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In this paper, we prove the existence of an initial trace T u for any positive solution u to the semilinear fractional diffusion equation (H)

where N ≥ 1, the operator (-∆) s with s ∈ (0, 1) is the fractional Laplacian, f :

define the regular set of the trace T u as an open subset of R u ⊂ R N carrying a nonnegative Radon measure ν u such that lim t→0 Ru u(t, x)ζ(x) dx = Ru ζ dν u , ∀ ζ ∈ C 2 0 (R u ), and the singular set S u = R N \ R u as the set points a such that lim sup t→0 Bρ(a) u(t, x) dx = +∞ for any ρ > 0.

We also study the reverse problem of constructing a positive solution to (H) with a given initial trace (S, ν), where S ⊂ R N is a closed set and ν is a positive Radon measure on R = R N \ S and develop the case f (t, x, u) = t β u p with β > -1 and p > 1.

Introduction

The first aim of this paper is to study the existence of an initial trace of positive solutions to the semilinear fractional diffusion equation

∂ t u + (-∆) s u + f (t, x, u) = 0 in Q ∞ := R * + × R N , (1.1) 
where f : R * + × R N × R → R is a Caratheodory function satisfying

f (t, x, u)u ≥ 0, ∀ (t, x, u) ∈ R * + × R N × R, (1.2) 
and R * + = (0, +∞). The fractional Laplacian(-∆) s with s ∈ (0, 1) is defined in the principal value sense that (-∆) s u(x) = lim

ε→0 + (-∆) s ε u(x),
where

(-∆) s ε u(x) := -a N,s R N u(z) -u(x) |z -x| N +2s χ ε (|x -z|)dz , a N,s = Γ( N 2 + s) π N 2 Γ(2 -s) s(1 -s), (1.3) 
for ε > 0 and

χ ε (r) = 0 if r ∈ [0, ε] 1 if r > ε.
The solutions of (1.1) are intended in the classical sense and, in order (-∆) s u(t, x) to be welldefined, we always assume that u(t, .) ∈ L s (R N ) for any t > 0, where

L s (R N ) = φ ∈ L 1 loc (R N ) s.t. φ L s := R N |φ(x)| dx 1 + |x| N +2s < +∞ .
(1.4)

Notice that the constant functions belong to L s (R N ). If ω ⊂ R N and 0 < T ≤ +∞, we set

Q ω T = (0, T ) × ω, Q R N T = Q T , Q ∞ = R * + × R N
and denote by B ρ (z) (resp. K ρ (z)) the open ball (resp. open cube with sides parallel to the axis) with center z ∈ R N and radius (side length) ρ > 0. We define the regular set of the initial trace of a positive solution u of (1.1) by

R u = z ∈ R N : ∃ ρ > 0 s.t. Q Bρ(z) 1 f (t, x, u) dxdt < +∞ .
(1.5)

Clearly R u is open. The conditional singular set Su is R N \ R u and the conditional initial trace is the couple T r c (u) := ( Su , ν). Our first result is the following statement which is the starting point of our work.

Theorem A Let u be a nonnegative classical solution of (1.1) and the regular set R u of u is given in (1.5), then there exists a nonnegative Radon measure ν u on R u such that

lim t→0 Ru u(t, x)ζ(x) dx = Ru ζ dν u , ∀ ζ ∈ C 2 0 (R u ). (1.6)
The problem of the initial trace of nonnegative solutions for semilinear heat equations was initiated by Marcus and Véron in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] with equation

∂ t u -∆u + u p = 0 in Q ∞ , (1.7) 
for p > 1. They showed the existence of an initial trace T r(u) represented by a closed subset S u of R N and a nonnegative Radon measure ν u on R u = R N \ S u . On R u the initial trace is achieved as in (1.6). On S u they proved that for any z ∈ S u , lim t→0 Bρ(z) u(t, x)dx = +∞ for any ρ > 0.

(1.8)

They also highlighted the existence of a critical exponent p c = 1 + 2 N , which plays a crucial role in the fine analysis of the initial trace. For example they obtained that if p is subcritical, i.e. 1 < p < p c , (1.6) can be sharpened in the form

c 2 (p, N ) ≤ lim inf t→0 t 1 p-1 u(z, t) ≤ lim sup t→0 t 1 p-1 u(z, t) ≤ c 1 (p), (1.9) 
for some positive constants c 1 (p) > c 2 (p, N ). Furthermore they proved that for any couple (S, ν), where S is a closed subset of R N and ν a nonnegative Radon measure on R = R N \ S, there exists a unique nonnegative solution u of (1.7) with the initial trace T r(u) = (S, ν). The supercritical case p ≥ p c turned out to be much more delicate and was finally elucidated in a series of works by Marcus and Véron [START_REF] Marcus | Capacitary estimates of solutions of semilinear parabolic equations[END_REF] and Gkikas and Véron [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF] following some deep ideas introduced by Marcus and Véron in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF] and Marcus [START_REF] Marcus | Complete classification of the positive solutions of -∆u + u q = 0[END_REF] for solving similar questions dealing with semilinear elliptic equations. Al Sayed and Véron in [START_REF] Sayed | Initial trace of solutions of semilinear heat equations with absorption[END_REF] extended the subcritical analysis performed in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] to the non-autonomous equation

∂ t u -∆u + t β u p = 0 in Q ∞ , (1.10) 
with β > -1 and p > 1. Note that the choice β > -1 is natural otherwise the initial trace would be essentialy zero as it can be verified with the equation without absorption.

The main difficulty to extend some of the previous results dealing with (1.7) and (1.10) comes from the fact that the fractional Laplacian is a non-local operator. A more precise characterization of the conditional singular set needs additional assumptions on u or on f . We define the singular set S u of u by

S u = z ∈ R N : lim sup t→0 Bρ(z)
u(t, x)dx = +∞ for any ρ > 0 .

(1.11)

This set is closed and it follows from Theorem A that S u ⊂ Su . The initial trace is the couple T r(u) := (S u , ν). This initial trace can also be seen as an outer regular Borel measure with regular part (or Radon part) ν and singular part S u . When s = 1 then T r(u) = T r c (u) because the set S u is also characterized as the set of z ∈ R N where

T 2 0 Bρ(z)
f (t, x, u)dxdt = ∞ for any ρ > 0.

(1.12) When 0 < s < 1 and no extra assumption on f are made, T r(u) could be different from T r c (u).

Theorem B Assume that u is a nonnegative solution of (1.1). If u ∈ L 1 (0, T ; L s (R N )), then S u = Su and more precisely for any z ∈ S u , lim t→0 Bρ(z) u(t, x) dx = +∞ for any ρ > 0.

(1.13)

The above assumption on u can be verified when the absorption is strong and the singular set is compact. Another type of characterization of the singular set needs the following assumptions on f : f (t, x, u) satisfies f (t, x, 0) = 0 and

0 ≤ f (t, x, u) ≤ t β g(u) ∀ (t, x, u) ∈ R + × R N × R + , (1.14) 
where R + = [0, +∞), β > -1, g is nondecreasing, continuous and verifies the subcritical growth assumption,

∞ 1 g(s)s -1-p * β ds < +∞, (1.15) 
with

p * β = 1 + 2s(1 + β) N .
(1.16)

The role of the subcritical growth assumption (1.1) has been highlighted in [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF] as the natural condition to solve the initial value problem with a bounded positive Radon measure for equation (1.1) (see Section 2.2).

Theorem C Assume (1.14) and either (1.15) holds if -1 < β ≤ 0, or ∞ 1 g(s)s -2-2s N ds < +∞, (1.17) if β > 0. If u is a nonnegative solution of (1.1) with initial trace (S u , ν u ). If S u = ∅ and z ∈ S u , then (1.13) holds. More precisely u ≥ u z,∞ where u z,∞ = lim k→∞ u kδz and u kδz is the solution of

∂ t u + (-∆) s u + t β g(u) = 0 in Q ∞ u(0, .) = kδ z . (1.18)
The existence and uniqueness of solutions to (1.18) follow from [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF]Th 1.1]. If g : R → R + is nondecreasing and satisfies that

G(t) := ∞ t ds g(s)
< +∞ for t > 0, (1.19)

and if β > -1, denote U (t) = G -1 ( t β+1 β + 1 ), where G -1 is the inverse function of G, then the function U verifies that ∞ U (t) ds g(s) = t β+1 β + 1 , (1.20) 
and defines as the maximal solution of the ODE

∂ t U + t β g(U ) = 0 on R * + satisfying U (0) = +∞. (1.21) 
Theorem D Assume that f (t, x, r) ≥ t β g(r), where β > -1 and g satisfies (1.19). If u is a nonnegative solution of (1.1) belonging to L 1 loc (0, T ; L s (R N )), then

u(t, x) ≤ U (t), ∀ (t, x) ∈ Q ∞ . (1.22) Furthermore, if g satisfies ∞ 1 sds g(s) ∞ s dτ g(τ ) β β+1 < +∞, (1.23) 
then S u = Su and (1.13) holds for any z ∈ S u .

Theorem E Assume that f (t, x, s) = t β g(s), where β > -1 and g satisfies (1.19), is nondecreasing and is locally Lipschitz continuous. If u is a nonnegative solution of (1.1) belonging to

L 1 loc (0, T ; L s (R N )), then either u(t, x) < U (t), ∀ (t, x) ∈ Q ∞ , (1.24) or u(t, x) = U (t), ∀ (t, x) ∈ Q ∞ . (1.25)
In the second part of this paper we study in detail the initial trace problem for the equation

∂ t u + (-∆) s u + t β u p = 0 in Q ∞ , (1.26) 
when s ∈ (0, 1), β > -1 and p ∈ (1, p * β ). A second critical value of p appears

p * * β = 1 + 2s(1 + β) N + 2s . (1.27)
Actually, if u k := u kδ 0 is unique solution to

∂ t u + (-∆) s u + t β u p = 0 in Q ∞ , u(0, •) = kδ 0 in R N , (1.28) 
it is proved in [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF] that

u ∞ = lim k→∞ u k is very different according 1 < p < p * * β or p * * β < p < p * β . Precisely, (i) if 1 < p < p * * β , then u ∞ (t, x) = U p,β (t) := 1 + β p -1 1 p-1 t -1+β p-1 .
(1.29)

The absorption is dominant, as if s = 0.

(ii) If p * * β < p < p * β , then u ∞ (t, x) = V (t, x) := t -1+β p-1 v x t 1 2s , (1.30) 
where v is the minimal positive solution of

(-∆) s v - 1 2s ∇v • η - 1 + β p -1 v + v p = 0 in R N , lim |η|→∞ |η| 2s(1+β) p-1 v(η) = 0.
(1.31)

The function V is called the very singular solution of (1.26). In this case the diffusion is dominant, as when s = 1.

We first prove the following result which complements Theorem C in the case where β > 0. The proof is delicate and uses a form of parabolic Harnack inequality valid for solutions of (1.26).

Theorem F Assume β > -1, 1 < p < p * β and u is a nonnegative solution of (1.26) with initial trace (S u , ν u ). If S u = ∅ and z ∈ S u then u ≥ u z,∞ .
We observe that Su∞ = S u∞ = {0} when p * * β < p ≤ p * β and Su∞ = S u∞ = R N when 1 < p < p * * β . Notice that the case p = p * * β remained unsolved in [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF]. In this paper, we prove that S u∞ = R N also for p = p * * β . Our main result concerning (1.26) is the following. Theorem G Let u be a positive solution of (1.26).

(i) If p ∈ (1, p * * β ] and S u = ∅. Then S u = R N and u ≥ U p,β . If we assume moreover that u ∈ L 1 loc (0, ∞; L s (R N )), then u = U p,β . (ii) If there exists κ ∈ [1, N ] ∩ N such that p ∈ (1, p * β ) ∩ 1, 1 + 2s(1+β)

κ+2s

and S u contains an affine plane L of codimension κ. Then the conclusions of (i) hold.

If κ = N , (ii) is just (i). Note that if 0 < s ≤ 1 2 or if κ ≥ N -2, then (p * * β , p * β ) ∩ p * * β , 1 + 2s(1+β) κ+2s = (p * * β , p * β ), while, if 1 2 < s < 1 and κ = N -1, then (p * * β , p * β )∩ p * * β , 1 + 2s(1+β) κ+2s = p * * β , 1 + 2s(1+β) N -1+2s
. Conversely, given a closed set of S ⊂ R N and a nonnegative Radon measure on ν on R = R N \ S, we study the existence of solution of (1.26) with a given initial trace T r c (u) = T r(u) = (S, ν), that is a solution of the following problem

∂ t u + (-∆) s u + t β u p = 0 in Q ∞ T r(u) = (S, ν). (1.32)
This means that u is a classical solution of the equation in Q ∞ and that (1.6) and (1.22) hold. By Theorem G any closed set cannot be the singular part of the initial trace of a positive solution of (1.26) if p is too small (diffusion effect) or if p is too large. In the same sense any positive bounded Radon measure ν cannot be the regular part of the initial trace of a positive solution of (1.26) since condition (1.15) is equivalent to p < p * β . However this condition is restrictive and there exist several sufficient conditions linking ν, s, β and p. Hence we say that a nonnegative bounded measure ν is an admissible measure if the initial value problem

∂ t u + (-∆) s u + t β u p = 0 in Q ∞ u(0, .) = ν, (1.33) 
admits a solution u ν , always unique, and it is a good measure if it is stable in the sense that if ν is replaced by ν * ρ n for some sequence of mollifiers, then u ν * ρn and t β u p ν * ρn converges to u ν and t β u p ν respectively in L 1 (Q T ). We denote by H s is the kernel in R * + × R N associated to (-∆) s . It is expressed by

H s (t, x) = 1 t N 2s Hs x t 1 2s
where Hs (x) =

R N e ix.ξ-|ξ| 2s dξ.

(1.34)

It is proved in [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF], [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF] that H s satisfies the following two-side estimate,

c -1 3 t t 1+ N 2s + |x| N +2s ≤ H s (t, x) ≤ c 3 t t 1+ N 2s + |x| N +2s ∀ (t, x) ∈ R * + × R N . (1.35)
The associated potential H s [ν] of a bounded Radon measure ν in R N is defined by

H s [ν](t, x) = R N H s (t, x -y)dν(y).
We first prove that a nonnegative bounded measure with Lebesgue decomposition ν = ν 0 + ν s , where ν 0 ∈ L 1 (R N ) and ν s is singular with respect to the N -dim Lebesgue measure is a good Concerning problem (1.32) we have the following general result.

measures if t β (H s [ν]) p ∈ L 1 (Q 1 ).
Theorem I Assume that N ≥ 1 and p > 1 + 2s(1+β) 1+2s . If S is a closed subset of R N such that S = int S and ν is a nonnegative Radon measure on R = S c such that for any compact set K ⊂ R, χ K ν is an admissible measure. Then problem (1.32) admits a solution.

It is interesting to compare this result with [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]Th. 4.11] dealing with the case s = 1. It is proved there that for any closed set satisfying a non-thinness condition (expressed later on in terms of Bessel capacity [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF]) but always fulfilled when 1 < p < 1 + 2 N and any nonnegative admissible Radon measure, problem (1.32) admits a solution. There the condition p > 1+ 2s(1+β) 1+2s has no counterpart when s = 1. Theorem L shows that this condition is fundamental in order to have existence without condition at infinity, even in the case where S = ∅ and ν is a mere L 1 loc (R N ) function. In some particular cases, the existence of a solution to (1.32) with no extra condition on S or ν can be proved as the next results show it.

Theorem J Assume that β > -1, p > 1 and one of the following assumptions is fulfilled:

(i) either N = 1 and 1 + 2s(1+β) 1+2s < p < 1 + 2s(1 + β), (ii) or N = 2, 1 2 < s < 1 and 1 + 2s(1+β) 1+2s < p < 1 + s(1 + β). Then for any closed set S ⊂ R N and any nonnegative measure ν in R = S c , there exists a nonnegative solution u to (1.32).

As a consequence of the previous results we obtain existence with initial data measure in R N of solutions without condition at infinity in the spirit of Brezis classical result [START_REF] Brezis | Nonlinear elliptic equation in R N without condition at infinity[END_REF].

Corollary K Let N ≥ 1, β > -1 and p > 1. (a) If p > 1+ 2s(1+β)
1+2s and -1 < β < p-1, then there exists a positive solution u ∈ L 1 loc (0, ∞; L s (R N )) to problem (1.33) for any nonnegative Radon measure ν in R N if and only if for any n ∈ N * , χ Bn ν is an admissible measure.

(b) If one of the assumptions (i) or (ii) of Theorem J is fulfilled, then for any nonnegative Radon measure ν in R N there exists a positive solution to problem (1.33).

Conditions (i) or (ii) of Theorem J are essentially necessary for unconditional existence, since we have the following result.

Theorem L Assume that β > -1, p > 1 and 1 < p < 1 + 2s(1+β) 1+2s . If φ ∈ L 1 loc (R N ) is a nonnegative function which satisfies lim |x|→∞ φ(x) |x| 2s(β+1) β+2-p = +∞, (1.36)
then the sequence of solutions {u n } of (1.33) with initial data ν = ν n = inf{φ, φ n }, where φ n = inf{φ(z) : |z| ≥ n} is increasing and converges to U (t).

This implies that there exists no solution of (1.33) with initial data φ. Notice that β + 2 -p is positive for p < 1 + 2s(1+β) 1+2s . For the mere heat equation a theory of maximal growth for admissibility growth of initial data has been developed in [START_REF] Widder | Positive Temperatures on an Infinite Rod[END_REF] and for the fractional heat equation in [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF]. In both cases the representation formulas play an important role. For equations with potential a phenomenon of instantaneous blow-up is proved [START_REF] Baras | The heat equation with a singular potential[END_REF] for solution of

∂ t u -∆u -V (x)u = 0 in Q ∞ , (1.37) 
when V ∼ c|x| -2 , for any nonnegative initial data. This phenomenon of instantaneous blow-up has been recently highlighted in [START_REF] Shishkov | Admissible initial growth for diffusion equations with weakly superlinear absorption[END_REF] for the the semilinear equation

∂ t u -∆u + u (ln(u + 1)) α = 0 in Q ∞ , (1.38) 
when 1 < α < 2. It is shown there that the limit of a sequence of solutions with fast growing initial data is the maximal solution of u + u (ln(u + 1)) α = 0 on (0, ∞).

2 Initial trace with general nonlinearity

Existence of an initial trace

Proof of Theorem A. For any bounded domain ω ⊂ R N , we denote by C 2 0 (ω) the space of functions ξ : R N → R which are C 2 and have compact support in ω. We always assume that N ≥ 1 and 0 < s < 1. Let φ ω be the first eigenfunction of (-∆) s in H s 0 (ω), with corresponding eigenvalue λ ω > 0, i.e. the solution of

(-∆) s φ ω = λ ω φ ω in ω φ ω = 0 in ω c . (2.1)
Existence and basic properties of the eigenfunctions can be found in [START_REF] Banuelos | The Cauchy process and the Steklov problem[END_REF], [START_REF] Bogdan | Vondraek Potential Analysis of Stable Processes and its Extensions[END_REF]. We normalize φ ω by sup φ ω = 1. We say that ω is of class E. S. C. if it satisfies the exterior sphere condition. It is known by [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary[END_REF]Prop 1.1] that φ ω (x) ≤ c(dist (x, ∂ω)) s in ω, and there exists q > 2 such that φ q ω ∈ C 2 0 (ω). We denote by K ρ (z) the open cube with sides parallel to the axis of center z ∈ R N and length sides ρ > 0, and

K 1 := K 1 (0). Then φ Kρ(z) (x) = φ K 1 x -z ρ and λ Kρ(z) = λ K 1 ρ 2s .
The next lemma is an improvement of [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF]Lemma 2.3].

Lemma 2.1 Let q ∈ N ∩ [2, ∞) and ζ ∈ C 2 0 (ω), ζ ≥ 0, then (-∆) s ζ q (x) = qζ q-1 (x)(-∆) s ζ(x) - a N,s q(q -1) R N ζ q (y) -ζ q (x) -q(ζ(y) -ζ(x))ζ q-1 (y) |x -y| N +2s dy ≥ qζ q-1 (x)(-∆) s ζ(x) - a N,s q ζ q-2 (x) R N (ζ(y) -ζ(x)) 2 |x -y| N +2s dy. (2.2)
Proof. From [26, Lemma 2.3], we know that

(-∆) s ζ q (x) = qζ q-1 (x)(-∆) s ζ(x) -q(q -1)a N,s R N ζ(y) ζ(x) (ζ(y) -t)t q-2 dt dy |x -y| N +2s .
By integration by parts, we obtain that

ζ(y) ζ(x) (ζ(y) -t)t q-2 dt = 1 q(q -1) ζ q (y) -ζ q (x) -q(ζ(y) -ζ(x))ζ q-1 (x) = ζ(y) -ζ(x) q(q -1) ζ q-1 (y) + ζ q-2 (y)ζ(x) + ... + ζ(y)ζ q-2 (x) -(q -1)ζ q-1 (x) .
Since for any a, b ≥ 0 b q-1 + ab q-2 + ...a q-2 b -(q -1)a q-1 = b q-1 -a q-1 + a(b q-2 -a q-2 ) + a 2 (b q-3 -a q-3 ) + ... + a q-2 (b -a)

= (b -a) b q-2 + ab q-3 + ... + a q-2 + a b q-3 + ab q-4 + ... + a q-3 + ... + a q-2 ≥ (q -1)(b -a)a q-2 , we obtain (2.2).

Remark. By the mean value theorem, we see that there exists

m ζ ∈ {z = ζ(w) : w ∈ R N } such that L(ζ q ) := a N,s q(q -1) R N ζ q (y) -ζ q (x) -q(ζ(y) -ζ(x))ζ q-1 (x) |x -y| N +2s dy = a N,s 2 m q-2 ζ R N (ζ(y) -ζ(x)) 2 |x -y| N +2s dy. (2.3) Proposition 2.2 Assume that f satisfies (1.
2) and u is a nonnegative solution of (1.1) such that u(t,

•) ∈ L s (R N ) for all t ∈ (0, T ). If f (•, •, u) ∈ L 1 (Q T ω )
for some bounded domain ω ⊂ R N of class E. S. C. and T > 0. Then there exists ω ≥ 0 such that lim t→0 ω u(t, x)φ q ω (x)dx = ω .

(2.4)

Furthermore, we have that

ω + a N,s q T 0 R N u(s, x)φ q-2 ω (x) R N (φ ω (y) -φ ω (x)) 2 |x -y| N +2s dy dx ≤ e qλωT X(T ) + T 0 ω
f (s, x, u)φ q ω (x)e qλωs dxdt.

(2.5)

Proof. Since φ q ω ∈ C 2 0 (ω), there holds

d dt ω u(t, x)φ q ω (x)dx + R N u(t, x)(-∆) s φ q ω (x)dx + ω f (t, x, u)φ q ω (x)dx = 0. (2.6) Set X(t) = ω u(t, x)φ q ω (x)dx, then d dt e qλωt X(t) - T t ω f (s, x, u)φ q ω (x)e qλωs dxds = e qλωt R N L(φ q ω )(x)dx ≥ 0. (2.7)
This implies that lim t→0 X(t) = ω exists and

ω + T 0 R N L(φ q ω )(x)e qλωs u(s, x)dxds + T 0 ω f (s, x, u)φ q ω (x)e qλωs dxds = e qλωT X(T ),
which implies (2.5) by Lemma 2.1.

As an immediate consequence we have,

Corollary 2.3 Under the assumptions of Theorem A, u ∈ L 1 (Q T G ) for any compact set G ⊂ R u .
The proof of Theorem A is completed by the following statement:

Proposition 2.4 There exists a nonnegative Radon measure µ u on R u such that for any ζ ∈ C 2 0 (R u ), there holds

lim t→0 Ru u(t, x)ζ(x)dx = Ru ζdµ u . (2.8) Proof. Let ζ ∈ C 2 0 (R u ) with support K and let G be an open subset containing K such that ∂G is smooth and G is a compact subset of R u and assume 0 ≤ ζ ≤ 1. We put Y (t) = R N u(t, x)ζ(x)dx = G u(t, x)ζ(x)dx, and R N f (t, x, u)ζ(x)dx = G f (t, x, u)ζ(x)dx, then Y (t) + R N u(t, x)(-∆) s ζ(x)dx + G f (t, x, u)ζ(x)dx = 0. Since ζ ≥ 0, we have that 1 a N,s R N u(t, x)(-∆) s ζ(x)dx = R N u(t, x) G ζ(x) -ζ(y) |x -y| N +2s dydx + G u(t, x)ζ(x) G c dy |x -y| N +2s dx = G u(t, x) G ζ(x) -ζ(y) |x -y| N +2s dydx - G c u(t, x) G ζ(y) |x -y| N +2s dydx + G u(t, x)ζ(x) G c dy |x -y| N +2s dx ≤ G u(t, x) G ζ(x) -ζ(y) |x -y| N +2s dydx + G u(t, x)ζ(x) G c dy |x -y| N +2s dx (2.9)
If we define the regional fractional Laplacian of order s relative to G by

(-∆) s G ζ(x) := a N,s G ζ(x) -ζ(y) |x -y| N +2s dy,
then the right-hand side of (2.9) is bounded from above by

Λ(t) = (-∆) s G ζ L ∞ + max x∈K G c dy |x -y| N +2s G u(t, x)dx, since ζ is C 2 with support in K ⊂ G ⊂ G R u . By Corollary 2.3, Λ ∈ L 1 (0, T ). Because d dt Y (t) - T t Λ(s) + G f (t, x, u)ζ(x)dx ds ≥ 0, (2.10) 
and

T 0 Λ(s) + G f (t, x, u)ζ(x)dx ds < ∞ (2.11)
Combining (2.10) and (2.11) we infer that the following limit exists

lim t→0 Y (t) = lim t→0 G u(t, x)ζ(x)dx := μu (ζ). (2.12) By replacing ζ by ζ L ∞ ζ we can drop the condition ζ ≤ 1. with support in K, then 0 ≤ lim t→0 G u(t, x)ζ(x)dx = μu (ζ) ≤ G ζ L ∞ . (2.13) Next we assume that ζ ∈ C 0 (R u ) is nonnegative, with support K ⊂ G ⊂ G R u ,
then there exists an increasing sequences {ζ n } ⊂ C 2 0 (R u ) of nonnegative functions smaller than ζ which converges to ζ uniformly (take for example

ζ n = (ζ -n -1 ) + * ρ n for some sequence of mollifiers {ρ n } with supp(ρ n ) ⊂ B n -2 ). The sequence {μ u (ζ n )} is increasing and bounded from above by M G sup G ζ.
Hence it is convergent and its limit, still denoted by μu (ζ) is independent of the sequence {ζ n }. We can also consider a uniform approximation of ζ from above in considering

ζ n = (σ n + ζ) * ρ n , where σ n = n -1 χ Kn and K n = {x ∈ R N : dist (x, K) ≤ n -1 }. Actually, μu (ζ) = sup{μ u (η) : η ∈ C 2 0 (R u ), 0 ≤ η ≤ ζ} = inf{μ u (η ) : η ∈ C 2 0 (R u ), ζ ≤ η }. (2.14)
This implies that for all η and η belonging to

C 2 0 (R u ) such that η ≤ ζ ≤ η , we have that μu (η) ≤ lim inf t→0 Ru u(t, x)ζ(x)dx ≤ lim sup t→0 Ru u(t, x)ζ(x)dx ≤ μu (η ). (2.15)
Combined with (2.14) we infer the existence of the limit and 

lim t→0 Ru u(t, x)ζ(x)dx = μu (ζ). (2.16) Finally, if ζ ∈ C 0 (R u ) is a signed function we write ζ = ζ + -ζ -and µ u (ζ) = μu (ζ + ) -μu (ζ -). Hence µ u is a positive Radon measure on R u ,
Lemma 2.5 Assume that G ⊂ R N is a bounded smooth domain and η ∈ C 2 0 (G). Then there exists c 5 > 0 such that |(-∆) s η(x)| ≤ c 5 η C 2 1 + |x| N +2s ∀ x ∈ R N .
(2.17)

Moreover, assume that η ≥ 0 in G, then (-∆) s η ≤ 0 in G c and for any δ > 0 there exists c δ > 1 independent of η such that

η L 1 c δ (1 + |x| N +2s ) ≤ -(-∆) s η(x) ≤ c δ η L 1 1 + |x| N +2s , (2.18 
)

for x ∈ {z ∈ R N : dist (z, G) ≥ δ}. Proof. Let x ∈ G c and y ∈ R N , then η(x) -η(y) ≤ 0 and hence (-∆) s η ≤ 0 in G c . For y ∈ G and x ∈ G c satisfying dist (x, G) > δ, there exists c 6 > 1 such that c -1 6 (1 + |x| N +2s ) ≤ |x -y| N +2s ≤ c 6 (1 + |x| N +2s ).
Together with

(-∆) s η(x) = -a N,s G η(y) |y -x| N +2s dy ∀ x ∈ G c ,
one obtains the claim.

Remark. Estimate (2.17) has essentially been already obtained in [START_REF] Bonforte | Quantitative local and global a priori estimates for fractional nonlinear diffusion equations[END_REF]Lemma 2.1] but we kept it for the sake of completeness. (2.17). Estimate (2.20) is new and will be useful in the sequel.

Proof of Theorem B. Let ρ > ρ > 0 and ζ ∈ C 2 0 (B ρ (z)) such that 0 ≤ ζ ≤ 1 and ζ = 1 on B ρ (z)). Then there holds Bρ(z) u(t, x)ζ(x)dx = Bρ(z) u(T, x)ζ(x)dx + T t Bρ(z) f (s, x, u)ζ(x)dxds + T t R N u(s, x)(-∆) s ζ(x)dxds.
The function ζ satisfies

|(-∆) s ζ(x)| ≤ c 5 ζ C 2 1 + |x| N +2s , ∀ x ∈ R N . Since (t, x) → (1 + |x| N +2s ) -1 u((t, x) ∈ L 1 (Q T ), we infer that lim t→0 Bρ(z) u(t, x)ζ(x)dx = +∞, (2.19) 
which implies the claim.

Pointwise estimates

Proof of Theorem C. In what follows we characterize the singular set of the initial trace when the absorption reaction is subcritical, that is it satisfies (1.14), (1.15) and (1.16) hold. Under these two last assumptions for any bounded Radon measure in R N , it is proved in [28, Th 1.1] that there exists a unique weak solution u := u µ to

∂ t u + (-∆) s u + t β g(u) = 0 in Q ∞ u(0, •) = µ in R N . (2.20)
We recall by a weak solution, we mean a function u

∈ L 1 (Q T ) such that t β g(u) ∈ L 1 (Q T ) for all T > 0 satisfying T 0 R N (-∂ t ξ + (-∆) s ξ) u + t β g(u)ξ dxdt = R N ξ(0, x)dµ(x) ∀ ξ ∈ Y s,T , (2.21) 
where Y s,T is the space of functions ξ defined in

Q ∞ satisfying (i) ξ L 1 (Q T ) + ξ L ∞ (Q T ) + ∂ t ξ L ∞ (Q T ) + (-∆) s ξ L ∞ (Q T ) < +∞,
(ii) ξ(T ) = 0 and for 0 < t < T, there exist M > 0 and 0 > 0 such that for 0 < ≤ 0 ,

(-∆) s ξ(t, •) L ∞ (R N ) ≤ M.
Furthermore, if µ j converges to µ weakly in the sense of measures, then u µ j converges to u µ locally uniformly in Q ∞ . Up to translation we can assume that z = 0. Since (1.22) holds, for any k > 0 there exist two sequences {t n } and {ρ n } converging to 0 such that

Bρ n u(t n , x)dx = k. (2.22) Case 1: β ≤ 0. For R > 0, let v R n be the solution of ∂ t v + (-∆) s v + t β g(v) = 0 in (t n , ∞) × B R v(t, x) = 0 in (t n , ∞) × B c R v(t n , .) = u(t n , x)χ Bρ n in B R , (2.23) 
where B R denote the ball in R N centered at origin with the radius R. By the comparison principle,

u ≥ v R n in [t n , ∞) × B R . We set v R n (t, x) = v R n (τ + t n , x) = ṽR n (τ, x). Since β ≤ 0, there holds ∂ t ṽR n + (-∆) s ṽR n + τ β g(ṽ R n ) ≥ 0 in (0, ∞) × B R . Hence ṽR n ≥ u R n where u R n is the solution of ∂ t v + (-∆) s v + t β g(v) = 0 in (0, ∞) × B R v(t, x) = 0 in (0, ∞) × B c R v(0, .) = u(t n , x)χ Bρ n in B R . (2.24)
Letting R → ∞ we infer that u R n increases and converges to the solution u ∞ n of

∂ t v + (-∆) s v + t β g(v) = 0 in (0, ∞) × R N v(0, .) = u(t n , x)χ Bρ n in R N , (2.25) 
and there holds u(

t n + τ, x) ≥ u ∞ n (τ, x) in (0, ∞) × R N .
Letting n → ∞ and using the above mentioned stability result, we obtain that u ∞ n converges to u kδ 0 and u ≥ u kδ 0 . Since it holds true for any k, the claim follows. Case 2:

β > 0. Clearly u ≥ v ∞ n where v ∞ n satisfies ∂ t v + (-∆) s v + t β g(v) = 0 in (t n , ∞) × R N v(t n , .) = u(t n , x)χ Bρ n in R N , (2.26) Then v ∞ n (t, x) ≤ H s [u(t n , x)χ Bρ n ](t -t n , x). Since g satisfies (1.17) it follows from [28, Proof of Th 1.1] that the set of function g H s [u(t n , .)χ Bρ n ](. -t n , .) is uniformly integrable in (t n , ∞) × R N and it is the same with {g (v ∞ n )}. Therefore, for any T > 0, t β g (v ∞ n ) is uniformly integrable in (t n , T ) × R N . Hence {v ∞ n } converges locally in (0, ∞) × R N to u kδ 0 and u ≥ u kδ 0 as above.
Remark. We will see in Theorem F that if g(u) = u p the concentration result holds under the mere condition (1.15) whatever is the sign of β. The difficulty in the case β > 0 comes from the fact that the ball B ρn may shrink very quickly with t n and that a pointwise isolated singularity at (τ, z) with τ > 0 can be removable for equation (2.20). In the power case we can control the rate of shrinking thanks to a Harnack-type inequality.

Proof of Theorem D. (i) Proof of (1.22). Let γ ∈ C 2 (R) be a convex nondecreasing function vanishing on (-∞, 0] such that γ(r) ≤ r + . For > 0, let U be the solution of

∂ t U + t β g(U ) = 0 in ( , +∞) U ( ) = +∞. (2.27)
Indeed,

U (t) = G -1 ( t β+1 -β+1 β + 1 ),
where G -1 is the inverse function of G, see (1.20). Then there holds

(-∆) s γ(u(t, .) -U (t))(x) = γ ((u(t, x) -U (t))(-∆) s u(x) -a N,s γ (u(t, z x ) -U (t)) 2 R N (u(t, y) -u(t, x)) 2 |x -y| N +2s dy. Notice that the integral is convergent if t > , since γ(u(t, •) -U (t -)) = γ(u(t, .) -U (t)), where 0 ≤ u(t, •) ≤ U (t) and u satisfies R N u(•, x)dx 1 + |x| N +2s < +∞
a.e. in (0, T ).

Then

∂ t γ(u(t, x) -U (t)) + (-∆) s γ(u(t, .) -U (t))(x) ≤ γ (u(t, x) -U (t)) • (∂ t u(t, x) -∂ t U (t) + (-∆) s u(x)) ≤ γ (u(t, x) -U (t)) • t β g(U (t)) -f (t, x, u(t, x)) ≤ 0. Therefore, γ(u(•, •) -U (•)) is a subsolution. Let η ∈ C ∞ 0 (R N
) be a nonnegative function. Using Lemma 2.5 we have that

R N γ(u(t, x) -U (t))(-∆) s ηdx ≤ c 5 η C 2 R N u(t, x)dx 1 + |x| N +2s . Since u ∈ L 1 loc (0, T ; L s (R N ))
, for almost all s, t such that < s < t, there holds

R N γ(u(t, x) -U (t))η(x)dx + t s R N γ(u(τ, x) -U (t))(-∆) s η(x)dxdτ ≤ R N γ(u(s, x) -U (s))η(x)dx. Since γ(u(s, x) -U (s))η(x) ≤ u(s, x)η(x) and u(s, .)η ∈ L 1 (R N ), we get from the dominated convergence theorem that lim s↓ R N γ(u(s, x) -U (s))η(x)dx = 0.
Hence, letting s → and γ(r) ↑ r + , we get

R N (u(t, x) -U (t)) + η(x)dx ≤ t R N (u(τ, x) -U (t)) + (-∆) s η(x)dxdτ ≤ c 5 η C 2 t R N (u(τ, x) -U (t)) + 1 + |x| N +2s dxdτ.
(2.28)

Next, for n ≥ 1, we replace η by η n (x) = η(n -1 x), where 0 ≤ η ≤ 1, η(x) = 1 on B 1 and supp(η) ⊂ B 2 . We can also assume that η is radially decreasing and η(0) = 1. Since η n C 2 ≤ η C 2 , we obtain from (2.28) and the monotone convergence theorem that the following holds for almost all t ∈ ( , T )

R N (u(t, x) -U (t)) + dx ≤ c 5 η C 2 t R N (u(τ, x) -U (τ )) + 1 + |x| N +2s dxdτ. (2.29)
This inequality implies that (u(t, .) -

U (t)) + ∈ L 1 (R N )
for almost all t ∈ ( , T ). We set

Ψ (t) = t R N (u(τ, x) -U (τ )) + 1 + |x| N +2s dxdτ.
Then

Ψ (t) = R N (u(t, x) -U (t)) + 1 + |x| N +2s dx ≤ R N (u(t, x) -U (t)) + dx ≤ c 5 η C 2 Ψ (t).
Since Ψ ( ) = 0 we obtain Ψ (t) = 0 on (0, T ), hence u(t, x) ≤ U (t) a.e. on ( , T ) × R N . Letting → 0, we get the claim. (ii) End of the proof. Because of Theorem B it is sufficient to prove that if (1.23) holds true, then U ∈ L 1 (0, 1). Indeed, we recall that

G(s) = ∞ s dτ g(τ )
.

Clearly, G is an decreasing diffeomorphism from R * + onto (0, Φ(0)) and U (t) = G -1 t β+1 β+1 . Set U (t) = s, then t = ((β + 1)G(s)) 1 β+1 and we get

1 0 U (t)dt = U (1) ∞ sG (s) ((β + 1)G(s)) -β β+1 ds = (β + 1) -β β+1 ∞ U (1) sds g(s) ∞ s dτ g(τ ) β β+1
< +∞, which completes the proof.

The following weight function plays an important role in the description of the initial trace problem for positive solutions of the fractional heat equation

Φ(x) = 1 1 + (|x| 2 -1) 4 + N +2s 8 , ∀ x ∈ R N . (2.30)
It has the remarkable property that

-c 6 Φ(x) ≤ (-∆) s Φ(x) ≤ c 6 Φ(x), ∀ x ∈ R N , (2.31) 
for some constant c 6 > 0 (see [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF], [START_REF] Bonforte | Quantitative local and global a priori estimates for fractional nonlinear diffusion equations[END_REF]). Furthermore, for some c 7 > 1,

1 c 7 (1 + |x| N +2s ) ≤ Φ(x) ≤ c 7 1 + |x| N +2s , ∀ x ∈ R N .
(2.32)

Lemma 2.6 Let f : R * + × R N × R + → R + be a Caratheodory function which satisfies (1.
2) and is nondecreasing with respect to the variable u. For given 

u 0 ∈ L 1 (R N ) is nonnegative, problem ∂ t u + (-∆) s u + f (t, x, u) = 0 in Q ∞ , u(0, •) = u 0 in R N (2.33) has a unique weak solution u ∈ C(R + ; L 1 (R N )) satisfying that R N u(t, x)Φ(x)dx + t 0 R N (u(s, x)(-∆) s Φ(x) + f (s, x, u)Φ(x)) dxds = R N u 0 (x)Φ(x)dx. ( 2 
µ in R N verifying R N Φ(x) dµ(x) < +∞, (2.35) 
there exists a weak solution u 

∈ C b (R + ; L s (R N )) ∩ L 1 (R + ; L s (R N )) of (2.33) in the sense that t 0 R N [-(∂ t ξ + (-∆) s ξ)u + ξf (s, x, u)] dxds + R N u(t, x)ξ(t, x)dx = R N ξ(0, x)dµ(x), (2.36 
R N u(t, x)Φ(x)dx + t 0 R N [u(s, x)(-∆) s Φ(x) + f (s, x, u)Φ(x)] dxds = R N Φ(x)dµ(x).
(2.37)

Proof. By the assumptions on f and for any n > 0, it follows from [28, Th. 1.1] that

∂ t u + (-∆) s u + f (t, x, u) = 0 in Q ∞ u(0, •) = µ n := χ Bn u 0 in R N , (2.38) 
has a unique solution

u n ∈ L 1 (Q T ) verifying f (•, •, u n ) ∈ L 1 (Q T ).
If ρ k is a sequence of mollifiers with compact supports and µ n,k = (χ Bn u 0 ) * ρ k , the sequence {u n,k } of weak solutions of

∂ t u + (-∆) s u + f (t, x, u) = 0 in Q ∞ u(0, •) = µ n,k in R N , (2.39) 
then u n,k satisfies that

R N u n,k (t, x)Φ(x)dx + t 0 R N [u n,k (s, x)(-∆) s Φ(x) + f (s, x, u n,k )Φ(x)] dxds = R N µ n,k (x)Φ(x)dx.
(2.40)

When k → ∞, we know from the proof of [28, Th. 1.1] that, up to a subsequence, {u n,k } k converges a.e. in Q T to some function

u n , {f (•, •, u n,k )} k converges a.e. to {f (•, •, u n )} and that {u n,k } k and {f (•, •, u n,k )} k are uniformly integrable in L 1 (Q T ). Furthermore u n ∈ C([0, T ]; L 1 (R N ))
and for any t ∈ (0, T ],

{u n,k (t, •)} k converges to u n (t, •) in L 1 (R N ). This implies that R N u n (t, x)Φ(x)dx + t 0 R N [u n (s, x)(-∆) s Φ(x) + f (s, x, u n )Φ(x)] dxds = R N Φ(x)dµ n (x).
(2.41) Furthermore,

t 0 R N [-(∂ t ξ + (-∆) s ξ)u n + ξf (s, x, u n )] dxds + R N u n (t, x)ξ(t, x)dx = R N ξ(0, x)dµ n (x), (2.42) for all ξ ∈ C 2 0 (Q T ) satisfying the assumptions (i)-(ii) in [28, Def. 1.1]. When n → ∞, u n ↑ u and f (s, x, u n ) ↑ f (s, x, u).
Using the monotone convergent theorem we see that u satisfies (2.37),and that the sequences {u n } n and {f (•, •, u n )} n converges to u and f (•, •, u) in L 1 (0, T ; L s (R N )) respectively. Using estimate (2.17) we can let n to infinity in (2.42) and obtain (2.36).

As it is pointed out in [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF], the weight function Φ plays a role similar to an eigenfunction of (-∆) s . We prove a backward-forward uniqueness result for solutions of (1.1) inspired from [15, Lemma 4.2].

Theorem 2.8 Assume that u → f (t, x, u) is locally Lipschitz continuous on R, uniformly with respect to x ∈ R N and locally uniformly with respect to t ∈ R * + . If u 1 and u 2 belong to

L 1 loc (R * + ; L s (R N )) ∩ L ∞ loc (R * + ; L ∞ (R N ))
and are weak solutions of (1.1) in Q T which coincide for t = t 0 > 0, then

u 1 = u 2 in Q T .
Proof. For any 0 < < t 0 < T < ∞, u 1 and u 2 are uniformly bounded in [ , T ] × R N . Hence the function D defined by

D(t, x) =    f (t, x, u 1 (t, x)) -f (t, x, u 2 (t, x)) u 1 (t, x) -u 2 (t, x) if u 1 (t, x) = u 2 (t, x) 0 if u 1 (t, x) = u 2 (t, x) is bounded in [ , T ] × R N by some constant M = M ( , T ) > 0. Set w = u 1 -u 2 , it satisfies ∂ t w + (-∆) s w + Dw = 0 in Q T ,
and is uniformly bounded in [ , T ] × R N . Hence

d dt R N w(t, x)Φ(x)dx + R N w(t, x)(-∆) s Φ(x)dx + R N D(t, x)w(t, x)Φ(x)dx = 0.
Using (2.31) we get

-(c 5 + M ) R N w(t, x)Φ(x)dx ≤ d dt R N w(t, x)Φ(x)dx ≤ (c 5 + M ) R N w(t, x)Φ(x)dx. (2.43)
This implies

-(c 5 + M ) R N w(t, x)Φ(x)dx ≤ d dt R N w(t, x)Φ(x)dx ≤ (c 5 + M ) R N w(t, x)Φ(x)dx, (2.44) 
and (i)

R N w(t, x)Φ(x)dx ≤ e (c 5 +M )(t-s) R N w(s, x)Φ(x)dx, (ii) e (c 5 +M )(s-t) R N w(s, x)Φ(x)dx ≤ R N w(t, x)Φ(x)dx, (2.45) 
for all ≤ s ≤ t ≤ T . Taking s = t 0 in (i) and

t = t 0 in (ii) yields w ≡ 0 in [ , T ] × R N .
Proof of Theorem E. By Theorem D we know that u ≤ U . If there exists some (t 0 , x 0 ) ∈ Q T such that u((t 0 , x 0 )) = U (t 0 ), then either u((t 0 , x)) = U (t 0 ) for all x ∈ R N , or

(-∆) s (u -U )(t 0 , x 0 ) < 0 ∀ x ∈ R N .
Since f (t, x, u) -t β g(U ) ≥ 0 and ∂ t (u -U )(t 0 , x 0 ) = 0 we infer that u((t 0 , .)) ≡ U (t 0 ). Since g is nondecreasing this situation is impossible, hence u((t 0 , .)) = U (t 0 ). Since g is locally Lipschitz continuous, this implies u = U in Q T by Theorem 2.8.

A straightforward consequence of Theorems B, C and D is the next statement.

Corollary 2.9 Let f (t, x, r) = t β g(r), where β > -1 and g : R + → R + is continuous and nondecreasing and satisfies (1.15), (1.19) and (1.23). If u is a nonnegative of (1.1) in Q T belonging to L 1 loc (0, T ; L s (R N )) such that S u = ∅, there holds

u(t, x) ≥ u ∞,z (t, x) = u ∞,0 (x -z, t) ∀ (t, x) ∈ Q T .
(2.46)

3 The case f (t, x, u) = t β u p

We denote by (-∆) s R κ the fractional Laplacian in R κ and (-∆) s R N = (-∆) s . The following standard lemma will be useful in the sequel.

Lemma 3.1 Let 1 ≤ κ ≤ N -1 be an integer. If u ∈ C 2 (R κ ) ∩ L s (R κ ) and ũ(x 1 , x ) = u(x 1 ) for (x 1 , x ) ∈ R κ × R N -κ , then (-∆) s ũ(x 1 , x ) = (-∆) s R κ u(x 1 ). (3.47)
Proof. This more or less well known lemma is based upon the explicit value of the constant a N,s in the definition of (-∆) s . For the sake of completeness we give here the proof.

(-∆) s ũ(x 1 , x ) = a N,s R κ R N -κ u(x 1 ) -u(y 1 ) ((x 1 -y 1 ) 2 + |x -y | 2 ) N 2 +s dy dy 1 = a N,s R κ R N -κ dy ((x 1 -y 1 ) 2 + |y | 2 ) N 2 +s (u(x 1 ) -u(y 1 )) dy 1 = a N,s R N -κ dz (1 + |z | 2 ) N 2 +s R κ u(x 1 ) -u(y 1 ) |x 1 -y 1 | κ+2s dy 1 = a N,s a κ,s S N -1-κ ∞ 0 r N -κ-1 dr (1 + r 2 ) N 2 +s (-∆) s R κ u(x 1 ). Since S N -1-κ = 2π N -1-κ 2 Γ( N -1-κ 2 ) ,
and (see e.g. [46, p. 103])

∞ 0 r N -κ-1 dr (1 + r 2 ) N 2 +s = 1 2 B N -κ 2 , κ 2 + s = 1 2 Γ( κ 2 + s)Γ( N -κ 2 ) Γ( N 2 + s)
, by Euler's formula, where B denotes beta function, we deduce that

a κ,s a N,s = S N -1-κ ∞ 0 r N -κ-1 dr (1 + r 2 ) N 2 +s
, which yields (3.47).

The next statement is a straightforward consequence.

Corollary 3.2 Assume that u(x) = u(x 1 , ...x N ) = N j=1 u j (x j ), then (-∆) s ũ(x) = N j=1 (-∆) s R u j (x j ).
(3.48)

Proof of Theorem F

By Theorem E there holds u(t, x) ≤ ct

-1+β
p-1 for some c * = c * (β, p) > 0, hence u satisfies

∂ t u + (-∆) s u + c(t, x) t u = 0, (3.49) 
where 0 ≤ c(t, x) = t β u p-1 (t, x) ≤ c p-1 * := C * . Let d s be the fractional parabolic pseudo-distance (i.e. the triangle inequality holds up to a multiplicative constant if s < 1 2 > -1. Hence γ(t) := γ(., t) L ∞ (B 1 (z)) ∈ L 1 (0, t 1 ). We write the equation satisfied by u in B 1 (z) × (0, t 1 ) in the form

) in R N × R, d s ((t, x), (s, y)) = |x -y| 2 + |t -s| 1 s . Lemma 3.3 If z ∈ S u ,
∂ t u + (-∆) s u + γ(t, x)u = 0, (3.51) 
and, as in the proof of Theorem A, we take for test function φ q , where q ≥ 2 and φ = φ B (z) is the first normalized eigenfunction of (-∆) s in H s 0 (φ B (z) ) for some 0 < < 1 . If λ is the corresponding eigenvalue, we obtain as in Proposition 2.2,

d dt e qλ t B (z)
uφ q dx + e qλ t γ(t)

B (z)
uφ q dx ≥ 0.

If we put X(t) = e qλ t B (z) uφ q dx, then X + γ(t)X ≥ 0 on (0, t 1 ), which implies that the function t → e t 0 γ(s)ds X(t) is increasing on (0, t 1 ). Hence

lim t→0 B (z) u(., t)φ q dx ≤ e qλ t 1 + t 1 0 γ(s)ds B (z)
u(., t 1 )φ q dx, which implies that z ∈ R u , contradiction.

Notice that the above lemma contains a result which is interesting in itself. The next result is an Harnack-type inequality valid for positive solutions of (1.26). For the mere fractional heat equation, two-sided Harnack inequalitis are proved in [START_REF] Bonforte | Quantitative local and global a priori estimates for fractional nonlinear diffusion equations[END_REF] and [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF]. Lemma 3.5 Let θ > 0 and w be a nonnegative solution of (1.26) 

w(t, x) ≥ 3t c 3 4 C * +1 R N w( t 4 , z)dz ( 3t 4 ) 1+ N 2s + |x -z| N +2s
.

Since w is a subsolution of the fractional diffusion equation,

w(s, y) ≤ R N H s (s -t 4 , y -z)w( t 4 , z)dz ≤ c 3 (s -t 4 ) R N w( t 4 , z)dz (s -t 4 ) 1+ N 2s + |y -z| N +2s . Hence w(s, y) ≤ c 2 3 4 C * +1 (s -t 4 ) 3t sup z∈R N ( 3t 4 ) 1+ N 2s + |x -z| N +2s (s -t 4 ) 1+ N 2s + |y -z| N +2s w(t, x) (3.54)
If we assume that |x -y| ≤ θt 1 2s for some θ > 0, we obtain the claim. End of the proof of Theorem F. By Lemma 3.3 there exists a sequence

{t n , x n } ⊂ Q ∞ converging to (0, z) such that u(s n , x n ) ≥ ns -N 2s n .
(3.55) By Lemma 3.5, there holds with t n = 2s n ,

u(t n , x) ≥ M nt -N 2s n ≥ cnH s (t n , x -x n ) ∀x ∈ R N s.t. |x -x n | ≤ θt 1 2s n . (3.56) 
for some c > 0 depending on M and θ. This implies |x-xn|≤θt

1 2s n u(t n , x)dx ≥ cn |x-xn|≤θt 1 2s n H s (t n , x -x n )dx ≥ c n. (3.57)
Then for any k ∈ (0, n) there exists k n ∈ (0, n) such that

ck n |x-xn|≤θt 1 2s n H s (t n , x -x n )dx = k. (3.58) Using (1.34) |x-xn|≤θt 1 2s n H s (t n , x -x n )dx = B θ Hs (y)dy, hence k n ≤ ck for some c > 0 independent of n. Set υ n (x) = ck n H s (t n , . -x n )χ B θt 1 2s n (xn) . Then u is bounded from below in (t n , ∞) × R N by the function u n which satisfies ∂ t u n + (-∆) s u n + t β u p n = 0 in (t n , ∞) × R N u n (t n , .) = υ n , (3.59) 
which in turn, satisfies

u n (t, x) ≤ H s [υ n ](t -t n , x) ≤ ck n H s (t, x -x n ) in (t n , ∞) × R N .
Since p < p * β , it is proved in [28, Th 1.1] that the set of functions {t β (ck n H s (., . -x n )) p } is uniformly integrable in Q ∞ , and this property is shared by the set {t β (u n ) p }. Because u n (t n , .) → kδ z it follows that u n → u kδz locally uniformly in Q ∞ , and u ≥ u kδz . Since k is arbitrary, the claim follows.

Proof of Theorem G (i)

When f (t, x, u) = t β g(u) := t β u p , conditions (1. [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF]) and (1.23) are fulfilled when p > 1 and p > β + 2 respectively. Condition 1 < p ≤ p * * β is not compatible with p > β + 2, and condition

p * * β < p < p * β necessitates β + 2 < 1 + 2s(1+β) N , equivalently β + 1 < 2s N .
Step 1. The case 1 < p < 1 + 2s(1+β) N +2s ). Let z ∈ S u . Since r → r p satisfies (1.15) there holds u ≥ u z,∞ by Theorem C. Since u z,∞ = U p,β by (1.29), we obtaind that u ≥ U p,β . If we assume that u ∈ L 1 loc (0, T ; L s (R N )) then u = U p,β by Theorem D.

Step 2. The case p = 1 + 2s(1+β) N +2s . We set u ∞ = u 0,∞ . From [28, Lemma 5.3] ,

u ∞ (t, x) ≥ c 7 t -N +2s 2s 1 + |t -1 2s x| N +2s ∀ (t, x) ∈ (0, 1) × R N , (3.60) 
where c 7 > 0. Since 

B 1 t -N +2s 2s dx 1 + |t -1 2s x| N +2s = t -1 1 0 r N -1 dr 1 + r N +2s , it follows from (3.60) that 1 0 B 1 (0) u ∞ (t, x)dxdt = +∞. ( 3 
u ∞ (t, x) ≥ u z,∞ (t, x) = u ∞ (t, x -z) ∀ z ∈ B |x| (0) (3.62)
Because u ∞ is radially symmetric and decreasing, it implies that

u ∞ (t, x) = u ∞ (t, x -z) ∀ z ∈ B |x| (0). (3.63)
By iterating this process we infer that u ∞ (t, x) is indeed independent of x and tends to ∞ when t → 0. It coincides therefore to the maximal solution U p,β of (1.21) with g(u) = u p . Henceforth we are lead to prove that S u∞ ∩ R N \ {0} = ∅. We proceed by contradiction in supposing that it does not hold, and let (x). We denote

x 0 ∈ S c u∞ ∩ R N \ {0}. Then lim sup t→0 u ∞ (t, x 0 ) < ∞ and
X 1 (t) = R N u ∞ (t, x)η(x)dx, Y 1 (t) = t β R N u p ∞ (t, x)η(x)dx, Z 1 (t) = R N u ∞ (t, x)(-∆) s η(x)dx,
and there holds

X 1 (t) + Z 1 (t) + Y 1 (t) = 0 on (0, 1]. (3.65)
Since u ∞ is bounded in (0, 1] × B 2 (x) by (3.64), X 1 (t) and Y 1 (t) remains bounded on (0, 1].

Z 1 (t) = B 1 u ∞ (t, x)(-∆) s η(x)dx + B c 1 u ∞ (t, x)(-∆) s η(x)dx := Z 1,1 (t) + Z 1,2 (t).
Since η has its support in B 1 (x), there exists c 8 > 0 such that

(-∆) s η(x) ≤ -c 8 ∀ x ∈ B 1 (0).
Using (3.61) we obtain that

1 0 Z 1,1 (s)ds = -∞.
Using (2.17) in Lemma 2.5, we have (3.66)

|Z 1,2 (t)| ≤ c 5 η C 2 B c 1 u ∞ (t, x)dx 1 + |x| N +2s ≤ c 9 ∞ 1 r N -1 dr 1 + r N +2s .
Using again the fact that x → u ∞ (t, x) is radial and decreasing with respect to |x|, we get lim sup

t→0 Bρ(z) u ∞ (t, x)dx = ∞ ∀ ρ > 0. (3.67) By Theorem C, we infer that u ∞ (t, x) ≥ u z,∞ (t, x) = u ∞ (t, x -z).
Interchanging 0 and z we conclude again that u ∞ (t, x) depends only on t, hence it coincides with U β,p (t), and clearly S u∞ = R N .

Proof of Theorem G (ii)

We assume that κ ≥ 1 and

L = {0 R κ } × R N -κ . We set x = (x 1 , x ) ∈ R κ × R N -κ . We use Theorem G (i) with N replace by N -κ to prove the part (ii). If x = (x 1 , x ), then x = (0, x ) ∈ L, hence by [28, Th 1.3 (ii)] u ∞ (t, x -x) ≥ c 10 t -N +2s 2s 1 + (t -1 2s |x -x|) N +2s = c 10 t -N +2s 2s 1 + (t -1 2s |x 1 |) N +2s
.

By Theorem C, we obtain

u(t, x) ≥ c 10 t -N +2s 2s 1 + (t -1 2s |x 1 |) N +2s ∀ (t, x) := (t, x 1 , x ) ∈ R * + × R κ × R N -κ . (3.68) For n ∈ N * , set t n = n -2s , ρ 0 = R N -κ dy 1+|y | N +2s , λ 0 = ρ 1 p-1 0 and f n (x 1 ) = c 10 λ 0 (ρ 0 t n ) -1+β p-1 1 + (ρ 0 t n ) -1 2s |x 1 | N +2s . Then R κ f n (x 1 )dx 1 = c κ t κ 2s -1+β p-1 n ∞ 0 r κ-1 dr 1 + r N +2s
for some c κ > 0. Since p < 1 + 2s(1+β) κ the above integral is finite for any n but tends to ∞ with n. Hence we fix m > 0, then for any n ∈ N * there exists n,m > 0 such that

|x 1 |≤ n,m f n (x 1 )dx 1 = m = c κ t κ 2s -1+β p-1 n n,mt -N +2s 2s n 0 r κ-1 dr 1 + r N +2s . Hence n,m → 0 when n → ∞. This implies that for any ζ ∈ C ∞ 0 (R κ ), lim n→∞ |x 1 |≤ n,m f n (x 1 )dx 1 = mζ(0).
Equivalently f n,m := f n χ B n,m → mδ 0 in the sense of measures in R κ . Let w n,m be the solution of

∂ t u + (-∆) s R κ u + t β u p = 0 in R * + × R κ u(0, •) = f n,m in R κ , (3.69) 
in which formula (-∆) s R κ denotes the fractional Laplacian in R κ , an index omitted if κ = N . Then wn,m (t, x 1 , x ) = w n,m (t, x 1 ) is a solution of

∂ t u + (-∆) s u + t β u p = 0 in R * + × R N u(0, •) = fn,m in R N , (3.70) with fn,m (x 1 , x ) = f n,m (x 1 ). Since u(t n , x) ≥ fn (x) in R N , we obtain by the comparison principle that u(t + t n , x) ≥ wn,m (t, x) in R * + × R N . Hence, by letting successively n → ∞ and m → ∞, u(t + t n , x 1 , x ) ≥ w n,m (t, x 1 ) =⇒ u(t, x 1 , x ) ≥ u κ mδ 0 (t, x 1 ) =⇒ u(t, x 1 , x ) ≥ u κ ∞ (t, x 1 ), (3.71)
where we have denoted by u κ mδ 0 and u κ ∞ respectively the solution of the equation in (3.69) with mδ 0 as initial data and the limit of this solution when m → ∞. Since 1 < p ≤ 1 + 2s κ+2s , u κ ∞ = U p,β by (i), which ends the proof.

Remark. It appears interesting to investigate whether the fact that the singular set S u contains a (N -κ)-dimensional plane can be replaced by S u contains a (N -κ)-dimensional submanifold.

4 Solution with a given initial trace: the general case 

b (R N ) of bounded Radon measures on R N . Conversely, if ν ∈ M b (R N ) vanishes on S = R N \ R its restriction to R belongs to M b (R). Definition 4.1 A nonnegative bounded Radon measure ν in R N is an admissible measure if there exists a function u = u ν ∈ L 1 (Q T ) with t β u p ∈ L 1 (Q T ) solution of ∂ t u + (-∆) s u + t β u p = 0 in Q ∞ u(0, .) = ν. (4.1)
It is a good measure if the sequence u νn of solutions of (4.1) with initial data ν n = ν * ρ n , where {ρ n } is a sequence of mollifiers, converges to u ν in L 1 (Q T ) and if t β u p νn converges to

t β u p ∈ L 1 (Q T ).
Uniqueness of solutions is proved in [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF] as a result of the choice of Y s,T as space of test functions. Notice also that if p < p * β any nonnegative bounded measure is good. The following result will be useful in the sequel. + (R N ) are good measures (resp. admissible measures), then ν + µ is a good measure (resp. admissible measure).

Proof. We set ν n = ν * ρ n and µ n = µ * ρ n and denote by u νn , u µn and u νn+µn the solutions of the initial value problem (4.1) with ν replaced by ν n , µ n and ν n + µ n respectively. Since p > 1, u νn + u µn is a supersolution of (1.26). Hence u νn+µn ≤ u νn + u µn . When n → ∞, u νn+µn converges a.e. to some function u (see [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF]). Since u νn and u µn converges in L 1 (Q T ), the sequence u νn+µn is uniformly integrable in Q T , it converges to some w (up to extraction of a subsequence). Furthermore,

(u νn+µn ) p ≤ (u νn + u µn ) p ≤ 2 p-1 u p νn + u p µn .
Since t β u p νn and t β u p µn converges in L 1 (Q T ) to t β u p ν and t β u p µ respectively, they are uniformly integrable. Hence the sequence {t β (u νn+µn ) p } is uniformly integrable in Q T and thus, up to extraction of a second subsequence, t β (u νn+µn ) p converges to t β w p in L 1 (Q T ). Going to the limit in the formulation (2.21) of the fact u νn+µn is a weak solution of (4.1) with initial data ν n + µ n , it follows that w satisfies the same equation (4.1) but now with initial data µ + ν. By uniqueness (see [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF]Th 1.1] and notice that therein uniqueness needs no more condition on h than monotonicity), w = u ν+µ and the whole sequence {u νn+µn } converges to u ν+µ . The proof in the case of admissible measures is similar.

Proposition 4.2 Let p > 1 and β > -1. If {ν k } ⊂ M b + (R N ) is a nondecreasing sequence of admissible measures converging to ν ∈ M b + (R N ), then ν is an admissible measure. For 1 ≤ r < ∞, the Bessel capacity cap R N γ,r of a compact set is cap R N γ,r (K) = inf{ J γ [ζ] r L r (R N ) : ζ ∈ ω K }, (4.4) 
where ω K is the subset of nonnegative function belonging to the Schwartz space S(R N ) , with value larger or equal to 1 on K. Furthermore (-∆ + I)

γ 2 φ = ζ ⇐⇒ J γ [ζ] = φ. (4.5) 
If a linear m-accretive operator A in L r (R N ) with domain D(A) is the infinitesimal generator of an analytic semigroup of bounded linear operators S A (t), i.e.

u(t) = S -A t υ ∀t ≥ 0 ⇐⇒ du dt + Au = 0 on R * + , u(0) = υ, (4.6) 
the real interpolation classes between D(A) and L r (R N ) can be obtained (see [49, p. 96]) by

D(A), L r (R N ) θ,r = υ ∈ L r (R N ) : 1 0 R N t (1-θ)r |AS A t υ| r dx dt t < +∞ , (4.7) 
and

υ [D(A),L r ] θ,r ≡ υ L r + 1 0 t 1-θ AS A t υ r L r dt t 1 r . (4.8) 
If A = (-∆) s +I, its domain D(A) in L r (R N ) is the Bessel potential space (I -∆) -s (L r (R N )) = L 2s,r (R N ): the result is stated in [34, Th 1] but it is an easy consequence of [47, Chap. 4, Th 3] applied to the Fourier multipliers (I + |ξ| 2 ) s (1 + |ξ| 2s ) -1 and (I + |ξ| 2 ) -s (1 + |ξ| 2s ). By classical interpolation properties of Bessel potential spaces (see e.g. [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]),

D(A), L r (R N ) θ,r = L 2θs,r (R N ) = (I -∆) -θs (L r (R N )). (4.9) 
Since A is coercive, [49, Sec. 1.14.5], (4.8) can be replaced by

υ [D(A),L r ] θ,r ≡ 1 0 t 1-θ AS A t υ r L r dt t 1 r . (4.10) Proposition 4.5 Let N ≥ 1, p > 1 and -1 < β < p -1. If problem (4.1) admits a positive solution u ν for some ν ∈ M + b (R N ), then ν vanishes on Borel subsets of R N with zero Bessel capacity cap R N 2s(1+β) p ,p
where p = p p-1 , i.e.

∀K ⊂ R N , K Borel, cap R N 2s(1+β) p ,p (K) = 0 =⇒ ν(K) = 0. ( 4.11) 
Proof. Assume that u := u ν is the solution of (4.1). Since cap

R N 2s(1+β) p ,p is a Choquet capacity, let K ⊂ R N is compact and ζ ∈ S(R N ) be such that 0 ≤ ζ in R N and ζ ≥ 1 on K. We set Φ = e -t H s [ζ]
and take Φ p as a test function. Then

R N uΦ p (1, .)dx + 1 0 R N -∂ t Φ p + (-∆) s Φ p u + t β u p Φ p dxdt = R N Φ p dν. (4.12) 
Note that (-∆) s Φ p ≥ p Φ p -1 (-∆) s Φ and ∂ t Φ + (-∆) s Φ + Φ = 0, hence

-∂ t Φ p + (-∆) s Φ p ≥ 2p Φ p -1 (-∆) s Φ.
Then we adapt the duality argument of [START_REF] Baras | Problèmes paraboliques semilinéaires avec données mesures[END_REF] and get from Hölder's inequality

R N uΦ p (1, x)dx + 2p 1 0 R N t -p β p |(-∆) s Φ + Φ| p dxdt 1 p 1 0 R N t β u p Φ p dxdt 1 p + 1 0 R N t β u p Φ p dxdt ≥ ν(K).
Applying (4.7), (4.9) with r = p , θ = 1+β p , we obtain directly for some c 11 > 1,

1 c 11 ζ L 2s(1+β) p ,p ≤ 1 0 R N t -p β p |(-∆) s Φ + Φ| p dxdt 1 p ≤ c 11 ζ L 2s (1+β) p ,p . (4.13) 
If cap R N 2s (1+β) p ,p (K) 
= 0, there exists a sequence [START_REF] Adams | The equivalence of two definitions of capacities[END_REF]). Hence, up to a subsequence,

{ζ n } ⊂ ω K such that ζ n L 2s(1+β) p ,p → 0 as n → ∞. Furthermore it is possible to assume ζ n ≤ 1 in R N (see
ζ n → 0 a.e. in R N . This implies Φ n ≤ 1 and Φ n → 0 a.e. in Q ∞ . Therefore, lim n→∞ R N uΦ p n (1, x)dx and lim n→∞ 1 0 R N t β u p Φ p n dxdt = 0.
Combining the previous inequalities we infer that ν(K) = 0.

Proposition 4.5 is the necessary condition in Theorem H. The next result provides the sufficient condition.

Proposition 4.6 Let N ≥ 1, p > 1, -1 < β < p -1 and ν ∈ M + b (R N ) which vanishes on Borel subsets of R N with zero cap R N 2s(1+β) p ,p
-Bessel capacity. Then ν is an admissible measure.

Proof. If ν vanishes Borel subsets with zero cap

R N 2s(1+β) p ,p
, there exists an increasing sequence

of nonnegative measures {ν n } ⊂ L 2s(1+β) p-1 ,p (R N ) = L - 2s (1+β) 
p-1 ,p (R N ) such that ν n → ν in the sense of measures. This results is classical in the integer case and a proof in the Bessel case (similar in fact) can be found in [START_REF] Véron | Elliptic Equations Involving Measures[END_REF]Prop. 3.6].

Next let ζ ∈ S(R N ) and Φ = e -t H s [ζ], then R N ΦH s [ν n ](1, x)dx + 1 0 R N H s [ν n ] (2(-∆) s Φ + Φ) dxdt = R N ζdν n . Hence 1 0 R N H s [ν n ] ((-∆) s Φ + Φ) dxdt ≤ ν n L - 2s(1+β) p-1 ,p ζ L 2s(1+β) p-1 ,p .
Consider the mapping

ζ → L(ζ) = 1 0 R N t β p H s [ν n ]t -β p ((-∆) s Φ + δΦ) dxdt.
It satisfies

|L(ζ)| ≤ ν n L - 2s(1+β) p-1 ,p ζ L 2s(1+β) p-1 ,p ≤ c ν n L - 2s(1+β) p-1 ,p 1 0 R N t -p β p |(-∆) s Φ + δΦ| p dxdt 1 p , (4.14) 
by (4.13). Hence t

β p H s [ν n ] ∈ L p (Q 1 ) and 1 0 R N t β (H s [ν n ]) p dxdt 1 p ≤ c 12 ν n L - 2s (1+β) p-1 ,p . (4.15) 
Hence the ν n are good measures by Lemma 4.3. Then by Proposition 4.2, ν is an admissible measure.

Remark. When s = 1 and β = 0, it is proved in [START_REF] Baras | Problèmes paraboliques semilinéaires avec données mesures[END_REF] that the admissibility condition for measures is strongly linked to the removability for Borel sets in the sense that if (1.14) in Q ∞ which vanishes on (0, x) for any x ∈ R N \ K is identically zero. The set K is said removable. Furthermore, the condition is also necessary. Now, for equation (1.14) (K) = 0 implies the removability of the compact set K for equation (1.26) in the sense given above.

K ⊂ R N is a Borel set with zero cap R N 2 p ,p -capacity, any u ∈ C(Q ∞ \ {(0, K)}) ∩ C 1,2 (Q ∞ ) solution of

Barrier function for N = 1

We set

W (z) =      ln(e + z 2 ) 1 + z 1+2s if z ≥ 0 1 if z < 0, (4.16) 
where e is Neper constant, and . Then there exists λ 0 > 0 such that for λ ≥ λ 0 , the function w λ := λw satisfies

w(t, x) = t -1+β p-1 W (t -1 2s x), ∀ (t, x) ∈ R * + × R. ( 4 
∂ t w λ + (-∆) s R w λ + t β w p λ ≥ 0 in R * + × R lim t→0 w(t, x) = 0 if x > 0 lim t→0 w(t, x) = ∞ if x ≤ 0. (4.19)
Proof. Clearly the assertions concerning the limit of w(t, x) when t → 0 are satisfied since 1+2s 2s -1+β p-1 > 0 by assumption. Then

∂ t w λ (t, x) = - λ(1 + β) p -1 t -1+β p-1 -1 w(z) - λ 2s t -1+β p-1 -1 w (z)z, with z = t -1 2s x and (-∆) s 1 w λ (t, x) = λt -1+β p-1 -1 (-∆) s 1 w(z). Hence ∂ t w λ (t, x) + (-∆) s R w λ (t, x) + t β w p λ (t, x) = λt -1+β p-1 -1 (-∆) s R w(z) - 1 2s w (z)z - 1 + β p -1 w(z) + λ p-1 w p (z) . (4.20) 
If z > 0, we obtain that

- 1 2s w (z)z - 1 + β p -1 w(z) = 1 + 2s 2s z 1+2s 1 + z 1+2s - 1 + β p -1 - z 2 (e + z 2 ) -1
s ln(e + z 2 ) w(z).

Since 1+2s 2s > 1+β p-1 , lim z→∞ z 1+2s 1+z 1+2s = 1 and lim z→∞ 1 ln(e+z 2 ) = 0, then there exist R 0 > 0 and σ 0 > 0 such that -

1 2s w (z)z - 1 + β p -1 w(z) ≥ σ 0 w(z) ∀ z ≥ R 0 . (4.21) 
Next we deal with (-∆) s R w(z) and put

w(z) = ln(e + z 2 ) 1 + |z| 1+2s ∀ z ∈ R, so that (-∆) s R w(z) = (-∆) s R w(z) + (-∆) s 1 (1 -wχ R -)(z)
. For z > 2, using the equivalent definition of fractional Laplacian, we have that

-(-∆) s R w(z) = a 1,s 2 ∞ -∞ ln(e+|z+ỹ| 2 ) 1+|z+ỹ| 1+2s + ln(e+|z-ỹ| 2 ) 1+|z-ỹ| 1+2s -2 ln(e+z 2 ) 1+z 1+2s |ỹ| 1+2s dỹ = a 1,s w(z) 2z 2s ∞ -∞ I z (y) |y| 1+2s dy, (4.22) 
where

I z (y) = 1 + z N +2s 1 + z 1+2s |1 + y| 1+2s ln(e + z 2 |1 + y| 2 ) ln(e + z 2 ) + 1 + z 1+2s 1 + z 1+2s |1 -y| 1+2s ln(e + z 2 |1 -y| 2 )
ln(e + z 2 ) -2.

Step 1: There exists c 12 > 0 such that I z (y) y N +2s dy 1 ≤ c 16 w(z)z .

Step 2: There exists c 17 > 0 such that 

(-∆) s R w(z) ≥ - c 23 1 + z 1+2s ∀ z ≥ 2.
Since 1 -wχ R -= 1 in R + and 1 -wχ R -≤ 1 in R -, we have also

(-∆) s R (1 -wχ R -)(z) ≥ 0 ∀ z > 0.
Therefore, we obtain that

(-∆) s R w(z) ≥ - c 23 1 + z 1+2s ∀ z ≥ 2. (4.26)
Combining (4.21) and (4.26), we infer that there exists

R 1 ≥ R 0 + 2 such that for z > R 1 , (-∆) s R w(z) - 1 2s w (z)z - 1 + β p -1 w(z) ≥ σ 0 w(z) - c 23 1 + z 1+2s = w(z) σ 0 - c 23 ln(e + z 2 ) ≥ 0.
For z ≤ R 1 , there exists c 24 > 0 such that

(-∆) s R w(z) - 1 2s w (z)z - 1 + β p -1 w(z) ≥ -c 24 ,
and there exists c 25 > 0 dependent of R 1 such that

w(z) ≥ c 25 .
Therefore, one can find Λ 0 > 0 such that for λ ≥ Λ 0 ,

(-∆) w R (z) - 1 2s w (z)z - 1 + β p -1 w(z) + λ p-1 w p (z) ≥ 0 ∀ z ∈ R, (4.27) 
which, together with (4.20), implies that (4.19) holds true. This ends the proof. Furthermore, the mapping R → u ∞,B R is increasing.

Proof. By scaling we can assume that R = 1 and we fix λ ≥ λ 0 . We denote by e 1 the point with coordinates (1, 0, ..., 0) in R N . The function

(t, x) → w e 1 (t, x 1 , x ) = λt -1+β p-1 W (t -1 2s (x 1 -1)), (4.29) 
is a super solution of (1.26) in Q ∞ , which satisfies For k ∈ N * , let u kχ B 1 be the solution of

(i) lim t→0 w e 1 (t, x 1 , x ) = ∞ uniformly in (-∞, 1] × R N -1 , (ii) lim t→0 w e 1 (t, x) = 0 uniformly in [1 + , ∞) × R N -1 .
∂ t u + (-∆) s u + t β u p = 0 in Q ∞ u(0, .) = kχ B 1 in R N . (4.32) 
Then the sequence

{u kχ B 1 } k is increasing. For any a ∈ ∂B 1 , u kχ B 1 ≤ w a , the following limit exists, u ∞,B 1 = lim k→∞ u kχ B 1 ,
and there holds u

∞,B 1 ≤ inf {w a : a ∈ ∂B 1 } .
This solution u is clearly minimal by construction and the monotonicity of the mapping R → u ∞,B R follows.

Remark. In the previous result, the ball B R can be replaced by any closed convex set with a non-empty interior. If a ∈ ∂K, let H a be an affine separation hyperplane, with outer normal vector n a and

H + a = {x ∈ R N : x -a, n a > 0} and H - a = {x ∈ R N : x -a, n a < 0}.
The supersolutions w a are expressed by

(t, x) → w a (t, x) = λt -1+β p-1 W (t -1 2s x -a, n a )
and have initial trace (0, H a ). Then we construct the minimal solution u = u ∞,K of (1.26) with initial trace (0, K) such that

(i) lim t→0 u(t, x) = ∞ uniformly in K, (ii) lim t→0 u(t, x) = 0 uniformly in {x ∈ K c : dist (x, K) ≥ } ∀ > 0. (4.33)
Furthermore, the mapping K → u ∞,K is nondecreasing.

Proposition 4.8 Assume that N ≥ 1 and p > 1 + 2s(1+β) 1+2s . Then for any closed set S such that int(S) = S there exists a positive function u = u ∞,S minimal among the solutions of (1.26) in Q ∞ which satisfy

(i) lim t→0 u(t, x) = ∞ locally uniformly in S, (ii) lim t→0 u(t, x) = 0 locally uniformly in {x ∈ S c : dist (x, S) ≥ } ∀ > 0. (4.34) In particular T r(u ∞,S ) = (S, 0). Furthermore, u S,∞ (t, x) ≤ c 9 t -1+β p-1 ln e + t -1 s (dist (x, S)) 2 1 + t -1+2s 2s (dist (x, S)) 1+2s ∀ (t, x) ∈ Q ∞ . (4.35) 
Proof. We first assume that S is compact, hence precompact, and for any δ > 0 there exists a finite number of points ξ j ∈ S, 1 ≤ j ≤ n δ such that

S ⊂ n δ j=I B δ (ξ j ) := S δ .
Clearly the mapping δ → n δ is nondecreasing, furthermore we can choose the points ξ j such that δ → S δ is decreasing for the order relation of inclusion between sets. Since p > 1, the function It is a positive solution of (1.26) in Q ∞ which tends to infinity on S, by construction, and satisfies u ∞,S ≤ w S δ . This implies in particular that for any > 0, lim t→0 u ∞,S (t, x) = 0 uniformly in {x ∈ S c δ : dist (x, S δ ) ≥ } .

w S δ := n δ j=1 u ∞,B δ (ξ j ) , ( 4 
Since this holds for any δ, > 0, the second assertion in (4.34) follows.

If S is unbounded, for any ρ > 0 large enough, S ρ := S ∩ B ρ is a nonempty compact set and S ρ = int(S ρ ). Hence there exists a solution u ∞,S ρ of (1.26) in Q ∞ with initial trace (0, S ρ ). By construction ρ → u ∞,S ρ is nondecreasing and converges to a nonnegative solution u ∞,S of (1.26) in Q ∞ . Let a = (a 1 , ..., a N ) ∈ S c and τ > 0 such that

Q τ a = {x = (x 1 , ..., x N ) : |x j -a j | ≤ τ } ⊂ S c .
We put

W j (t, x j ) = λt -1+β p-1 W (t -1 2s (x j -a j + τ ) + W (t -1 2s (a j + τ -x j ) with λ ≥ λ 0 , then W j is a supersolution of (1.26) in R + × R and it satisfies (i) lim t→0 W j (t, x) = 0 locally uniformly in (a j -τ, a j + τ ), (ii) lim t→0 W j (t, x) = ∞ uniformly in (-∞, a j -τ ] [a j + τ, ∞). Hence W Q τ a (t, x) = j W j (t, x) is a supersolution of (1.26) in Q ∞ and it satisfies (i) lim t→0 W Q τ a (t, x) = 0 locally uniformly in Q τ a , (ii) lim t→0 W Q τ a (t, x) = ∞ uniformly in R N \ Q τ a . By construction u ∞,S ρ ≤ W Q τ a which implies u ∞,S ≤ W Q τ a .
Hence u ∞,S satisfies (4.34). The estimate from above can be made more precise (it does not depend from the fact that S = int S) using (4.16) since

W Q τ a (a) ≤ 2N λt -1+β p-1 ln e + t -1 s τ 2 1 + t -1+2s 2s τ 1+2s . ( 4 

.38)

If we take τ = dist (a,S)

√ N

, we obtain (4.35). Furthermore u ∞,S is clearly minimal as the limit of an increasing sequence of solutions with bounded initial data having compact support.

Proof of Theorem I

If K ⊂ R is compact, then ν K = χ K ν ∈ M b + (R)
; we extend it by zero and still denote by ν K ∈ M b (R N ) its extension. For ρ > 0, S ρ := S ∩ B ρ and for ∈ N * , χ Sρ dx is a good measure. Since ν K is a good measure, ν K + χ Sρ dx is a good measure by Proposition 4.1. Then there exists a solution u := u ν K + χ Sρ dx of (4.1) in Q ∞ with initial data ν K + χ Sρ dx and it satisfies

sup u ν K , u χ Sρ dx ≤ u ν K + χ Sρ dx ≤ u ν K + u χ Sρ dx ≤ u ν K + u ∞,S . (4.39) 
for all k ∈ N * by Leibnitz formula, it follows by interpolation that 

Θφ L 2s(1+β) p ,p ≤ c(s, p) φ L 2s(1+β) p ,p ∀ φ ∈ C ∞ 0 (R N ). (4.44) If T ∈ C ∞ (R + ) satisfies sup t>0 |t j-1 T (j)(t)| ≤ L < ∞, ∀ j = 0,
K) = 0, there exists a sequence {ζ n } ⊂ C 0 (B 2R ) such that 0 ≤ ζ n ≤ 1, ζ n = 1 on K and ζ n L 2s(1+β) p ,p → 0 as n → ∞. We set Φ n = e -δt H s [ζ n ] ( 
and take Φ p n for test function. Then for any > 0 we have

R N (uΦ p n )(1, x)dx + 2p 1 R N t -p β p |(-∆) s Φ n + δΦ n | p dxdt 1 p 1 R N t β u p Φ p n dxdt 1 p + 1 R N t β u p Φ p n dxdt ≥ B 2R (uΦ p n )( , x)dx.
When → 0, the right-hand side of the above inequality converges to (Note that the assumption β < p-1 is crucial). Hence lim n→∞ lim →0 I ,n = 0, always by the dominated convergence theorem. This implies that ν(K) = 0.

The subcritical case

For equation (1.26), the subcritical case corresponds to the fact that u ∞ (t, x) = V (t, x) = t

-1+β p-1 v(t -1 2s x) ∀ (t, x) ∈ Q ∞ ,
where v is the minimal positive solution of (1.31). for some c 10 > 0.

Proof of Theorem J

Proof. By Theorem C, for any x 0 ∈ S,

u(t, x) ≥ u ∞ (t, x -x 0 ) = t -1+β p-1 v(t -1 2s (x -x 0 )) ∀ (t, x) ∈ Q ∞ ,
which implies that u(t, x) ≥ t

-1+β p-1 sup x 0 ∈S v(t -1 2s (x -x 0 )) ∀ (t, x) ∈ Q ∞ . (5.2)
The maximum of V is achieved at 0, hence, for any x ∈ S, u(t, x) ≥ t

-1+β p-1 V (0) = c 11 t -1+β
p-1 .

(5.3)

6 Appendix: symmetry and monotonicity results

The following is a variant of the maximum principle which will be used in the sequel. Then ∂ t ψ(t 0 , x 0 ) ≤ 0 and (-∆) s ψ(t 0 , x 0 ) < 0. Since h ≥ 0 in Q and (t 0 , x 0 ) ∈ Q, there holds ∂ t ψ(t 0 , x 0 ) + (-∆) s ψ(t 0 , x 0 ) + h(t 0 , x 0 )ψ(t 0 , x 0 ) < 0, which is a contradiction. Thus, ψ is nonnegative in [δ, T -] × B R . Since is arbitrary, the result follows. Notice that we can take R = ∞ in the above proof provided Q is a bounded domain.

Next we prove the following result.

Proposition 6.1 Let N ≥ 1, β > -1, p > 1 and g ∈ C(R N ) be a nonnegative continuous radially symmetric and nonincreasing function which tends to 0 when |x| → ∞. If u ∈ L 1 loc (0, ∞; L s (R N ) ∩ C(Q ∞ ) is a nonnegative solution of (1.26) in Q ∞ which converges to g uniformly when t → 0, then u is radially symmetric and nonincreasing.

Proof. Since u ∈ L 1 loc 0, ∞; L s (R N ) ∩C(Q ∞ ), it is bounded from above by H s [g] and uniqueness holds as for the linear equation [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF]. Since the initial data is radially symmetric and the equation is invariant by rotations in R N , u(t, .) is also radially symmetric. Because of uniqueness and stability, it is sufficient to prove the result for a function u which initial data is obtained from the previous one by multiplying it by a smooth, even, nonincreasing and nonnegative function with compact support. The corresponding solution of (1.26) Next we use a moving plane method (see [START_REF] De Pablo | A general fractional porous medium equation[END_REF] for other applications). For λ ∈ R, we set We claim that for any λ > 0, u(t, x) ≥ u(t, x λ ) ∀ (t, x) ∈ R * + × Σ λ . (6.5)

x λ = (2λ -x 1 , x ) if x = (x 1 , x ) ∈ R N , Σ λ = {x = (x 1 , x ) ∈ R N | x 1 < λ} (6.
Set ϕ(t, x) = u(t, x) -u(t, x λ ) and suppose that (6.5) does not hold. Because of (6.2) there holds lim |x|→∞ ϕ(t, x) = 0 uniformly with respect to t ≥ 0, lim t→∞ ϕ(t, x) = 0 uniformly with respect to x ∈ R N and lim t→0 ϕ(t, x) = g(x) -g(x λ ) ≥ 0 uniformly with respect to x ∈ R N . It follows that there exists ε 0 > 0 and (t 0 , x 0 ) ∈ R * + × Σ λ such that ϕ(t 0 , x 0 ) = min (t,x)∈Σ λ ϕ(t, x) = -ε 0 < 0. (

The function φ satisfies

∂ t φ + (-∆) s φ + h(t, x)φ = 0 in Q ∞ , (6.7) 
for some h(t, x) ≥ 0, and it has initial data φ(0, x) = g(x) -g(x λ ) in R N . Take ∈ (0, 0 ) and set φ = φ + . Using (6.2) we see that there exists T 0 > t 0 > 0 and R 0 > |x 0 | > 0 such that φ (t, x) ≥ 0 for (t, x) ∈ [T, ∞) × R N ([0, ∞) × B c R ), for all T ≥ T 0 and R ≥ R 0 . Furthermore there exists δ 0 ∈ (0, t 0 ) such that for any δ ∈ (0, δ 0 ) such that φ (t, x) ≥ 0 for (t, x) ∈ [0, δ) × R N ∩ Σ λ . We set

Q = Σ λ ∩ (δ, T 0 ) × B R 0 .
We apply Lemma 6.1 in [ δ 2 , T ) × B R and conclude that φ ≥ 0 in [ δ 2 , T ) × B R , which contradicts the fact that φ (t 0 , x 0 ) = -0 < 0. Hence (6.5) holds. Since λ > 0 is arbitrary, this implies in particular by continuity that ∂u ∂x 1 (t, x 1 , x ) ≤ 0 ∀ (t, x 1 , x ) ∈ R + × R + × R N -1 . (6.8)

Similarly, we can get that ∂u ∂x 1 (t, x 1 , x ) ≥ 0 ∀ (t, x 1 , x ) ∈ R + × R -× R N -1 . (6.9)

Since u(t, x) is radially symmetric with respect to x, it implies that u(t, x) ≥ u(t, x ) if |x| ≤ |x |, which ends the proof.

  ) for any ξ ∈ C 2 0 (Q T ) satisfying the assumptions (i)-(ii) in [28, Def. 1.1]. Furthermore,

Corollary 3 . 4

 34 If γ is a measurable function in R N × (0, T ) such that for any compact set K ⊂ R N the function γK (t) := ess sup x∈K |γ(t, x)| is integrable on (0, T ), then any nonnegative function u ∈ L 1 loc (0, T ; L s (R N ) satisfying (3.51) admits an initial trace ν which is a nonegative Radon measure in R N .

sup 0<t≤1 u

 0<t≤1 ∞ (t, x) ≤ sup 0<t≤1 u ∞ (t, x 0 ) := M < ∞ uniformly with respect to x in B c |x 0 | (0). (3.64) By rescaling we can assume that |x 0 | = 1. Let x ∈ B c 3 and η ∈ C 2 0 (B 1 (x)) such that η ≥ 0 and η = 1 on B 1 2

Hence

  

1 0Z 1

 11 (s)ds = -∞. Integrating (3.65) it contradicts the boundedness of X 1 and Y 1 . Hence, for any z ∈ R N , lim sup t→0 u ∞ (t, z) = ∞.

4. 1

 1 Problem with initial data measure If ν is a bounded Radon measure on an open set R ⊂ R N , that we note ν ∈ M b (R)), we extend it by 0 in S = R N \ R and the new measure still denoted by ν, belongs to the space M

Proposition 4 . 1

 41 Let p > 1 and β > -1. If ν, µ ∈ M b

  where c 14 , c 15 > 0, and the last inequality holds since w(z)z → 0 as z → +∞. Similarly,

2 I

 2 z (y) |y| 1+2s dy ≤ c 17 . (4.24) Indeed, since function I z is C 2 in [-1 2 , 1 2 ] and satisfies I z (0) = 0 and I z (y) = I z (-y), then I z (0) = 0 and there exists c 18 > 0 such that |I z (y)| ≤ c 18 for any y ∈ [-

2 I 2 ) ∪ ( 3 2 ,

 222 z (y) |y| 1+2s dy ≤ c 19 .Step 3: There exists c 20 > 0 such thatA I z (y) |y| 1+2s dy ≤ c 20 ,(4.25)where A = (-∞, -3 +∞). In fact, for y ∈ A, we observe that there exists c 21 > 0 such that I z (y) ≤ c 21 and A I z (y) |y| 1+2s dy ≤ 2

+∞

  

3 2 c

 32 21 |y| 1+2s dy ≤ c 22 for some c 22 > 0. Consequently, by (4.22)-(4.25), there exists c 23 > 0 such that

4. 3 Lemma 4 . 7

 347 Solutions with initial trace (S, 0) Assume that N ≥ 1 and p > 1 + 2s(1+β) 1+2s . Then for any R > 0 there exists a positive function u = u ∞,B R minimal among the solutions of (1.26) in Q ∞ , which satisfylim t→0 u(t, x) = ∞ uniformly in B R

(4. 30 )

 30 Since equation(1.26) is invariant under rotations and translations, for any a ∈ ∂B 1 there exists a rotation R a with center 0 such that R a (a) = e 1 . Therefore, the function (t, x) → w a (t, x) := w e 1 (t, R a (x)) is a solution of(1.26) in Q ∞ and it satisfies (i) lim t→0 w a (t, x) = ∞ uniformly in {x ∈ R N : x, a ≤ 1}, (ii) lim t→0 w e 1 (t, x) = 0 uniformly in {x ∈ R N : x, a ≥ 1 + ge}.

1 R N t β u p Φ p n dxdt = 1 Bt β u p Φ p n dxdt + 1 B c 2Rtr N - 1 ( 1 + 1 t

 111c111 dν ≥ ν(K). Furthermore, we have thatlim n→∞ R N (uΦ p n )(1, x)dx = 0,by the dominated convergence theorem since u ≤ U p,β and Φ p n (1, x) → 0 for all x ∈ R N , andlim -∆) s Φ n + δΦ n | p dxdt = 0,as in the proof of Proposition ??. For the last term, we have 2R β u p Φ p n dxdt := I ,n + J ,n .By assumption t β u p ∈ L 1 ((0, 1) × B 2R ), then lim n→∞ lim →0 I ,n = 0 by the dominated convergence theorem. Finally, since u ≤ U p,β by Theorem H and H s (t, x) ≤ ct t 1+ N 2s + |x| N +2s by (1.35), we obtain with various c > 0 independent of R J ,n ≤ c r N +2s ) p ≤ cR N -2sp (1-p )β dt ≤ c R N -2sp (p -1)β-1 .

Proposition 5 . 1

 51 Assume that 1 + 2s(1+β) N +2s < p < 1 + 2s(1+β) N and u is a nonnegative solution of(1.32) where S = ∅. Then u(t, x) ≥ c 10 t-1+β p-1 1 + (t -1 2s d(x, S)) N +2s ∀ (t, x) ∈ Q ∞ .(5.1)

Lemma 6 . 1 . 1 )

 611 Let R, T > 0, δ ∈ [0, T ) and Q be a domain of Q ∞ such that Q ⊂ (δ, T ) × B R . Assume that h ≥ 0 in Q and ψ ∈ C( Q) satisfies ∂ t ψ + (-∆) s ψ + h(t, x)ψ ≥ 0 in Q ψ ≥ 0 in ([δ, T ) × B R ) \ Q. (6Then ψ is nonnegative in [δ, T ) × B R . Proof. Let ∈ (0, T -δ]. We first claim that ψ is nonnegative in [δ, T -] × B R . If it does not hold, and since ψ ≥ 0 in ([δ, T ) × B R ) \ Q, then there exists (t 0 , x 0 ) ∈ Q ∩ ([δ, T -] × B R ) such that ψ(t 0 , x 0 ) = min (t,x)∈[δ,T -]×B R ψ(t, x) < 0.

  [START_REF] Adams | The equivalence of two definitions of capacities[END_REF] andT λ = {x = (x 1 , x ) ∈ R N | x 1 = λ}.We observe that if λ > 0, then{x λ | x ∈ Σ λ } = {x ∈ R N | x 1 > λ} and |x λ | > |x| for x ∈ Σ λ . (6.4) 

  Then a nonnegative bounded measure ν in R N is an admissible measure if and only if ν vanishes on Borel subsets of R N with zero cap R N

	2s(1+β) p	,p	-Bessel capacity.

The expression of admissibility for a Radon measure needs the introduction of Bessel capacities which are presented in Section 4.1. Our main existence result of solutions for (1.33) is the following.

Theorem H Let N ≥ 1, p > 1 and -1 < β < p -1.

  in Q ∞ . Then for any t > t 2 ≥ s > t 4 and x, y ∈ R N such that |x -y| ≤ θt

	which implies, thanks to identity (1.35),		
				1 2s , there holds
			w(t, y) ≥ M w(x, s),	(3.52)
	Proof. Since w satisfies	∂ t w + (-∆) s w +	C * t	w ≥ 0,	(3.53)
	t C * w(t, .) is a supersolution of the fractional diffusion equation ∂ t v + (-∆) s v = 0, hence
	t C * w(t, x) ≥	t 4	C *	R N	H s ( 3t 4 , x -z)w( t 4 , z)dz,

where M > 0 depends on N , s, β, p and θ.

  it is clear that a compact set K with positive cap R N

	2s(1+β) p	,p	-capacity it is not removable since it is the support of the capacitary
	measure (a positive measure belonging to L	2s(1+β) p	,p (R N ), [1, Chap. 2]) which is a good measure
	by Lemma 4.3. We conjecture that the condition cap R N 2s(1+β) p	,p

  let u kχ S be the solution of(1.26) in Q ∞ with initial data kχ S . It exists since S has a non-empty interior, and it coincides with the solution of (1.26) in Q ∞ with initial data kχ int(S) . Clearly there holds u kχ S ≤ w S δ and the sequence {u kχ S }

				.36)
	is a supersolution of (1.26) in Q ∞ and by Lemma 4.7 it satisfies	
	(i) (ii)	lim t→0 w S δ (t, x) = ∞ lim t→0 w S δ (t, x) = 0	uniformly in S δ , uniformly in {x ∈ S c δ : dist (x, S δ ) ≥ } ∀ > 0.	(4.37)
	For k ∈ N			

* k is increasing, then there exists u ∞,S = lim k→∞ u kχ S .

  If we take in particular a function T with value 1 in [1, ∞) we infer that if cap R N

									1, ..., := E 2s(1+β) p	+ 1,
	then, by the smooth truncation theorem (see [1, Th. 3.3.3]),				
	T J 2s(1+β) p	[φ]	L	2s(1+β) p	,p ≤ AL J 2s(1+β p	[φ]	L	2s(1+β) p	,p := AL φ	L	2s(1+β) p	,p	∀ φ ∈ C ∞ 0 (R N ).
														(4.45)
													2s(1+β) p	,p

  in Q ∞ , still denoted by u, is smooth in Q ∞ and bounded from above by H s [g]. Hence it satisfies

	(i)	lim t→∞ u(t, x) = 0	uniformly in x ∈ R N ,
	(ii) (iii)	lim |x|→∞ u(t, x) = 0 lim (6.2) uniformly in t ∈ R + ,

t→0 u(t, x) = g(x) uniformly in x ∈ R N .
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Proof. The sequence {u ν k } is increasing. Furthermore,

Hence there exists some u ∈ L 1 (Q T ) for any T > 0, u ≥ 0, such that u νn → u in L 1 (Q T ) and a.e. in Q ∞ . By identity (3.25) in the proof of [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF]Th. 1.1], we have for τ ≥ T ,

Hence t β u q ∈ L 1 (Q T ) and t β u q ν k → t β u q in L 1 (Q T ). By (2.21) there holds

for all ξ ∈ Y s,T , so it follows that u = u ν . Hence ν is an admissible measure.

The whole description of the set of admissible measures necessitates the introduction of Bessel capacities as in the case s = 1, see [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], [START_REF] Marcus | Capacitary estimates of solutions of semilinear parabolic equations[END_REF]. We have a first partial answer.

we conclude that the sequences {u νn } and {t β u p νn } are uniformly integrable in L 1 (Q T ), hence they are precompact by Vitali's convergence theorem. As in the proof of Proposition 4.1 any cluster point w in the L 1 (Q T )-topology of the sequence {u νn } is a weak solution of (4.1) with initial data ν hence w = u ν and u νn → u ν by uniqueness of the solution.

Proof. By [28, Lemma 3.2] there exists a unique solution u ν 0 (resp. ν s ) to problem (4.1) with ν replaced by ν 0 . (resp. ν s ). By [START_REF] Chen | Fractional heat equations with subcritical absorption with initial data measure[END_REF]Lemma 3.2] the sequences {u ν 0 * ρn } and {t β u p ν 0 * ρn } are Cauchy sequences in L 1 (Q T ). By Lemma 4.3, the sequences {u νs * ρn } and {t β u p νs * ρn } share the same property. Hence ν 0 and ν s are good measures and we conclude with Proposition 4.1.

We recall some classical results about Bessel potentials, capacities and interpolation. For 0 < γ < N , the Bessel kernel J γ is defined in

, where F is the Fourier transform in R N , and the Bessel potential of a positive measure is

Since ( , ρ) → u χ Sρ dx is increasing, we can let and ρ go to infinity succesively and obtain that u ν K + χ Sρ dx converges to a positive solution ũK of (1.26) in Q ∞ and that

This estimate implies that T r(ũ K ) = (S, ν K ). To end the proof we consider an increasing sequence {K n } of compact sets such that n K n = R. Then estimate (4.40) holds with K replaced by K n . Furthermore the sequences {u ν Kn } and {ũ Kn } are increasing. In order to prove that the sequence {u ν Kn } converges to some solution ũν of (1.26) in Q ∞ which admits ν as the regular part of its initial trace, for R > 0 we write

which implies that the following limit exists and satisfies the upper estimate for any R > 0,

Furthermore, since R > 0 in inequality (4.42) we infer that ν is the regular part of the initial trace of ũν (notice that the singular part is not empty since ν can be unbounded). Hence T r(ũ) = (S, ν).

Proof of Corollary K, part (a)

If ν vanishes on Borel sets with zero cap 

This implies that ũν satisfies the same estimate for any R > 0, which in turn implies that

Hence T r(ũ ν ) = ({∅}, ν). The fact that ũν ∈ L 1 loc (0, T ; L s (R N )) follows from the upper estimate 0 ≤ ũν ≤ U p,β .

Conversaly (and here we do not use the assumption p > 1+ 2s(1+β) 1+2s ), if u ∈ L 1 loc (0, ∞; L s (R N )) is a solution with initial trace T r(u) = ({∅}, ν), then u ≤ U p,β , by Theorem D. We proceed as in the proof of Proposition 4.5. .

(5.4) Then (5.1) holds true.

The next result shows that any closed set can be the singular set of the initial trace of a positive solution of (1.26).

Proposition 5.1 Assume that 1 + 2s(1+β) 1+2s < p < 1 + 2s(1+β) N and S ⊂ R N is a nonempty closed set. Then there exists a minimal solution u := u S,∞ with initial trace (S, 0). Furthermore it satisfies (4.35).

Proof. We first notice that the condition 1 + 2s(1+β) 1+2s < p < 1 + 2s(1+β)

N is equivalent to the conditions stated in Theorem J, i.e.

(i)

either

Let A := {z n } n∈N } be a countable dense subset of S. For k ∈ N * , set

and let u = u µ k be the solution of

(5.7)

The sequence {u µ k } is increasing. If a ∈ S c and d a = dist (a, S). By construction there holds

Hence u µ k converges to some solution ũ of (1.26) in Q ∞ which has zero initial trace on B da (a), for any a ∈ S c since (5.8) still holds with ũ instead of u µ k , and satisfies ũ ≥ u z j ,∞ for any z j ∈ A.

Hence T r(ũ) = (S, 0). Estimate (4.35) is independent of the geometry of S.

Proof of Theorem J. It is similar to the one of Theorem I . We consider an increasing sequence of compact sets

where µ k is defined by (5.6). Then the solution of (1.26) with initial data νk satisfies

(5.9)

By the same argument as in the proof of Theorem I , the sequence {u ν k } is increasing and converges to a solution u ν (1.26) with initial trace ({∅}, ν). Hence the sequence {u νk } which is also increasing. converges to some solution ũ of (1.26) which satisfies

Then ũ has initial trace (S, ν).

The proof of Corollary K, part (b) is straightforward.

Remark. We conjecture that the following more general version of Theorem J holds: For any integer κ ∈ [1, N ] any p > 1 such that 1 + 2s(1+β) κ+2s < p < 1 + 2s(1+β)

N

, any closed set S contained in an affine plane of codimension κ and any bounded measure in S c , there exists a solution u of problem (1.32). We notice that the condition on p can be fulfilled for some p if and only if N -κ < 2s, hence either κ = N i.e. S is a single point and no condition on s, or κ = N -1 hence S is contained in a straight line and 1 2 < s < 1.

Proof of Theorem L

The proof uses the method developed in [START_REF] Shishkov | Admissible initial growth for diffusion equations with weakly superlinear absorption[END_REF] p-1 φ(x) > 0.

(5.12)

We set

The existence of a solution u φn of (1.26) with initial trace ({∅, φn } follows from the fact that H s [ φn ] exists by [START_REF] Bonforte | Optimal existence and uniqueness theory for the fractional heat equation[END_REF] and that H s [ φn ] ≥ u φnχ B k for any k ∈ N * . Hence u φn is the increasing limit of u φnχ B k when k → ∞. it is obtained by replacing φn by φn χ B k and by letting k → ∞.

The solution Y n of the differential equation

(5.13)

It larger than u φn . Let us denote by w n the solution of 

We write we infer that w n (0, t n ) → ∞ as n → ∞. Clearly the origin can be replaced by any z ∈ R N and the previous calculation shows that this limit is uniform for z belonging to compact sets on R N . Since u φn ≥ w n , we infer that