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STATISTICAL ESTIMATION IN A RANDOMLY STRUCTURED
BRANCHING POPULATION

MARC HOFFMANN AND ALINE MARGUET

ABSTRACT. We consider a binary branching process structured by a stochastic trait that evolves
according to a diffusion process that triggers the branching events, in the spirit of Kimmel’s
model of cell division with parasite infection. Based on the observation of the trait at birth of
the first n generations of the process, we construct nonparametric estimator of the transition of
the associated bifurcating chain and study the parametric estimation of the branching rate. In
the limit n — oo, we obtain asymptotic efficiency in the parametric case and minimax optimality
in the nonparametric case.

Mathematics Subject Classification (2010): 62G05, 62M05, 60J80, 60J20, 92D25.
Keywords: Branching processes, bifurcating Markov chains, statistical estimation, geometric ergodicity,
scalar diffusions.

1. INTRODUCTION

1.1. Motivation. The study of structured populations, with a strong input from evolutionary or
cell division modelling in mathematical biology (see for instance the textbooks [27, 30] and the
references therein) has driven the statistics of branching Markov processes over the last few years.
Several models have been considered, with data processed either in discrete or continuous time.
In this context, one typically addresses the inference of critical parameters like branching rates,
modelled as functions of biological traits like age, size and so on. In many cases, this approach is
linked to certain piecewise deterministic Markov models or bifurcating Markov chains (BMC) in
discrete time. These models are well understood from a probabilist point of view (in discrete time
Guyon [17], Bitseki-Penda et al. [6, 7], in continuous time Bansaye and Méléard [4], Bansaye et al.
[3] or more recently Marguet [26] for a general approach). For the statistical estimation, we refer
to [8, 14, 15, 21], and the references therein, see also Bitseki-Penda and Olivier [29], de Saporta et
al. [12, 13], Azais et al. [1] or recently Bitseki-Penda and Roche [5]. In these models, the traits
of a population between branching events like cell division evolve through time according to a dy-
namical system. The next logical step is to replace this deterministic evolution by a random flow,
that allows one to account for traits that may have their own random evolution according to some
exogeneous input. A paradigmatic example is Kimmel’s model (see Kimmel [22] and Bansaye [2])
where the trait is given by a density of parasites within a cell that evolve according to a diffusion
process. The statistical analysis of such models is the topic of the present paper.

We consider a population model with binary division triggered by a trait € X where X C R is
an open (possibly unbounded) interval. The trait ¢,(t) of each individual evolves according to

(1) Ao (t) = 1(Px(t))dt + 0 (P ())dW:, ¢2(0) =,

where 7,0 : X — X are regular functions and (W;);>o is a standard Brownian motion. Each
individual with trait = dies according to a killing or rather division rate z — B(z). (An individual
1



2 MARC HOFFMANN AND ALINE MARGUET

Xy

00 01 10 11

F1GURE 1. Example of a trajectory and its associated genealogy.

with trait ¢,(¢) at time ¢ dies with probability B(¢,(t))dt during the interval [¢,t + dt].) At
division, a particle is replaced by two new individuals with trait at birth given respectively by 6z
and (1—0)x where 6 is drawn according to x(x)dx for some symmetric probability density function
k(z) on [0, 1]. The model is described by the traits of the population, formally given as a Markov
process

2) X = (X1(t), X2(t),...), >0

with values in [ J, -, X*, where the X;(t) denote the (ordered) traits of the living particles at time
t. Its distribution is entirely determined by an initial condition at ¢ = 0 and by the parameters
(7"’ 0—7 B? H)'

1.2. Statistical setting by reduction to a bifurcating Markov chain model. We assume
we have data at branching events (i.e. at cell division) and we wish to make inference on the
parameters of the model. Using the Ulam-Harris-Neveu notation, for m > 0, let G, = {0,1}™
(with Go = {0}) and introduce the infinite genealogical tree

T = U G-

For u € G,,, set |u| = m and define the concatenation u0 = (u,0) € G471 and ul = (u,1) € Gyppy1.
Forn >0, let T,, = UZ:O Gy, denote the genealogical tree up to the n-th generation. We denote
by X, the trait at birth of an individual u € T. From the branching events, we assume that we
observe

X" = (Xu)uETHa

so that we have 2""! — 1 random variables with value in X. Asymptotics are taken as n grows to
infinity. An example of trajectory is represented on Figure 1 with the associated genealogy.

There are several objects of interest that we may try to infer from the data X™. First, one may
notice that the Markov structure of X in (2) turns (X,,u € T) into a bifurcating Markov chain
according to the terminology introduced by Delmas and Guyon [17]. A bifurcating Markov chain
is specified by 1) a measurable state space, here X (endowed with its Borel sigma-field) with a
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Markov kernel P from X to X x X and 2) a filtered probability space (Q, F, (Fm)m>0, ]P’). Following
Guyon, [17], Definition 2, we have the

Definition 1. A bifurcating Markov chain (BMC) is a family (Xy)uer of random variables with
value in X such that X, is I, -measurable for every u € T and

ueG, UEG,

for every m > 0 and any family of (bounded) measurable functions (¥y)uce,,, where PY(x) =
foxw(x,yl,yg)f])(x,dyldyg) denotes the action of P on 1.

The distribution of (X4, )yer is thus entirely determined by P and an initial distribution for Xp.
A key role for understanding the asymptotic behavior of the bifurcating Markov chain is the so-
called tagged-branch chain, that consists in picking a lineage at random in the population (X,,)yer:
it is a Markov chain with value in X defined by Yy = Xy and for m > 1:

Ym = X@el.

L €m)

where (€ )m>1 is a sequence of independent Bernoulli random variables with parameter 1/2,
independent of (X,,)yer, with transition

(4) Q= (P1+Py)/2

obtained from the marginal transitions of P:

P1(z, dy) :/ P(z,dy dy2) and Po(z,dy) :/ Pz, dyrdy).

y2€X y1€X
Guyon proves in [17] that if (Y;)m>0 is ergodic with invariant measure v(dx) on X, then a con-
vergence of the type

1
(5) = > (Xu, Xuo, Xur) —>/ Pip(x)v(dz)
Tl = x
holds as n — oo for appropriate test functions g, almost surely and appended with appropriate
central limit theorems (Theorem 19 in [17]).

1.3. Main results. In this context, there are several quantities that can be inferred from the data
X,, as n grows and that are important in order to understand the dynamics of (X, )uer. Under
suitable assumptions on the stochastic flow (1), the transition Q admits an invariant measure v
and we have fast convergence of the tagged-chain (Y;,,)m>1 to equilibrium. This enables us to
construct in a first part nonparametric estimators of v and Q with an optimal rate of convergence.
Notice that since the fragmentation kernel x(z) that distributes the trait of the parent between its
two children is symmetric, we have P; = Py = Q. This reveals the structure of the underlying BMC.

However, estimators of v and Q do not give us any insight about the parameters (r, o, B, k) of the
model. In a second part, we investigate the inference of the division rate x — B(x) as a function
of the trait © € X when the other parameters r,o and k(z) are known. This seemingly stringent
assumption is necessary given the observation scheme X". If extraneous data were available,
estimators of the parameters r, 0 and s could be obtained in a relatively straightforward manner:

i) As soon as a discretisation of the values of the flow are available, standard techniques

about inference in ergodic diffusions can be applied to recover z +— 7(x) and x — o(z)?,

see for instance [20, 23].
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ii) The fact that an individual u distributed its traits to its offspring in a conservative way
enables one to recover the fraction ,, distributed among the children. Indeed the individual
u born at b, with lifespan d,, — b, has trait ¢x, (d, — b,) at its time of death. It follows
that its children have trait at birth given by

XuO = 9u¢Xu (du - bu)v Xul = (1 - 9u)¢Xu (du - bu)v

where the 6, are drawn independently from the distribution x(x)dx and therefore, the

0y
1-6,

standard density estimation problem from data (6, )yer, , see for instance [19].

relationship % = identifies 6,,. In turn, the estimation of z — k(x) reduces to a
Uy

The identification and estimation of the branching rate  — B(x) from data X™ is more delicate
and is the topic of the second part of the paper. Under minimal regularity assumptions developed
in Section 2 below, it is not difficult to obtain an explicit representation of the transition Q(z, dy) =
Qp(z,dy) = qp(z,y)dy that reads

) o) = [ FE B0t/ ] [ e B a6,

where LY (¢,) denotes the local time at ¢ in y of the semimartingale (¢, (t))¢>0. Assuming (7,0, k)
known (or identified by extraneous observation schemes) we study the estimation of z — B(z)
when B belongs to a parametric class of functions {By,? € ©} for some regular subset of the
Euclidean space R?. Under a certain ordering property (Definition 13 in Section 3.2 below) that
ensures identifiability of the model and suitable standard regularity properties, we realise a standard
maximum likelihood proxy estimation of B thanks to (6) by maximising the contrast

9= [ a0(Xu-.Xu), 0€6,
u€Ty

(with T = T,, \ Gp) and we prove that it achieves asymptotic efficiency and discuss its practical
implementation. It is noteworthy that for the parametric estimation of B, there is no straightfor-
ward contrast minimisation procedure (at least we could not find any) whereas ¢g(z,y) is explicit.
The fairly intricate dependence of B in the representation (6) makes however the whole scheme
relatively delicate, both mathematically and numerically.

Clearly, other observation schemes are relevant in the context of cell division modelling. For in-
stance, one could consider a (large) time T > 0 and observe the branching process X; defined in (2)
for every ¢ € [0, T]. This entails the possibility to extract the times (T3,) at which branching events
occur, like e.g. in [21]. However, the continuous time setting is drastically different and introduce
the additional difficulty of bias sampling, an issue we avoid in the present context. Alternatively,
one could consider the augmented statistical experiment where one observes (X, Ty, )uer,, but
the underlying mathematical structure is presumably not simpler. Our results show in particular
that for the parametric estimation of the branching rate B, although the times at which branching
event occur are statistically informative, their observation is not necessary to obtain optimal rates
of convergence as soon as (r, 0, k) are known.

1.4. Organisation of the paper. Section 2.1 is devoted to the construction of the stochastic
model, our assumptions and the accompanying statistical experiments. In particular, we have a
nice structure enough so that explicit representations of P and Q are available (Proposition 5). We
give a first result on the geometric ergodicity of the model via an explicit Lyapunov function in
Theorem 6 and derive in Theorem 7 a rate of convergence for the variance of empirical measures
of the data X" = (X, )uer, against test functions p(X,) or ¥(X,-, X,) with a sharp control in
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terms of adequate norms for ¢, ¥ that do not follow from the standard application of the geometric
ergodicity of Theorem 6. This is crucial for the subsequent applications to the nonparametric
estimation of Q and its invariant measure v that are given in Theorem 10 of Section 3.1. Section
3.2 is devoted to the parametric estimation of the branching rate, where an asymptotically efficient
result is proved for a maximum likelihood estimator in Theorem 20. It is based on a relatively
sharp study of the transition Q, thanks to local time properties of the stochastic flow that triggers
the branching events. Section 4 is devoted to the numerical implementation of the parametric
estimator of B. In particular, in order to avoid the computational cost of the explicit computation of
q9(Xu-, Xu), we take advantage of our preceding results and implement a nonparametric estimator
on Monte-Carlo simulations instead, resulting in a feasible procedure for practical purposes. The
proofs are postponed to Section 5 and an Appendix Section 6 contains useful auxiliary results.

2. A CELL DIVISION MODEL STRUCTURED BY A STOCHASTIC FLOW

2.1. Assumptions and well-posedness of the stochastic model.

Dynamics of the traits. Remember that X C R is an open, possibly unbounded interval. The flow
is specified by r,o : X — X which are measurable and that satisfy the following assumption:

Assumption 2. For some ri,01,02 > 0, we have |r(z)| < r1(1+ |z|) and 01 < o(z) < o9, for
every x € X. Moreover, for some ro > 0, we have sgn(z)r(z) < 0 for |z| > ro (with sgn(x) =
Liz>0p — La<oy)-

Under Assumption 2, there is a unique strong solution to (1) (for instance [28], Theorem 5.2.1.).
We denote by (®,(t),t > 0) the unique solution to (1) with initial condition 2 € X. In particular,
(®,(t),t > 0) is a strong Markov process and is ergodic (cf. [23], Theorem 1.16.). Note that when
X is bounded, the drift condition sgn(z)r(z) < 0 for large enough x can be dropped.

Division events. An individual with trait = dies at an instantaneous rate x — B(z), where B :
X — [0, 00) satisfies the following condition:

Assumption 3. The function © — B(z) is continuous. Moreover, for some by,ba > 0 and v > 0,
we have by < B(x) < by 2|7 + by for every x € X.

Under Assumptions 2 and 3, the process X in (2) is well defined and the size of the population
does not explode in finite time almost-surely, see for instance Marguet [26]. Note that the lower
bounds for ¢ and B are not needed for the well-posedness of X but rather for later statistical
purposes.

Fragmentation of the trait at division. Finally, we make an additional set of assumptions on the
fragmentation distribution x(z)dz that ensures in particular the non-degeneracy of the process.

Assumption 4. We have
k(z) = k(1 — z) for almost every z € [0,1],
supp(k) C [e,1 — €] for some 0 < e < 1/2,
infze[a,l—a] ’Q(Z) >4.

The symmetry condition of Assumption 4 on the fragmentation distribution x(z)dz ensures that
the law of the trait at birth is identical for both children. The other parts of Assumption 4 are
slightly technical and may presumably be relaxed.
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Representations of P and Q. Under Assumptions 2, 3 and 4, we obtain closed-form formulae for
the transition P defined via (3) and the mean or marginal transition Q of the BMC (X, )uer,
see (4) that also gives the transition probability of the discrete Markov chain with value in X
corresponding to the trait at birth along an ancestral lineage. These representations are crucial
for the subsequent analysis of the variance of the estimators of P and of the invariant measure v.

Proposition 5. Work under Assumptions 2, 3 and 4. For every x,y,y1,y2 € X, we have
(P(ZL’, dyldyQ) = p(l’, Y1, yZ)dyldyQ and Q(iﬂ, dy) = Q(‘r, y)dya
with

ff(yl/(yl +y2))

M) pler.w) = Bl + )0l +30) 2E[ [ o By,

Y1+ Y2 0
and

' K(2) -2 > — [Y B(¢s(s))ds 37/
8 )= | 2By e E o B@aNdsqry/7 (4 dz,
®) o) = [ "2 B/ot/ B[ [ e (62)]dz

where LY (¢,) denotes the local time at t iny of the semimartingale (¢4 (t))e>0-
Note that by Assumption 4, we have p(x,y1,y2) = p(x,y2,v1) for every z,y1,y2 € X and also
Jaop(z,y1,y)dys = [y p(a,y, y2)dys = q(x,y) for every z,y € X.

2.2. Convergence of empirical measures.

Convergence of Q to equilibrium. Assumptions 2,3 and 4 imply a drift condition for the Lyapunov
function V(z) = 22 on X and a minorisation condition over a small set so that in turn Q is
geometrically ergodic.

Let Q = Q(r4, 44,04, 2i,7,8,0,1 = 1,2) be the class of all transitions Q = Q(r, 0, B, k) defined
over X that satisfy Assumptions 2,3 and 4 with appropriate constants. An invariant probability
measure for Q is a probability v on X such that ¥Q = v, where vQ(dy) = [, v(dz)Q(x,dy).
Define

0 (,dy) = [ Qo d2)Q" "z dy) with ©(a.dy) = 8.(dy)

for the r-th iteration of Q. For ¢ : X — R, we set

fely = sup 2L

and write v(p) = [, ¢(x)v(dz) when no confusion is possible.

Theorem 6 (Convergence to equilibrium). Work under Assumptions 2, 3 and 4. Then any Q € Q
admits an invariant probability distribution v. Moreover, for V(z) = a2, there exist C = C(Q) > 0
and p = p(Q) € (0,1) such that for every m > 1, the bound

Q™0 —v(p)|, < Cp™ |0 —v(y)|,
holds as soon as ||y < oo. Moreover, supgeq C(Q) < 00 and supgeqg p(Q) < 1.

In particular, we have |Q™p(z) — v(p)| < Cp™(1 4+ V()| — v(p)|so for every z € X.
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Control of empirical variances. Theorem 6 is the key ingredient in order to control the rate of
convergence of empirical means of the form

1
[T

(9) Mo(¥) = = Y (X, Xu)

u€TF

that converge to v¥Q(v) for any reasonable test function ¢ : X x X — R. (If ¢ : X — R we set
M, (¢) = |T,|7t > uer, $(Xu) — v(p) and we have a formal correspondence between the two
expressions by writing ¥ (x,y) = ¢(y) as a function of the second variable.) In order to derive
nonparametric estimators of ¥ and Q by means of kernel functions 1 that shall depend on n, we
need sharp estimates in terms of .

We shall restrict our study to transitions Q € Q for which the geometric rate of convergence to
equilibrium p = p(Q) given in Theorem 6 satisfies p(Q) < 1/2. Let Q;/, C Q denote the set of
such transitions.

We need some notation. We denote by |- |; the usual L'-norm w.r.t. the Lebesgue measure on
X'xX. For a function 1) = X x X — R we set ¢*(z) = sup, ey [¥(2,y)| and ¥4 (y) = sup e [¢(z,y)]
and define

ol = [t pldsdy \ [ sup ooy

Note in particular that when ¥(x,y) = ¢(y) is a function of y only, we may have that [i,]; =
J5 le(y)|dy is finite while t is not integrable on X x X as a function of two variables. For a positive
measure p on X, let also

], = /x e lpldo)dy + 0]

We write P, for the law of (X, )yer with initial distribution p for Xy. Remember that V (z) = 2?
from Theorem 6.

Theorem 7. Work under Assumptions 2, 3 and 4. Let u be a probability measure on X such that
u(V?) < oco. Lety : X x X — R a bounded function such that v, is compactly supported. The
following estimate holds true:

E, [(Mn(d’) - V(Q¢))2] N |Tn|71(|¢2|u+u + |1/)*1/’|;L + (1 + N(V2)1/2) W}*hwj‘u)a

where the symbol < means up to an explicitly computable constant that depends on Q and on
supp(vx) only. Moreover, the estimate is uniform in Q € Qy /5.

Several remarks are in order: 1) We have a sharp order in terms of the test functions 4, that
behave no worse than fx2 2 under minimal regularity on v which is satisfied, see Lemma 25 below
(and of course pu, although this restriction could easily be relaxed). This behaviour is the one
expected for instance in the IID case and is crucial for the subsequent statistical application of
Theorem 10 where the functions ¢ will be kernel depending on n. 2) Theorem 7 can be derived
with other more competitive tools in the uniform geometric ergodic case, see e.g. [8, 5], a case we
do not recover here since X is not necessarily bounded. 3) Theorem 7 has an analog in [15] for
piecewise deterministic growth-fragmentation models, but our proof is somewhat simpler here and
sharper (we do not pay the superfluous logarithmic term in [15]).
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3. STATISTICAL ESTIMATION

3.1. Nonparametric estimation of Q and v. Under Assumptions 2, 3 and 4, any Q(z,dy) =
q(z,y)dy admits an invariant probability measure v(dx) = v(z)dx, the regularity of v(z) being
inherited from that of Q via v(z) = [ q(z, z)v(dz).

Fix (20,90) € X x X. We are interested in constructing estimators of q(xg,yo) and v(zg) from
the observation X" when both functions satisfy some Holder regularity properties in the vicinity
of (z9,y0). To that end, we need approximating kernels.

Definition 8. A function G : X — R is a kernel of order k if it is compactly supported and satisfies
[y 2*G(x)dx = L1y—gy for £=0,... k.

The construction and numerical tractability of approximating kernels is documented in numerous
textbooks, see for instance Tsybakov [33]. For bandwidth parameters h, hi, ho > 0, we set

Gu(y) =h™'G(hy)
and
G2, (@) = hi'hy 'G(hi '2)G(hyy)

and obtain approximations of v(yg) and g(xo,yo) by setting

Gn*v(yo) = /x Gnl(y —yo)v(y)dy
and
G *q(z0,90) = G2 (@ — o,y — yo)v(x)g(x,y)dedy.
XxX

The convergence of M,,(¢) to v(p) suggests to pick ¢ = Gp(- — x¢) that converges to Gp, x v(xg)
and use it as a proxy of v(xg). We obtain the estimator

Un (o) = My (G (- — 20)),

specified by the choice of h > 0 and the kernel G. Likewise, an estimator of g(xo, o) is obtained
by considering the quotient estimator with numerator ¢ = G, n, (- — o, - — yo) that converges to
G, *v(z0)q(z0,yo) and denominator v, p(zo) in order to balance the superfluous weight v(x) in
the numerator. We obtain the estimator

Mn (G%ihz(. — Lo, — yo))
Mn(Gh(- — mo)) Vo
specified by the choice of h, h1, hy > 0, a threshold @ > 0 and the kernel G. In order to quantify the

kernel approximation, we introduce anisotropic Holder classes. For a > 0, we write a = |a] + {a}
with |«| an integer and 0 < {a} < 1.

qAn(u’anyo) =

Definition 9. Let o, 8 > 0 and V4, and V(yo) be bounded neighbourhoods of xo and yo.
i) The function ¢ : Vy, — R belongs to the Hélder class H*(xo) if

(10) LD (y) — LD (@) < Cly — 2|1} for every @,y € V.
ii) The function ¥ : Vy, x Vy, — R belongs to the anisotropic Hélder class H*P(xo, o) if
z = )z, y0) € H* (20) and y = P(xo,y) € H(yo)

hold simultaneously.
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We obtain a semi-norm on H%(x¢) by setting [¢|gca(z,) = SUP,ev, lo(z)] + ca(p), where cq(p)
is the smallest constant for which (10) holds. Likewise, we equip H*# (¢, o) with the semi-norm
[¥]5¢08 (20,50) = [0 Y0)|5¢a (wg) + [¥(205 ) |38 (yo)- The space H*F(zo,yo) is appended with (semi)
Holder balls

HY (20, y0) (R) = {0 : X x X = R, [g¢as(2g,50) < R}, R > 0.

We are ready to state our convergence result over transitions Q that belong to
Q?/;(R) =Qi2N HP (20,90)(R), R >0,
with a slight abuse of notation.

Theorem 10. Work under Assumptions 2,3, 4. Assume that the initial distribution p is abso-
lutely continuous w.r.t. the Lebesque measure with a locally bounded density function and satisfies
u(V?) < cc.

Let o, 8 > 0. Specify Dn(yo) by a kernel of order k > max{a, 8} and h = |T,|~Y@+D) and
Gn(0,0) with the same kernel and hy = |T,,| 758/ (@AB)2s(@.B)+1) “py) —|T,, | ~5(:B)/B(2s(@.B8)+1)
and w, — 0. Then, for every R >0

Sup (E[(ﬁn(yo) - V(yo))z])l/2 < |’]1‘n|fﬁ/(26+1)
Q€Qy 5 (R)

1/2

and
2

-~ 271 — —s(a s(a
sup  (E[(@u(w0,50) — aw0,50))°]) " S @y T, |75/ s +D)
Q€Qy 5 (R)
hold true, where s(a, B)~t = (a A B)~! + B~ is the effective anisotropic smoothness associated
with (a, ).

Several remarks are in order: 1) We obtain an optimal result in the minimax sense for esti-
mating v(yo) and in the case 8 > « for estimating ¢(xo,yo). This stems from the fact that the
representation v(z) = fx v(y)q(y, r)dy henceforth ¢ € H*# implies that v € H?. In turn, the
numerator of g, (zo,%o) is based on the estimation of the function v(x)q(z,y) € H* 8. 2) In the
estimation of q(wg,%o), we have a superfluous term o in the error that can be taken arbitrarily
small, and that comes from the denominator of the estimator. It can be removed, however at a
significant technical cost. Alternatively, one can get rid of it by weakening the error loss: it is not
difficult to prove

(E[(Gn(z0,y0) — Q(xoayo))p})l/p S| T, 75 @B/ @@ for every 0 < p < 2,

and the result of course also holds in probability. 3) The assumption that u is absolutely continuous
can also be removed. 4) Finally, a slightly annoying fact is that the estimators 7, (xo) and ¢, (zo, yo)
require the knowledge of (a, §) to be tuned optimally, and this is not reasonable in practice. It is
possible to tune our estimators in practice by cross-validation in the same spirit as in [21], but an
adaptive estimation theory still needs to be established. This lies beyond the scope of the paper,
and requires concentration inequalities, a result we do not have here, due to the fact that the model
is not uniformly geometrically ergodic (otherwise, we could apply the same strategy as in [8, 5]).

3.2. Parametric estimation of the division rate. In order to conduct inference on the divi-
sion rate x — B(z), we need more stringent assumptions on the model so that we can apply the
results of Theorem 7. The main difficulty lies in the fact that we need to apply Theorem 7 to test
functions of the form ¢ (z,y) = log ¢(z,y) when applied to the loglikelihood of the data, and that
these functions are possibly unbounded.
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A stochastic trait model as a diffusion on a compact with reflection at the boundary. We circumvent
this difficulty by assuming that the trait ¢,(¢) of each individual evolves in a bounded interval
with reflections at the boundary and with no loss of generality, we take X = [0, L] for some L > 0.
The dynamics of the traits now follows

(11) dpa(t) = r(¢x(t))dt + 0 (Px(t))dW; + diy,

where the solution (¢;)¢>0 to ¢y = fot(l{qu(s):o} + 14, (s)=1})dls accounts for the reflection at the
boundary and (W;);>0 is a standard Brownian motion. Under Assumption 2 (that reduces here to
the boundedness of r, o and the ellipticity of o) there exists a unique strong solution to (11), see
for instance Theorem 4.1. in [32].

A slight modification of Proposition (5) gives the following explicit formulae for the transitions
P and Q. Remember that by Assumption 4, we have supp(k) C [¢,1 — €]. Define

D={0<y <el, =y <y < = U{eL <y <(1—e)L, 15y <y < H2 )

Then the explicit formula for p(z,y1, y2) given in (7) remains unchanged provided (z, y1,y2) € XxD
and it vanishes outside of X x D. For ¢(x,y), the formula (8) now becomes

2w = [ Dppet e | [T e ke, i

/L
for (z,y) € X x {0 <y < (1 —¢)L} and 0 otherwise.

Adapting the proof of Theorem 6 to the case of a diffusion living on a compact interval (formally
replacing [—w, w] by [0, L] in the proof of Proposition 22 below) one easily checks that Theorem
6 remains valid in this setting (applying for instance Theorem 4.3.16 in [9]). In turn, Theorem 7
also holds true in the case of a reflected diffusion. For parametric estimation, the control on the
variance of M,, (1) is less demanding and we will simply need the following

Corollary 11. Work under Assumptions 2,3, 4 in the case of a reflected diffusion on [0, L] for
the evolution of the trait (¢, (t), t > 0). Let v : X x X — R. Then, for any probability measure p,
we have

sup B, [(Ma () — v(Qu))*] S |Tal ™" sup ()™
QeQi/2 .y

Maximum likelihood estimation. From now on, we fix a triplet (rg,0q, ko) and we let the division
rate  — B(z) belong to a parametric class

B={B:X—R,B(z)=By(¥,z),z € X,J € O},

where = + By(x, 1) is known up to the parameter 9 € ©, and © C R? for some d > 1 is a compact
subset of the Euclidean space. In this setting, the model is entirely characterised by 1 which is
our parameter of interest. A first minimal stability requirement of the parametric model is the
following

Assumption 12. We have Q(B) = {Q = Q(ro, 00, B, k), B € B} C Qy 2.
A second minimal requirement is the identifiability of the class B, namely the fact that the map
B Q(’/‘(), g, B7 Ko)

from B to Q is injective. This is satisfied in particular if B satisfies a certain orderliness property.
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Definition 13. A class B of functions from X — [0,00) is orderly if ¢1,p2 € B implies either
v1(z) < @a(x) for every x € X or pa(x) < p1(x) for every x € X.

Proposition 14. Let B be orderly in the sense of Definition 13 and Q(B) C Q for some (ro, 0o, Ko)-
Then B — Q(rg, 00, B, ko) is injective.

We further stress the dependence on ¢ by introducing a subscript in the notation whenever
relevant. We formally obtain a statistical experiment

en = {P},9 €0}

by letting P} denote the law of X" = (X, u € T,,) under Py with initial condition X distributed
according to vy on the product space X!™! endowed with its Borel sigma-field. The experiment
&" is dominated by the Lebesgue measure on X!/ and we obtain a likelihood function by setting

(13) Lo (9, (Xuyu€Tn)) = ] a0(Xu-’ Xu),

u€Ty

where X,- denotes the trait of the parent of u. Taking any maximiser of (13) we obtain a maximum
likelihood estimator

1/9\,1 € argmax L, (19, X")
YeO

provided a maximiser exists.

Convergence results and asymptotic efficiency. We first have an existence and consistency result
of ¥, under the following non-degeneracy assumption that strengthens Assumption 3.

Assumption 15. The function By : © x X — [0,00) is continuous and for some positive bs, by,
we have

0<bs < bnfBo(ﬁ,(E) < supBo(ﬁ,a?) < by
»T d,x

Moreover, the class B = {Bo(ﬂ, 9,0 € @} is orderly in the sense of Definition 13.

Theorem 16. Work under Assumptions 2, 4, 12 and 15. Then, for every ¥ € O, ﬁn converges to
¥ in probability as n — oo.

Our next result gives an explicit rate of convergence and asymptotic normality for 571 We need
further regularity assumptions.

Assumption 17. The set © has non empty interior and, for every x € X the map ¥ — Bo(9, x)
is three times continuously differentiable. Moreover, for every 1 <i,j, k < d:

sﬁup |09, Bo (9, x)| + S;gup |8129“9j By(¥,x)| + s;up |8;°§“9jﬂk By(¥,x)| < 0.

Introduce the Fisher information ¥(9) at point ¢ € © as the d X d-matrix with entries:

\11(19)7;,3‘ = VﬁQﬁ(

99, qv Oy, s, 9y,
w):/ ﬁI‘Iﬂ(x,y) 19]‘]19(%?/)”19(1.)%9(%y)dmdy,
XxX

a q9(z,y)?

for 1 <i,j <d.

Assumption 18. For every ¥ in the interior of ©, the matriz V() is nonsingular.
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Although standard in regular parametric estimation, Assumption 18 is not obviously satisfied
even if we have the explicit formula (12), for gy(x,y), due to its relatively intricate form. We can
however easily show that it is satisfied in the special case of a trait evolving as a reflected diffusion
with constant drift. More general parametrisations are presumably possible, adapting the proof
delayed until Appendix 6.2.

Proposition 19. Assume d = 1, Bo(¢,2) = 9 for every x € X, with © = [¥1,92] C (0,00),
r(x) =71 <0 and o(x) = a9 > 0 for every x € X. Let r(z) = (1 —2¢e)71 for every z € [¢,1 — €.
There exists an explicit open interval I C (0,1/2) such that Assumption 18 is satisfied as soon as
eel

We are ready to state our final result on asymptotic normality of 5,1

Theorem 20. Work under Assumptions 2, 4, 12, 15, 17 and 18. For every v in the interior of
©, we have

TY/2(9,, — 9) — N(0,U(9) ™)

in distribution as n — oo, where N(0, ¥ (9)~1) denote the d-dimensional Gaussian distribution
with mean 0 and covariance the inverse of the Fisher matriz U (4).

Several remarks are in order: 1) Although asymptotically optimal, the practical implementation
of 7/9\71 is a challenging question that we plan to address in a systematic way. 2) As for classical
estimation in diffusion processes (see e.g. [11, 16]), the assumptions of Theorem 20, especially
Assumption 18 are standard. However, the fact that they hold true in the simple case of Proposition
19 and a glance at the proof is an indication that they are certainly true in wider generality.

4. NUMERICAL IMPLEMENTATION

We consider the implementation of the estimator ﬁn in the case of a branching population
structured by a trait drawn according to a Brownian motion reflected on [0, 1], namely

t
Go(t) =2+ Wy + Ly, b= / (g, (s)=0} T L{p,(s)=1})dls, t 20,
0

where (W;);>0 is a standard Brownian motion. We pick x(z) = (1 — 26)’11[571_5] () so that
an individual with trait x at division splits into two individuals with traits Uz and (1 — U)x
respectively, where U is uniformly distributed on [, 1 — &]. We pick ¢ = 10~*.

4.1. Generation of simulated data. Given a division rate B and an initial trait zi* € R, we
recursively construct a dataset of size T, = 2"t! — 1. We pick T large enough so that each
individual of the (N, + 1)-th generation is born before time T. For each individual u in the
”current” population (composed of individuals from generations smaller than N,,) and born at
time t < T,
i) we simulate a reflected diffusion using the Euler scheme for reflected stochastic differential
equations of [24] with initial condition #™® and time step At until time 7T,

ii) we draw the lifetime of u by rejection sampling,

iii) we add to the population two new individuals with respective traits at birth given by Uz
and (1 — U)z where U is a realisation of a uniform random variable on [e,1 — €] and z is
the trait of u at division,

iv) we remove the individual u from the ”current” population.

We can thus simulate a sample of size 2"+! — 1 by considering all the couples composed of the
traits at birth of an individual and its ancestor.
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FIGURE 2. The contrast £, (¢, (Xy,u € Ty)) for n = 14 and B(z,9) = 2 with
AY = 0.05 (left) and A¢ = 0.01 (right). We look at the results only for A¢ = 0.05
because for smaller values of the increment, the noise due to computational errors
is too important compared to the different values of the contrast.

4.2. Implementation of the maximum likelihood. For a given dataset X", we approximate
L, (19, (Xy,u € Tn)) using, for a given ¥, the nonparametric estimator ¢, (X, -, X,) introduced in
Section 3.1.

e G G D))
M, (Gh,(~7m0))Vw
mesh ny* x nyt of [0,1] x [0, 1] with ny = ny = 200, G(x) = (21) /2 exp(—2?/2), h = 2|T, |~ 1/3,
hi = hy = 0.1vh, w = 107%. We next use an interpolation scheme provided by the package
Interpolations in Julia to compute the value of the transition at each (X,-,X,) € X". For
synthetic data, we pick n = 19, resulting in a tree of size 220 — 1 = 1048575 with initial value

2™ = 0.5 and At = 51074,

More specifically, we implement ¢, (zo,yo) = for every (zg,yo) on a grid of

4.3. Results. We consider the following parametric classes By(d,z) = ¢ and By (J,z) = 1 + Jz.
We compute 300 Monte-Carlo samples of size |T,| = 2% — 1 = 32767 for ¥ = ¥; = 2 and
¥ = ¥ = 15 in both cases. Therefore, we apply our results to four different cases. In each case,
we approximate gy(X, ,X,) for different values of ¥ € © = [Unin, Imax] and we compute the
corresponding 0. We progressively reduce the increment A4 for the choice of ¥ until the contrast
of likelihood starts to be noisy (see Figure 2), adapting at each level the choice for the upper and
lower bounds of ©. The results are displayed in Table 1. We recover the parameter in all four
cases, with various accuracies. The most accurate value is obtained for B; with a small value
of the parameter, i.e. ¥ = 2. We did not reach the optimal accuracy |T0|7'/? ~ 61073. One
could presumably obtain a better accuracy by choosing a finer discretisation of [0, 1] x [0, 1] for the
computation of the g,. But this choice leads to an important increase of the computational time.
The results in the case of a linear division rate are less accurate. Those results could also probably
be improved using a cross-validation procedure for the choice of the bandwidth parameters h, h1, hs.
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B | 9 | Mean | Std Dev. | Umin | Umax | AV
By | 2 [1.9908 | 0.0845 1.8 2.2 | 0.05
15 | 15.029 | 0.4763 14 16 0.25
By | 2 (21392 | 0.3485 | 1.375 3 0.125
15 | 15.023 | 0.6425 | 13.75| 16.5 | 0.25

TABLE 1. Results for B in By and By. For each parametric class of functions
By and By, we display the results for 9 = 2 and 9 = 15. The third and fourth
columns corresponds respectively to the mean value and the standard deviation
of @n, computed with 300 different data sets of size 2"*! — 1 = 32767. The fifth
and sixth columns correspond to a 95% confidence interval. The last column
corresponds to the value of the step for the discretisation of ©, which limits the
accuracy of the result.

5. PROOFS

5.1. Proof of Proposition 5. We first prove (8). By the occupation times formula, a change of
variable and Fubini’s theorem, for any bounded ¢ : X — R and x € X, we have

Op(x) = E[p(Xu)[ Xy~ = 2]

= / / 0 (20.(1)) B(¢u(t))e™ Io B<¢w(8>>d8dtdz]

/ / y/z/0 e~ Jo B(¢a( e))dde(y/iq;w)d dz}

= [ o) [ D ptsrotsm] [ e ey o) ay,

z

where (LY (¢s))i>0 is the local time of ¢, at y € X. Since supp(x) C [e,1 — €], the above integrals
are well defined and (8) is established. We turn to (7). By (3), for any bounded v : X* — R and
x € X, we have

Pij(x) =E[ /O 1m(z> /0 Oow(x,ww(t),(l—zm(t)) B(¢(t))e Jo Blo=ls ”detdz}
Z//lzb(x,yl,“jyl)B(yl/z)a(yl/z)—QE[/oo e_fotB(‘z”(s))ddetyl/z(qu)}@dzdyl
R JO 0 Z

—/:D¢($,ylyy2)ﬁ(yl/(yl+y2))

Y1+ Y2
where we set yo =

D= {(y17y2) S R27 1—

therefore the above integral is well defined and the representation (7) is proved.

By ) olys +2) B[ [ e PO arp g,
0

<yo < =2y} Csupp((y1,y2) — k(21 + 22))

5.2. Proof of Theorem 6. The proof goes along a classical path: we establish a drift and a
minorisation condition in Proposition 21 and 22 below, and then apply for instance Theorem 1.2.
n [18], see also the references therein.



ESTIMATION IN A RANDOMLY STRUCTURED BRANCHING POPULATION 15

Proposition 21 (Drift condition). Let V(z) = x2. Work under Assumptions 2,5 and 4. There
exist explicitly computable 0 < v1 = v1(e) < 1 and vo = va(e,r1,72,01,092,b1) > 0 such that

QV(x) < v V(x) + va.

Proposition 22 (Minorisation condition). Work under Assumption 2, 3 and 4. For large enough
w > 0, there exists a € (0,1) and a probability measure p on X such that

inf  O(z,A) > au(A)

{z,|z|<w}
for every Borel set A C X.

Proof of Proposition 21. Fix x € X and let m(k) = fl P

o 2°k(2)dz. By It6 formula, we obtain the
decomposition

QV(x)/Ol /i(z)/OOOE[zngm(t)zB((z)z(t))e Jg B(#a(s) dS]dtdz— m(k)(I + 1T + 11T + IV),

where
> t
I= xz/ E[B((bm(t))e_ Jo B(%(S))dS} dt,
0
:2/ E| " o (W) (0 () B (62 (1)) i B
0 0
i / 7 (6o(w)du B(6,(1) ™ 13 D=0 gt
0 0
0 0
First, note that [ B(¢4(t))e =3 B($2())ds gy — 1, therefore I = 22 by Fubini’s theorem. We turn

to II. By Fubini’s theorem again:

II = QE[/OOO ¢z(u)r(¢w(u))(/uoo B(¢4(t))e fo B(%(S))det)du]
= 2]E{/0Oo ¢z (u)r(du(u))e” o B(%(s))dsdu}
= 2/ zr(z)a(z)*zE[/oo el B(‘z’w(s))ddef(gbz)} dz.
R

0

by the occupation times formula. By Assumption 2 we have zr(z) < 0 for |z| > rq, therefore:
T2 o0 +
<2 / 2r(z)o(2)E| / e I3 PO ()] de
0

iy .
E{/O e~ Jo B(%(S))ddef(%)}dz

T2

S 27‘17‘2(1 + Tl)U;Q/

—rg

S 2o +7r1 oy e 7152_ mt ST tS r17r2 —+7r1 o; by .
< 2rmp(1 2 bitp < < rg)dt < 2rqro(1 Dbt
0
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using successively Assumption 2, 3 and the occupation times formula. For the term I1], we have
111 = / E[J(¢x(u))2/ B (t))e™ Jo PO (ds gy,
0 u
— [ E[oteutwyre e gy
0

by Fubini again and this last quantity is less than o3 fo e Uitdt = o2b] ! by Assumption 2 and 3.
Similarly for the term IV, we have

IV=2E[/OOOO'(¢I(’LL)) /:C (6a(t))e™ Jo PN Eqraw, |
28] [ o(6u(w)e i Be-icaw,

and this last quantity vanishes. Putting the estimates for I, I, 111 and IV together, we conclude
QV(x) < m(r)x? +m(r)(2rira(1 + 7)oy 2 + 05)b L.
Since supp(k) C [g,1—¢], we have m(k) < (1—¢)? < 1 and this completes the proof with v; = m()
and vy = m(k)(2r1r2(1 +71)oy 2 + 03)b L.
O
Proof of Proposition 22. Step 1). Let x € [—w,w] and A C X be a Borel set. Applying Assumption

4, introducing the event W(¢,(¢)) = {2w < ¢,(t) < 2w+/(1 —€)/e)}, applying Fubini’s theorem
and a change of variable, we successively obtain

1 o)
9w ) = [ w0 [ E[Lsen Blon0)e 2O aras
1 o'} .
Zbl/ ”(z)/ E[Lwuo Lzonmenye % 2% dua
0 0

> - b [P
= bl/ E Ly, e 5 20 /
0 0

:/Rl{yEA}f(iay)d?%

Liyeayk(y/dx(t)) du (t)*ldy] dt

with £(2,9) = b1 [ E[Tw(e, (1) Ly<o. oy € 0 POk (y/6, (1)) ¢ (t) 7] dt.

Step 2). We now prove that f is bounded below independently of . By Assumption 4 and the
definition of W(¢.(t)), we have

oo
Je) = 6b1/o E [ 13006, 00 Lenn o< -apputore” 0 PO, (6)7 at
> Ll h(z,y)
~ 2w (1 _ 6)/6 {Zw\/s(176)§y§2w(17€)} Z:Y)s

with h(z,y) = [;° E[L1w(e, )€~ Jo B(¢a( Nds]dt. Let A = (1++/(1 — ¢)/e)w denote the mid-point
of the interval [2w, 2w+/(1 — 5)/5]. Let also T;7 = inf {t > 0, ¢, (t) > y} denote the exit time of the
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interval (inf X, y) by (¢(t))i>o0. It follows that

Mo g) 2 ]E[/T Ly, e o B0 gt

A

[ T
E| 1w, t+1z)€" Jo AB(¢1(S))d5] dt
E

0o _]-W(qﬁ (t+T2))€" fOTK B(¢x(s))ds,— s B(¢I(S+Tg))d.§:| dt
x A

J
J,

> / E [T, (e~ TA02A 7400 ¢ I Bos(14T2005] gy
o L

by Assumption 3 and because ¢(s) < A for every s < TX. Applying the strong Markov property,
we further obtain

0
since ¢, (T%) = A for z < w < A. Introduce next T4 = inf{t > 0, da(t) ¢ [2w,2w\/(1 — €)/e]},
i.e. the exit time of [2w, 2w+/(1 — €)/¢] by (éa(t))t>0. By (14) and Assumption 3 again, it follows
that

TA
hz,y) = ]E{/ T f5<b2'¢1<5>'”b1)dsdt}
0

>E

TA
w 1 —Tg (bgA’Y—‘y—bl) —1)3tdt
o W(oa(t)® € J

using that ¢, (t) < 2w\/(1 —¢)/e for t < TE and where vz = ba(2w\/(1 —€)/e)” + by. Since

A > —w, the event {TX < T “} holds almost-surely for every x € [—w, w] and therefore
TH o A
(15) h(l’,y) > E[/ e*TA (bzA‘Yerl)e*tvgdt} > vzs—lE[efTA (bzA’Y+b1)]E[1 _ 67TWUS] .
0
by the independence of T\/A\7 and T, . Furthermore, for every a,z € X with « < a, we have

PTG <o0) = I S =)’

where s(z) = [ exp(=2 [ .. 7(2)0(2)"2dz)dy, is the scale function associated to (¢ (t))i>0.

By the classical Feller classification of scalar diffusions (see e.g. Revuz and Yor [31]), we have
the equivalence P (77 < oo) = 0 if only if [, ., s(z)dz = 0 but that latter property contradicts
Assumption 2. Therefore, there exist wq, 01 > 0 such that P(T," < wq) > §;. It follows that

(16) E[eiTA_w(bQAWHH)] > ]E[efwl(bZA”rbl) ] > 5o w1 (b287+01)

Lrgvcuwy
and since T4 > 0 almost surely, there exists d > 0, independent of x, such that
(17) E[l — e %] > 6.

Back to (15), putting together (16) and (17), we obtain

bz, y) > vy 6o~ 028700,
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and eventually

0b16192 —w1 (b2 AV +b1)
> w1 (02 1
flz,y) > Qw\/mvs {Qw\/s(l—E)SySQw(l—s)}e .

Step 3). Define the probability measure p(dy) = f(y)dy on X by

1
fy) = Qw(l —e— \/m) 1{21”\/@@9“’(1_6)}’
and let o = (1 — & — \/e(1 —¢)) 2292 —wi(b2A7+01)  We may assume that 0 < a < 1 (the

V(1—¢)/evs

lower bound remains valid if we replace § by §’ < § for instance) and we thus have established
Az, A) = ap(A),
for an arbitrary Borel set A C X. The proof of Proposition 22 is complete. O

5.3. Proof of Theorem 7.

Preparations. We first state a useful estimate on the local time of LY(¢,) as t — oo. Its proof is
delayed until Appendix 6.1.

Lemma 23. Work under Assumption 2. For every compact X C X and for every t > 0, we have

sup  E[LY (¢,)] S1+t3/2,
zeX,yeX

up to a constant that only depends on r1, 9 and o2. In particular, for every ¢ > 0, the function

yH/ ““sup E[L{ (¢,)] dt

zeX

is well-defined and locally bounded, uniformly over Q.

Lemma 23 enables us to obtain estimates on the action of P and Q on functions ¢ : X x X — R
with nice behaviours that will prove essential for obtaining Theorem 7. We set

Z/Xw(%y)q(w‘,y)dy, P @y)(r) = Y(x, y1)(z, y2)p(z, Y1, y2)dy1dya,

AxX

where p(z,y1,y2) and ¢(z,y) are given in Proposition 5

Lemma 24. Work under Assumptions 2, 3 and 4. Let ¥ : X x X — R be bounded and such that
Y. has compact support. There exists a constant cepp(y,) depending on supp(vy) (and Q) such
that

(18) 190(2)] < Couppio) /x o, 1)y

and
P © ) (2)] < Couppe )" (@) /x (. )|dy.

Note in particular that (18) implies in turn the estimate

|QQw<x)‘ S Cgupp(w*)lwll A Csupp(w*)‘ /:;:w*(y)ldy 5 |’(/}|/\1'
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Proof. By Assumption 3, we have

1 s}
90@) = | [ 5e) [ Elite.z.0)B(6n(0)e S 20 dra

g/o m<z)/0 E[[4(z, 262 (8))] (b2 |da (O] + b1 e ded

< / h(2) / T [0 26:(0)] (b2 0.0 + ) / " bieas drd.

Next, by Fubini’s theorem and the occupation times formula, we derive

0@ = [ 6t [0 Bt 0n @)l ulon (O] + b)) drdsd:

1 %)
< / w(2) / bye~tre / (. 2)| (bl + br)o(y) 2E[LY (6| dydsdz

- / i)z / T et [ 16l =1 + br)atu2) (LY 6. dydsd

Scsupp(w*)/R|¢(x7y)|dy7

and (18) is proved with

Csupp(v.) = sup b1 (baly/z[" + bl)a(y/Z)’QZ’lf e " UELY/* (¢,)]ds.

yEsupp(¢,),2€X,z€[e,1—¢] 0

This last quantity is finite by Lemma 23. For the second estimate, we have

oo

1
P ® ) ()] < / w(2) / B[4 (1, 262 (6)) (1, (1 — 2)0 (1)) | B (s (£) e~ 5 BO=(N4] gy

< |Qu(x)| sup (2, y)|

and we conclude by applying (18).

Completion of proof of Theorem 7. Without loss of generality, we may assume that v(Qy) = 0,
the general case being obtained by considering the function ¢ (z,y) — v(Qv). Of course, the com-
pact support property is lost by adding a constant and one has to be careful when revisiting the
estimates of Step 1) to Step 4) below. They exhibit additional error terms that all have the right

order using Lemma 24 and the fact that P1 =91 =1.

Step 1). We start with a standard preliminary decomposition, see for instance [6, 7], expanding

the sum in v € T);. We have

EM ()% = T3 B [(Y) Y w(Xe-, X))

m=1ueG,,

<3 (B[O vk x0)]) )

m=1 u€Gy,

19

O
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by triangle inequality. Thus Theorem 7 amounts to control
2
Eu[( Y ¥(Xu-, Xu))7] = I + 11,
u€G,,
with

I, = Eu[ Z 'L/}(Xu—7Xu)2]7

u€Gm
IIm :Eu[ Z Q/J(Xu*aXu)?/}(Xv*aXﬂ)}'

U, WEG, ,urv

Step 2). The control of the term I, is straightforward: by Lemma 24 we have

I = 2u(Q?) < 2csupp(¢*)/x xw(x,y)Qu(dm)dy for m =1,
X
I, = 2mu(9m¢2) < Zm(cgupp(¢*)|¢2|1 A csupp(w*)‘wih) for m > 2?

therefore I,, <

~

2™|1h?|, holds for every m > 1. In the case v(Qv) # 0, we replace [1?|,, by |¥?|,+.-
Step 3). We further decompose the main term 1, = II1,, + IV,,, having

Iy =Eu[ Y (X, Xuwo)(Xuw, Xu1)],

WEG,,—1

Wy =B, Y D (X, Xu)(Xy, X))

u,VEG, —1,u#v 1,j=0,1

The control of 111, is straightforward:

I, =E,[ Y PEe¢)(X,)]=2""uQ" 'Pte1y)).

wEG, 1

In the same way as for the term I,,, by Lemma 24, one readily checks that [I11,,| < 2™ yp*1p|,,.

Step 4). We now turn to the main term IV,,. Writing here u A v for the most common recent an-
cestor of v and v, conditioning w.r.t. F|,n,|+1 and using the conditional independence of (X, Xu;)
and (Xy, Xyj;) given Fjypy41 thanks to the BMC property (3), we successively obtain

Wo=B Y3 B (X X)X Xo)[Fruner 1] |

T u,vEG, _1,u#v 1,j=0,1

= E,u _ Z Z E;L [1/}(Xua Xui)|9:|u/\v\+1] ]E;z ["/)(Xvaij)|Sc\u/\v|+1] :|

U, 0EGm —1,uv i,j=0,1

" > > By [99%(X0)|Flunvi+1] By [Qw(Xv”?\u/\vl-&-l]}

T u,vEG, _1,u#v 1,j=0,1

:4[}3“[ Z Qlulflu/\v\d}(xu*)Qlulf\uAvlw(Xv*)]’

U, VEG ., —1,u#v
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where u* (respectively v*) is the descendant of u A v which is an ancestor of u (respectively v).
Conditioning further w.r.t. F, 5, we obtain

v, :4[[3”[ Z T(Qlu\*\u/\ulw@Q\ulfluAv%)(Xu/\v)}

w,WEG, —1,u7#v

=14 Z H(Q\“/\UH])(QW\*W/\UMZ) ® Q\UI*\MWIQ/)))
UWVEG,, —1,u7#v

m—1

-4y 3 p(QmIP(QY © '),

=1 w,v€Gm_1,|urv|=m—I1-1

obtaining the last term by rearranging the sum u,v € G,,_1 that expands over indices |u|—|uAv| =
m — 1 — |u Av| that vary from 1 to m — 1. Notice also that for I =1,...,m —1

{u#v€Gm_1,lurvf=m—1—-1} = |Gp_i_1| x 2l x 2=,

)

where |G,,_;_1| is the number of common ancestors, 2! is the number of choices for u (the first
descendant in generation m — 1 of the ancestor from generation m — [ — 1) and 2'~! is the number
choices of v (the second descendant, satisfying u A v € G,,,—1). We finally obtain

IV, = 4mzl 2m =2 (@M1 pQly @ Qlp)).
=1

By Lemma 24 and Theorem 6 one easily obtains the following estimates:

1 (27 2P (2 © Q) | £ i [lar for 1= 1,
and for [ > 2:

u(Qm T P(Q @ Q') | S R A PP p(QP T R(1+ V) @ (14 V).

In the case v(Qv) # 0, we replace |1|a1 by |[¢],. We claim that
(19) p(QMP(L+ V)@ (1+ V) S 1+u(V?)
and postpone the proof of (19) to Step 6 below. It follows that for any ¢ > 1:

[1Vial S 271l + 27 Y2 (1020 A PPV 1R (1 + u(V?))
=1

<2y |w|M+2m(|w|MZ2l+|w*| (1+uv?) 3 272 )

=1 1=0+1
< 27l flan + 27 juf (163,20 + a3 (1+ n(v2)2 )

S22 (L4 (v >1/2)|w*|1|wm-

Step 5). Putting together the estimates obtained for I,,, in Step 2, 111, in Step 3 and I'V,,, in Step
4, and recalling I1,,, = I11,, + IV,, we eventually derive:

(D 0(Xum, X)) S 27 (10 + [l + (14 w(V) ) 100 n1).
ueG,,

In the case v(Qv) # 0, we replace |¢%|, by |¢?|,+, and |11 by |1], as follows from Step 2 and
4. Taking square root, summing in 1 < m < n, taking square again and normalising by |T%|~2 we
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obtain Theorem 7.

Step 6). It remains to establish (19). We only sketch the argument which is similar to the proof
of Proposition 21. First, one easily obtains

P(1+V)®(1+V)) S1+9V(2) +QV3 (),
and it follows that
pQ TP+ V)@ (14 V) ST+ p(Q"'V) + u(Q™'V?)

S+ p(V)+p@m've)

by Proposition 21. Applying It6’s formula and using Assumptions 2 and 3 on can check that
V3 (z) S1+V(z)*+QV(z) S 1+ V(z)?

by Proposition 21 again. We obtain (19) by integrating w.r.t. p.
5.4. Proof of Theorem 10.
Preparations. We first establish local estimates on the invariant density v.

Lemma 25. Work under Assumptions 2, 3 and 4. Let Q € Q and let v be the associated invariant
density of Theorem 6. Let xg € X. There exist positive constants ¢; = c¢;(xo,Q) and a bounded
neighbourhood 'V, with non-empty interior such that

0<c < inf viz)< sup v(z) <co.
€V, €V,

Moreover, 0 < infoeq c1(w0, Q) < supgeq ca(wo, Q) < oo.
Proof. Let V,, = [a,b] C X be a bounded neighbourhood of zy and
Vi, =[a/(1—¢)ANafe, bleVb/(1—¢)].

By Proposition 5, using Assumptions 2, 3 and 4, for every x € V,, we successively obtain

o) = [ vlw)av.a)dy
x
1 oo
:/xy(y)/o Ii(ZZ)B(x/z)a(x/z)zE[/o effﬂtB(%(S))deLf/z(qsy)}dzdy

< (alal+ 0000012 [ ) sup B[ [ ePtazz(o,)]ay
x xEV;O 0

= (bafal" + b0)e” o7 [ wiy) [t sup B[L7(0,)]dtdy,
X 0 zE ;0

By Lemma 23, we have SUP,ecv,, E [Lt"’ (qﬁy)} < 14 t%/2 uniformly over Q and the first part of the
lemma easily follows. For the second part of the lemma, we have

v(@) > boy> / V() inf E[ / e O Bty (g, )] dy
x :EGV;O 0

T
> b10;2/ y(y) infg ]E{/ e_(sz’Y+b1)tde(qﬁy)l{supth‘¢y(t)|SM}}dy
[-N,N]NX z€VZ, 0

Zblofe‘(bZM”b“T/ v(y) inf E[LF(dy)L(sup,p 6, (0)1<M}]dY
[=N,N]nX z€VL, =
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for arbitrary constants M, N,T > 0. Since E [L%l(gby)l{suptq \¢>y(t)|§M}} TE [L%l(gﬁy)] uniformly in

(z,y) € Vg, x [-N, N] as M grows, pick M large enough so that for every y € [-N,N] N X, we
have

Jnf E[LF(6y)Lsuper o, 1<) 2 5 Inf E[L7(6,)].
zq 0

Next, we use the fact that Assumption 2 implies that the law of the random variable ¢, (¢) admits
a density p¢(y,x) w.r.t. the Lebesgue measure and that this density is bounded away from zero on

compact sets in (y, z), see for instance [11, 16]. In turn E[L%(¢,)] = fOT pt(y,x)dt > 7p > 0 for
some 77 depending also on M and N and we infer

v(z) > T?Tb102_2€_(b2Mw+b1)T/ v(y)dy
[-N,NJNX

and we obtain the result by taking N sufficiently large. The proof is complete. O
Completion of proof of Theorem 10. Step 1). Write Uy, (yo) — v(yo) = I + I1, with

1
I= o Z Gr(Xu —yo) = ¥(QGa(- —yo)) and IT = Gr*v(yo) — v(yo)-
n u€eT,

We plan to apply Theorem 7 to I with ¢¥(z,y) = ¢(y) = Gi(y — yo). By Lemma 25, v is locally
bounded and we easily check that

0% < /x Gy — yo)?ldy = b~ /x Gly)dy < W,

], < sup |Ga(w)| /x Gy — yo)ldy S h
Yy
and

[Uslillar S </x |Gh(y — yo)|dy)2 < 1.

Therefore, by Theorem 7, we have E,[I?] < |T,|~'h~! and this term is of order |T,,|~28/(26+1)
from the choice of h. For the term II, Lemma 25 and the representation v(z) = [, v(y)q(y,z)dy
show that v € HP(yp) as soon as ¢ € H?(x¢,y0). Then, by classical kernel approximation (see
e.g. the textbook by Tsybakov [33]) we have that IT? < h27 since the order k of the kernel G
satisfies k > A3, and thus II? the same order as I? from the choice of h.

Step 2). For the estimation of ¢(xg,yo), write
n(20,90) — q(x0,90) =1 + 11,

with
I— M, (Ggihz(' — o, — yo)) —v(x0)q(z0,Y0)
Mn(Gh( - 1‘0)) vV wy ’
and
7 - a(zo,y0) (v (o) — My (Gr(- — x0)) V @y,) .

M, (Gh(~ — zo)) V wp,
We have |I| < III + IV, with

1T = w;1|Mn(G§ih2(' — Z0,- — ¥Y0)) — G%ihz * v(20)q(0, yo)|
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and
v = W51|G§127h2 * v(x0)q(w0, yo) — v(x0)q(zo, yo)|-

We plan to apply Theorem 7 to bound 1] with (x,y) = G, ny (€ — 20,y — Yo). Using Lemma
25 and the fact that y is absolutely continuous, we have [¢],4, < [¢]1. It readily follows that

10| S Gy (- = 20)*[11Gho (- — 90)* 1y S by thy ',

[V ] S |Gy (- — 20) sup |Ghy (Y — Y0)|Ghy (- — 20)Ghy (- — vo) 11
Yy

= |Ghy (- = 20)?[15up |Gy (y — yo)|IGha (- — o)1 S hi'hyt
y

and

[hul1|tly S sup |G, (@ — 20)||Ghy (- — 90)I1Gh, (- — o)1 S byt

We conclude
E,[1IT?] £ @, *|Ta| " 'hythyt,

and this term has order w;, 2|T,,|~25(@#)/2s(@B)+1) from the choice of hy and hy. By kernel
approximation and the fact that G has order k > max{«, 8}, noting that (z,y) — u(x)q(z,y) €
KB | we have

1IV| < BN 4+ b < @ U T, | 3@ 0/ (2s(f)+1)
from the choice of hq, hso.
We turn to the term II. We plan to use

(v0) = M (G- = 20) V)” 5 (vl0) = Mo (Gl —0)) + Ly o0

Pick n large enough so that 0 < w,, < 7(x¢) = %ian€Q7x6v10 v(z), a choice which is possible by
Lemma 25. Since {M,,(Gr(- —20)) < wn} C {M,(Gr(- — z0)) — v(x0) < —7(z0)}, we further infer

E,.[(v(zo) — My (Gr(- — z0)) V Wn)Q}
<Eu[(v(@0) = Mu (Gn(- = 20)))°] + Pu([v(w0) = M (Gr(- = 20)) | = 7(w0))
SE,[(v(x0) — Ma (Gu(- — 20)))?].

Applying Step 1) of the proof, we derive
By [11%] £ (T, |5+

and this term has negligible order. The proof of Theorem 10 is complete.

5.5. Proof of Proposition 14. Let s(z) = [; exp (—2 I ;((ZZ))Q dz) and m(zr) = W Con-
sider the infinitesimal generator £ associated to the diffusion process (11), written in its divergence
form

ofe) = s (5

m(x) dz

L), fenw),
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with domain D(L) densely defined on twice continuously differentiable functions f satisfying the
boundary condition f/(0) = f/(L) = 0. By It6 formula and Fubini’s theorem, for f € D(L), we

have
[t B(ga(s))ds
/xf(y)q(m,y)dy / / [ (20 (t dt|dz

1
f/o r(2) [ (x )dz+/0 /{(Z)IE[/O LF, (da(t)) e Jo B=(Ddsgy] g

where we set f,(x) = f(z:v) for z € [e,1 — ] since supp(k) C [e,1 — ¢] by Assumption 4. Pick
e L) g
flx) = [y exp (2e7? fy sz ® s(u)~'du)dy, and note that

2 = r(v)]
1 — 2 d ) ! .

NG es(zx) P ( /0 o(v)? v)f(za)
It follows that for z > ¢ and every x € X, we have

z zs()f"(zx) — 8'(2) f'(22)

ATy @)
_ ') 2z8(@) 2ppeet Holar 27 S
-~ m(x)s(x)? <5s(zx)e v “ ) > 0.

Now let By, By : X — [0,00) be two functions in an orderly class B according to Definition
13 and write ¢p, and gp, for the associated transition densities. With no loss of generality, we
may (and will) assume that Bi(x) < By(z) for every x € X. Assume that ¢p, = ¢p,. Since
supp(k) C [e,1 — ], we have

/x W) (g, (z,y) — qB, (2, y))dy

1—¢ oo
:/ n(z)E[/ sz(%(t))(e, Jo Bi(é=(s))ds _ o~ [5 B2(¢w(s))ds)] dtdz = 0.
€ 0

Our choice of f and the property By < Bj implies that the integrand is non-negative. It follows
that
r(z)(e” I3 Bi(¢a(s)ds _ o= fy Ba(6:(9)ds) —

dzdt ® P-a.s. Picking z such that x(z) > 0, we obtain fot Bi(¢.(s))ds = fot By(¢.(s))ds P-a.s. for
every t > 0 by continuity of the integrand in ¢. By the occupation times formula, it follows that
Jx (Bi(y) — Ba(y)) LY (¢4)dy = 0, almost-surely, and by the ordering property, Bi(y) = Ba(y) for
every y such that L} (¢,) > 0, i.e. for y € [info<s<t @2 (), SUPg< <t @z(s)] = X as t — oco. The
proof of Proposition 14 is complete. -

5.6. Proof of Theorem 16.

Preparation for the proof. We first establish uniform bounds for gy(z,y). Remember that in the
reflected case, we have X = [0, L] and supp(k) C [e, 1 — €] under Assumption 4.

Lemma 26. Work under Assumptions 2, 4 and 15. For sufficiently small n > 0, we have:

0< 1nf x < su T < o0
reX,yeX, 90 qﬁ( ay) = z,yex,%e@ %9( 71/)

where X,, = [0, (1 —¢e)L — ).
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Proof. The proof is close to that of Lemma 25. Let x € X and y € X,,. We have

1—¢

. N -2 K(2) /Oo —byt g7 Y/2
inf ao(e.9) = baos® [ B[ [ e mant*(6,)]ds

evyL—1 % 0

1—¢ o)
> by b / wz) / e ME[LY (9,)) dtdz

vyL—1 # 0

> (1—5)*1b302—2b4%/ e~ ™ inf E[L{(¢,)]dt

0 z,yeX

According to [10], Section 5, proof of Lemma 5.37, the law of ¢,(t) is absolutely continuous with
density with y — p;(x,y) that can be taken continuous and that satisfies inf, yex pi(z,y) > 0 for
every t > 0. Therefore

t
nf, B[LY(¢:)] = inf | pele,y)ds 27 >0

and the result follows. The upper bound readily follows from

1—e [e%e]
sup gg(w,y) < b40f2/ ~z) dz sup E[/ e "t ALY (¢.)]
9EO e z z,yeX 0

< e byor? sup E / e LY (9.)]
z,yeX 0

= 5_1b40'1_2b3 sup / e_bstE [L%((bz):l dt
z,yeX JO

which is finite by Lemma 23. O

Completion of proof of Theorem 16. This proof is classical (see for instance van der Vaart [34]
Theorem 5.14). We nevertheless give it for self-containedness. For a € O, let

M(a,0) = /x va(dz) /x log ga(z, ¥)g0 (, 3)dy.

First, a — M(a, ¥) has a unique maximum at a = ¥, as stems from the inequality log(z) < 2(y/z—1)
for £ > 0. Indeed

M(a,9) — M(9,9) :/xug(daﬁ)/xlog Z;Ei’g;qg(x,y)dy
< [ wian) ([ 27/t Varte oy -2
< —/Xw(dﬂc)/DC (\/qa(x,y) - \/Qﬁ(ww))Qdy <0.

Next, writing my(z,y) = sup,eq 10g ¢a(2,y), we prove that for every a # ¥ € ©, there exists a
neighbourhood U, of a such that:

(20) vy (Qﬁmu(l) < Vy (Qﬁ log q19) = M(ﬁ, 19)

Pick a decreasing sequence of open balls (Ug(a))¢>1 around a with vanishing diameters. For
every x,y € X we have mq,(q)(2,y) | logq.(z,y) by continuity of a + log q,(z,y) thanks to the
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continuity of By according to Assumption 15. By Lemma 26, we also have vy (Qﬁmu) < oo for
any U C O therefore

v (Qomag,(a)) 4+ v (Qulog ¢a) = M(a,9) < M(¥,9)

by monotone convergence with equality only if a = 9, and this proves the existence of U, such
that (20) holds. We are now ready to prove the consistency result. For ' > 0, the compact ball

Cy (V) ={a€®,Ja—d|>n}

can be covered by finitely many open neighbourhoods Uy, , ... Uq, with a; € €,/(¥) and such that
(20) holds for every U,,. For n > 0, let

mW(_F) (l’, y) = sup IOg Ga (SC, y)l{qa (z,y)>n}-
aclU
Abbreviating £, (a, (Xy)uet, ) by Ln(a), it follows that

IT%|~* sup logL,(a) < max |T%|~* Z m(ﬁg (Xu-, Xu)

ace,, (9) 1<i<p T
(21) — Imax vy (Qomag,, ) < M(9,9)

in probability as n — oo and letting n — 0, as stems from Corollary 11 and the fact that
SUp, yex, M, (z,y) < oo by Lemma 26. Finally, if ¥, € €,/(9), then, by definition of ¥,
we have

ITX|"Y sup log Ln(a) > T log £, (9,) = |TX| " og £, () > M(9,9) — €n,
ae(in/(ﬂ)

where €, — 0 in probability, as follows from Corollary 11. We conclude the proof by noticing that

{In €y} C{ITAI™" sup La(a) > M(B,9) — e}
aeen/(ﬂ)

and the fact that the probability of this last event converges to 0 by (21) as n — oo.
5.7. Proof of Theorem 20.

Preparation for the proof. We start by proving some useful estimates on the gradient and Hessian
of log gy. Let

Iy =Vyloggy = (09, log gy, ..., 0p,1logqs), Ty, =0y loggy, 1<i<d.
Lemma 27. Work under Assumptions 2, /, 15 and 17. For every 1 <1i,j <d andn > 0, we have

sup  [Dyi(z,y)l <oo, sup  [0yTy(z,y)is| <oo, sup 8509 (z,y)| < oo
rzeX,yeX,,9€0 zeX,yeX,,€0 rzeX,yeX,, €0

where ||-|| corresponds to the operator norm for the Hessian 03T y(z,y).
Proof. According to Lemma 26, since

819%9 (.’E, y)
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componentwise, it suffices to show |0y, qs(z,y)| < 1 in order to establish the first bound. We have:

1—¢ o
Onante) = [ 0w Boloulatyfo) [ [ e H O ary o) |a:
evyL—1
1—¢ e} t
= [ Myt e[ [ el m e [o, By, ou(s)dsart/*(,)]
evyL—1 Z 0 0

By Assumption 2, 15 and 17 we readily obtain
109,00, 9)] /61_61@[/000(1 e i BN (5,) ] (21
By Assumption 17 and integration by part, we have
E| / T+t BoD 6 (DNiqry*(p,)] <E| / T+ et (6,)]
= [ b ) B o)

This last term is bounded by Lemma 23 and |9y,q9(z,y)| < 1 follows. We turn to the second
bound: clearly, for 1 <i,j <d

03.9,49(2,9)a0(x,y) — 99,09 (x,y) 09,00 (x, y)

q9(z,y)?
and thanks to Lemma 26 and the first bound, we only need to show \5%“%_ go(z,y)| < 1in order to
obtain the second bound. Define wy(y, z,d) = l{EVyL—IJ,E}(Z)% exp(— fg Bo(9, ¢ (s))ds).
We have

1 e’}
Oa,00(w.9) = [ 580, B0(0.9/ [ [ wnty. . 0)azt’* o) |a:
1 9] t t
Bo(¥,y/2)E (y,2,9) | 89, Bo(9,d5(s))ds | 0y Bo(0, u(s))dsdLY* (¢y) |d
[ ot B [ et ) [ 908000, 00(6)ds [ 00, Bulw,0u(9)ds Ll (60) ] dz

_— /0 139,330(19,3,/@@[ /O iy, 2. 9) /O t On,, Bo(9, 6, (5))dsdLy’* (6] a2

(£,)=(4,5),(4,%)
1 o] t
+ [ Bo0.u/2E] [ entwz0) [ 03,0, Bo(0. 6ulo)dsdLy (61) |
0 0 0

and we proceed in the same way as for the first estimate, using repeatedly Assumption 2, 15 and
17. The proof of the third bound is analogous. O

0oLy (x,y)i; =

Completion of proof of Theorem 20. This proof is classical (see for instance van der Vaart [34]
Theorem 5.41). We nevertheless give it for self-containedness. By definition of ¥, and a Taylor
expansion around 1, we have

0= > Ty (Xu,Xu)
u€TH

-y (rﬂ(xu,,xu) + 09T 9(Xy . X)) (D — 0) + (9 — )75 (X, Xo) (D — 19)),

u€TF
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for some ¥, on the segment line between ¥ and @\n Rearranging the sum and introducing the
normalisation |T%|*/2, we derive

(22)  (IT57 D 0oTo (X, Xo) + T5 71 D (U0 — )T 03T (X, X)) T5|Y2(9, — 0)
uET; uET;

= — [T 72 ) To(Xy-, Xu).

u€eTy

We plan to apply the central limit theorem for bifurcating Markov chain proved by Guyon, see
[17] Corollary 24 on the right-hand side. By Lemma 26 and 27 we have that Qy(I'y L'y ;) and
Qy(Ty Iy ;T xl'v,) are bounded functions on X for all 1 < 4,j,k,1 < d. Moreover, we have
vy(QyIy ;) = 0. Therefore

(23) T3 712> Dy (X, Xu) = N(0,¥(0))
u€Ty

in distribution as n — oo, where () is the Fisher information matrix defined after Assumption
17. Next, since dyI'y is bounded by Lemma 27, we have

(24) T D 0T (Xym, Xo) = W(Y)
'U/e’]r;;

in probability as n — oo. Moreover, by Lemma 27, we have: sup, ,cx geo ||8129F19(x, y)” < oo and
since 1’9\n — ¢ converges to 0 by Theorem 16, it follows that

(25) ITH ™Y (0 =0Ty, (X, Xu) = 0

u€Ty
in probability as n — oo tends to infinity. Combining (23), (24) and (25) in (22) we finally obtain
W ()T (D — 9) = N(0, ¥(9))

in distribution as n — co. We conclude thanks to the invertibility of ¥(«}) granted by Assumption
18.

6. APPENDIX

6.1. Proof of Lemma 23. Step 1). Fix 6 > 0 and let K5 = {y € X,inf,ex |y — 2| < 0} denote
the d-enlargement of K. For z € X, let

7, = inf{t > 0,¢,(t) € K5}, infl = oo,

and

bsupcs ((t = To)4) if x> supKs
¢ (t) = ba(t) if zeXs
(!j)ianK(; ((t - Tz>+) if x<inf 9(5.

For every y € X, we have L} (¢,) = LY (¢%%), and by It6-Tanaka’s formula, it follows that

LY (¢2) = LY(¢7%) = |63 () —y| — |67 (0) — y| — /0 sgn (X% (s) — y)dgin (s).
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Assume first that = > sup ;. Observing that LY (¢,) = 0 on {7, > t}, and that d¢X?(s) vanishes
on [0,7;) on {7, < t}, we readily have

t

LY (¢e) = |9 (t) — y| — |sup K5 — y| — / sgn (63 (s) — y)din® (s)

Tz At

(t—72)+
(26) = |¢Supﬂ<5 ((t - Tz)+) - y| - |Sup3<5 - y| - /0 Sgn(d)mpxa (5) - y)débsupxs (5)

We plan to bound each term separately.

Step 2). By Itd’s formula, (@sup %, (t) — y)? = (supKs —y)? + I + I, with

I= / (2 eup s () — 1) (Daup s (5)) + 0 (Dupcy (5))7) s,
=2 / (G s (3) — 1) (Daup s (5)) AW,
First,
12207 [ (2= gL Gunpic, s+ 10

by the occupation times formula and Assumption 2. Introduce |y, = |y| V 2, where ra is defined
in Assumption 2. Since z—y > 0 and r(z) < 0 for z > |y|,, we have f|ZT (z—y)r(z2)Li(¢p,)dz < 0.
r2

Similarly f__igl” (z —y)r(z)Li (¢z)dz < 0. It follows that

|y|7‘2
[e-wr@etieit< [ 7 G- preLie)
R —\y‘rz
[ylry
<r z—y|(1 + |2|) L} (¢z)dz
< /| yI(1+[2) L7 (6)

<1 ([yles — 9) (4 [9lra) / L (62)dz

<7yl — 9) (1 + |yle)t,
therefore
I <207 %r1(|ylvy — ) (1 + |yley)t + 05t = tr(y)

say. Since E[II] = 0, we derive by Cauchy-Schwarz’s inequality

(27) E[|¢supacs (1) = ] < v/(supKs — )2 + tri(y).
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Step 3). We are ready to control each term of (26). We have
E[’¢supﬂ<a ((t - Tz)-i—) - yH

(t—72)+ (t—72)+
§|supﬂ<5 7y‘ +E[/0 | (¢sup?€g )|d5] +E[|/() U(¢supK5(5))dWe|]

<|supKs — y| + rE] / (14 |fsup x5 (5)])ds] + E[sup ( / 0 (Ganps (5)) )] 2

u<t

t
< |supXs — | + it + riE] / | Goup 565 (3)|ds] + V205t
0

t

<|supXKs —y| +rit +m / V/ (sup Ks)2 + sk(0)ds + V205t
0

<1432

where we successively applied Assumption 2, Doob’s inequality and (27). In the same way

(t Tz)+
‘ - / Sgn(¢sup Ks (5) - y>d¢SUp Ks (8)|
0

t

<ry / (1+ |¢supﬂ<5 |)ds + Slip | / sgn d’supﬂc(; 5) — )U(Qbsupm (5))dWs|
0 u<t

Taking expectation and using the foregoing arguments, this last quantity is also of order 1 + t3/2

and Lemma 23 is proved for x > sup K.

Step 4). If © < inf K5, we apply the same arguments, replacing | sup Ks| by |inf Ks| with obvious
changes. Likewise if x € K5 we may replace | sup Ks| by max{| sup Ks|, | inf Ks|}.

6.2. Proof of Proposition 19. Remember that

\I/(m:w(gﬁ(az%)?) :/xyﬁ(dx)/xwdy

9 %9(55, y)

If A C X is a Borel set with Leb(A) > 0, we have
o) = [ Laly)as(e.p)valdz)dy = inf go(.y) Leb(A) > 0
XxX T,

since infy yex go(z,y) > 0 by Lemma 26. By continuity of y — 9ygy (2, y) on [0, L], it suffices then
to show the existence z,y € X such that dygy(z,y) > 0. For z,y € X, we have
1—e

Oq(x,y) = /EvyL ) Mo_2E[/OOO(1 — ﬁt)e_ﬂtdL?;/z(d)aj)}dz

z

- / /o [ [ (- ety (6.2

(1—e)—1 0
> _ dt
= ]E[/O k(y/ds(t)) (1 — dt)e ﬂtl{yu—a)—lsw(t)s;/a—l}Tx(t)}

1 o 9 1
= -9 /0 (]_ — 1%)6 tE |:1{y(1,5)—1§¢w(t)gy€—1}Tw(t)}dt
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by the change of variable u = yz~!, the occupation times formula, and the specific form of x. For
t > 0, define

Aoy = B[ = e
r,Y)= —_eg)—1 © -y | = pPe\T,2)—,
t {y(1—e) =1 <o (t)<ye }¢z(t) T t 2
for which a closed-form formula is known, see for instance [25], Section 4.1, given by
2 62r1w —a(n)t/2
ez, z) # —e (z—) Z g(n,x)g(n, z),

with

g(n,x) = T cos (m%) + 71 sin (z%) , and a(n) = r? +7°n?/L>
It follows that

2r e’n® 1—-¢ 2 .
Az, y) = L ] log< . > Jrze 1

efa(n)t/Q 5
Wﬂ(na x)I(n,y)

1

with I(n,y) = f v(1 15) L e"Fg(n, z) % 4z “and therefore

1 oo
9w (z,y) = 1 25/ (1 —9t)e " Ay(z, y)dt
- 0

e —a(n)t/2

_ 1 z —rx > o —9t€
T1-o21° Z (_/0 (1=t a(n) dt

n=1

N—
2
S
=
«Q
—~
3
&

pe—1 fe'e)
_ 1 /ys ri(o—2) Z g(n,x)g(n, z) dZ'
(1=2e)L Jyq—c)—1 — (W+an)/2)? 2
Let x € [0, L] be such that g(n,z) # 0 for every n > 1. Since z — g(n,z) is continuous on [0, L],

there exists 0 < e, < % such that g(n,z)g(n,z) > 0 for all z € J(e,,z) = [2e,7,2(1 — £,)x]. Let
N > 0 be such that for all z € J(e1, z):

| o glna)gnz) | g(12)g(1,2)
vt = ’n_%l (0 +a(n)/272| = (0 + a(1)/2)?

which exists because by normal convergence of the above series. Then, for every z € J(max{e,,1 <
n < N}, z) we have

S 9(n2)g(n,2) S~ g(nw)g(n, 2) o) > S22
g(ﬁ+a(”)/2)2_z(ﬂ+a(n)/2) + Bz, >> (9 + a(n)/2)? |RN( ) )|>0-

Finally, for ¢ > max{e,,1 < n < N}, picking y = 2¢(1 — &)z yields [y(1 — &)}, ye™ 1] = d(e,2) C
J(max{e,,1 <n < N}, x) so that dyqe(x,y) > 0.
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