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Abstract

In epidemiological or demographic studies, with variable age at onset, a typical
quantity of interest is the incidence of a disease (for example the cancer incidence).
In these studies, the individuals are usually highly heterogeneous in terms of dates of
birth (the cohort) and with respect to the calendar time (the period) and appropriate
estimation methods are needed. In this article a new estimation method is presented
which extends classical age-period-cohort analysis by allowing interactions between
age, period and cohort effects. In order to take into account possible overfitting issues,
a penalty is introduced on the likelihood of the model. This penalty can be designed
either to smooth the hazard rate or to enforce consecutive values of the hazards to
be equal, leading to a parsimonious representation of the hazard rate. The method is
evaluated on simulated data and applied on breast cancer survival data from the SEER
program.

Keywords Survival Analysis, Penalized Likelihood, Piecewise Constant Hazard,
Age-Period-Cohort Analysis, Adaptive Ridge Procedure

Introduction
In epidemiological or demographic studies, with variable age at onset, a typical quantity of
interest is the incidence or the hazard rate of a disease (for example the cancer incidence).
In these studies, individuals are recruited and followed-up during a long period of time,
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usually from birth. The data are then reported either in the form of registers, which contain
the number of observed cases and the number of individuals at risk to contract the disease,
or in the form of the observed time for each individual. These types of studies are of great
interest for the statistician, especially when the event of interest will tend to occur at late
ages, such as in cancer studies. However, these data are usually highly heterogeneous in
terms of dates of birth and with respect to the calendar time. In such cases, it is therefore
very important to take into account the variability of the age, the cohort (date of birth) and
the period (the calendar time) in the hazard rate estimation. This is usually done using
age-period-cohort estimation methods (see Yang and Land, 2013, and citations therein).

In age-period-cohort analysis, the effects of age, period and cohort are fit as factor
variables in a regression model where the output is the logarithm of the hazard rate. How-
ever, this induces an identifiability problem due to the relationship: period = age + cohort.
There have been several solutions proposed to this problem. Osmond and Gardner (1982)
proposed to compute each submodel (age-cohort, age-period, and period-cohort) and use
a weighting procedure to combine the three models. Different constraints have also been
proposed to make the age-period-cohort model identifiable. However, as noticed by Heuer
(1997, p 162), the obtained estimates highly depend on the choice of the constraints. Hol-
ford (1983) proposed to directly estimate the linear trends of each effect. This procedure
leads to results that are difficult to interpret. See Carstensen (2007) for a detailed discussion
of the identifiability problem of the age-period-cohort model. More recently, Kuang et al.
(2008) proposed to estimate the second order derivatives of the three effects. This model is
implemented in the package apc Nielsen (2015). Finally, Carstensen (2007) proposed to
first fit one submodel (say age-cohort) and then to fit the period effect over the residuals of
the first model. This model is implemented in the R package Epi (Carstensen et al., 2017),
Plummer and Carstensen (2011).

All these approaches can be viewed as parametric models, where the parameters are
the age, period, and cohort vector parameters. As such they are also restrictive because
they do not allow for interactions between the three effects, that is they assume that one
effect does not depend on the other effect’s value. A different approach consists in con-
sidering the hazard rate as a function of age and either period or cohort and to estimate
this bi-dimensional function in a non-parametric setting. No specific structure of the haz-
ard rate is assumed. However, for moderate sample sizes, non-parametric approaches are
prone to overparametrization. As a consequence, regularized methods have been proposed
in order to avoid overfitting in this non-parametric context. A kernel-type estimator was
proposed by Beran (1981) and McKeague and Utikal (1990) where the cumulative hazard
is smoothed using a kernel function. See Keiding (1990) for a thorough discussion of meth-
ods for hazard inference in age-period-cohort analysis. More recently, Currie and Kirkby
(2009) proposed a spline estimation procedure to infer the hazard rate as a function of two
variables. The authors use a generalized linear model using B-splines and overfitting is
dealt with using a penalization over the differences of adjacent splines’ coefficients.
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In this article, we propose a new non-parametric method for bi-dimensional hazard rate
estimation. As the previous non-parametric approaches, this model considers the estima-
tion of the hazard rate with respect to two variables, i.e. either age-cohort, age-period,
or period-cohort, without assuming any specific structure on the hazard rate. Inference is
made in two dimensions, but through the linear relationship period = age + cohort, the
hazard rate can be represented as a function of any two of the three variables. Finally, in
order to take into account the issue of overfitting, we use the L0 penalization procedure in-
troduced by Rippe et al. (2012), Frommlet and Nuel (2016), and Bouaziz and Nuel (2017).
This penalty offers a segmentation of the hazard rate into constant areas. It makes use of
an approximation of the L0 norm which is computationally tractable. The novelty of this
method lies in the parsimonious representation of the bi-dimensional hazard rate into seg-
mented areas. In particular, the method can efficiently exhibit cohort, age or period effects,
that is, specific changes of the hazard rate due to the date of birth, the age or the calen-
dar time. Our approach also allows L2 norm penalization, which will induce a smoothed
estimate of the hazard in a similar way as the aforementioned non-parametric methods.

Our model is introduced in Section 1. The regularization method is then presented in
Section 2. In Section 3, the penalty term selection problem is discussed. Finally, the per-
formance of our model is assessed through a simulation study in Section 4 and illustrations
on the SEER cancer dataset is provided in Section 5.

1 Modeling strategy
In the age-period-cohort setting, the date of birth (the cohort) U of each individual is
available and the variable of interest is a time-to-event variable of this individual de-
noted T . The data are subject to right-censoring and they are represented as tabulated
data over the J cohort intervals and the K age intervals [c0, c1), [c1, c2), . . . , [cJ−1, cJ)
and [d0, d1), [d1, d2), . . . , [dK−1, dK) respectively, with the convention c0 = d0 = 0 and
cK = dK = ∞. On a sample of n individuals, the available data can then be rewritten in
terms of the exhaustive statistics O = (O1,1, . . . , OJ,K), R = (R1,1, . . . , RJ,K), where for
j = 1, . . . , J , k = 1, . . . , K, Oj,k represents the number of observed events that occurred
in the j-th cohort interval [cj−1, cj) and k-th age interval [dk−1, dk) and Rj,k represents the
total times individuals were at risk in this j-th cohort and k-th age interval. In the case of
register data, the discretization (cj) , (dk) is imposed by the data and the available data is
directly R and O, which are often called the cases and person-years, respectively. See for
instance Carstensen (2007) for an example of such data. The aim is to use the available
data to provide an estimator of the hazard rate, defined in the age-cohort setting as:

λ(t|u) = lim
dt→0

1

dt
P(t < T < t+ dt|T > t, U = u),
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(a) Lexis diagram: Age-Period diagram (b) Age-Cohort diagram

Figure 1: Diagrams representing the lives of individuals: in the age-period plane (a) – called
Lexis diagram – and in the age-cohort plane (b). Solid lines represent lives of individuals
until occurrence of the event of interest. The same age, cohort, and period intervals are
displayed in light gray. The intersection of two intervals forms a parallelogram and the
intersection of three intervals forms a triangle.
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in the situation where λ(t, u) is assumed to be piecewise constant. That is, we assume that

λ(t|u) =
J∑
j=1

K∑
k=1

λj,k1[cj−1,cj)×[dk−1,dk)(t, u),

and inference is made over the J×K dimension parameter λ = (λ1,1, . . . , λJ,K). Note that
the hazard can be equivalently defined as a function of age and period or as a function of
period and cohort where the period is defined as the calendar time, that is: period = cohort
+ age. For illustration, the change of coordinates between the age-period and age-cohort
diagrams is represented in Figure 1. In our models, the hazard will be considered as a
function of solely age and cohort since the influence of any of the two elements of age,
period or cohort can be retrieved using this reparametrization.

Following Aalen et al. (2008, p. 224) the negative log-likelihood takes the form

`n(λ) =
J∑
j=1

K∑
k=1

{λj,kRj,k −Oj,k log (λj,k)}. (1)

The authors also noticed that this log-likelihood is equivalent to a log-likelihood arising
from a Poisson model. However, note that no distribution assumptions are made on the
data and in particular the Oj,k are not assumed to be Poisson distributed (see Carstensen,
2007, for a discussion on the “Poisson” model). Minimizing `n yields an explicit maximum
likelihood estimator λ̂mle

j,k = Oj,k/Rj,k. However, for moderate sample sizes this estimator
is overfitted, especially in places of the age-cohort plane where few events are recorded.
To remedy this problem we propose in the following to penalize the differences between
adjacent values of the hazard in the log-likelihood.

For computation convenience, we first reparametrize the model: ηj,k = log λj,k, for
1 ≤ j ≤ J and 1 ≤ k ≤ K. The estimate is obtained by minimizing the penalized function

`κn(η,v,w) = `n(η) +
κ

2

J−1∑
j=1

K∑
k=1

vj,k (ηj+1,k − ηj,k)2 +
κ

2

J∑
j=1

K−1∑
k=1

wj,k (ηj,k+1 − ηj,k)2 ,

(2)

where `n(η) was defined in (1), κ is a penalty constant used as a tuning parameter, and
v = (v1,1, . . . , vJ−1,K),w = (w1,1, . . . , wJ,K−1) are constant positive weights of respective
dimensions (J−1)K and J(K−1). Note that the case κ = 0 corresponds to the maximum
likelihood estimation and the case κ =∞ corresponds to a hazard uniformly constant over
the age and cohort intervals. The parameter κ needs to be chosen in an appropriate way in
order to obtain a compromise between these two extreme situations.

This model does not attempt to estimate the age, period and cohort effect as parameter
vectors. Instead, it performs a regularized estimation of λ that has no age-period-cohort-
type structure. Two choices for the weights v and w can be made: one will lead to a
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smooth hazard rate and the other to a segmented hazard rate. This will be discussed in the
next section. The choice of the optimal value for κ is addressed in Section 3.

Minimization of `κn is performed using the Newton-Raphson algorithm (see Algorithm
1). Let Uκ

n (η,v,w) = ∂`κn/∂η be the gradient vector of the negative log-likelihood and
Iκn(η,v,w) = ∂Uκ

n (η,v,w)/∂ηT be its Hessian matrix.
For 1 ≤ j, j′ ≤ J and 1 ≤ k, k′ ≤ K, we have

∂`n
∂ηj,k

(η) = exp (ηj,k)Rj,k −Oj,k,
∂2`n(η)

∂ηj′,k′∂ηj,k
= 1j=j′,k=k′ exp (ηj,k)Rj,k, and

∂`κn
∂ηj,k

(η) =
∂`n(η)

∂ηj,k
+ κ [−vj,k (ηj+1,k − ηj,k) + vj−1,k (ηj,k − ηj−1,k)]

+ κ [−wj,k (ηj,k+1 − ηj,k) + wj,k−1 (ηj,k − ηj,k−1)] ,

∂2`κn(η)

∂ηj′,k′∂ηj,k
=

∂2`n
∂ηj′,k′∂ηj,k

(η) + κ [1j=j′,k=k′ (vj′,k′ + vj′−1,k′ + wj′,k′ + wj′,k′−1)

− vj′,k′1j=j′+1,k=k′ − vj′−1,k′1j=j′−1,k=k′
−wj′,k′1j=j′,k=k′+1 − wj′,k′−11j=j′,k=k′−1] .

As a consequence, the Hessian matrix can be written

Iκn(η,v,w) =
∂2`n(η)

∂η∂ηT
+ κB(η),

where B(η) is a band matrix of bandwidth equal to min(J,K) − 1. Thus the Hessian
matrix has the same structure as B(η) and the calculation of Iκn(η,v,w)−1Uκ

n (η,v,w)
has a O(min(J,K)JK) complexity instead of O(J3K3). Fast inversion of the Hessian
matrix is done using Cholesky decomposition as implemented in Rcpp in the package
bandsolve 1.

2 Choice of the regularization parameters v and w
In this section, two different expressions of the weights v and w are proposed which cor-
respond to two different types of regularization of the hazard rate. The first one yields a
smooth estimate. The second one uses an iterated adaptation of the weights to approximate
an L0 norm penalization of the first order differences.

1http://github.com/Monneret/bandsolve
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Algorithm 1 Newton-Raphson Procedure with constant weights

1: function NEWTON-RAPHSON(O,R, κ,v,w)
2: η← 0
3: while not converge do
4: ηnew ← η − Iκn(η,v,w)−1Uκ

n (η,v,w)
5: η← ηnew

6: end while
7: return η
8: end function

2.1 L2 Norm Regularization
A ridge-type penalization is performed when setting v = w = 1. In this case the pe-
nalization corresponds to the square of the first-order differences of δ. In the penalized
estimation model, this choice of weights yields a globally smooth estimator of the hazard
rate. Note that our penalized maximum likelihood model will yield similar results as the
spline method of Ogata and Katsura (1988) presented in Section 1. In our method the pe-
nalization is performed over the first order differences of the parameter while in the spline
method it is performed over the second order differences. This means that for arbitrarily
large values of the penalty constant, the regularized hazard will be a constant function in-
stead of a linear function. This model will be referred to as L2 regularized estimation or
smooth estimation.

Finally, one notes that Equation 2 allows for some flexibility in the regularization. In-
deed, manually setting the weights v and w will allow to tune the importance of the regu-
larization between different regions of the plane and between the two variables.

2.2 Approximate L0 Norm Regularization
Following the work from Rippe et al. (2012), Frommlet and Nuel (2016), and Bouaziz and
Nuel (2017) an adaptive ridge procedure is performed when the weights are updated at each
iteration of the Newton-Raphson algorithm. At the m-th iteration of the Newton-Raphson
algorithm the weights are computed from the following formulas:

v
(m)
j,k =

((
η
(m)
j+1,k − η

(m)
j,k

)2
+ ε2v

)−1
,

w
(m)
j,k =

((
η
(m)
j,k − η

(m)
j,k−1

)2
+ ε2w

)−1
,

where εv and εw are constants negligible compared to 1 (in practice one typically chooses
εv = εw = 10−5). We iterate between minimizing `κn for fixed weights and reevaluat-
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Figure 2: Representation of the method used to select the constant areas for the adaptive
ridge procedure. In this example, J = K = 3. In Panel (a), the circles represent the values
of the differences vj,k (ηj+1,k − ηj,k)2 and wj,k (ηj,k+1 − ηj,k)2: empty circles correspond to
the value 0 and filled circles correspond to the value 1. Panel (b) represents the graph that
is generated from these values. Adjacent nodes whose difference is null are connected by a
vertice. Panel (c) represents the last step, where the connected components of the graph are
extracted. Each connected component corresponds to one constant area. The numbering is
arbitrary.

ing the weights such that at the m-th step, v(m)
j,k (η

(m)
j+1,k − η

(m)
j,k )2 ' ‖η(m)

j+1,k − η
(m)
j,k ‖0 and

w
(m)
j,k (η

(m)
j,k+1−η

(m)
j,k )2 ' ‖η(m)

j,k+1−η
(m)
j,k ‖0, where ‖.‖0 denotes the L0 norm – i.e. ‖u‖0 = 0 if

u = 0 and ‖u‖0 = 1 otherwise. In other words, this adaptive ridge procedure approximates
the L0 norm regularization over the differences of ηj,k and yields a segmentation of ηj,k
into piecewise constant areas. As with other classical penalized methods (e.g. LASSO,
ridge) and as pointed out in Frommlet and Nuel (2016), the adaptive ridge penalization
scheme induces a shrinkage bias. Therefore, after segmentation of the ηi,js, the hazard rate
is estimated on each constant area using the unpenalized maximum likelihood estimator.
More precisely, at convergence of the adaptive ridge algorithm, vj,k (ηj+1,k − ηj,k)2 will
be approximately equal to 0 if |ηj+1,k − ηj,k| is smaller than εv and approximately equal
to 1 if |ηj+1,k − ηj,k| is greater than εv – and similarly for wj,k (ηj,k+1 − ηj,k)2. Then one
creates the graph whose vertices are the JK discretization cells and whose edges are the
connexions between adjacent cells that have differences close to 0. Each connected com-
ponent of this graph is a different area over which the hazard has been estimated to be
constant. The extraction of connected components from the graph is done using the pack-
age igraph (Csardi and Nepusz, 2006). The log-hazard η(r) of the r-th constant area is
such that ∀[cj−1, cj)×[dk−1, dk) ∈ r, ηj,k = η(r). Finally, the values of η(r) are not estimated
using the results of the adaptive ridge algorithm, but by unpenalized maximum likelihood
estimation: η̂(r) = log

(
O(r)/R(r)

)
where O(r) is the number of events in the r-th constant

area and R(r) is the time at risk in the r-th constant area.
This estimation method will be called L0 regularized estimation or segmented estima-
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tion. This method is illustrated through the toy-example of Figure 2 and the adaptive ridge
procedure is summarized in Algorithm 2. In practice, the stopping criterion for the adaptive
ridge algorithm is when the absolute difference between successive values of the weighted
differences is smaller than a predefined value – we use 10−8 in our implementation.

Algorithm 2 Adaptive Ridge Procedure

1: function ADAPTIVE-RIDGE(O,R, κ)
2: η← 0
3: v← 1
4: w← 1
5: while not converge do
6: ηnew ← NEWTON-RAPHSON(O,R, κ,v,w)

7: vnew
j,k ←

((
ηnew
j+1,k − ηnew

j,k

)2
+ ε2v

)−1
8: wnew

j,k ←
((
ηnew
j,k − ηnew

j,k−1
)2

+ ε2w

)−1
9: η← ηnew

10: end while
11: Compute (Onew, Rnew) for selected (η,vnew,wnew)
12: ηnew ← log (Onew/Rnew)
13: return ηnew

14: end function

3 Choice of the penalty constant κ
In practice, the hazard rate needs to be estimated for a set of penalty constants and the
choice of κ is determined as the penalty that provides the best compromise between model
fit and reduced variability of the hazard rate estimate. For the L0 regularization model,
different values of the penalty constant lead to different segmentations of the ηj,k. As a
consequence, the problem of choosing the optimal penalty constant can be rephrased as the
problem of choosing the optimal model among a set of modelsM1, . . . ,MM , where each
of these models corresponds to a different segmentation of the ηj,k and M is the maximum
number of different models. In this section we propose different methods to select the
optimal model. Comparison of the efficiency of the different methods will be analyzed in
Section 4 on simulated data.

We recall that R and O are the exhaustive statistics and η is the parameter to be esti-
mated in our two models. Bayesian criteria attempt to maximize the posterior probability
P(Mm|R,O) ∝ P(R,O|Mm)π(Mm), where P(R,O|Mm) is the integrated likelihood
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and π (Mm) is the prior distribution on the model. This problem is equivalent to minimiz-
ing −2 log P(Mm|R,O). By integration

P(R,O|Mm) =

∫
η

P(R,O|Mm,η)π(η)dη,

where P (R,O|Mm,η) is the likelihood and π(η) is the prior distribution of the parameter,
which is taken constant in the following. Thus Bayesian criteria are defined as

−2 log (P(Mm|R,O) = 2`n(η̂m) + qm log n− 2 log π(Mm) +OP(1),

where qm is the dimension of the modelMm i.e., the number of constant areas selected by
the adaptive ridge algorithm.

The BIC (Schwarz, 1978) corresponds to the Bayesian criterion obtained when one
neglects the term π(Mm), which is equivalent to having a uniform prior on the model:

BIC(m) = 2`n(η̂m) + qm log n. (3)

As explained by Żak-Szatkowska and Bogdan (2011), a uniform prior on the model
is equivalent to a binomial prior on the model dimension B(JK, 1/2). When the true
model’s dimension is much smaller than the maximum possible dimension JK, the BIC
tends to give too much importance to models of dimensions around JK/2, which will result
in underpenalized estimators. To this effect, Chen and Chen (2008) have developed an
extended Bayesian information criterion called EBIC0 (or EBIC for short). One can write
π(Mm) = P(Mm|Mm ∈ M[qm])P(Mm ∈ M[qm]) whereM[qm] is the set of models of
dimension qm. The EBIC0 criterion is defined by setting P(Mm|Mm ∈M[qm]) = 1/

(
JK
qm

)
and P(Mm ∈M[qm]) = 1. Thus

π(Mm) =

(
JK

qm

)
and

EBIC0 (m) = 2`n(η̂m) + qm log n+ 2 log

(
JK

qm

)
. (4)

Note that the EBIC0 assigns the same a priori probability to all models of same dimen-
sion. Therefore, when the true model’s dimension is not close to JK/2 the EBIC0 will be
able to select this model more easily. Namely, when the true model’s dimension is very
small the EBIC0 will tend to choose very sparse models.

The last criterion that will be used is the Akaike Information Criterion (Akaike, 1998),
or AIC, defined as AIC(m) = 2`n(η̂m) + 2qm. This criterion is known for performing
better than the BIC in terms of mean squared error, however the BIC will tend to select
sparser models than the AIC.
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Note that Bayesian criteria and the AIC can only be used for the L0 regularized es-
timation only, since the L2 model does not perform a model selection. An alternative to
performing model selection is to use the K-fold cross validation. With this method, the
data are split at random into L parts. The estimated parameter obtained when the l-th part
is left out is noted η̂−l(κ) and the cross-validated score is defined as

CV(κ) =
L∑
l=1

`κ,ln (η̂−l),

where `κ,ln is the negative log-likelihood evaluated on the l-th part of the data. The optimal
penalty constant is obtained by minimizing CV(κ) with respect to κ. The L-fold cross
validation method can be used for both the L0 regularized estimation and the L2 regularized
estimation. However, this method is numerically time consuming as the estimator has to
be computed L times while Bayesian criteria or the AIC provide direct methods to perform
model selection from the original estimator. In the simulation studies and data analysis, we
set L = 10.

4 Simulation study

4.1 Simulation designs
In this section, our segmented estimation method with L0 norm is compared with the AGE-
COHORT model and with the smoothed hazard estimate with the L2 norm. The different
criteria for model selection are also compared with each other. We present two simulation
designs. In the first one, the true hazard rate is generated from a smooth age-cohort model
which includes an interaction term on a small region of the age-cohort plane. In the second
case, the true hazard rate is a piecewise constant function with four heterogeneous areas.
The two true hazards are displayed in Figure 3, both in greyscale and in perspective plot.

The simulation design is as follows. We set J = 10 equally spaced age intervals and
K = 10 equally spaced cohort intervals. The age intervals are defined as [0, 10), . . .,
[90, 100] and the cohorts intervals are defined as [1900, 1910) ,. . ., [1990, 2000]. In order
to simulate a dataset, the cohorts are first sampled on K = 10 cohort group intervals of
10 years length ranging from 1900 to 2000. Censoring is then simulated as a uniform
distribution over the age interval [75, 100] for all cohorts such that all observed events are
comprised in the age interval [0, 100]. Since in practice one does not know the appropriate
discretization in advance, a different discretization was used for the estimation procedure
: the age and cohort intervals were defined as 5-year length intervals instead of 10 for the
true hazard. As a result, a total of 20× 20 parameters need to be estimated.

For each of the two designs, we simulated data of sample sizes 100, 400, 1000, 4000,
and 10000. For each sample size, the simulation and estimation were replicated 500 times.
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Figure 3: True hazard of the two simulation designs: smooth hazard in heatmap (a) and
perspective plot (b) and piecewise constant hazard in heatmap (c) and perspective plot (d).
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L0 method L2 method

Sample size AIC BIC EBIC CV CV

100 412.90 401.50 4.60 4.50 1.00
400 269.60 225.50 37.90 7.10 1.00
1000 168.00 111.50 4.30 3.60 1.00
4000 79.40 24.90 5.00 3.40 1.00
10000 26.10 5.90 4.60 2.40 1.00

(a) Smooth true hazard

L0 method L2 method

Sample size AIC BIC EBIC CV CV

100 429.90 428.90 1.30 1.30 1.00
400 81.70 64.30 3.00 2.40 1.00
1000 34.20 16.80 3.80 3.50 1.00
4000 12.20 2.20 1.50 1.90 1.00
10000 6.70 0.80 0.60 0.80 1.00

(b) Piecewise constant true hazard

Table 1: Relative mean squared errors with respect to the cross-validated L2 estimator, for
different sample sizes and different estimation methods. Panel (a): smooth true hazard.
Panel (b): piecewise constant true hazard.

Smooth true hazard The smooth true hazard (Figures 3a and 3b) is generated using the
age-cohort model log λj,k = µ + αj + βk with an intercept µ = log(10−2). The age effect
vector α and cohort effect vector β are arithmetic sequences such that α2 = 0, αJ = 2.5,
β2 = 0, and βK = 0.3. An interaction term is added to the hazard. It corresponds to
a bump in the hazard located in the neighbourhood of the region of the age-cohort plane
(45,1945). The bump is defined as 10 times the Gaussian density function with mean
(1945, 45) and with a diagonal variance-covariance matrix with diagonal equal to (50, 50).
This true hazard displays a sharp increase for high values of the age, which implies that
few events will be recorded in this region. On average, 91 % of the events are observed in
this simulation design.

Piecewise constant true hazard The piecewise constant true hazard (Figures 3c and 3d)
has four constant areas over the age-cohort square [0, 100] × [1900, 2000]. On average, 71
% of the events are observed in this simulation design.
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4.2 Performance of the estimation methods in terms of MSE
Our two estimation methods (L0 and L2 norm) are compared in terms of the Mean Squared
Errors in each simulation scenario. The different selection methods for the penalty (AIC,
BIC, EBIC and cross-validation) are also compared. The results are presented in Table 1.
On the overall, the EBIC and cross-validated criteria outperform the AIC and the BIC for
the two simulations scenarios. This is particularly true for small sizes where the AIC and
the BIC behave very poorly. As expected, the L2 norm estimator is the most performant of
all estimators in the smooth true hazard scenario (Table 1a) and the L0 method performs
better in the piecewise constant hazard scenario (Table 1b) than in the smooth true haz-
ard scenario. The L2 norm estimator is also the most performant of all estimators in the
piecewise constant hazard scenario except for very large sample sizes (n = 10000) where
the BIC, EBIC and cross-validated criterion provide slightly better performances. Finally,
in both scenarios, the EBIC always outperforms the AIC, the BIC and the cross-validated
criterion. Different censoring rates were also studied which showed a degradation of the
performances of the overall estimators as the percentage of censoring increased. The per-
formance in terms of number of selected areas was also investigated. It showed that the
EBIC and CV criterion perform better at selecting sparse models with few areas, while
the AIC and BIC tend to overestimate the true number of areas. Indeed, for sample size
4000, the 80% inter-quantile range of the selected number of areas is [3, 5] for the EBIC
and [1, 5] for the CV, whereas it is [3, 13] and [36, 72] for the BIC and AIC respectively.
These experiments are not reported here.

In conclusion, the simulation experiments suggest to use the EBIC among all different
criteria for the L0 norm estimator as it provides the best tradeoff between computation time
and estimation performance.

4.3 Perspective plots of the estimation methods
In this section the performance of our adaptive ridge (L0 norm) and ridge (L2 norm) es-
timates is assessed visually by comparison of the true hazard. The standard age-cohort
model (Holford, 1983) has also been implemented. This model assumes that the hazard
has the following expression:

log λj,k = µ+ αj + βk,

where µ is the intercept, α is the age effect and β is the cohort effect. It should be noted
that this model does not allow for interactions between age and cohort effects. Perspective
plots of the median hazard estimations over 500 replications are presented in Figures 4 and
5 for the smooth and piecewise constant true hazard respectively. For the L0 regularized
estimate, the penalty constant is chosen using the EBIC.
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Figure 4: Smooth true hazard and corresponding estimates. The sample size is 4000 and the
hazard estimates are medians taken over 500 simulations. The estimations are performed
in the age-cohort plane and with different methods. Panel (a) represents the true hazard
used to generate the data, Panel (b) represents the hazard estimated using the age-cohort
model, Panel (c) represents the smoothed estimate, and Panel (d) represents the segmented
estimate with the EBIC criterion.
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Figure 5: Piecewise constant true hazard and corresponding estimates. The sample size is
4000 and the hazard estimates are medians taken over 500 simulations. The estimations
are performed in the age-cohort plane and with different methods. Panel (a) represents the
true hazard used to generate the data, Panel (b) represents the hazard estimated using the
age-cohort model, Panel (c) represents the smoothed estimate, and Panel (d) represents the
segmented estimate with the EBIC criterion.
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In Figure 4, it is seen that the age-cohort model is not able to estimate the central bump
in the hazard. On the contrary, the smoothed estimate accurately recovers the shape of the
true hazard except for the high values of age where few events are observed. Interestingly,
it is seen that our segmentation method provides similar results as the smoothing technique
even though the true hazard is not piecewise constant.

The results in Figure 5 yield similar conclusions. The age-cohort model behaves very
poorly due to its constrained structure while the ridge and adaptive estimates provide sat-
isfactory results. In particular the shape of the true hazard is correctly captured by the
adaptive ridge on the majority of replicated samples.

5 Real data application
Our method is applied to data of survival times after diagnosis of breast cancer. The dataset
is provided by the Surveillance, Epidemiology, and End Results (SEER) Program from
the US National Cancer Institute (NCI). SEER collects medical data of cancers (including
stage of cancer at diagnosis and the type of tumor) and follow-up data of patients in the
form of a registry. Around 28 percent of the US population is covered by the program.
The registry started in February 1973 and the available current dataset includes follow-up
data until January 2015. We refer to the website https://seer.cancer.gov/ for
information about the SEER Program and its publicly available cancer data.

In this study the duration of interest T is the time from breast cancer diagnosis to death
in years, the variable U is the date of diagnosis (in years) and the period is the calendar
time (in years). Patients continuously entered the study between 1973 and 2015 and right-
censoring occurred for patients that were still alive at the end of follow-up or for those that
were lost to follow-up.

The breast cancer data was extracted using the package SEERaBomb. For the sake
of comparison, the subsample of malignant, non-bilateral breast tumor cancers was ex-
tracted from the dataset, such that the data comprises 1, 265, 277 women with 60 percent
of censored individuals. Times from diagnosis to last day of follow-up vary between 0 and
41 years, and the dates of cancer diagnosis Ui vary between 1973 and 2015. Death from
another cause than cancer is available in the dataset and is accounted for as right-censoring.

The implementation of our adaptive ridge method aims at two goals. Firstly we aim at
simultaneously detecting a cohort effect and an age effect, that is the evolution of the mor-
tality with respect to the time elapsed since cancer diagnosis (age effect) and with respect
to the date of diagnosis (cohort effect). Secondly, our method will provide estimation of the
hazard rates on the resulting heterogeneous areas. The method is first applied on the whole
sample of 1265277 individuals. In order to take into account the fact that mortality from
cancer highly depends on the cancer stage, we also perform a stratified analysis with respect
to the stage of cancer at diagnosis. For this purpose, we use the cancer stage classification
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Figure 6: Estimated hazard of death after diagnosis of breast cancer for different stages
of cancer. The estimate is obtained with the L0 regularization. The upper right corner of
every graph corresponds to the region where no data are available. Note that the scales are
different between panels.
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provided by the SEER data: we keep the patients with cancer stages 1, 2, and 3 at the time
of diagnosis. This classification closely follows that of the American Joint Comitee on Can-
cer (AJCC), 3rd Edition; the details are given at page 86 of the manual entitled Comparative
Staging Guide for Cancer, available at https://seer.cancer.gov. The main dif-
ference between the two classifications is that the SEER Program classifies the cases where
lymph node status cannot be assessed as if there was no regional lymph node metastasis.

The L0 estimates for the whole sample and for each cancer stage are displayed in Figure
6. We see that the different stages of cancer at diagnosis have a great impact on the survival
times. For Stage 1 cancers, the mortality is low between 0 and 4–5 years after diagnosis,
and steadily increases afterwards. The date of diagnosis seems to have no impact on the
mortality of Stage 1 cancers. On the other hand, Stage 2 cancers exhibit a strong effect of
the date of diagnosis: around 1995 − 1997, the mortality significantly decreases. This can
correspond to an improvement of the treatment of breast cancer around that period in the
United States. Finally, Stage 3 cancers display a very high hazard rate across all dates of
diagnosis. This seems to indicate that the evolution in treatments of breast cancer had a sig-
nificant impact on the survival times after diagnosis, but almost exclusively when cancers
were diagnosed at Stage 2. Two additional analyses of the hazard rate with stratification
with respect to age at diagnosis and estrogen receptor status were performed in the Supple-
mentary Materials. The results suggest that the shift in mortality around year 1996 could
correspond to the introduction of hormone-blocking therapy.

Conclusion
In this article, we have introduced a new estimation method to deal with age-period-cohort
analysis. This model assumes no specific structure of the effects of age and cohort and the
hazard rate is directly estimated without estimating the effects. In order to take into account
possible overfitting issues, a penalty is used on the likelihood to enforce similar consecutive
values of the hazard to be equal. Two different types of penalty terms were introduced. One
leads to a ridge type regularization while the other leads to a L0 regularization. Different
selection methods of the penalty parameter were also introduced. To our knowledge, a
segmented estimation model of this kind has never been introduced in this context.

Using simulated data, it has been shown that the cross validated ridge estimator and the
EBIC0 adaptive ridge estimator perform the best in terms of mean squared error. The cross
validation criterion was shown to provide the best fit of the hazard rate, but its very high
computationally cost makes it non-competitive. In this context, this modified BIC criterion
comes out as a powerful tool to select the best bias-variance tradeoff.

The method was successfully applied to data of survival after breast cancer provided by
the SEER program. The segmented estimate of the hazard rate displays important informa-
tion about the shift in mortality after being diagnosed of breast cancer in the United States
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in the mid-1990s.
Our method could be directly extended to a different discretization of the age-period-

cohort plane, such as 1× 1× 1-year triangles that are represented in dark gray in Figure 1
(see Section 3 of Carstensen, 2007, for an example of this discretization). Another exten-
sion would be to consider other types of penalizations. Instead of estimating a piecewise
constant hazard, one could estimate a piecewise linear hazard by penalizing over second
order differences of the hazard.
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