xu− , Xu)(ϑ̂n − ϑ) + (ϑ̂n − ϑ)T∂2

ϑΓϑ̃n(Xu− , Xu)(ϑ̂n − ϑ)
)
,

for some ϑ̃n on the segment line between ϑ and ϑ̂n. Rearranging the sum and introducing the
normalisation |U?n|1/2, we derive(

|U?n|−1
∑
u∈U?n

∂ϑΓϑ(Xu− , Xu) + |U?n|−1
∑
u∈U?n

(ϑ̂n − ϑ)T∂2
ϑΓϑ̃n(Xu− , Xu)

)
|U?n|1/2(ϑ̂n − ϑ)(24)

= − |U?n|−1/2
∑
u∈U?n

Γϑ(Xu− , Xu).

We plan to apply an extension of the central limit theorem for bifurcating Markov chain proved in
Guyon for Un = Tn, see [19] Corollary 24 on the right-hand side. It is not difficult to see that the
result still holds if one replaces Tn by an incomplete tree according to Definition 8. We omit the
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details. By Lemma 28 and 29 we have that Qϑ(Γϑ,iΓϑ,j) and Qϑ(Γϑ,iΓϑ,jΓϑ,kΓϑ,l) are bounded
functions on X for all 1 ≤ i, j, k, l ≤ d. Moreover, we have νϑ(QϑΓϑ,i) = 0. Therefore

(25) |U?n|−1/2
∑
u∈U?n

Γϑ(Xu− , Xu)→ N
(
0,Ψ(ϑ)

)
in distribution as n → ∞, where Ψ(ϑ) is the Fisher information matrix defined after Assumption
19. Next, since ∂ϑΓϑ is bounded by Lemma 29, we have

(26) |U?n|−1
∑
u∈U?n

∂ϑΓϑ(Xu− , Xu)→ Ψ(ϑ)

in probability as n→∞. Moreover, by Lemma 29, we have: supx,y∈X,ϑ∈Θ

∥∥∂2
ϑΓϑ(x, y)

∥∥ <∞ and

since ϑ̂n − ϑ converges to 0 by Theorem 18, it follows that

(27) |U?n|−1
∑
u∈U?n

(ϑ̂n − ϑ)T∂2
ϑΓϑ̃n(Xu− , Xu)→ 0

in probability as n→∞ tends to infinity. Combining (25), (26) and (27) in (24) we finally obtain

Ψ(ϑ)|U?n|1/2(ϑ̂n − ϑ)→ N
(
0,Ψ(ϑ)

)
in distribution as n→∞. We conclude thanks to the invertibility of Ψ(ϑ) granted by Assumption
20.

6. Appendix

6.1. Example of a model satisfying ρ < 1/2. We elaborate on Remark 7.

Lemma 30. Assume that

i) φx(t) si an Ornstein-Uhlenbeck process on X = R: we have r(x) = −βx and σ(x) = σ for
every x ∈ X and some β, σ > 0,

ii) the division rate is constant: we have B(x) = b for every x ∈ X and some b > 0,
iii) the fragmentation distribution is uniform: we have κ(z) = 1/(1− 2ε) on [ε, 1− ε] for some

ε > 0.

Then, Q admits an invariant probability distribution ν and for V (x) = x2, there exist C > 0 and
ρ ∈ (0, 1) such that for every m ≥ 1, the bound∣∣Qmϕ− ν(ϕ)

∣∣
V
≤ Cρm

∣∣ϕ− ν(ϕ)
∣∣
V

holds as soon as |ϕ|V <∞. Moreover, for b small enough, we have ρ < 1/2.

Proof. According to Proposition 23, the drift condition holds true. Next, we slightly modify the
proof of Proposition 24.

Step 1). For large enough w > 0, we aim at finding λ > 1/2 and a probability measure µ on X

such that

inf
{x,|x|≤w}

Q(x,A) ≥ λµ(A)

for every Borel set A ⊂ X. Let x ∈ [−w,w] and A ⊂ X be a Borel set. In this setting, we have

Q(x,A) =
b

1− 2ε

∫ 1−ε

ε

∫ ∞
0

E
[
1{zφx(t)∈A}

]
e−btdtdz.
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Using successively Fubini’s theorem and the occupation time formula, we get

Q(x,A) =
b

σ2(1− 2ε)

∫ 1−ε

ε

∫
R

1{zy∈A}E
[ ∫ ∞

0

e−btdLyt (φx)
]
dydz.

Integration by parts (see Appendix 6.4) yields

Q(x,A) =
b2

σ2(1− 2ε)

∫ 1−ε

ε

∫
R

1{zy∈A}

∫ ∞
0

e−btE
[
Lyt (φx)

]
dtdydz.(28)

We next compute the expectation of the local time. We have

1

σ2
E
[
Lyt (φx)

]
= E

[
lim
ε↓0

1

ε

∫ t

0

1{y≤φx(s)≤y+ε}ds
]

= lim
ε↓0

1

ε

∫ t

0

P
(
y ≤ φx(s) ≤ y + ε

)
ds.

Since φx(t) is an Ornstein-Uhlenbeck process, we have the representation

φx(t) =
σ√
2β
Wx

(
e2βt

)
e−βt,

where Wx is a Brownian motion starting from x. Then,

1

σ2
E
[
Lyt (φx)

]
= lim

ε↓0

1

ε

∫ t

0

P
(
y ≤ σ√

2β
Wx

(
e2βs

)
e−βs ≤ y + ε

)
ds

= lim
ε↓0

1

ε

∫ t

0

[
F
(
e2βs, (y + ε)

√
2β

σ
eβs
)
− F

(
e2βs, y

√
2β

σ
eβs
)]
ds

=

∫ t

0

eβs
√

2β

σ

1√
2πe2βs

e
− 1

2e2βs

(
x−yeβs

√
2β
σ

)2

ds

=

√
2β

σ

1√
2π

∫ t

0

e
− 1

2

(
xe−βs−y

√
2β
σ

)2

ds(29)

where F (t, x) is the cumulative density function of Wx(t). Therefore, combining (28) and (29) we
get

Q(x,A) =
b2

1− 2ε

√
2β

σ

1√
2π

∫ 1−ε

ε

∫
R

1{zy∈A}

∫ ∞
0

e−bt
∫ t

0

e−
1
2

(
xe−βs−y

√
2β
σ

)2

dsdtdydz.

Integrating by parts again and a change of variables yield

Q(x,A) =
b

1− 2ε

√
2β

σ

1√
2π

∫ 1−ε

ε

1

z

∫
R

1{u∈A}

∫ ∞
0

e−bte−
1
2

(
xe−βt−uz

√
2β
σ

)2

dtdudz.

Next,
(
xe−βt − u

z

√
2β
σ

)2 ≤ (we−βt + |u|
z

√
2β
σ

)2
for all x ∈ [−w,w], t ≥ 0 and z ∈ [ε, 1− ε]. Finally,

using Fubini’s theorem,

Q(x,A) ≥ 1√
π

∫
R

1{u∈A}fw(u)du,

with

fw(u) = b

√
β

σ

∫ 1−ε

ε

1

z

∫ ∞
0

e−bte−
1
2

(
we−βt+

|u|
z

√
2β
σ

)2

dt
dz

1− 2ε
.
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We now construct a probability measure from fw. First,∫
R
e−

1
2

(
we−βt+

|u|
z

√
2β
σ

)2

du = 2
zσ√
β

∫ ∞
w√
2
e−βt

e−y
2

dy.

Combining this with Fubini’s theorem, we get∫
R
fw(u)du = 2b

∫ ∞
0

e−bt
(∫ ∞

w√
2
e−βt

e−y
2

dy
)
dt.

Fubini’s theorem again yields∫
R
fw(u)du = 2b

∫ w√
2

0

e−y
2
(∫ ∞

1
β ln(w/(y

√
2))

e−btdt
)
dy = 2

∫ w√
2

0

e−y
2

e−
b
β ln(w/(y

√
2))dy.

Finally, define the probability measure µw(dy) = gw(y)dy on X by

gw(y) =
(

2

∫ w√
2

0

e−y
2

e−
b
β ln(w/(y

√
2))dy

)−1

fw(y),

and let

λ =
2√
π

∫ w√
2

0

e−y
2

e−
b
β ln(w/(y

√
2))dy.

Moreover, as

λ −→
b→0

2√
π

∫ w√
2

0

e−y
2

dy and
2√
π

∫ w√
2

0

e−y
2

dy −→
w→∞

1,

there exists b0 > 0 and w0 > 0 such that λ = λ(w0, b0) > 1/2 and we thus have established

Q(x,A) ≥ λµ(A),

with λ > 1/2.

Step 2). Applying Theorem 1.2. in [20], we obtain the exponential convergence of the tagged-chain
at rate

ρ = (1− (λ− λ0)) ∨ 2 + wγv0

2 + wγ
,

for any λ0 ∈ (0, λ) and v0 ∈ (v1 +2v2/w, 1), where γ = λ0/v2. We just proved that λ(w0, b0) > 1/2
so that we can choose λ0 ∈ (0, λ) such that 1 − λ + λ0 < 1/2. Next, let η ∈ (0, 1) be such that
v0 = η + (1− η)(v1 + 2v2/w). Then,

R(w) =
2 + wγv0

2 + wγ
=

2 + wγη + (1− η)wγv1 + 2(1− η)γv2

2 + wγ

is a decreasing function in w and

lim
w→∞

R(w) = η + (1− η)v1.

Moreover, according to the proof of Proposition 23, v1 = m(κ) = 1
3 (ε2 − ε+ 1) ≤ 1/3. Finally, we

can choose η ∈ (0, 1) and w > 2v2/(1− v1) such that R(w) < 1/2 and we get the result. �
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6.2. Proof of Lemma 25. Step 1). Fix δ > 0 and let Kδ = {y ∈ X, infz∈K |y − z| ≤ δ} denote
the δ-enlargement of K. For x ∈ X, let

τx = inf{t ≥ 0, φx(t) ∈ Kδ}, inf ∅ =∞,
and

φKδ
x (t) =

 φsupKδ

(
(t− τx)+

)
if x > supKδ

φx(t) if x ∈ Kδ

φinf Kδ

(
(t− τx)+

)
if x < inf Kδ.

For every y ∈ K, we have Lyt (φx) = Lyt (φKδ
x ), and by Itô-Tanaka’s formula, it follows that

Lyt (φx) = Lyt (φKδ
x ) =

∣∣φKδ
x (t)− y

∣∣− |φKδ
x (0)− y| −

∫ t

0

sgn
(
φKδ
x (s)− y

)
dφKδ

x (s).

Assume first that x > supKδ. Observing that Lyt (φx) = 0 on {τx ≥ t}, and that dφKδ
x (s) vanishes

on [0, τx) on {τx < t}, we readily have

Lyt (φx) =
∣∣φKδ
x (t)− y

∣∣− | supKδ − y| −
∫ t

τx∧t
sgn
(
φKδ
x (s)− y

)
dφKδ

x (s)

=
∣∣φsupKδ

(
(t− τx)+

)
− y
∣∣− | supKδ − y| −

∫ (t−τx)+

0

sgn
(
φsupKδ

(s)− y
)
dφsupKδ

(s).(30)

We plan to bound each term separately.

Step 2). By Itô’s formula, (φsupKδ
(t)− y)2 = (supKδ − y)2 + I + II, with

I =

∫ t

0

(
2(φsupKδ

(s)− y)r(φsupKδ
(s)) + σ(φsupKδ

(s))2
)
ds,

II = 2

∫ t

0

(φsupKδ
(s)− y)σ(φsupKδ

(s))dWs.

First,

I ≤ 2σ−2
1

∫
R
(z − y)r(z)Lzt (φsupKδ

)dz + tσ2
2

by the occupation times formula and Assumption 2. Introduce |y|r2 = |y| ∨ r2, where r2 is defined
in Assumption 2. Since z−y > 0 and r(z) < 0 for z > |y|r2 , we have

∫∞
|y|r2

(z−y)r(z)Lzt (φx)dz < 0.

Similarly
∫ −|y|r2
−∞ (z − y)r(z)Lzt (φx)dz < 0. It follows that∫

R
(z − y)r(z)Lzt (φx)dz ≤

∫ |y|r2
−|y|r2

(z − y)r(z)Lzt (φx)dz

≤ r1

∫ |y|r2
−|y|r2

|z − y|(1 + |z|)Lzt (φx)dz

≤ r1(|y|r2 − y)(1 + |y|r2)

∫
R
Lzt (φx)dz

≤ r1(|y|r2 − y)(1 + |y|r2)t,

therefore
I ≤ 2σ−2

1 r1(|y|r2 − y)(1 + |y|r2)t+ σ2
2t = tα(y)

say. Since E[II] = 0, we derive by Cauchy-Schwarz’s inequality

(31) E
[∣∣φsupKδ

(t)− y
∣∣] ≤√(supKδ − y)2 + tα(y).
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Step 3). We are ready to control each term of (30). We have

E
[∣∣φsupKδ

(
(t− τx)+

)
− y
∣∣]

≤ | supKδ − y|+ E
[ ∫ (t−τx)+

0

∣∣r(φsupKδ
(s)
)∣∣ds]+ E

[∣∣ ∫ (t−τx)+

0

σ
(
φsupKδ

(s)
)
dWs

∣∣]
≤ | supKδ − y|+ r1E

[ ∫ t

0

(1 + |φsupKδ
(s)|)ds

]
+ E

[
sup
u≤t

( ∫ u

0

σ
(
φsupKδ

(s)
)
dWs

)2]1/2
≤ | supKδ − y|+ r1t+ r1E

[ ∫ t

0

|φsupKδ
(s)|ds

]
+
√

2σ2t

≤ | supKδ − y|+ r1t+ r1

∫ t

0

√
(supKδ)2 + sα(0)ds+

√
2σ2t

. 1 + t3/2,

where we successively applied Assumption 2, Doob’s inequality and (31). In the same way∣∣− ∫ (t−τx)+

0

sgn
(
φsupKδ

(s)− y
)
dφsupKδ

(s)
∣∣

≤r1

∫ t

0

(1 + |φsupKδ
(s)|)ds+ sup

u≤t

∣∣ ∫ u

0

sgn(φsupKδ
(s)− y)σ

(
φsupKδ

(s)
)
dWs

∣∣.
Taking expectation and using the foregoing arguments, this last quantity is also of order 1 + t3/2

and Lemma 25 is proved for x > supKδ.

Step 4). If x < inf Kδ, we apply the same arguments, replacing | supKδ| by | inf Kδ| with obvious
changes. Likewise if x ∈ Kδ we may replace | supKδ| by max{| supKδ|, | inf Kδ|}.

6.3. Proof of Proposition 9 in the case % = 0. Without loss of generality, we assume that
there is only one individual in each generation and thus |Un| = n. For the sake of readability, we
denote by i this unique individual in Gi

⋂
Un. We follow the same steps as in the case % > 0,

slightly adapting the proof. In particular, the triangle inequality used in Step 1). in the case % > 0
is not accurate enough when % = 0.

Step 1’).

Eµ[MUn(ψ)2] = |U?n|−2Eµ
[( n∑
m=1

∑
u∈Gm∩Un

ψ(Xu− , Xu)
)2]

= |U?n|−2Eµ
[( n∑
m=1

ψ(Xm−1, Xm)
)2]

= |U?n|−2(I + II),

where

I =

n∑
m=1

Eµ
[
ψ(Xm−1, Xm)2

]
,

II = 2

n∑
i=1

n∑
j=i+1

Eµ
[
ψ(Xi−1, Xi)ψ(Xj−1, Xj)

]
.



36 MARC HOFFMANN AND ALINE MARGUET

Step 2’). The control of I is as before straightforward: using Lemma 26 we obtain as before
I . n|ψ2|µ.
Step 3’). By the Markov property

II = 2

n∑
i=1

n∑
j=i+1

Eµ
[
ψ(Xi−1, Xi)Q

j−i(Xi)
]
.

We further decompose II = 2(III + IV ) having

III =

n∑
i=1

Eµ
[
ψ(Xi−1, Xi)Q(Xi)

]
,

IV =

n∑
i=1

n∑
j=i+2

Eµ
[
ψ(Xi−1, Xi)Q

j−i(Xi)
]
.

Using Lemma 26, we get III . n|ψ?|1|ψ|µ. Moreover,

IV . n|ψ|∧1

n∑
i=1

µ(Qiψ) . n|ψ|∧1|ψ?|1(1 + µ(V ))ρn,

which yields the result.

6.4. Integration by parts formula. We prove in this section the following formula for the local
time: for all a > 0 and x ∈ X,

E
[ ∫ ∞

0

e−asdLxs

]
= a

∫ ∞
0

e−asE
[
Lxs

]
ds.

First, for t ≥ 0, the integration by part formula (see [33, Proposition 0.4.5]) yields

e−atLxt =

∫ t

0

e−asdLxs − a
∫ t

0

e−asLxsds.

Moreover, we have

lim inf
t→+∞

E
[
e−atLxt

]
= 0 ≥ E

[
lim inf
t→∞

e−atLxt

]
≥ 0,

using Lemma 25 and Fatou’s lemma. Finally

0 = E
[ ∫ ∞

0

e−asdLxs

]
− aE

[ ∫ ∞
0

e−asLxsds
]
,

and the result follows by Fubini’s theorem.

6.5. Proof of Proposition 21. Remember that

Ψ(ϑ) = νϑ

(
Qϑ

(∂ϑqϑ
qϑ

)2)
=

∫
X

νϑ(dx)

∫
X

(
∂ϑqϑ(x, y)

)2
qϑ(x, y)

dy.

If A ⊂ X is a Borel set with Leb(A) > 0, we have

νϑ(A) =

∫
X×X

1A(y)qϑ(x, y)νϑ(dx)dy ≥ inf
x,y

qϑ(x, y) Leb(A) > 0



ESTIMATION IN A RANDOMLY STRUCTURED BRANCHING POPULATION 37

since infx,y∈X qϑ(x, y) > 0 by Lemma 28. By continuity of y 7→ ∂ϑqϑ(x, y) on [0, L], it suffices then
to show the existence x, y ∈ X such that ∂ϑqϑ(x, y) > 0. For x, y ∈ X, we have

∂ϑqϑ(x, y) =

∫ 1−ε

ε∨yL−1

κ̃(z)

z
σ−2E

[ ∫ ∞
0

(1− ϑt)e−ϑtdLy/zt (φx)
]
dz

=

∫ yε−1

y(1−ε)−1

κ̃(y/u)σ−2E
[ ∫ ∞

0

(1− ϑt)e−ϑtdLut (φx)
]du
u

= E
[ ∫ ∞

0

κ̃
(
y/φx(t)

)
(1− ϑt)e−ϑt1{y(1−ε)−1≤φx(t)≤yε−1}

dt

φx(t)

]
=

1

1− 2ε

∫ ∞
0

(1− ϑt)e−ϑtE
[
1{y(1−ε)−1≤φx(t)≤yε−1}

1

φx(t)

]
dt

by the change of variable u = yz−1, the occupation times formula, and the specific form of κ. For
t ≥ 0, define

At(x, y) = E
[
1{y(1−ε)−1≤φx(t)≤yε−1}

1

φx(t)

]
=

∫ yε−1

y(1−ε)−1

ρt(x, z)
dz

z
,

for which a closed-form formula is known, see for instance [27], Section 4.1, given by

ρt(x, z) =
2r1e

2r1x

e2r1L − 1
+

2

L
er1(z−x)

∞∑
n=1

e−a(n)t/2

a(n)
g(n, x)g(n, z),

with

g(n, x) =
πn

L
cos
(
x
πn

L

)
+ r1 sin

(
x
πn

L

)
, and a(n) = r2

1 + π2n2/L2.

It follows that

At(x, y) =
2r1e

2r1x

e2r1L − 1
log

(
1− ε
ε

)
+

2

L
e−r1x

∞∑
n=1

e−a(n)t/2

a(n)
g(n, x)I(n, y)

with I(n, y) =
∫ yε−1

y(1−ε)−1 e
r1zg(n, z)dzz , and therefore

∂ϑqϑ(x, y) =
1

1− 2ε

∫ ∞
0

(1− ϑt)e−ϑtAt(x, y)dt

=
1

1− 2ε

2

L
e−r1x

∞∑
n=1

(∫ ∞
0

(1− ϑt)e−ϑt e
−a(n)t/2

a(n)
dt
)
g(n, x)I(n, y)

=
1

(1− 2ε)L

∫ yε−1

y(1−ε)−1

e−r1(x−z)
∞∑
n=1

g(n, x)g(n, z)

(ϑ+ a(n)/2)2

dz

z
.

Let x ∈ [0, L] be such that g(n, x) 6= 0 for every n ≥ 1. Since x 7→ g(n, x) is continuous on [0, L],
there exists 0 < εn <

1
2 such that g(n, x)g(n, z) > 0 for all z ∈ J(εn, x) = [2εnx, 2(1 − εn)x]. Let

N > 0 be such that for all z ∈ J(ε1, x):

|RN (x, z)| =
∣∣∣ ∞∑
n=N+1

g(n, x)g(n, z)

(ϑ+ a(n)/2)2

∣∣∣ < g(1, x)g(1, z)

(ϑ+ a(1)/2)2
,
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which exists because by normal convergence of the above series. Then, for every z ∈ J(max{εn, 1 ≤
n ≤ N}, x) we have

∞∑
n=1

g(n, x)g(n, z)

(ϑ+ a(n)/2)2
=

N∑
n=1

g(n, x)g(n, z)

(ϑ+ a(n)/2)2
+RN (x, z) >

g(1, x)g(1, z)

(ϑ+ a(n)/2)2
− |RN (x, z)| > 0.

Finally, for ε > max{εn, 1 ≤ n ≤ N}, picking y = 2ε(1− ε)x yields [y(1− ε)−1, yε−1] = J(ε, x) ⊂
J(max{εn, 1 ≤ n ≤ N}, x) so that ∂ϑqϑ(x, y) > 0.
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[11] O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models (Springer Series in Statistics).
Springer-Verlag New York, Inc., 2005.

[12] P. Cattiaux. Stochastic calculus and degenerate boundary value problems. Ann. Inst. Fourier (Grenoble),

42(3):541–624, 1992.

[13] D. Dacunha-Castelle and D. Florens-Zmirou. Estimation of the coefficients of a diffusion from discrete obser-
vations. Stochastics, 19(4):263–284, 1986.

[14] Benôıte de Saporta, Anne Gégout-Petit, and Laurence Marsalle. Asymmetry tests for bifurcating auto-regressive
processes with missing data. Statist. Probab. Lett., 82(7):1439–1444, 2012.
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