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Abstract

In this paper, we prove the existence of an initial trace Tu for any positive solution u to
the semilinear fractional diffusion equation (H)

∂tu+ (−∆)su+ f(t, x, u) = 0 in (0,+∞)× RN ,

where N ≥ 1, the operator (−∆)s with s ∈ (0, 1) is the fractional Laplacian, f : R+ ×RN ×
R+ → R is a Caratheodory function satisfying f(t, x, u)u ≥ 0 for all (t, x, u) ∈ R+×RN×R+

and R+ = [0,+∞). We define the regular set of the trace Tu as an open subset of Ru ⊂ RN
carrying a nonnegative Radon measure νu such that

lim
t→0

∫
Ru

u(t, x)ζ(x) dx =

∫
Ru

ζ dνu, ∀ ζ ∈ C2
0 (Ru),

and the singular set Su = RN \ Ru as the set points a such that

lim sup
t→0

∫
Bρ(a)

u(t, x) dx = +∞ for any ρ > 0.

We also study the reverse problem of constructing a positive solution to (H) with a given
initial trace (S, ν), where S ⊂ RN is a closed set and ν is a positive Radon measure on
R = RN \ S and develop the case f(t, x, u) = tβup with β > −1 and p > 1.
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1 Introduction

The first aim of this paper is to study the existence of an initial trace of positive solutions to
the semilinear fractional diffusion equation

∂tu+ (−∆)su+ f(t, x, u) = 0 in Q∞ := R∗+ × RN , (1.1)

where f : R∗+ × RN × R→ R is a Caratheodory function satisfying

f(t, x, u)u ≥ 0, ∀ (t, x, u) ∈ R∗+ × RN × R, (1.2)

and R∗+ = (0,+∞). The fractional Laplacian(−∆)s with s ∈ (0, 1) is defined in the principal
value sense that

(−∆)su(x) = lim
ε→0+

(−∆)sεu(x),

where

(−∆)sεu(x) := −aN,s
∫
RN

u(z)− u(x)

|z − x|N+2s
χε(|x− z|)dz , aN,s =

Γ(N2 + s)

π
N
2 Γ(2− s)

s(1− s), (1.3)

for ε > 0 and

χε(r) =

{
0 if r ∈ [0, ε]

1 if r > ε.

The solutions of (1.1) are intended in the classical sense and, in order (−∆)su(t, x) to be well-
defined, we always assume that u(t, .) ∈ Ls(RN ) for any t > 0, where

Ls(RN ) =

{
φ ∈ L1

loc(RN ) s.t. ‖φ‖Ls :=

∫
RN

|φ(x)| dx
1 + |x|N+2s

< +∞
}
. (1.4)
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Notice that the constant functions belong to Ls(RN ). If ω ⊂ RN and 0 < T ≤ +∞, we set

QωT = (0, T )× ω, QRN
T = QT , Q∞ = R∗+ ×RN and denote by Bρ(z) (resp. Kρ(z)) the open ball

(resp. open cube with sides parallel to the axis) with center z ∈ RN and radius (side length)
ρ > 0. We define the regular set of the initial trace of a positive solution u of (1.1) by

Ru =

{
z ∈ RN : ∃ ρ > 0 s.t.

∫∫
Q
Bρ(z)
1

f(t, x, u) dxdt < +∞

}
. (1.5)

Clearly Ru is open. The conditional singular set S̃u is RN \Ru and the conditional initial trace
is the couple Trc(u) := (S̃u, ν). Our first result is the following statement which is the starting
point of our work.

Theorem A Let u be a nonnegative classical solution of (1.1) and the regular set Ru of u is
given in (1.5), then there exists a nonnegative Radon measure νu on Ru such that

lim
t→0

∫
Ru
u(t, x)ζ(x) dx =

∫
Ru
ζ dνu, ∀ ζ ∈ C2

0 (Ru). (1.6)

The problem of the initial trace of nonnegative solutions for semilinear heat equations was
initiated by Marcus and Véron in [37] with equation

∂tu−∆u+ up = 0 in Q∞, (1.7)

for p > 1. They showed the existence of an initial trace Tr(u) represented by a closed subset
Su of RN and a nonnegative Radon measure νu on Ru = RN \ Su. On Ru the initial trace is
achieved as in (1.6). On Su they proved that for any z ∈ Su,

lim
t→0

∫
Bρ(z)

u(t, x)dx = +∞ for any ρ > 0. (1.8)

They also highlighted the existence of a critical exponent pc = 1 + 2
N , which plays a crucial role

in the fine analysis of the initial trace. For example they obtained that if p is subcritical, i.e.
1 < p < pc, (1.6) can be sharpened in the form

c2(p,N) ≤ lim inf
t→0

t
1
p−1u(z, t) ≤ lim sup

t→0
t

1
p−1u(z, t) ≤ c1(p), (1.9)

for some positive constants c1(p) > c2(p,N). Furthermore they proved that for any couple
(S, ν), where S is a closed subset of RN and ν a nonnegative Radon measure on R = RN \ S,
there exists a unique nonnegative solution u of (1.7) with the initial trace Tr(u) = (S, ν). The
supercritical case p ≥ pc turned out to be much more delicate and was finally elucidated in a
series of works by Marcus and Véron [41] and Gkikas and Véron [32] following some deep ideas
introduced by Marcus and Véron in [40] and Marcus [36] for solving similar questions dealing
with semilinear elliptic equations. Al Sayed and Véron in [4] extended the subcritical analysis
performed in [37] to the non-autonomous equation

∂tu−∆u+ tβup = 0 in Q∞, (1.10)
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with β > −1 and p > 1. Note that the choice β > −1 is natural otherwise the initial trace would
be essentialy zero as it can be verified with the equation without absorption.

The main difficulty to extend some of the previous results dealing with (1.7) and (1.10)
comes from the fact that the fractional Laplacian is a non-local operator. A more precise
characterization of the conditional singular set needs additional assumptions on u or on f . We
define the singular set Su of u by

Su =

{
z ∈ RN : lim sup

t→0

∫
Bρ(z)

u(t, x)dx = +∞ for any ρ > 0

}
. (1.11)

This set is closed and it follows from Theorem A that Su ⊂ S̃u. The initial trace is the couple
Tr(u) := (Su, ν). This initial trace can also be seen as an outer regular Borel measure with
regular part (or Radon part) ν and singular part Su. When s = 1 then Tr(u) = Trc(u) because
the set Su is also characterized as the set of z ∈ RN where∫ T

2

0

∫
Bρ(z)

f(t, x, u)dxdt =∞ for any ρ > 0. (1.12)

When 0 < s < 1 and no extra assumption on f are made, Tr(u) could be different from Trc(u).

Theorem B Assume that u is a nonnegative solution of (1.1). If u ∈ L1(0, T ;Ls(RN )), then
Su = S̃u and more precisely for any z ∈ Su,

lim
t→0

∫
Bρ(z)

u(t, x) dx = +∞ for any ρ > 0. (1.13)

The above assumption on u can be verified when the absorption is strong and the singular set
is compact. Another type of characterization of the singular set needs the following assumptions
on f : f(t, x, u) satisfies f(t, x, 0) = 0 and

0 ≤ f(t, x, u) ≤ tβg(u) ∀ (t, x, u) ∈ R+ × RN × R+, (1.14)

where R+ = [0,+∞), β > −1, g is nondecreasing, continuous and verifies the subcritical growth
assumption, ∫ ∞

1
g(s)s−1−p∗βds < +∞, (1.15)

with

p∗β = 1 +
2s(1 + β)

N
. (1.16)

The role of the subcritical growth assumption (1.1) has been highlighted in [28] as the natural
condition to solve the initial value problem with a bounded positive Radon measure for equation
(1.1) (see Section 2.2).

Theorem C Assume (1.14) and either (1.15) holds if −1 < β ≤ 0, or∫ ∞
1
g(s)s−2− 2s

N ds < +∞, (1.17)
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if β > 0. If u is a nonnegative solution of (1.1) with initial trace (Su, νu). If Su 6= ∅ and z ∈ Su,
then (1.13) holds. More precisely u ≥ uz,∞ where uz,∞ = lim

k→∞
ukδz and ukδz is the solution of

∂tu+ (−∆)su+ tβg(u) = 0 in Q∞

u(0, .) = kδz.
(1.18)

The existence and uniqueness of solutions to (1.18) follow from [28, Th 1.1]. If g : R→ R+

is nondecreasing and satisfies that

G(t) :=

∫ ∞
t

ds

g(s)
< +∞ for t > 0, (1.19)

and if β > −1, denote U(t) = G−1(
tβ+1

β + 1
), where G−1 is the inverse function of G, then the

function U verifies that ∫ ∞
U(t)

ds

g(s)
=

tβ+1

β + 1
, (1.20)

and defines as the maximal solution of the ODE

∂tU + tβg(U) = 0 on R∗+ satisfying U(0) = +∞. (1.21)

Theorem D Assume that f(t, x, r) ≥ tβg(r), where β > −1 and g satisfies (1.19). If u is a
nonnegative solution of (1.1) belonging to L1

loc(0, T ;Ls(RN )), then

u(t, x) ≤ U(t), ∀ (t, x) ∈ Q∞. (1.22)

Furthermore, if g satisfies ∫ ∞
1

sds

g(s)

(∫ ∞
s

dτ

g(τ)

) β
β+1

< +∞, (1.23)

then Su = S̃u and (1.13) holds for any z ∈ Su.

Theorem E Assume that f(t, x, s) = tβg(s), where β > −1 and g satisfies (1.19), is nonde-
creasing and is locally Lipschitz continuous. If u is a nonnegative solution of (1.1) belonging to
L1
loc(0, T ;Ls(RN )), then either

u(t, x) < U(t), ∀ (t, x) ∈ Q∞, (1.24)

or
u(t, x) = U(t), ∀ (t, x) ∈ Q∞. (1.25)

In the second part of this paper we study in detail the initial trace problem for the equation

∂tu+ (−∆)su+ tβup = 0 in Q∞, (1.26)
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when s ∈ (0, 1), β > −1 and p ∈ (1, p∗β). A second critical value of p appears

p∗∗β = 1 +
2s(1 + β)

N + 2s
. (1.27)

Actually, if uk := ukδ0 is unique solution to

∂tu+ (−∆)su+ tβup = 0 in Q∞,

u(0, ·) = kδ0 in RN ,
(1.28)

it is proved in [28] that u∞ = lim
k→∞

uk is very different according 1 < p < p∗∗β or p∗∗β < p < p∗β.

Precisely, (i) if 1 < p < p∗∗β , then

u∞(t, x) = Up,β(t) :=

(
1 + β

p− 1

) 1
p−1

t
− 1+β
p−1 . (1.29)

The absorption is dominant, as if s = 0.

(ii) If p∗∗β < p < p∗β, then

u∞(t, x) = V (t, x) := t
− 1+β
p−1 v

(
x

t
1
2s

)
, (1.30)

where v is the minimal positive solution of

(−∆)sv − 1

2s
∇v · η − 1 + β

p− 1
v + vp = 0 in RN ,

lim
|η|→∞

|η|
2s(1+β)
p−1 v(η) = 0.

(1.31)

The function V is called the very singular solution of (1.26). In this case the diffusion is
dominant, as when s = 1.

We first prove the following result which complements Theorem C in the case where β > 0.
The proof is delicate and uses a form of parabolic Harnack inequality valid for solutions of (1.26).

Theorem F Assume β > −1, 1 < p < p∗β and u is a nonnegative solution of (1.26) with initial
trace (Su, νu). If Su 6= ∅ and z ∈ Su then u ≥ uz,∞.

We observe that S̃u∞ = Su∞ = {0} when p∗∗β < p ≤ p∗β and S̃u∞ = Su∞ = RN when
1 < p < p∗∗β . Notice that the case p = p∗∗β remained unsolved in [28]. In this paper, we prove

that Su∞ = RN also for p = p∗∗β . Our main result concerning (1.26) is the following.

Theorem G Let u be a positive solution of (1.26).

(i) If p ∈ (1, p∗∗β ] and Su 6= ∅. Then Su = RN and u ≥ Up,β. If we assume moreover that

u ∈ L1
loc(0,∞;Ls(RN )), then u = Up,β.

(ii) If there exists κ ∈ [1, N ] ∩ N such that p ∈ (1, p∗β) ∩
(

1, 1 + 2s(1+β)
κ+2s

]
and Su contains an

affine plane L of codimension κ. Then the conclusions of (i) hold.
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If κ = N , (ii) is just (i). Note that if 0 < s ≤ 1
2 or if κ ≥ N − 2, then (p∗∗β , p

∗
β) ∩(

p∗∗β , 1 + 2s(1+β)
κ+2s

]
= (p∗∗β , p

∗
β), while, if 1

2 < s < 1 and κ = N−1, then (p∗∗β , p
∗
β)∩
(
p∗∗β , 1 + 2s(1+β)

κ+2s

]
=(

p∗∗β , 1 + 2s(1+β)
N−1+2s

]
.

Conversely, given a closed set of S ⊂ RN and a nonnegative Radon measure on ν onR = RN \
S, we study the existence of solution of (1.26) with a given initial trace Trc(u) = Tr(u) = (S, ν),
that is a solution of the following problem

∂tu+ (−∆)su+ tβup = 0 in Q∞

Tr(u) = (S, ν).
(1.32)

This means that u is a classical solution of the equation in Q∞ and that (1.6) and (1.22) hold.
By Theorem G any closed set cannot be the singular part of the initial trace of a positive solution
of (1.26) if p is too small (diffusion effect) or if p is too large. In the same sense any positive
bounded Radon measure ν cannot be the regular part of the initial trace of a positive solution
of (1.26) since condition (1.15) is equivalent to p < p∗β. However this condition is restrictive and
there exist several sufficient conditions linking ν, s, β and p. Hence we say that a nonnegative
bounded measure ν is an admissible measure if the initial value problem

∂tu+ (−∆)su+ tβup = 0 in Q∞

u(0, .) = ν,
(1.33)

admits a solution uν , always unique, and it is a good measure if it is stable in the sense that if ν
is replaced by ν ∗ ρn for some sequence of mollifiers, then uν∗ρn and tβupν∗ρn converges to uν and
tβupν respectively in L1(QT ). We denote by Hs is the kernel in R∗+ × RN associated to (−∆)s.
It is expressed by

Hs(t, x) =
1

t
N
2s

H̃s

(
x

t
1
2s

)
where H̃s(x) =

∫
RN
eix.ξ−|ξ|

2s
dξ. (1.34)

It is proved in [24], [15] that Hs satisfies the following two-side estimate,

c−1
3 t

t1+N
2s + |x|N+2s

≤ Hs(t, x) ≤ c3t

t1+N
2s + |x|N+2s

∀ (t, x) ∈ R∗+ × RN . (1.35)

The associated potential Hs[ν] of a bounded Radon measure ν in RN is defined by

Hs[ν](t, x) =

∫
RN

Hs(t, x− y)dν(y).

We first prove that a nonnegative bounded measure with Lebesgue decomposition ν = ν0 + νs,
where ν0 ∈ L1(RN ) and νs is singular with respect to the N -dim Lebesgue measure is a good
measures if tβ(Hs[ν])p ∈ L1(Q1). The expression of admissibility for a Radon measure needs the
introduction of Bessel capacities which are presented in Section 4.1. Our main existence result
of solutions for (1.33) is the following.
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Theorem H Let N ≥ 1, p > 1 and −1 < β < p − 1. Then a nonnegative bounded measure
ν in RN is an admissible measure if and only if ν vanishes on Borel subsets of RN with zero
capRN

2s(1+β)
p

,p′
-Bessel capacity.

Concerning problem (1.32) we have the following general result.

Theorem I Assume that N ≥ 1 and p > 1 + 2s(1+β)
1+2s . If S is a closed subset of RN such that

S = intS and ν is a nonnegative Radon measure on R = Sc such that for any compact set
K ⊂ R, χKν is an admissible measure. Then problem (1.32) admits a solution.

It is interesting to compare this result with [37, Th. 4.11] dealing with the case s = 1. It
is proved there that for any closed set satisfying a non-thinness condition (expressed later on
in terms of Bessel capacity [32]) but always fulfilled when 1 < p < 1 + 2

N and any nonnegative

admissible Radon measure, problem (1.32) admits a solution. There the condition p > 1+ 2s(1+β)
1+2s

has no counterpart when s = 1. Theorem L shows that this condition is fundamental in order
to have existence without condition at infinity, even in the case where S = ∅ and ν is a mere
L1
loc(RN ) function. In some particular cases, the existence of a solution to (1.32) with no extra

condition on S or ν can be proved as the next results show it.

Theorem J Assume that β > −1, p > 1 and one of the following assumptions is fulfilled:

(i) either N = 1 and 1 + 2s(1+β)
1+2s < p < 1 + 2s(1 + β),

(ii) or N = 2, 1
2 < s < 1 and 1 + 2s(1+β)

1+2s < p < 1 + s(1 + β).

Then for any closed set S ⊂ RN and any nonnegative measure ν in R = Sc, there exists a
nonnegative solution u to (1.32).

As a consequence of the previous results we obtain existence with initial data measure in
RN of solutions without condition at infinity in the spirit of Brezis classical result [17].

Corollary K Let N ≥ 1, β > −1 and p > 1.

(a) If p > 1+2s(1+β)
1+2s and −1 < β < p−1, then there exists a positive solution u ∈ L1

loc(0,∞;Ls(RN ))

to problem (1.33) for any nonnegative Radon measure ν in RN if and only if for any n ∈ N∗,
χBnν is an admissible measure.

(b) If one of the assumptions (i) or (ii) of Theorem J is fulfilled, then for any nonnegative Radon
measure ν in RN there exists a positive solution to problem (1.33).

Conditions (i) or (ii) of Theorem J are essentially necessary for unconditional existence, since
we have the following result.

Theorem L Assume that β > −1, p > 1 and 1 < p < 1 + 2s(1+β)
1+2s . If φ ∈ L1

loc(RN ) is a
nonnegative function which satisfies

lim
|x|→∞

φ(x)

|x|
2s(β+1)
β+2−p

= +∞, (1.36)

then the sequence of solutions {un} of (1.33) with initial data ν = νn = inf{φ, φn}, where
φn = inf{φ(z) : |z| ≥ n} is increasing and converges to U(t).
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This implies that there exists no solution of (1.33) with initial data φ. Notice that β + 2− p
is positive for p < 1 + 2s(1+β)

1+2s . For the mere heat equation a theory of maximal growth for
admissibility growth of initial data has been developed in [51] and for the fractional heat equation
in [15]. In both cases the representation formulas play an important role. For equations with
potential a phenomenon of instantaneous blow-up is proved [6] for solution of

∂tu−∆u− V (x)u = 0 in Q∞, (1.37)

when V ∼ c|x|−2, for any nonnegative initial data. This phenomenon of instantaneous blow-up
has been recently highlighted in [48] for the the semilinear equation

∂tu−∆u+ u (ln(u+ 1))α = 0 in Q∞, (1.38)

when 1 < α < 2. It is shown there that the limit of a sequence of solutions with fast growing
initial data is the maximal solution of u′ + u (ln(u+ 1))α = 0 on (0,∞).
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the careful reading of the manuscript which enabled several improvements in the presentation
of this work.

2 Initial trace with general nonlinearity

2.1 Existence of an initial trace

Proof of Theorem A. For any bounded domain ω ⊂ RN , we denote by C2
0 (ω) the space of

functions ξ : RN → R which are C2 and have compact support in ω. We always assume that
N ≥ 1 and 0 < s < 1. Let φω be the first eigenfunction of (−∆)s in Hs

0(ω), with corresponding
eigenvalue λω > 0, i.e. the solution of

(−∆)sφω = λωφω in ω
φω = 0 in ωc.

(2.1)

Existence and basic properties of the eigenfunctions can be found in [5], [16]. We normalize φω
by supφω = 1. We say that ω is of class E. S. C. if it satisfies the exterior sphere condition. It
is known by [45, Prop 1.1] that φω(x) ≤ c(dist (x, ∂ω))s in ω, and there exists q > 2 such that
φqω ∈ C2

0 (ω). We denote by Kρ(z) the open cube with sides parallel to the axis of center z ∈ RN
and length sides ρ > 0, and K1 := K1(0). Then

φKρ(z)(x) = φK1

(
x− z
ρ

)
and λKρ(z) =

λK1

ρ2s
.

The next lemma is an improvement of [26, Lemma 2.3].
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Lemma 2.1 Let q ∈ N ∩ [2,∞) and ζ ∈ C2
0 (ω), ζ ≥ 0, then

(−∆)sζq(x) = qζq−1(x)(−∆)sζ(x)−
aN,s

q(q − 1)

∫
RN

ζq(y)− ζq(x)− q(ζ(y)− ζ(x))ζq−1(y)

|x− y|N+2s
dy

≥ qζq−1(x)(−∆)sζ(x)−
aN,s
q
ζq−2(x)

∫
RN

(ζ(y)− ζ(x))2

|x− y|N+2s
dy.

(2.2)

Proof. From [26, Lemma 2.3], we know that

(−∆)sζq(x) = qζq−1(x)(−∆)sζ(x)− q(q − 1)aN,s

∫
RN

(∫ ζ(y)

ζ(x)
(ζ(y)− t)tq−2dt

)
dy

|x− y|N+2s
.

By integration by parts, we obtain that∫ ζ(y)

ζ(x)
(ζ(y)− t)tq−2dt =

1

q(q − 1)

(
ζq(y)− ζq(x)− q(ζ(y)− ζ(x))ζq−1(x)

)
=
ζ(y)− ζ(x)

q(q − 1)

[
ζq−1(y) + ζq−2(y)ζ(x) + ...+ ζ(y)ζq−2(x)− (q − 1)ζq−1(x)

]
.

Since for any a, b ≥ 0

bq−1 + abq−2 + ...aq−2b− (q − 1)aq−1

= bq−1 − aq−1 + a(bq−2 − aq−2) + a2(bq−3 − aq−3) + ...+ aq−2(b− a)

= (b− a)
[(
bq−2 + abq−3 + ...+ aq−2

)
+ a

(
bq−3 + abq−4 + ...+ aq−3

)
+ ...+ aq−2

]
≥ (q − 1)(b− a)aq−2,

we obtain (2.2). �

Remark. By the mean value theorem, we see that there exists mζ ∈ {z = ζ(w) : w ∈ RN} such
that

L(ζq) :=
aN,s

q(q − 1)

∫
RN

ζq(y)− ζq(x)− q(ζ(y)− ζ(x))ζq−1(x)

|x− y|N+2s
dy

=
aN,s

2
mq−2
ζ

∫
RN

(ζ(y)− ζ(x))2

|x− y|N+2s
dy.

(2.3)

Proposition 2.2 Assume that f satisfies (1.2) and u is a nonnegative solution of (1.1) such
that u(t, ·) ∈ Ls(RN ) for all t ∈ (0, T ). If f(·, ·, u) ∈ L1(QTω ) for some bounded domain ω ⊂ RN
of class E. S. C. and T > 0. Then there exists `ω ≥ 0 such that

lim
t→0

∫
ω
u(t, x)φqω(x)dx = `ω. (2.4)

Furthermore, we have that

`ω +
aN,s
q

∫ T

0

∫
RN
u(s, x)φq−2

ω (x)

(∫
RN

(φω(y)− φω(x))2

|x− y|N+2s
dy

)
dx

≤ eqλωTX(T ) +

∫ T

0

∫
ω
f(s, x, u)φqω(x)eqλωsdxdt.

(2.5)
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Proof. Since φqω ∈ C2
0 (ω), there holds

d

dt

∫
ω
u(t, x)φqω(x)dx+

∫
RN
u(t, x)(−∆)sφqω(x)dx+

∫
ω
f(t, x, u)φqω(x)dx = 0. (2.6)

Set

X(t) =

∫
ω
u(t, x)φqω(x)dx,

then

d

dt

(
eqλωtX(t)−

∫ T

t

∫
ω
f(s, x, u)φqω(x)eqλωsdxds

)
= eqλωt

∫
RN
L(φqω)(x)dx ≥ 0. (2.7)

This implies that limt→0X(t) = `ω exists and

`ω +

∫ T

0

∫
RN
L(φqω)(x)eqλωsu(s, x)dxds+

∫ T

0

∫
ω
f(s, x, u)φqω(x)eqλωsdxds = eqλωTX(T ),

which implies (2.5) by Lemma 2.1. �

As an immediate consequence we have,

Corollary 2.3 Under the assumptions of Theorem A, u ∈ L1(QTG) for any compact set G ⊂ Ru.

The proof of Theorem A is completed by the following statement:

Proposition 2.4 There exists a nonnegative Radon measure µu on Ru such that for any ζ ∈
C2

0 (Ru), there holds

lim
t→0

∫
Ru
u(t, x)ζ(x)dx =

∫
Ru
ζdµu. (2.8)

Proof. Let ζ ∈ C2
0 (Ru) with support K and let G be an open subset containing K such that

∂G is smooth and G is a compact subset of Ru and assume 0 ≤ ζ ≤ 1. We put

Y (t) =

∫
RN
u(t, x)ζ(x)dx =

∫
G
u(t, x)ζ(x)dx,

and ∫
RN
f(t, x, u)ζ(x)dx =

∫
G
f(t, x, u)ζ(x)dx,

then

Y ′(t) +

∫
RN
u(t, x)(−∆)sζ(x)dx+

∫
G
f(t, x, u)ζ(x)dx = 0.
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Since ζ ≥ 0, we have that

1

aN,s

∫
RN
u(t, x)(−∆)sζ(x)dx

=

∫
RN
u(t, x)

∫
G

ζ(x)− ζ(y)

|x− y|N+2s
dydx+

∫
G
u(t, x)ζ(x)

∫
Gc

dy

|x− y|N+2s
dx

=

∫
G
u(t, x)

∫
G

ζ(x)− ζ(y)

|x− y|N+2s
dydx−

∫
Gc
u(t, x)

∫
G

ζ(y)

|x− y|N+2s
dydx

+

∫
G
u(t, x)ζ(x)

∫
Gc

dy

|x− y|N+2s
dx

≤
∫
G
u(t, x)

∫
G

ζ(x)− ζ(y)

|x− y|N+2s
dydx+

∫
G
u(t, x)ζ(x)

∫
Gc

dy

|x− y|N+2s
dx

(2.9)

If we define the regional fractional Laplacian of order s relative to G by

(−∆)sGζ(x) := aN,s

∫
G

ζ(x)− ζ(y)

|x− y|N+2s
dy,

then the right-hand side of (2.9) is bounded from above by

Λ(t) =

(
‖(−∆)sGζ‖L∞ + max

x∈K

∫
Gc

dy

|x− y|N+2s

)∫
G
u(t, x)dx,

since ζ is C2 with support in K ⊂ G ⊂ G b Ru. By Corollary 2.3, Λ ∈ L1(0, T ). Because

d

dt

(
Y (t)−

∫ T

t

(
Λ(s) +

∫
G
f(t, x, u)ζ(x)dx

)
ds

)
≥ 0, (2.10)

and ∫ T

0

(
Λ(s) +

∫
G
f(t, x, u)ζ(x)dx

)
ds <∞ (2.11)

Combining (2.10) and (2.11) we infer that the following limit exists

lim
t→0

Y (t) = lim
t→0

∫
G
u(t, x)ζ(x)dx := µ̃u(ζ). (2.12)

By replacing ζ by ‖ζ‖L∞ζ we can drop the condition ζ ≤ 1. with support in K, then

0 ≤ lim
t→0

∫
G
u(t, x)ζ(x)dx = µ̃u(ζ) ≤ `G‖ζ‖L∞ . (2.13)

Next we assume that ζ ∈ C0(Ru) is nonnegative, with support K ⊂ G ⊂ G b Ru, then there
exists an increasing sequences {ζn} ⊂ C2

0 (Ru) of nonnegative functions smaller than ζ which
converges to ζ uniformly (take for example ζn = (ζ − n−1)+ ∗ ρn for some sequence of mollifiers
{ρn} with supp(ρn) ⊂ Bn−2). The sequence {µ̃u(ζn)} is increasing and bounded from above by
M`G supG ζ. Hence it is convergent and its limit, still denoted by µ̃u(ζ) is independent of the
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sequence {ζn}. We can also consider a uniform approximation of ζ from above in considering
ζ ′n = (σn + ζ) ∗ ρn, where σn = n−1χKn and Kn = {x ∈ RN : dist (x,K) ≤ n−1}. Actually,

µ̃u(ζ) = sup{µ̃u(η) : η ∈ C2
0 (Ru), 0 ≤ η ≤ ζ} = inf{µ̃u(η′) : η′ ∈ C2

0 (Ru), ζ ≤ η′}. (2.14)

This implies that for all η and η′ belonging to C2
0 (Ru) such that η ≤ ζ ≤ η′, we have that

µ̃u(η) ≤ lim inf
t→0

∫
Ru
u(t, x)ζ(x)dx ≤ lim sup

t→0

∫
Ru
u(t, x)ζ(x)dx ≤ µ̃u(η′). (2.15)

Combined with (2.14) we infer the existence of the limit and

lim
t→0

∫
Ru
u(t, x)ζ(x)dx = µ̃u(ζ). (2.16)

Finally, if ζ ∈ C0(Ru) is a signed function we write ζ = ζ+ − ζ− and µu(ζ) = µ̃u(ζ+)− µ̃u(ζ−).
Hence µu is a positive Radon measure on Ru, and (2.8) follows from (2.16) with ζ replaced by
ζ+ and ζ−. �

Lemma 2.5 Assume that G ⊂ RN is a bounded smooth domain and η ∈ C2
0 (G). Then there

exists c5 > 0 such that

|(−∆)sη(x)| ≤ c5‖η‖C2

1 + |x|N+2s
∀x ∈ RN . (2.17)

Moreover, assume that η ≥ 0 in G, then (−∆)sη ≤ 0 in Gc and for any δ > 0 there exists cδ > 1
independent of η such that

‖η‖L1

cδ(1 + |x|N+2s)
≤ −(−∆)sη(x) ≤ cδ‖η‖L1

1 + |x|N+2s
, (2.18)

for x ∈ {z ∈ RN : dist (z,G) ≥ δ}.

Proof. Let x ∈ Gc and y ∈ RN , then η(x)− η(y) ≤ 0 and hence (−∆)sη ≤ 0 in Gc. For y ∈ G
and x ∈ Gc satisfying dist (x,G) > δ, there exists c6 > 1 such that

c−1
6 (1 + |x|N+2s) ≤ |x− y|N+2s ≤ c6(1 + |x|N+2s).

Together with

(−∆)sη(x) = −aN,s
∫
G

η(y)

|y − x|N+2s
dy ∀x ∈ Gc,

one obtains the claim. �

Remark. Estimate (2.17) has essentially been already obtained in [11, Lemma 2.1] but we kept
it for the sake of completeness. (2.17). Estimate (2.20) is new and will be useful in the sequel.
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Proof of Theorem B. Let ρ > ρ′ > 0 and ζ ∈ C2
0 (Bρ(z)) such that 0 ≤ ζ ≤ 1 and ζ = 1 on

Bρ′(z)). Then there holds∫
Bρ(z)

u(t, x)ζ(x)dx =

∫
Bρ(z)

u(T, x)ζ(x)dx+

∫ T

t

∫
Bρ(z)

f(s, x, u)ζ(x)dxds

+

∫ T

t

∫
RN
u(s, x)(−∆)sζ(x)dxds.

The function ζ satisfies

|(−∆)sζ(x)| ≤ c5‖ζ‖C2

1 + |x|N+2s
, ∀x ∈ RN .

Since (t, x) 7→ (1 + |x|N+2s)−1u((t, x) ∈ L1(QT ), we infer that

lim
t→0

∫
Bρ(z)

u(t, x)ζ(x)dx = +∞, (2.19)

which implies the claim. �

2.2 Pointwise estimates

Proof of Theorem C. In what follows we characterize the singular set of the initial trace when
the absorption reaction is subcritical, that is it satisfies (1.14), (1.15) and (1.16) hold. Under
these two last assumptions for any bounded Radon measure in RN , it is proved in [28, Th 1.1]
that there exists a unique weak solution u := uµ to

∂tu+ (−∆)su+ tβg(u) = 0 in Q∞

u(0, ·) = µ in RN .
(2.20)

We recall by a weak solution, we mean a function u ∈ L1(QT ) such that tβg(u) ∈ L1(QT ) for
all T > 0 satisfying∫ T

0

∫
RN

[
(−∂tξ + (−∆)sξ)u+ tβg(u)ξ

]
dxdt =

∫
RN
ξ(0, x)dµ(x) ∀ ξ ∈ Ys,T , (2.21)

where Ys,T is the space of functions ξ defined in Q∞ satisfying

(i) ‖ξ‖L1(QT ) + ‖ξ‖L∞(QT ) + ‖∂tξ‖L∞(QT ) + ‖(−∆)sξ‖L∞(QT ) < +∞,

(ii) ξ(T ) = 0 and for 0 < t < T, there exist M > 0 and ε0 > 0 such that for 0 < ε ≤ ε0,
‖(−∆)sεξ(t, ·)‖L∞(RN ) ≤M.

Furthermore, if µj converges to µ weakly in the sense of measures, then uµj converges to uµ
locally uniformly in Q∞. Up to translation we can assume that z = 0. Since (1.22) holds, for
any k > 0 there exist two sequences {tn} and {ρn} converging to 0 such that∫

Bρn

u(tn, x)dx = k. (2.22)
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Case 1: β ≤ 0. For R > 0, let vRn be the solution of

∂tv + (−∆)sv + tβg(v) = 0 in (tn,∞)×BR
v(t, x) = 0 in (tn,∞)×Bc

R

v(tn, .) = u(tn, x)χBρn in BR,

(2.23)

where BR denote the ball in RN centered at origin with the radius R. By the comparison
principle, u ≥ vRn in [tn,∞)×BR. We set vRn (t, x) = vRn (τ + tn, x) = ṽRn (τ, x). Since β ≤ 0, there
holds

∂tṽ
R
n + (−∆)sṽRn + τβg(ṽRn ) ≥ 0 in (0,∞)×BR.

Hence ṽRn ≥ uRn where uRn is the solution of

∂tv + (−∆)sv + tβg(v) = 0 in (0,∞)×BR
v(t, x) = 0 in (0,∞)×Bc

R

v(0, .) = u(tn, x)χBρn in BR.

(2.24)

Letting R→∞ we infer that uRn increases and converges to the solution u∞n of

∂tv + (−∆)sv + tβg(v) = 0 in (0,∞)× RN

v(0, .) = u(tn, x)χBρn in RN ,
(2.25)

and there holds u(tn + τ, x) ≥ u∞n (τ, x) in (0,∞) × RN . Letting n → ∞ and using the above
mentioned stability result, we obtain that u∞n converges to ukδ0 and u ≥ ukδ0 . Since it holds
true for any k, the claim follows.

Case 2: β > 0. Clearly u ≥ v∞n where v∞n satisfies

∂tv + (−∆)sv + tβg(v) = 0 in (tn,∞)× RN

v(tn, .) = u(tn, x)χBρn in RN ,
(2.26)

Then v∞n (t, x) ≤ Hs[u(tn, x)χBρn ](t − tn, x). Since g satisfies (1.17) it follows from [28, Proof

of Th 1.1] that the set of function
{
g
(
Hs[u(tn, .)χBρn ](.− tn, .)

)}
is uniformly integrable in

(tn,∞) × RN and it is the same with {g (v∞n )}. Therefore, for any T > 0,
{
tβg (v∞n )

}
is

uniformly integrable in (tn, T )×RN . Hence {v∞n } converges locally in (0,∞)×RN to ukδ0 and
u ≥ ukδ0 as above.

�

Remark. We will see in Theorem F that if g(u) = up the concentration result holds under the
mere condition (1.15) whatever is the sign of β. The difficulty in the case β > 0 comes from the
fact that the ball Bρn may shrink very quickly with tn and that a pointwise isolated singularity
at (τ, z) with τ > 0 can be removable for equation (2.20). In the power case we can control the
rate of shrinking thanks to a Harnack-type inequality.

Proof of Theorem D. (i) Proof of (1.22). Let γ ∈ C2(R) be a convex nondecreasing function
vanishing on (−∞, 0] such that γ(r) ≤ r+. For ε > 0, let Uε be the solution of

∂tU + tβg(U) = 0 in (ε,+∞)

U(ε) = +∞.
(2.27)
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Indeed,

Uε(t) = G−1(
tβ+1 − εβ+1

β + 1
),

where G−1 is the inverse function of G, see (1.20). Then there holds

(−∆)sγ(u(t, .)− Uε(t))(x) = γ′((u(t, x)− Uε(t))(−∆)su(x)

− aN,s
γ′′(u(t, zx)− Uε(t))

2

∫
RN

(u(t, y)− u(t, x))2

|x− y|N+2s
dy.

Notice that the integral is convergent if t > ε, since γ(u(t, ·) − U(t − ε)) = γ(u(t, .) − Uε(t)),
where 0 ≤ u(t, ·) ≤ Uε(t) and u satisfies∫

RN

u(·, x)dx

1 + |x|N+2s
< +∞ a.e. in (0, T ).

Then

∂tγ(u(t, x)− Uε(t)) + (−∆)sγ(u(t, .)− Uε(t))(x)

≤ γ′(u(t, x)− Uε(t)) · (∂tu(t, x)− ∂tUε(t) + (−∆)su(x))

≤ γ′(u(t, x)− Uε(t)) ·
(
tβg(Uε(t))− f(t, x, u(t, x))

)
≤ 0.

Therefore, γ(u(·, ·)−Uε(·)) is a subsolution. Let η ∈ C∞0 (RN ) be a nonnegative function. Using
Lemma 2.5 we have that∣∣∣∣∫

RN
γ(u(t, x)− Uε(t))(−∆)sηdx

∣∣∣∣ ≤ c5‖η‖C2

∫
RN

u(t, x)dx

1 + |x|N+2s
.

Since u ∈ L1
loc(0, T ;Ls(RN )), for almost all s, t such that ε < s < t, there holds∫
RN
γ(u(t, x)− Uε(t))η(x)dx+

∫ t

s

∫
RN
γ(u(τ, x)− Uε(t))(−∆)sη(x)dxdτ

≤
∫
RN
γ(u(s, x)− Uε(s))η(x)dx.

Since γ(u(s, x) − Uε(s))η(x) ≤ u(s, x)η(x) and u(s, .)η ∈ L1(RN ), we get from the dominated
convergence theorem that

lim
s↓ε

∫
RN
γ(u(s, x)− Uε(s))η(x)dx = 0.

Hence, letting s→ ε and γ(r) ↑ r+, we get∫
RN

(u(t, x)− Uε(t))+η(x)dx ≤
∣∣∣∣∫ t

ε

∫
RN

(u(τ, x)− Uε(t))+(−∆)sη(x)dxdτ

∣∣∣∣
≤ c5‖η‖C2

∫ t

ε

∫
RN

(u(τ, x)− Uε(t))+

1 + |x|N+2s
dxdτ.

(2.28)
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Next, for n ≥ 1, we replace η by ηn(x) = η(n−1x), where 0 ≤ η ≤ 1, η(x) = 1 on B1 and
supp(η) ⊂ B2. We can also assume that η is radially decreasing and η(0) = 1. Since ‖ηn‖C2 ≤
‖η‖C2 , we obtain from (2.28) and the monotone convergence theorem that the following holds
for almost all t ∈ (ε, T )∫

RN
(u(t, x)− Uε(t))+dx ≤ c5‖η‖C2

∫ t

ε

∫
RN

(u(τ, x)− Uε(τ))+

1 + |x|N+2s
dxdτ. (2.29)

This inequality implies that (u(t, .)− Uε(t))+ ∈ L1(RN ) for almost all t ∈ (ε, T ). We set

Ψε(t) =

∫ t

ε

∫
RN

(u(τ, x)− Uε(τ))+

1 + |x|N+2s
dxdτ.

Then

Ψ′ε(t) =

∫
RN

(u(t, x)− Uε(t))+

1 + |x|N+2s
dx ≤

∫
RN

(u(t, x)− Uε(t))+dx ≤ c5‖η‖C2Ψε(t).

Since Ψε(ε) = 0 we obtain Ψε(t) = 0 on (0, T ), hence u(t, x) ≤ Uε(t) a.e. on (ε, T )×RN . Letting
ε→ 0, we get the claim.

(ii) End of the proof. Because of Theorem B it is sufficient to prove that if (1.23) holds true,
then U ∈ L1(0, 1). Indeed, we recall that

G(s) =

∫ ∞
s

dτ

g(τ)
.

Clearly, G is an decreasing diffeomorphism from R∗+ onto (0,Φ(0)) and U(t) = G−1
(
tβ+1

β+1

)
. Set

U(t) = s, then t = ((β + 1)G(s))
1

β+1 and we get∫ 1

0
U(t)dt =

∫ U(1)

∞
sG′(s) ((β + 1)G(s))

− β
β+1 ds

= (β + 1)
− β
β+1

∫ ∞
U(1)

sds

g(s)

(∫ ∞
s

dτ

g(τ)

) β
β+1

< +∞,

which completes the proof. �

The following weight function plays an important role in the description of the initial trace
problem for positive solutions of the fractional heat equation

Φ(x) =
1(

1 + (|x|2 − 1)4
+

)N+2s
8

, ∀x ∈ RN .
(2.30)

It has the remarkable property that

−c6Φ(x) ≤ (−∆)sΦ(x) ≤ c6Φ(x), ∀x ∈ RN , (2.31)

for some constant c6 > 0 (see [15], [11]). Furthermore, for some c7 > 1,

1

c7(1 + |x|N+2s)
≤ Φ(x) ≤ c7

1 + |x|N+2s
, ∀x ∈ RN . (2.32)
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Lemma 2.6 Let f : R∗+×RN ×R+ → R+ be a Caratheodory function which satisfies (1.2) and
is nondecreasing with respect to the variable u. For given u0 ∈ L1(RN ) is nonnegative, problem

∂tu+ (−∆)su+ f(t, x, u) = 0 in Q∞,

u(0, ·) = u0 in RN
(2.33)

has a unique weak solution u ∈ C(R+;L1(RN )) satisfying that∫
RN
u(t, x)Φ(x)dx+

∫ t

0

∫
RN

(u(s, x)(−∆)sΦ(x) + f(s, x, u)Φ(x)) dxds =

∫
RN
u0(x)Φ(x)dx.

(2.34)

Proof. Since u is a weak solution of (2.33) and the function Φ satisfies the assumptions (i)-(ii)
in [28, Def. 1.1], we get (2.34). �

Corollary 2.7 Assume that f satisfies the assumptions of Lemma 2.6 and that inequalities
(1.14)-(1.15)-(1.16) hold. Then for any nonnegative measure µ in RN verifying∫

RN
Φ(x) dµ(x) < +∞, (2.35)

there exists a weak solution u ∈ Cb(R+;Ls(RN )) ∩ L1(R+;Ls(RN )) of (2.33) in the sense that∫ t

0

∫
RN

[−(∂tξ + (−∆)sξ)u+ ξf(s, x, u)] dxds+

∫
RN
u(t, x)ξ(t, x)dx =

∫
RN
ξ(0, x)dµ(x),

(2.36)
for any ξ ∈ C2

0 (QT ) satisfying the assumptions (i)-(ii) in [28, Def. 1.1]. Furthermore,∫
RN
u(t, x)Φ(x)dx+

∫ t

0

∫
RN

[u(s, x)(−∆)sΦ(x) + f(s, x, u)Φ(x)] dxds =

∫
RN

Φ(x)dµ(x).

(2.37)

Proof. By the assumptions on f and for any n > 0, it follows from [28, Th. 1.1] that

∂tu+ (−∆)su+ f(t, x, u) = 0 in Q∞

u(0, ·) = µn := χBnu0 in RN ,
(2.38)

has a unique solution un ∈ L1(QT ) verifying f(·, ·, un) ∈ L1(QT ). If ρk is a sequence of mollifiers
with compact supports and µn,k = (χBnu0) ∗ ρk, the sequence {un,k} of weak solutions of

∂tu+ (−∆)su+ f(t, x, u) = 0 in Q∞

u(0, ·) = µn,k in RN ,
(2.39)

then un,k satisfies that∫
RN
un,k(t, x)Φ(x)dx+

∫ t

0

∫
RN

[un,k(s, x)(−∆)sΦ(x) + f(s, x, un,k)Φ(x)] dxds

=

∫
RN
µn,k(x)Φ(x)dx.

(2.40)
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When k → ∞, we know from the proof of [28, Th. 1.1] that, up to a subsequence, {un,k}k
converges a.e. in QT to some function un, {f(·, ·, un,k)}k converges a.e. to {f(·, ·, un)} and that
{un,k}k and {f(·, ·, un,k)}k are uniformly integrable in L1(QT ). Furthermore un ∈ C([0, T ];L1(RN ))
and for any t ∈ (0, T ], {un,k(t, ·)}k converges to un(t, ·) in L1(RN ). This implies that∫

RN
un(t, x)Φ(x)dx+

∫ t

0

∫
RN

[un(s, x)(−∆)sΦ(x) + f(s, x, un)Φ(x)] dxds =

∫
RN

Φ(x)dµn(x).

(2.41)
Furthermore,∫ t

0

∫
RN

[−(∂tξ + (−∆)sξ)un + ξf(s, x, un)] dxds+

∫
RN
un(t, x)ξ(t, x)dx =

∫
RN
ξ(0, x)dµn(x),

(2.42)
for all ξ ∈ C2

0 (QT ) satisfying the assumptions (i)-(ii) in [28, Def. 1.1]. When n→∞, un ↑ u and
f(s, x, un) ↑ f(s, x, u). Using the monotone convergent theorem we see that u satisfies (2.37),and
that the sequences {un}n and {f(·, ·, un)}n converges to u and f(·, ·, u) in L1(0, T ;Ls(RN ))
respectively. Using estimate (2.17) we can let n to infinity in (2.42) and obtain (2.36). �

As it is pointed out in [15], the weight function Φ plays a role similar to an eigenfunction of
(−∆)s. We prove a backward-forward uniqueness result for solutions of (1.1) inspired from [15,
Lemma 4.2].

Theorem 2.8 Assume that u 7→ f(t, x, u) is locally Lipschitz continuous on R, uniformly with
respect to x ∈ RN and locally uniformly with respect to t ∈ R∗+. If u1 and u2 belong to
L1
loc(R∗+;Ls(RN )) ∩ L∞loc(R∗+;L∞(RN )) and are weak solutions of (1.1) in QT which coincide

for t = t0 > 0, then u1 = u2 in QT .

Proof. For any 0 < ε < t0 < T < ∞, u1 and u2 are uniformly bounded in [ε, T ] × RN . Hence
the function D defined by

D(t, x) =


f(t, x, u1(t, x))− f(t, x, u2(t, x))

u1(t, x)− u2(t, x)
if u1(t, x) 6= u2(t, x)

0 if u1(t, x) = u2(t, x)

is bounded in [ε, T ]× RN by some constant M = M(ε, T ) > 0. Set w = u1 − u2, it satisfies

∂tw + (−∆)sw +Dw = 0 in QT ,

and is uniformly bounded in [ε, T ]× RN . Hence

d

dt

∫
RN
w(t, x)Φ(x)dx+

∫
RN
w(t, x)(−∆)sΦ(x)dx+

∫
RN
D(t, x)w(t, x)Φ(x)dx = 0.

Using (2.31) we get

−(c5 +M)

∫
RN
w(t, x)Φ(x)dx ≤ d

dt

∫
RN
w(t, x)Φ(x)dx ≤ (c5 +M)

∫
RN
w(t, x)Φ(x)dx. (2.43)
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This implies

−(c5 +M)

∫
RN
w(t, x)Φ(x)dx ≤ d

dt

∫
RN
w(t, x)Φ(x)dx ≤ (c5 +M)

∫
RN
w(t, x)Φ(x)dx, (2.44)

and

(i)

∫
RN
w(t, x)Φ(x)dx ≤ e(c5+M)(t−s)

∫
RN
w(s, x)Φ(x)dx,

(ii) e(c5+M)(s−t)
∫
RN
w(s, x)Φ(x)dx ≤

∫
RN
w(t, x)Φ(x)dx,

(2.45)

for all ε ≤ s ≤ t ≤ T . Taking s = t0 in (i) and t = t0 in (ii) yields w ≡ 0 in [ε, T ]× RN . �

Proof of Theorem E. By Theorem D we know that u ≤ U . If there exists some (t0, x0) ∈ QT
such that u((t0, x0)) = U(t0), then either u((t0, x)) = U(t0) for all x ∈ RN , or

(−∆)s(u− U)(t0, x0) < 0 ∀x ∈ RN .

Since f(t, x, u)− tβg(U) ≥ 0 and ∂t(u−U)(t0, x0) = 0 we infer that u((t0, .)) ≡ U(t0). Since g is
nondecreasing this situation is impossible, hence u((t0, .)) = U(t0). Since g is locally Lipschitz
continuous, this implies u = U in QT by Theorem 2.8. �

A straightforward consequence of Theorems B, C and D is the next statement.

Corollary 2.9 Let f(t, x, r) = tβg(r), where β > −1 and g : R+ → R+ is continuous and
nondecreasing and satisfies (1.15), (1.19) and (1.23). If u is a nonnegative of (1.1) in QT
belonging to L1

loc(0, T ;Ls(RN )) such that Su 6= ∅, there holds

u(t, x) ≥ u∞,z(t, x) = u∞,0(x− z, t) ∀ (t, x) ∈ QT . (2.46)

3 The case f(t, x, u) = tβup

We denote by (−∆)s
Rκ

the fractional Laplacian in Rκ and (−∆)s
RN

= (−∆)s. The following
standard lemma will be useful in the sequel.

Lemma 3.1 Let 1 ≤ κ ≤ N − 1 be an integer. If u ∈ C2(Rκ) ∩ Ls(Rκ) and ũ(x1, x
′) = u(x1)

for (x1, x
′) ∈ Rκ × RN−κ, then

(−∆)sũ(x1, x
′) = (−∆)s

Rκ
u(x1). (3.47)

Proof. This more or less well known lemma is based upon the explicit value of the constant
aN,s in the definition of (−∆)s. For the sake of completeness we give here the proof.

(−∆)sũ(x1, x
′) = aN,s

∫
Rκ

∫
RN−κ

u(x1)− u(y1)

((x1 − y1)2 + |x′ − y′|2)
N
2

+s
dy′dy1

= aN,s

∫
Rκ

(∫
RN−κ

dy′

((x1 − y1)2 + |y′|2)
N
2

+s

)
(u(x1)− u(y1)) dy1

= aN,s

(∫
RN−κ

dz′

(1 + |z′|2)
N
2

+s

)∫
Rκ

u(x1)− u(y1)

|x1 − y1|κ+2s
dy1

=
aN,s
aκ,s

(∣∣SN−1−κ∣∣ ∫ ∞
0

rN−κ−1dr

(1 + r2)
N
2

+s

)
(−∆)s

Rκ
u(x1).
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Since ∣∣SN−1−κ∣∣ =
2π

N−1−κ
2

Γ(N−1−κ
2 )

,

and (see e.g. [46, p. 103])∫ ∞
0

rN−κ−1dr

(1 + r2)
N
2

+s
=

1

2
B

(
N − κ

2
,
κ

2
+ s

)
=

1

2

Γ(κ2 + s)Γ(N−κ2 )

Γ(N2 + s)
,

by Euler’s formula, where B denotes beta function, we deduce that

aκ,s
aN,s

=
∣∣SN−1−κ∣∣ ∫ ∞

0

rN−κ−1dr

(1 + r2)
N
2

+s
,

which yields (3.47). �

The next statement is a straightforward consequence.

Corollary 3.2 Assume that u(x) = u(x1, ...xN ) =

N∑
j=1

uj(xj), then

(−∆)sũ(x) =
N∑
j=1

(
(−∆)sRuj

)
(xj). (3.48)

3.1 Proof of Theorem F

By Theorem E there holds u(t, x) ≤ ct−
1+β
p−1 for some c∗ = c∗(β, p) > 0, hence u satisfies

∂tu+ (−∆)su+
c(t, x)

t
u = 0, (3.49)

where 0 ≤ c(t, x) = tβup−1(t, x) ≤ cp−1
∗ := C∗. Let ds be the fractional parabolic pseudo-distance

(i.e. the triangle inequality holds up to a multiplicative constant if s < 1
2) in RN × R,

ds((t, x), (s, y)) =

√
|x− y|2 + |t− s|

1
s .

Lemma 3.3 If z ∈ Su, there holds

lim sup
ds((t,x),(0,z))→0

t
N
2su(t, x) =∞. (3.50)

Proof. If (3.50) does not hold there exists m, ε0 > 0 such that

u(t, x) ≤ mt−
N
2s ∀(t, x) s.t. |x− z|2 + t

1
s ≤ ε20.

Hence
γ(t, x) := tβup−1(t, x) ≤ mptβ−

N(p−1)
2s ∀(t, x) ∈ (0, t1)×Bε1(z),
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where ε1 = ε0
2 and t1 =

(
3
4

)2s
εs0. By assumption p < p∗β, or equivalently β− N(p−1)

2s > −1. Hence

γ̃(t) := ‖γ(., t)‖L∞(Bε1 (z)) ∈ L1(0, t1). We write the equation satisfied by u in Bε1(z)× (0, t1) in
the form

∂tu+ (−∆)su+ γ(t, x)u = 0, (3.51)

and, as in the proof of Theorem A, we take for test function φq, where q ≥ 2 and φε = φBε(z)
is the first normalized eigenfunction of (−∆)s in Hs

0(φBε(z)) for some 0 < ε < ε1. If λε is the
corresponding eigenvalue, we obtain as in Proposition 2.2,

d

dt
eqλεt

∫
Bε(z)

uφqεdx+ eqλεtγ̃(t)

∫
Bε(z)

uφqεdx ≥ 0.

If we put X(t) = eqλεt
∫
Bε(z)

uφqεdx, then X ′ + γ̃(t)X ≥ 0 on (0, t1), which implies that the

function t 7→ e
∫ t
0 γ̃(s)dsX(t) is increasing on (0, t1). Hence

lim
t→0

∫
Bε(z)

u(., t)φqεdx ≤ eqλεt1+
∫ t1
0 γ̃(s)ds

∫
Bε(z)

u(., t1)φqεdx,

which implies that z ∈ Ru, contradiction. �

Notice that the above lemma contains a result which is interesting in itself.

Corollary 3.4 If γ is a measurable function in RN × (0, T ) such that for any compact set
K ⊂ RN the function γ̃K(t) := ess sup

x∈K
|γ(t, x)| is integrable on (0, T ), then any nonnegative

function u ∈ L1
loc(0, T ;Ls(RN ) satisfying (3.51) admits an initial trace ν which is a nonegative

Radon measure in RN .

The next result is an Harnack-type inequality valid for positive solutions of (1.26). For the
mere fractional heat equation, two-sided Harnack inequalitis are proved in [11] and [15].

Lemma 3.5 Let θ > 0 and w be a nonnegative solution of (1.26) in Q∞. Then for any t > t
2 ≥

s > t
4 and x, y ∈ RN such that |x− y| ≤ θt

1
2s , there holds

w(t, y) ≥Mw(x, s), (3.52)

where M > 0 depends on N , s, β, p and θ.

Proof. Since w satisfies

∂tw + (−∆)sw +
C∗
t
w ≥ 0, (3.53)

tC∗w(t, .) is a supersolution of the fractional diffusion equation ∂tv + (−∆)sv = 0, hence

tC∗w(t, x) ≥
(
t

4

)C∗ ∫
RN
Hs(

3t
4 , x− z)w( t4 , z)dz,
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which implies, thanks to identity (1.35),

w(t, x) ≥ 3t

c34C∗+1

∫
RN

w( t4 , z)dz

(3t
4 )1+N

2s + |x− z|N+2s
.

Since w is a subsolution of the fractional diffusion equation,

w(s, y) ≤
∫
RN
Hs(s− t

4 , y − z)w( t4 , z)dz ≤ c3(s− t
4)

∫
RN

w( t4 , z)dz

(s− t
4)1+N

2s + |y − z|N+2s
.

Hence

w(s, y) ≤
c2

34C∗+1(s− t
4)

3t

(
sup
z∈RN

(3t
4 )1+N

2s + |x− z|N+2s

(s− t
4)1+N

2s + |y − z|N+2s

)
w(t, x) (3.54)

If we assume that |x− y| ≤ θt
1
2s for some θ > 0, we obtain the claim. �

End of the proof of Theorem F. By Lemma 3.3 there exists a sequence {tn, xn} ⊂ Q∞
converging to (0, z) such that

u(sn, xn) ≥ ns−
N
2s

n . (3.55)

By Lemma 3.5, there holds with tn = 2sn,

u(tn, x) ≥Mnt
−N

2s
n ≥ cnHs(tn, x− xn) ∀x ∈ RN s.t. |x− xn| ≤ θt

1
2s
n . (3.56)

for some c > 0 depending on M and θ. This implies∫
|x−xn|≤θt

1
2s
n

u(tn, x)dx ≥ cn
∫
|x−xn|≤θt

1
2s
n

Hs(tn, x− xn)dx ≥ c′n. (3.57)

Then for any k ∈ (0, n) there exists kn ∈ (0, n) such that

ckn

∫
|x−xn|≤θt

1
2s
n

Hs(tn, x− xn)dx = k. (3.58)

Using (1.34) ∫
|x−xn|≤θt

1
2s
n

Hs(tn, x− xn)dx =

∫
Bθ

H̃s(y)dy,

hence kn ≤ ck for some c > 0 independent of n. Set υn(x) = cknHs(tn, .− xn)χB
θt

1
2s
n

(xn). Then

u is bounded from below in (tn,∞)× RN by the function un which satisfies

∂tun + (−∆)sun + tβupn = 0 in (tn,∞)× RN

un(tn, .) = υn,
(3.59)

which in turn, satisfies

un(t, x) ≤ Hs[υn](t− tn, x) ≤ cknHs(t, x− xn) in (tn,∞)× RN .

Since p < p∗β, it is proved in [28, Th 1.1] that the set of functions {tβ (cknHs(., .− xn))p}
is uniformly integrable in Q∞, and this property is shared by the set {tβ (un)p}. Because
un(tn, .) → kδz it follows that un → ukδz locally uniformly in Q∞, and u ≥ ukδz . Since k is
arbitrary, the claim follows. �
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3.2 Proof of Theorem G (i)

When f(t, x, u) = tβg(u) := tβup, conditions (1.19) and (1.23) are fulfilled when p > 1 and
p > β + 2 respectively. Condition 1 < p ≤ p∗∗β is not compatible with p > β + 2, and condition

p∗∗β < p < p∗β necessitates β + 2 < 1 + 2s(1+β)
N , equivalently β + 1 < 2s

N .

Step 1. The case 1 < p < 1 + 2s(1+β)
N+2s ). Let z ∈ Su. Since r 7→ rp satisfies (1.15) there holds

u ≥ uz,∞ by Theorem C. Since uz,∞ = Up,β by (1.29), we obtaind that u ≥ Up,β. If we assume
that u ∈ L1

loc(0, T ;Ls(RN )) then u = Up,β by Theorem D.

Step 2. The case p = 1 + 2s(1+β)
N+2s . We set u∞ = u0,∞. From [28, Lemma 5.3] ,

u∞(t, x) ≥ c7t
−N+2s

2s

1 + |t−
1
2sx|N+2s

∀ (t, x) ∈ (0, 1)× RN , (3.60)

where c7 > 0. Since ∫
B1

t−
N+2s

2s dx

1 + |t−
1
2sx|N+2s

= t−1

∫ 1

0

rN−1dr

1 + rN+2s
,

it follows from (3.60) that ∫ 1

0

∫
B1(0)

u∞(t, x)dxdt = +∞. (3.61)

By Proposition 6.1 in Appendix, x 7→ uk(t, x) is radially symmetric and decreasing, so is u∞.
Therefore, if we are able to prove that there exists x ∈ RN \ {0} such that lim

t→0
u∞(t, x) =∞, it

will imply
lim
t→0

u∞(t, z) =∞ uniformly with respect to z in B|x|(0).

Hence B|x|(0) ⊂ Su∞ and by Theorem C,

u∞(t, x) ≥ uz,∞(t, x) = u∞(t, x− z) ∀ z ∈ B|x|(0) (3.62)

Because u∞ is radially symmetric and decreasing, it implies that

u∞(t, x) = u∞(t, x− z) ∀ z ∈ B|x|(0). (3.63)

By iterating this process we infer that u∞(t, x) is indeed independent of x and tends to∞ when
t→ 0. It coincides therefore to the maximal solution Up,β of (1.21) with g(u) = up.

Henceforth we are lead to prove that Su∞ ∩ RN \ {0} 6= ∅. We proceed by contradiction in
supposing that it does not hold, and let x0 ∈ Scu∞ ∩ RN \ {0}. Then lim sup

t→0
u∞(t, x0) <∞ and

sup
0<t≤1

u∞(t, x) ≤ sup
0<t≤1

u∞(t, x0) := M <∞ uniformly with respect to x in B
c
|x0|(0). (3.64)

By rescaling we can assume that |x0| = 1. Let x̄ ∈ Bc
3 and η ∈ C2

0 (B1(x̄)) such that η ≥ 0 and
η = 1 on B 1

2
(x̄). We denote

X1(t) =

∫
RN
u∞(t, x)η(x)dx, Y1(t) = tβ

∫
RN
up∞(t, x)η(x)dx, Z1(t) =

∫
RN
u∞(t, x)(−∆)sη(x)dx,
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and there holds
X ′1(t) + Z1(t) + Y1(t) = 0 on (0, 1]. (3.65)

Since u∞ is bounded in (0, 1]×B2(x̄) by (3.64), X1(t) and Y1(t) remains bounded on (0, 1].

Z1(t) =

∫
B1

u∞(t, x)(−∆)sη(x)dx+

∫
Bc1

u∞(t, x)(−∆)sη(x)dx := Z1,1(t) + Z1,2(t).

Since η has its support in B1(x̄), there exists c8 > 0 such that

(−∆)sη(x) ≤ −c8 ∀x ∈ B1(0).

Using (3.61) we obtain that ∫ 1

0
Z1,1(s)ds = −∞.

Using (2.17) in Lemma 2.5, we have

|Z1,2(t)| ≤ c5‖η‖C2

∫
Bc1

u∞(t, x)dx

1 + |x|N+2s
≤ c9

∫ ∞
1

rN−1dr

1 + rN+2s
.

Hence ∫ 1

0
Z1(s)ds = −∞.

Integrating (3.65) it contradicts the boundedness of X1 and Y1. Hence, for any z ∈ RN ,

lim sup
t→0

u∞(t, z) =∞. (3.66)

Using again the fact that x 7→ u∞(t, x) is radial and decreasing with respect to |x|, we get

lim sup
t→0

∫
Bρ(z)

u∞(t, x)dx =∞ ∀ ρ > 0. (3.67)

By Theorem C, we infer that u∞(t, x) ≥ uz,∞(t, x) = u∞(t, x − z). Interchanging 0 and z we
conclude again that u∞(t, x) depends only on t, hence it coincides with Uβ,p(t), and clearly
Su∞ = RN . �

3.3 Proof of Theorem G (ii)

We assume that κ ≥ 1 and L = {0Rκ} × RN−κ. We set x = (x1, x
′) ∈ Rκ × RN−κ. We

use Theorem G (i) with N replace by N − κ to prove the part (ii). If x = (x1, x
′), then

x̄ = (0, x′) ∈ L, hence by [28, Th 1.3 (ii)]

u∞(t, x− x̄) ≥ c10t
−N+2s

2s

1 + (t−
1
2s |x− x̄|)N+2s

=
c10t

−N+2s
2s

1 + (t−
1
2s |x1|)N+2s

.
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By Theorem C, we obtain

u(t, x) ≥ c10t
−N+2s

2s

1 + (t−
1
2s |x1|)N+2s

∀ (t, x) := (t, x1, x
′) ∈ R∗+ × Rκ × RN−κ. (3.68)

For n ∈ N∗, set tn = n−2s, ρ0 =
∫
RN−κ

dy′

1+|y′|N+2s , λ0 = ρ
1
p−1

0 and

fn(x1) =
c10λ0(ρ0tn)

− 1+β
p−1

1 +
(

(ρ0tn)−
1
2s |x1|

)N+2s
.

Then ∫
Rκ
fn(x1)dx1 = cκt

κ
2s
− 1+β
p−1

n

∫ ∞
0

rκ−1dr

1 + rN+2s

for some cκ > 0. Since p < 1 + 2s(1+β)
κ the above integral is finite for any n but tends to ∞ with

n. Hence we fix m > 0, then for any n ∈ N∗ there exists εn,m > 0 such that

∫
|x1|≤εn,m

fn(x1)dx1 = m = cκt
κ
2s
− 1+β
p−1

n

∫ εn,mt
−N+2s

2s
n

0

rκ−1dr

1 + rN+2s
.

Hence εn,m → 0 when n→∞. This implies that for any ζ ∈ C∞0 (Rκ),

lim
n→∞

∫
|x1|≤εn,m

fn(x1)dx1 = mζ(0).

Equivalently fn,m := fnχBεn,m → mδ0 in the sense of measures in Rκ. Let wn,m be the solution

of
∂tu+ (−∆)s

Rκ
u+ tβup = 0 in R∗+ × Rκ

u(0, ·) = fn,m in Rκ,
(3.69)

in which formula (−∆)s
Rκ

denotes the fractional Laplacian in Rκ, an index omitted if κ = N .
Then w̃n,m(t, x1, x

′) = wn,m(t, x1) is a solution of

∂tu+ (−∆)su+ tβup = 0 in R∗+ × RN

u(0, ·) = f̃n,m in RN ,
(3.70)

with f̃n,m(x1, x
′) = fn,m(x1). Since u(tn, x) ≥ f̃n(x) in RN , we obtain by the comparison

principle that u(t+ tn, x) ≥ w̃n,m(t, x) in R∗+ × RN . Hence, by letting successively n→∞ and
m→∞,

u(t+ tn, x1, x
′) ≥ wn,m(t, x1) =⇒ u(t, x1, x

′) ≥ uκmδ0(t, x1) =⇒ u(t, x1, x
′) ≥ uκ∞(t, x1), (3.71)

where we have denoted by uκmδ0 and uκ∞ respectively the solution of the equation in (3.69) with

mδ0 as initial data and the limit of this solution when m → ∞. Since 1 < p ≤ 1 + 2s
κ+2s ,

uκ∞ = Up,β by (i), which ends the proof. �

Remark. It appears interesting to investigate whether the fact that the singular set Su contains
a (N -κ)-dimensional plane can be replaced by Su contains a (N -κ)-dimensional submanifold.
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4 Solution with a given initial trace: the general case

4.1 Problem with initial data measure

If ν is a bounded Radon measure on an open set R ⊂ RN , that we note ν ∈Mb(R)), we extend
it by 0 in S = RN \ R and the new measure still denoted by ν, belongs to the space Mb(RN )
of bounded Radon measures on RN . Conversely, if ν ∈ Mb(RN ) vanishes on S = RN \ R its
restriction to R belongs to Mb(R).

Definition 4.1 A nonnegative bounded Radon measure ν in RN is an admissible measure if
there exists a function u = uν ∈ L1(QT ) with tβup ∈ L1(QT ) solution of

∂tu+ (−∆)su+ tβup = 0 in Q∞

u(0, .) = ν.
(4.1)

It is a good measure if the sequence uνn of solutions of (4.1) with initial data νn = ν ∗ ρn,
where {ρn} is a sequence of mollifiers, converges to uν in L1(QT ) and if tβupνn converges to
tβup ∈ L1(QT ).

Uniqueness of solutions is proved in [28] as a result of the choice of Ys,T as space of test functions.
Notice also that if p < p∗β any nonnegative bounded measure is good. The following result will
be useful in the sequel.

Proposition 4.1 Let p > 1 and β > −1. If ν, µ ∈Mb
+(RN ) are good measures (resp. admissible

measures), then ν + µ is a good measure (resp. admissible measure).

Proof. We set νn = ν ∗ ρn and µn = µ ∗ ρn and denote by uνn , uµn and uνn+µn the solutions
of the initial value problem (4.1) with ν replaced by νn, µn and νn + µn respectively. Since
p > 1, uνn + uµn is a supersolution of (1.26). Hence uνn+µn ≤ uνn + uµn . When n → ∞,
uνn+µn converges a.e. to some function u (see [28]). Since uνn and uµn converges in L1(QT ),
the sequence uνn+µn is uniformly integrable in QT , it converges to some w (up to extraction of
a subsequence). Furthermore,

(uνn+µn)p ≤ (uνn + uµn)p ≤ 2p−1
(
upνn + upµn

)
.

Since tβupνn and tβupµn converges in L1(QT ) to tβupν and tβupµ respectively, they are uniformly
integrable. Hence the sequence {tβ(uνn+µn)p} is uniformly integrable in QT and thus, up to
extraction of a second subsequence, tβ(uνn+µn)p converges to tβwp in L1(QT ). Going to the
limit in the formulation (2.21) of the fact uνn+µn is a weak solution of (4.1) with initial data
νn + µn, it follows that w satisfies the same equation (4.1) but now with initial data µ+ ν. By
uniqueness (see [28, Th 1.1] and notice that therein uniqueness needs no more condition on h
than monotonicity), w = uν+µ and the whole sequence {uνn+µn} converges to uν+µ. The proof
in the case of admissible measures is similar. �

Proposition 4.2 Let p > 1 and β > −1. If {νk} ⊂ Mb
+(RN ) is a nondecreasing sequence of

admissible measures converging to ν ∈Mb
+(RN ), then ν is an admissible measure.
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Proof. The sequence {uνk} is increasing. Furthermore,

uνk ≤ Hs[νk] ≤ Hs[ν].

Hence there exists some u ∈ L1(QT ) for any T > 0, u ≥ 0, such that uνn → u in L1(QT ) and
a.e. in Q∞. By identity (3.25) in the proof of [28, Th. 1.1], we have for τ ≥ T ,∫ 1

0

∫
RN

(
uνk + (τ − t)tβuqνk

)
dxdt+ (τ − T )

∫
RN
uνk(T, x)dx = τ

∫
RN
dνk ≤ 2τ‖ν‖Mb

+
. (4.2)

Hence tβuq ∈ L1(QT ) and tβuqνk → tβuq in L1(QT ). By (2.21) there holds∫ 1

0

∫
RN

[
uνk (−∂tξ + (−∆)sξ) + tβuqνkξ

]
dxdt =

∫
RN
ξ(0, x)dνk(x),

for all ξ ∈ Ys,T , so it follows that u = uν . Hence ν is an admissible measure. �

The whole description of the set of admissible measures necessitates the introduction of
Bessel capacities as in the case s = 1, see [37], [41]. We have a first partial answer.

Lemma 4.3 Let p > 1 and β > −1. If ν ∈Mb
+(RN ) satisfies tβ(Hs[ν])p ∈ L1(QT ), then ν is a

good measure.

Proof. Let νn = ν ∗ ρn, by the maximum principle

uνn ≤ Hs[νn] = Hs[ν ∗ ρn] = Hs[ν] ∗ ρn.

Since Hs[ν] ∈ L1(QT ), Hs[ν] ∗ ρn → Hs[ν] in L1(QT ). Similarly tβ(Hs[ν] ∗ ρn)p → tβ(Hs[ν])p in
L1(QT ). Since uνn ≤ Hs[ν]∗ρn, we conclude that the sequences {uνn} and {tβupνn} are uniformly
integrable in L1(QT ), hence they are precompact by Vitali’s convergence theorem. As in the
proof of Proposition 4.1 any cluster point w in the L1(QT )-topology of the sequence {uνn} is
a weak solution of (4.1) with initial data ν hence w = uν and uνn → uν by uniqueness of the
solution. �

Proposition 4.4 Let p > 1 and β > −1. Assume that ν ∈ Mb
+(RN ) with Lebesgue decompo-

sition ν = ν0 + νs, where ν0 and νs belong to Mb
+(RN ), ν0 ∈ L1(RN ) and νs is singular with

respect to the N -dim Lebesgue measure. If tβ(Hs[νs])
p ∈ L1(QT ), then ν is a good measure.

Proof. By [28, Lemma 3.2] there exists a unique solution uν0 (resp. νs) to problem (4.1) with
ν replaced by ν0. (resp. νs). By [28, Lemma 3.2] the sequences {uν0∗ρn} and {tβupν0∗ρn} are
Cauchy sequences in L1(QT ). By Lemma 4.3, the sequences {uνs∗ρn} and {tβupνs∗ρn} share the
same property. Hence ν0 and νs are good measures and we conclude with Proposition 4.1.

�

We recall some classical results about Bessel potentials, capacities and interpolation. For

0 < γ < N , the Bessel kernel Jγ is defined in RN \ {0} by Jγ(x) = F−1
(

(1 + |ξ|2)−
γ
2

)
, where

F is the Fourier transform in RN , and the Bessel potential of a positive measure is

Jγ [µ](x) = Jγ ∗ µ(x) =

∫
RN
Jγ(x− y)dµ(y). (4.3)

28



For 1 ≤ r <∞, the Bessel capacity cap RN
γ,r of a compact set is

cap RN
γ,r (K) = inf{‖Jγ [ζ]‖rLr(RN ) : ζ ∈ ωK}, (4.4)

where ωK is the subset of nonnegative function belonging to the Schwartz space S(RN ) , with
value larger or equal to 1 on K. Furthermore

(−∆ + I)
γ
2 φ = ζ ⇐⇒ Jγ [ζ] = φ. (4.5)

If a linear m-accretive operator A in Lr(RN ) with domain D(A) is the infinitesimal generator
of an analytic semigroup of bounded linear operators SA(t), i.e.

u(t) = S−At υ ∀t ≥ 0⇐⇒ du

dt
+Au = 0 on R∗+ , u(0) = υ, (4.6)

the real interpolation classes between D(A) and Lr(RN ) can be obtained (see [49, p. 96]) by[
D(A), Lr(RN )

]
θ,r

=

{
υ ∈ Lr(RN ) :

∫ 1

0

∫
RN
t(1−θ)r|ASAt υ|rdx

dt

t
< +∞

}
, (4.7)

and

‖υ‖[D(A),Lr]θ,r
≡ ‖υ‖Lr +

(∫ 1

0
‖t1−θASAt υ‖rLr

dt

t

) 1
r

. (4.8)

If A = (−∆)s+I, its domain D(A) in Lr(RN ) is the Bessel potential space (I−∆)−s(Lr(RN )) =
L2s,r(RN ): the result is stated in [34, Th 1] but it is an easy consequence of [47, Chap. 4, Th 3]
applied to the Fourier multipliers (I + |ξ|2)s(1 + |ξ|2s)−1 and (I + |ξ|2)−s(1 + |ξ|2s). By classical
interpolation properties of Bessel potential spaces (see e.g. [49]),[

D(A), Lr(RN )
]
θ,r

= L2θs,r(RN ) = (I −∆)−θs(Lr(RN )). (4.9)

Since A is coercive, [49, Sec. 1.14.5], (4.8) can be replaced by

‖υ‖[D(A),Lr]θ,r
≡
(∫ 1

0
‖t1−θASAt υ‖rLr

dt

t

) 1
r

. (4.10)

Proposition 4.5 Let N ≥ 1, p > 1 and −1 < β < p − 1. If problem (4.1) admits a positive
solution uν for some ν ∈ M+

b (RN ), then ν vanishes on Borel subsets of RN with zero Bessel

capacity cap RN
2s(1+β)

p
,p′

where p′ = p
p−1 , i.e.

∀K ⊂ RN ,K Borel, cap RN
2s(1+β)

p
,p′

(K) = 0 =⇒ ν(K) = 0. (4.11)

Proof. Assume that u := uν is the solution of (4.1). Since cap RN
2s(1+β)

p
,p′

is a Choquet capacity,

let K ⊂ RN is compact and ζ ∈ S(RN ) be such that 0 ≤ ζ in RN and ζ ≥ 1 on K. We set
Φ = e−tHs[ζ] and take Φp′ as a test function. Then∫

RN
uΦp′(1, .)dx+

∫ 1

0

∫
RN

[(
−∂tΦp′ + (−∆)sΦp′

)
u+ tβupΦp′

]
dxdt =

∫
RN

Φp′dν. (4.12)
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Note that (−∆)sΦp′ ≥ p′Φp′−1(−∆)sΦ and ∂tΦ + (−∆)sΦ + Φ = 0, hence

−∂tΦp′ + (−∆)sΦp′ ≥ 2p′Φp′−1(−∆)sΦ.

Then we adapt the duality argument of [7] and get from Hölder’s inequality

∫
RN
uΦp′(1, x)dx+ 2p′

(∫ 1

0

∫
RN
t
− p
′β
p |(−∆)sΦ + Φ|p

′
dxdt

) 1
p′
(∫ 1

0

∫
RN
tβupΦp′dxdt

) 1
p

+

∫ 1

0

∫
RN
tβupΦp′dxdt ≥ ν(K).

Applying (4.7), (4.9) with r = p′, θ = 1+β
p , we obtain directly for some c11 > 1,

1

c11
‖ζ‖

L
2s(1+β)

p ,p′
≤
(∫ 1

0

∫
RN
t
− p
′β
p |(−∆)sΦ + Φ|p

′
dxdt

) 1
p′

≤ c11‖ζ‖
L

2s(1+β)
p ,p′

. (4.13)

If cap RN
2s(1+β)

p
,p′

(K) = 0, there exists a sequence {ζn} ⊂ ωK such that ‖ζn‖
L

2s(1+β)
p ,p′

→ 0 as

n→∞. Furthermore it is possible to assume ζn ≤ 1 in RN (see [3]). Hence, up to a subsequence,
ζn → 0 a.e. in RN . This implies Φn ≤ 1 and Φn → 0 a.e. in Q∞. Therefore,

lim
n→∞

∫
RN
uΦp′

n (1, x)dx and lim
n→∞

∫ 1

0

∫
RN
tβupΦp′

n dxdt = 0.

Combining the previous inequalities we infer that ν(K) = 0. �

Proposition 4.5 is the necessary condition in Theorem H. The next result provides the suffi-
cient condition.

Proposition 4.6 Let N ≥ 1, p > 1, −1 < β < p−1 and ν ∈M+
b (RN ) which vanishes on Borel

subsets of RN with zero capRN
2s(1+β)

p
,p′

-Bessel capacity. Then ν is an admissible measure.

Proof. If ν vanishes Borel subsets with zero capRN
2s(1+β)

p
,p′

, there exists an increasing sequence

of nonnegative measures {νn} ⊂
(
L

2s(1+β)
p−1

,p′
(RN )

)′
= L

− 2s(1+β)
p−1

,p
(RN ) such that νn → ν in the

sense of measures. This results is classical in the integer case and a proof in the Bessel case
(similar in fact) can be found in [50, Prop. 3.6].
Next let ζ ∈ S(RN ) and Φ = e−tHs[ζ], then∫

RN
ΦHs[νn](1, x)dx+

∫ 1

0

∫
RN

Hs[νn] (2(−∆)sΦ + Φ) dxdt =

∫
RN
ζdνn.

Hence ∫ 1

0

∫
RN

Hs[νn] ((−∆)sΦ + Φ) dxdt ≤ ‖νn‖
L
− 2s(1+β)

p−1 ,p
‖ζ‖

L
2s(1+β)
p−1 ,p′

.
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Consider the mapping

ζ 7→ L(ζ) =

∫ 1

0

∫
RN
t
β
pHs[νn]t

−β
p ((−∆)sΦ + δΦ) dxdt.

It satisfies

|L(ζ)| ≤ ‖νn‖
L
− 2s(1+β)

p−1 ,p
‖ζ‖

L
2s(1+β)
p−1 ,p′

≤ c‖νn‖
L
− 2s(1+β)

p−1 ,p

(∫ 1

0

∫
RN
t
− p
′β
p |(−∆)sΦ + δΦ|p

′
dxdt

) 1
p′

,

(4.14)

by (4.13). Hence t
β
pHs[νn] ∈ Lp(Q1) and(∫ 1

0

∫
RN
tβ (Hs[νn])p dxdt

) 1
p

≤ c12‖νn‖
L
− 2s(1+β)

p−1 ,p
. (4.15)

Hence the νn are good measures by Lemma 4.3. Then by Proposition 4.2, ν is an admissible
measure. �

Remark. When s = 1 and β = 0, it is proved in [7] that the admissibility condition for measures
is strongly linked to the removability for Borel sets in the sense that if K ⊂ RN is a Borel set
with zero capRN

2
p
,p′

-capacity, any u ∈ C(Q∞ \{(0,K)})∩C1,2(Q∞) solution of (1.14) in Q∞ which

vanishes on (0, x) for any x ∈ RN \K is identically zero. The set K is said removable. Further-
more, the condition is also necessary. Now, for equation (1.14) it is clear that a compact set K

with positive capRN
2s(1+β)

p
,p′

-capacity it is not removable since it is the support of the capacitary

measure (a positive measure belonging to L
2s(1+β)

p
,p′

(RN ), [1, Chap. 2]) which is a good measure

by Lemma 4.3. We conjecture that the condition capRN
2s(1+β)

p
,p′

(K) = 0 implies the removability

of the compact set K for equation (1.26) in the sense given above.

4.2 Barrier function for N = 1

We set

W (z) =


ln(e+ z2)

1 + z1+2s
if z ≥ 0

1 if z < 0,

(4.16)

where e is Neper constant, and

w(t, x) = t
− 1+β
p−1W (t−

1
2sx), ∀ (t, x) ∈ R∗+ × R. (4.17)

When t→ 0, the function w satisfies

(i) w(t, x) =
2t

1+2s
2s
− 1+β
p−1 ln t

|x|1+2s
(1 + o(1)) if x > 0,

(ii) w(t, x) = t
− 1+β
p−1 if x ≤ 0.

(4.18)
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Lemma 4.1 Assume that p > 1 + 2s(1+β)
1+2s . Then there exists λ0 > 0 such that for λ ≥ λ0, the

function wλ := λw satisfies

∂twλ + (−∆)sRwλ + tβwpλ ≥ 0 in R∗+ × R

lim
t→0

w(t, x) = 0 if x > 0

lim
t→0

w(t, x) =∞ if x ≤ 0.

(4.19)

Proof. Clearly the assertions concerning the limit of w(t, x) when t → 0 are satisfied since
1+2s

2s −
1+β
p−1 > 0 by assumption. Then

∂twλ(t, x) = −λ(1 + β)

p− 1
t
− 1+β
p−1
−1
w(z)− λ

2s
t
− 1+β
p−1
−1
w′(z)z,

with z = t−
1
2sx and

(−∆)s1wλ(t, x) = λt
− 1+β
p−1
−1

(−∆)s1w(z).

Hence

∂twλ(t, x) + (−∆)sRwλ(t, x) + tβwpλ(t, x)

= λt
− 1+β
p−1
−1
[
(−∆)sRw(z)− 1

2s
w′(z)z − 1 + β

p− 1
w(z) + λp−1wp(z)

]
.

(4.20)

If z > 0, we obtain that

− 1

2s
w′(z)z − 1 + β

p− 1
w(z) =

[
1 + 2s

2s

z1+2s

1 + z1+2s
− 1 + β

p− 1
− z2(e+ z2)−1

s ln(e+ z2)

]
w(z).

Since 1+2s
2s > 1+β

p−1 , lim
z→∞

z1+2s

1+z1+2s = 1 and lim
z→∞

1
ln(e+z2)

= 0, then there exist R0 > 0 and σ0 > 0

such that

− 1

2s
w′(z)z − 1 + β

p− 1
w(z) ≥ σ0w(z) ∀ z ≥ R0. (4.21)

Next we deal with (−∆)sRw(z) and put

w̃(z) =
ln(e+ z2)

1 + |z|1+2s
∀ z ∈ R,

so that (−∆)sRw(z) = (−∆)sRw̃(z) + (−∆)s1(1− w̃χR−
)(z).

For z > 2, using the equivalent definition of fractional Laplacian, we have that

−(−∆)sRw̃(z) =
a1,s

2

∫ ∞
−∞

ln(e+|z+ỹ|2)
1+|z+ỹ|1+2s + ln(e+|z−ỹ|2)

1+|z−ỹ|1+2s − 2 ln(e+z2)
1+z1+2s

|ỹ|1+2s
dỹ

=
a1,sw(z)

2z2s

∫ ∞
−∞

Iz(y)

|y|1+2s
dy,

(4.22)

where

Iz(y) =
1 + zN+2s

1 + z1+2s|1 + y|1+2s

ln(e+ z2|1 + y|2)

ln(e+ z2)
+

1 + z1+2s

1 + z1+2s|1− y|1+2s

ln(e+ z2|1− y|2)

ln(e+ z2)
− 2.
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Step 1: There exists c12 > 0 such that∫
1
2
≤|y|≤ 3

2

Iz(y)

|y|1+2s
dy ≤ c12

w(z)z
. (4.23)

Actually, for −3
2 < y < −1

2 , there exists c13 > 0 such that

1 + z1+2s

1 + z1+2s|1− y|1+2s

ln(e+ z2|1− y|2)

ln(e+ z2)
≤ c13

and then ∫ − 1
2

− 3
2

Iz(y)

|y|1+2s
dy ≤ 2

∫ 1
2

0

1 + z1+2s

1 + (zr)1+2s

ln(e+ z2r2)

ln(e+ z2)
dr + c14

≤ 2

w(z)z

∫ ∞
0

ln(e+ t2)

1 + t1+2s
dt+ c14

≤ c15

w(z)z
,

where c14, c15 > 0, and the last inequality holds since w(z)z → 0 as z → +∞. Similarly,∫ 3
2

1
2

Iz(y)

yN+2s
dy1 ≤

c16

w(z)z
.

Step 2: There exists c17 > 0 such that∫ 1
2

− 1
2

Iz(y)

|y|1+2s
dy ≤ c17. (4.24)

Indeed, since function Iz is C2 in [−1
2 ,

1
2 ] and satisfies

Iz(0) = 0 and Iz(y) = Iz(−y),

then I ′z(0) = 0 and there exists c18 > 0 such that

|I ′′z (y)| ≤ c18 for any y ∈ [−1
2 ,

1
2 ].

Then we have
|Iz(y)| ≤ c18

2
y2 for any y ∈ [−1

2 ,
1
2 ],

which implies that ∣∣∣∣∣
∫ 1

2

− 1
2

Iz(y)

|y|1+2s
dy

∣∣∣∣∣ ≤ c19.

Step 3: There exists c20 > 0 such that∣∣∣∣∫
A

Iz(y)

|y|1+2s
dy

∣∣∣∣ ≤ c20, (4.25)
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where A = (−∞,−3
2) ∪ (3

2 ,+∞). In fact, for y ∈ A, we observe that there exists c21 > 0 such
that Iz(y) ≤ c21 and ∫

A

Iz(y)

|y|1+2s
dy ≤ 2

∫ +∞

3
2

c21

|y|1+2s
dy ≤ c22

for some c22 > 0. Consequently, by (4.22)-(4.25), there exists c23 > 0 such that

(−∆)sRw̃(z) ≥ − c23

1 + z1+2s
∀ z ≥ 2.

Since 1− w̃χR−
= 1 in R+ and 1− w̃χR−

≤ 1 in R−, we have also

(−∆)sR(1− w̃χR−
)(z) ≥ 0 ∀ z > 0.

Therefore, we obtain that

(−∆)sRw(z) ≥ − c23

1 + z1+2s
∀ z ≥ 2. (4.26)

Combining (4.21) and (4.26), we infer that there exists R1 ≥ R0 + 2 such that for z > R1,

(−∆)sRw(z)− 1

2s
w′(z)z − 1 + β

p− 1
w(z) ≥ σ0w(z)− c23

1 + z1+2s

= w(z)

(
σ0 −

c23

ln(e+ z2)

)
≥ 0.

For z ≤ R1, there exists c24 > 0 such that

(−∆)sRw(z)− 1

2s
w′(z)z − 1 + β

p− 1
w(z) ≥ −c24,

and there exists c25 > 0 dependent of R1 such that

w(z) ≥ c25.

Therefore, one can find Λ0 > 0 such that for λ ≥ Λ0,

(−∆)wR (z)− 1

2s
w′(z)z − 1 + β

p− 1
w(z) + λp−1wp(z) ≥ 0 ∀ z ∈ R, (4.27)

which, together with (4.20), implies that (4.19) holds true. This ends the proof. �
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4.3 Solutions with initial trace (S, 0)

Lemma 4.7 Assume that N ≥ 1 and p > 1 + 2s(1+β)
1+2s . Then for any R > 0 there exists a

positive function u = u∞,BR minimal among the solutions of (1.26) in Q∞, which satisfy

lim
t→0

u(t, x) =∞ uniformly in BR

lim
t→0

u(t, x) = 0 uniformly in Bc
R′ for any R′ > R.

(4.28)

Furthermore, the mapping R 7→ u∞,BR is increasing.

Proof. By scaling we can assume that R = 1 and we fix λ ≥ λ0. We denote by e1 the point
with coordinates (1, 0, ..., 0) in RN . The function

(t, x) 7→ we1(t, x1, x
′) = λt

− 1+β
p−1W (t−

1
2s (x1 − 1)), (4.29)

is a super solution of (1.26) in Q∞, which satisfies

(i) limt→0we1(t, x1, x
′) =∞ uniformly in (−∞, 1]× RN−1,

(ii) limt→0we1(t, x) = 0 uniformly in [1 + ε,∞)× RN−1.
(4.30)

Since equation (1.26) is invariant under rotations and translations, for any a ∈ ∂B1 there exists
a rotation Ra with center 0 such that Ra(a) = e1. Therefore, the function (t, x) 7→ wa(t, x) :=
we1(t,Ra(x)) is a solution of (1.26) in Q∞ and it satisfies

(i) limt→0wa(t, x) =∞ uniformly in {x ∈ RN : 〈x, a〉 ≤ 1},

(ii) limt→0we1(t, x) = 0 uniformly in {x ∈ RN : 〈x, a〉 ≥ 1 + ge}.
(4.31)

For k ∈ N∗, let ukχ
B1

be the solution of

∂tu+ (−∆)su+ tβup = 0 in Q∞

u(0, .) = kχB1
in RN .

(4.32)

Then the sequence {ukχ
B1
}k is increasing. For any a ∈ ∂B1, ukχ

B1
≤ wa, the following limit

exists,
u∞,B1 = lim

k→∞
ukχ

B1
,

and there holds
u∞,B1 ≤ inf {wa : a ∈ ∂B1} .

This solution u is clearly minimal by construction and the monotonicity of the mapping R 7→
u∞,BR follows. �

Remark. In the previous result, the ball BR can be replaced by any closed convex set with a
non-empty interior. If a ∈ ∂K, let Ha be an affine separation hyperplane, with outer normal
vector na and

H+
a = {x ∈ RN : 〈x− a,na〉 > 0} and H−a = {x ∈ RN : 〈x− a,na〉 < 0}.
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The supersolutions wa are expressed by

(t, x) 7→ wa(t, x) = λt
− 1+β
p−1W (t−

1
2s 〈x− a,na〉)

and have initial trace (0, H
−
a ). Then we construct the minimal solution u = u∞,K of (1.26) with

initial trace (0,K) such that

(i) limt→0 u(t, x) =∞ uniformly in K,

(ii) limt→0 u(t, x) = 0 uniformly in {x ∈ Kc : dist (x,K) ≥ ε} ∀ε > 0.
(4.33)

Furthermore, the mapping K 7→ u∞,K is nondecreasing.

Proposition 4.8 Assume that N ≥ 1 and p > 1 + 2s(1+β)
1+2s . Then for any closed set S such that

int(S) = S there exists a positive function u = u∞,S minimal among the solutions of (1.26) in
Q∞ which satisfy

(i) limt→0 u(t, x) =∞ locally uniformly in S,

(ii) limt→0 u(t, x) = 0 locally uniformly in {x ∈ Sc : dist (x,S) ≥ ε} ∀ ε > 0.
(4.34)

In particular Tr(u∞,S) = (S, 0). Furthermore,

uS,∞(t, x) ≤ c9t
− 1+β
p−1

ln
(
e+ t−

1
s (dist (x,S))2

)
1 + t−

1+2s
2s (dist (x,S))1+2s

∀ (t, x) ∈ Q∞. (4.35)

Proof. We first assume that S is compact, hence precompact, and for any δ > 0 there exists a
finite number of points ξj ∈ S, 1 ≤ j ≤ nδ such that

S ⊂
nδ⋃
j=I

Bδ(ξj) := Sδ.

Clearly the mapping δ 7→ nδ is nondecreasing, furthermore we can choose the points ξj such that
δ 7→ Sδ is decreasing for the order relation of inclusion between sets. Since p > 1, the function

wSδ :=

nδ∑
j=1

u∞,Bδ(ξj), (4.36)

is a supersolution of (1.26) in Q∞ and by Lemma 4.7 it satisfies

(i) limt→0wSδ(t, x) =∞ uniformly in Sδ,

(ii) limt→0wSδ(t, x) = 0 uniformly in {x ∈ Scδ : dist (x,Sδ) ≥ ε} ∀ε > 0.
(4.37)

For k ∈ N∗ let ukχS be the solution of (1.26) in Q∞ with initial data kχS . It exists since S has a
non-empty interior, and it coincides with the solution of (1.26) in Q∞ with initial data kχ

int(S) .
Clearly there holds ukχS ≤ wSδ and the sequence {ukχS }k is increasing, then there exists

u∞,S = lim
k→∞

ukχS .
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It is a positive solution of (1.26) in Q∞ which tends to infinity on S, by construction, and
satisfies u∞,S ≤ wSδ . This implies in particular that for any ε > 0,

lim
t→0

u∞,S(t, x) = 0 uniformly in {x ∈ Scδ : dist (x,Sδ) ≥ ε} .

Since this holds for any δ, ε > 0, the second assertion in (4.34) follows.

If S is unbounded, for any ρ > 0 large enough, Sρ := S ∩ Bρ is a nonempty compact set and
Sρ = int(Sρ). Hence there exists a solution u∞,Sρ of (1.26) in Q∞ with initial trace (0,Sρ). By
construction ρ 7→ u∞,Sρ is nondecreasing and converges to a nonnegative solution u∞,S of (1.26)
in Q∞. Let a = (a1, ..., aN ) ∈ Sc and τ > 0 such that

Qτa = {x = (x1, ..., xN ) : |xj − aj | ≤ τ} ⊂ Sc.

We put

Wj(t, xj) = λt
− 1+β
p−1

(
W (t−

1
2s (xj − aj + τ) +W (t−

1
2s (aj + τ − xj)

)
with λ ≥ λ0, then Wj is a supersolution of (1.26) in R+ × R and it satisfies

(i) lim
t→0

Wj(t, x) = 0 locally uniformly in (aj − τ, aj + τ),

(ii) lim
t→0

Wj(t, x) =∞ uniformly in (−∞, aj − τ ]
⋃

[aj + τ,∞).

Hence WQτa(t, x) =
∑

jWj(t, x) is a supersolution of (1.26) in Q∞ and it satisfies

(i) lim
t→0

WQτa(t, x) = 0 locally uniformly in Qτa,

(ii) lim
t→0

WQτa(t, x) =∞ uniformly in RN \Qτa.

By construction u∞,Sρ ≤ WQτa which implies u∞,S ≤ WQτa . Hence u∞,S satisfies (4.34). The
estimate from above can be made more precise (it does not depend from the fact that S = intS)
using (4.16) since

WQτa(a) ≤ 2Nλt
− 1+β
p−1

ln
(
e+ t−

1
s τ2
)

1 + t−
1+2s
2s τ1+2s

. (4.38)

If we take τ = dist (a,S)√
N

, we obtain (4.35). Furthermore u∞,S is clearly minimal as the limit of

an increasing sequence of solutions with bounded initial data having compact support. �

4.4 Proof of Theorem I

If K ⊂ R is compact, then νK = χKν ∈ Mb
+(R); we extend it by zero and still denote by

νK ∈Mb(RN ) its extension. For ρ > 0, Sρ := S ∩Bρ and for ` ∈ N∗, `χSρdx is a good measure.
Since νK is a good measure, νK + `χSρdx is a good measure by Proposition 4.1. Then there
exists a solution u := uνK+`χSρ dx

of (4.1) in Q∞ with initial data νK + `χSρdx and it satisfies

sup
{
uνK , u`χSρ dx

}
≤ uνK+`χSρ dx

≤ uνK + u`χSρ dx
≤ uνK + u∞,S . (4.39)

37



Since (`, ρ) 7→ u`χSρ dx
is increasing, we can let ` and ρ go to infinity succesively and obtain that

uνK+`χSρ dx
converges to a positive solution ũK of (1.26) in Q∞ and that

sup {uνK , u∞,S} ≤ ũK ≤ uνK + u∞,S . (4.40)

This estimate implies that Tr(ũK) = (S, νK). To end the proof we consider an increasing
sequence {Kn} of compact sets such that

⋃
nKn = R. Then estimate (4.40) holds with K

replaced by Kn. Furthermore the sequences {uνKn} and {ũKn} are increasing. In order to prove
that the sequence {uνKn} converges to some solution ũν of (1.26) in Q∞ which admits ν as the
regular part of its initial trace, for R > 0 we write νKn = χ

BR
νKn + χ

BR
cνKn (both solutions

exist since Kn is admissible). Then

uνKn ≤ uχBR νKn
+ uχ

Bc
R
νKn ≤ uχBR ν

+ u∞,BcR∩Kn ≤ uχBR ν
+ u∞,BcR∩R

, (4.41)

which implies that the following limit exists and satisfies the upper estimate for any R > 0,

lim
n→∞

uνKn := ũν ≤ uχ
BR

νK + u∞,BcR∩R
. (4.42)

In turns it implies
sup {ũν , u∞,S} ≤ lim

n→∞
uKn := ũ ≤ ũν + u∞,S . (4.43)

Furthermore, since R > 0 in inequality (4.42) we infer that ν is the regular part of the initial
trace of ũν (notice that the singular part is not empty since ν can be unbounded). Hence
Tr(ũ) = (S, ν). �

4.5 Proof of Corollary K, part (a)

If ν vanishes on Borel sets with zero cap RN
2s(1+β)

p
,p′

-capacity, for any compact set K ⊂ RN ,

νK := χKν vanishes also on the same Borel sets. Hence there exists a solution uνK to (4.1) with
initial data νK (instead of ν). Next we replace K by an increasing sequence {Bn}n∈N∗ , and set
νn = χ

Bn
ν. Estimate (4.41) holds in the form

uνKn ≤ uχBRν
+ u∞,BcR ∀n,R ≥ 1.

This implies that ũν satisfies the same estimate for any R > 0, which in turn implies that

lim
t→∞

∫
RN
ũν(t, x)ζ(x)dx =

∫
RN
ζdν ∀ ζ ∈ C2

0 (RN ).

Hence Tr(ũν) = ({∅}, ν). The fact that ũν ∈ L1
loc(0, T ;Ls(RN )) follows from the upper estimate

0 ≤ ũν ≤ Up,β.

Conversaly (and here we do not use the assumption p > 1+ 2s(1+β)
1+2s ), if u ∈ L1

loc(0,∞;Ls(RN ))
is a solution with initial trace Tr(u) = ({∅}, ν), then u ≤ Up,β, by Theorem D. We proceed as
in the proof of Proposition 4.5. Let K ⊂ BR ⊂ RN be compact and Θ ∈ C∞0 (B2R) such that
0 ≤ Θ ≤ 1 and Θ = 1 on BR. Since

‖Θφ‖Wk,p′ ≤ c(k, p)‖φ‖Wk,p′ ∀φ ∈ C∞0 (RN )
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for all k ∈ N∗ by Leibnitz formula, it follows by interpolation that

‖Θφ‖
L

2s(1+β)
p ,p′

≤ c(s, p)‖φ‖
L

2s(1+β)
p ,p′

∀φ ∈ C∞0 (RN ). (4.44)

If T ∈ C∞(R+) satisfies

sup
t>0
|tj−1T (j)(t)| ≤ L <∞, ∀ j = 0, 1, ..., ` := E

[
2s(1+β)

p

]
+ 1,

then, by the smooth truncation theorem (see [1, Th. 3.3.3]),

‖T
(

J 2s(1+β)
p

[φ]

)
‖
L

2s(1+β)
p ,p′

≤ AL‖J 2s(1+β
p

[φ]‖
L

2s(1+β)
p ,p′

:= AL‖φ‖
L

2s(1+β)
p ,p′

∀φ ∈ C∞0 (RN ).

(4.45)

If we take in particular a function T with value 1 in [1,∞) we infer that if cap RN
2s(1+β)

p
,p′

(K) = 0,

there exists a sequence {ζn} ⊂ C`0(B2R) such that 0 ≤ ζn ≤ 1, ζn = 1 on K and ‖ζn‖
L

2s(1+β)
p ,p′

→

0 as n→∞. We set Φn = e−δtHs[ζn] and take Φp′
n for test function. Then for any ε > 0 we have

∫
RN

(uΦp′
n )(1, x)dx+ 2p′

(∫ 1

ε

∫
RN
t
− p
′β
p |(−∆)sΦn + δΦn|p

′
dxdt

) 1
p′
(∫ 1

ε

∫
RN
tβupΦp′

n dxdt

) 1
p

+

∫ 1

ε

∫
RN
tβupΦp′

n dxdt ≥
∫
B2R

(uΦp′
n )(ε, x)dx.

When ε → 0, the right-hand side of the above inequality converges to

∫
B2R

ζp
′
n dν ≥ ν(K). Fur-

thermore, we have that

lim
n→∞

∫
RN

(uΦp′
n )(1, x)dx = 0,

by the dominated convergence theorem since u ≤ Up,β and Φp′
n (1, x)→ 0 for all x ∈ RN , and

lim
n→∞

lim
ε→0

∫ 1

ε

∫
RN
t
− p
′β
p |(−∆)sΦn + δΦn|p

′
dxdt = 0,

as in the proof of Proposition ??. For the last term, we have∫ 1

ε

∫
RN
tβupΦp′

n dxdt =

∫ 1

ε

∫
B2R

tβupΦp′
n dxdt+

∫ 1

ε

∫
Bc2R

tβupΦp′
n dxdt := Iε,n + Jε,n.

By assumption tβup ∈ L1((0, 1) × B2R), then lim
n→∞

lim
ε→0

Iε,n = 0 by the dominated convergence

theorem. Finally, since u ≤ Up,β by Theorem H and Hs(t, x) ≤ ct

t1+N
2s + |x|N+2s

by (1.35), we
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obtain with various c > 0 independent of R

Jε,n ≤ c
∫ 1

ε

∫
Bc3R

t(1−p
′)β

(∫
B2R

dy

t1+N
2s + |x− y|N+2s

)p′
dxdt

≤ cRNp′
∫ 1

ε
t(1−p

′)β

∫
Bc3R

dx(
t1+N

2s + |x|N+2s
)p′

≤ cRNp′
∫ 1

ε
t(1−p

′)β+N
2s
− (N+2s)p′

2s

∫ ∞
3Rt−

1
2s

rN−1

(1 + rN+2s)p
′

≤ cRN−2sp′
∫ 1

ε
t(1−p

′)βdt

≤ c RN−2sp′

(p′−1)β−1 .

(Note that the assumption β < p−1 is crucial). Hence lim
n→∞

lim
ε→0

Iε,n = 0, always by the dominated

convergence theorem. This implies that ν(K) = 0. �

5 The subcritical case

For equation (1.26), the subcritical case corresponds to the fact that

u∞(t, x) = V (t, x) = t
− 1+β
p−1 v(t−

1
2sx) ∀ (t, x) ∈ Q∞,

where v is the minimal positive solution of (1.31).

5.1 Proof of Theorem J

Proposition 5.1 Assume that 1 + 2s(1+β)
N+2s < p < 1 + 2s(1+β)

N and u is a nonnegative solution of
(1.32) where S 6= ∅. Then

u(t, x) ≥ c10t
− 1+β
p−1

1 + (t−
1
2sd(x,S))N+2s

∀ (t, x) ∈ Q∞. (5.1)

for some c10 > 0.

Proof. By Theorem C, for any x0 ∈ S,

u(t, x) ≥ u∞(t, x− x0) = t
− 1+β
p−1 v(t−

1
2s (x− x0)) ∀ (t, x) ∈ Q∞,

which implies that

u(t, x) ≥ t−
1+β
p−1 sup

x0∈S
v(t−

1
2s (x− x0)) ∀ (t, x) ∈ Q∞. (5.2)

The maximum of V is achieved at 0, hence, for any x ∈ S,

u(t, x) ≥ t−
1+β
p−1 V (0) = c11t

− 1+β
p−1 . (5.3)
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If x ∈ Sc, there exists x̄ ∈ S such that dist (x,S) = |x − x̄|. It follows from [28, Theorem 1.2]
that,

u(t, x) ≥ c10t
− 1+β
p−1

1 + (t−
1
2sdist (x,S))N+2s

. (5.4)

Then (5.1) holds true. �

The next result shows that any closed set can be the singular set of the initial trace of a
positive solution of (1.26).

Proposition 5.1 Assume that 1 + 2s(1+β)
1+2s < p < 1 + 2s(1+β)

N and S ⊂ RN is a nonempty closed
set. Then there exists a minimal solution u := uS,∞ with initial trace (S, 0). Furthermore it
satisfies (4.35).

Proof. We first notice that the condition 1 + 2s(1+β)
1+2s < p < 1 + 2s(1+β)

N is equivalent to the
conditions stated in Theorem J, i.e.

(i) either N = 1 and 1 + 2s(1+β)
1+2s < p < 1 + 2s(1 + β),

(ii) or N = 2, 1
2 ≤ s < 1 and 1 + 2s(1+β)

1+2s < p < 1 + s(1 + β).
(5.5)

Let A := {zn}n∈N} be a countable dense subset of S. For k ∈ N∗, set

µk = k
k∑
j=1

δzj , (5.6)

and let u = uµk be the solution of

∂tu+ (−∆)su+ tβup = 0 in Q∞

u(0, .) = µk in RN .
(5.7)

The sequence {uµk} is increasing. If a ∈ Sc and da = dist (a,S). By construction there holds

uµk ≤ uBcda (a),∞. (5.8)

Hence uµk converges to some solution ũ of (1.26) in Q∞ which has zero initial trace on Bda(a),
for any a ∈ Sc since (5.8) still holds with ũ instead of uµk , and satisfies ũ ≥ uzj ,∞ for any zj ∈ A.
Hence Tr(ũ) = (S, 0). Estimate (4.35) is independent of the geometry of S. �

Proof of Theorem J. It is similar to the one of Theorem I . We consider an increasing sequence
of compact sets {Kk}k∈N∗ included in R such that

⋃
kKk = R, set νk = χKk ν and ν̃k = νk +µk,

where µk is defined by (5.6). Then the solution of (1.26) with initial data ν̃k satisfies

sup{uνk , uµk} ≤ uν̃k ≤ uνk + uµk . (5.9)

By the same argument as in the proof of Theorem I , the sequence {uνk} is increasing and
converges to a solution uν (1.26) with initial trace ({∅}, ν). Hence the sequence {uν̃k} which is
also increasing. converges to some solution ũ of (1.26) which satisfies

sup{uν , u∞,S} ≤ ũ ≤ uν + u∞,S . (5.10)
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Then ũ has initial trace (S, ν). �

The proof of Corollary K, part (b) is straightforward.

Remark. We conjecture that the following more general version of Theorem J holds: For any
integer κ ∈ [1, N ] any p > 1 such that 1 + 2s(1+β)

κ+2s < p < 1 + 2s(1+β)
N , any closed set S contained

in an affine plane of codimension κ and any bounded measure in Sc, there exists a solution u
of problem (1.32). We notice that the condition on p can be fulfilled for some p if and only if
N − κ < 2s, hence either κ = N i.e. S is a single point and no condition on s, or κ = N − 1
hence S is contained in a straight line and 1

2 < s < 1.

5.2 Proof of Theorem L

The proof uses the method developed in [48]. The function

φ̃(x) = inf{φ(y) : |y| ≥ |x|}, (5.11)

is radial, nondecreasing, smaller that φ and we write it as φ̃(|x|). Furthermore it satisfies

lim
|x|→∞

|x|−
2s
p−1 φ̃(x) > 0. (5.12)

We set

φ̃n(x) =

{
φ̃(x) if |x| ≤ n

φ̃(n) if |x| > n.

The existence of a solution uφ̃n of (1.26) with initial trace ({∅, φ̃n} follows from the fact that

Hs[φ̃n] exists by [15] and that Hs[φ̃n] ≥ uφ̃nχBk
for any k ∈ N∗. Hence uφ̃n is the increasing

limit of uφ̃nχBk
when k → ∞. it is obtained by replacing φ̃n by φ̃nχBk and by letting k → ∞.

The solution Yn of the differential equation Y ′(t) + tβY p(t) = 0 with initial data Y (0) = φ̃(n) is
expressed by

Yn(t) =
φ̃(n)(

1 + p−1
β+1 t

β+1(φ̃(n))p−1
) 1
p−1

. (5.13)

It larger than uφ̃n . Let us denote by wn the solution of

∂twn + (−∆)swn + tβY p−1
n (t)wn = 0 in (0,∞)× RN

wn(0, x) = φ̃n(x) in RN .
(5.14)

Since Y p−1
n ≥ up−1

φ̃n
, wn is smaller that uφ̃n , moreover wn can be explicitely computed

wn(t, x) = e−
∫ t
0 s

βY p−1
n (s)ds

∫
RN
Hs(t, x− y)φ̃n(y)dy. (5.15)
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In particular,

wn(t, 0) = e−
∫ t
0 s

βY p−1
n (s)ds

(∫
Bn

Hs(t, y)φ̃n(y)dy +

∫
Bcn

Hs(t, y)φ̃n(y)dy

)
≥ cte−

∫ t
0 s

βY p−1
n (s)dsφ̃(n)

∫
Bcn

dy

t
N+2s

2s + |y|N+2s

≥ cte−
∫ t
0 s

βY p−1
n (s)dsφ̃(n)

∫ ∞
n

rN−1dr

t
N+2s

2s + rN+2s

≥ ctn−2se−
∫ t
0 s

βY p−1
n (s)dsφ̃(n).

Next

−
∫ t

0
sβY p−1

n (s)ds = −
∫ t

0

sβ(φ̃(n))p−1ds

1 + p−1
β+1 t

β+1(φ̃(n))p−1
= − 1

p− 1
ln
(

1 + p−1
β+1 t

β+1(φ̃(n))p−1
)
.

We write

tn−2se−
∫ t
0 s

βY p−1
n (s)dsφ̃(n) = e

ln(tφ̃(n))−2s lnn− 1
p−1

ln
(

1+ p−1
β+1

tβ+1(φ̃(n))p−1
)

= e

1
p−1

ln

(
tp−1(φ̃(n))p−1

n2s(p−1)(1+ p−1
β+1

tβ+1(φ̃(n))p−1)

)
.

If we take t = tn such that

lim
n→∞

t
β+1
p−1
n φ̃(n) = +∞, (5.16)

the expansion of the term in the logarithm gives

tp−1(φ̃(n))p−1

n2s(p−1)
(

1 + p−1
β+1 t

β+1(φ̃(n))p−1
) =

β + 1

p− 1
n−2s(p−1)tp−2−β

n (1 + o(1)) as n→∞. (5.17)

If besides (5.16) it is assumed that

lim
n→∞

n−2s(p−1)tp−2−β
n = +∞, (5.18)

we infer that wn(0, tn)→∞ as n→∞. Clearly the origin can be replaced by any z ∈ RN and
the previous calculation shows that this limit is uniform for z belonging to compact sets on RN .
Since uφ̃n ≥ wn, we infer that

lim
n→∞

uφ̃n(tn, z) = +∞ =⇒ lim
n→∞

uφ̃n = u∞ = Up,β, (5.19)

by using (1.29). �
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6 Appendix: symmetry and monotonicity results

The following is a variant of the maximum principle which will be used in the sequel.

Lemma 6.1 Let R, T > 0, δ ∈ [0, T ) and Q be a domain of Q∞ such that Q ⊂ (δ, T ) × BR.
Assume that h ≥ 0 in Q and ψ ∈ C(Q̄) satisfies

∂tψ + (−∆)sψ + h(t, x)ψ ≥ 0 in Q

ψ ≥ 0 in ([δ, T )×BR) \Q. (6.1)

Then ψ is nonnegative in [δ, T )×BR.

Proof. Let ε ∈ (0, T − δ]. We first claim that ψ is nonnegative in [δ, T − ε]×BR. If it does not
hold, and since ψ ≥ 0 in ([δ, T )×BR) \Q, then there exists (t0, x0) ∈ Q∩ ([δ, T − ε]×BR) such
that

ψ(t0, x0) = min
(t,x)∈[δ,T−ε]×BR

ψ(t, x) < 0.

Then ∂tψ(t0, x0) ≤ 0 and (−∆)sψ(t0, x0) < 0. Since h ≥ 0 in Q and (t0, x0) ∈ Q, there holds

∂tψ(t0, x0) + (−∆)sψ(t0, x0) + h(t0, x0)ψ(t0, x0) < 0,

which is a contradiction. Thus, ψ is nonnegative in [δ, T − ε] × BR. Since ε is arbitrary, the
result follows. Notice that we can take R = ∞ in the above proof provided Q is a bounded
domain. �

Next we prove the following result.

Proposition 6.1 Let N ≥ 1, β > −1, p > 1 and g ∈ C(RN ) be a nonnegative contin-
uous radially symmetric and nonincreasing function which tends to 0 when |x| → ∞. If
u ∈ L1

loc(0,∞;Ls(RN ) ∩ C(Q∞) is a nonnegative solution of (1.26) in Q∞ which converges
to g uniformly when t→ 0, then u is radially symmetric and nonincreasing.

Proof. Since u ∈ L1
loc

(
0,∞;Ls(RN )

)
∩C(Q∞), it is bounded from above by Hs[g] and uniqueness

holds as for the linear equation [15]. Since the initial data is radially symmetric and the equation
is invariant by rotations in RN , u(t, .) is also radially symmetric. Because of uniqueness and
stability, it is sufficient to prove the result for a function u which initial data is obtained from the
previous one by multiplying it by a smooth, even, nonincreasing and nonnegative function with
compact support. The corresponding solution of (1.26) in Q∞, still denoted by u, is smooth in
Q∞ and bounded from above by Hs[g]. Hence it satisfies

(i) limt→∞ u(t, x) = 0 uniformly in x ∈ RN ,

(ii) lim|x|→∞ u(t, x) = 0 uniformly in t ∈ R+,

(iii) limt→0 u(t, x) = g(x) uniformly in x ∈ RN .

(6.2)

Next we use a moving plane method (see [44] for other applications). For λ ∈ R, we set
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xλ = (2λ− x1, x
′) if x = (x1, x

′) ∈ RN ,

Σλ = {x = (x1, x
′) ∈ RN | x1 < λ} (6.3)

and
Tλ = {x = (x1, x

′) ∈ RN | x1 = λ}.

We observe that if λ > 0, then {xλ | x ∈ Σλ} = {x ∈ RN | x1 > λ} and

|xλ| > |x| for x ∈ Σλ. (6.4)

We claim that for any λ > 0,

u(t, x) ≥ u(t, xλ) ∀ (t, x) ∈ R∗+ × Σλ. (6.5)

Set ϕ(t, x) = u(t, x) − u(t, xλ) and suppose that (6.5) does not hold. Because of (6.2) there
holds lim

|x|→∞
ϕ(t, x) = 0 uniformly with respect to t ≥ 0, lim

t→∞
ϕ(t, x) = 0 uniformly with respect

to x ∈ RN and lim
t→0

ϕ(t, x) = g(x)− g(xλ) ≥ 0 uniformly with respect to x ∈ RN . It follows that

there exists ε0 > 0 and (t0, x0) ∈ R∗+ × Σλ such that

ϕ(t0, x0) = min
(t,x)∈Σλ

ϕ(t, x) = −ε0 < 0. (6.6)

The function φ satisfies

∂tφ+ (−∆)sφ+ h(t, x)φ = 0 in Q∞, (6.7)

for some h(t, x) ≥ 0, and it has initial data φ(0, x) = g(x) − g(xλ) in RN . Take ε ∈ (0, ε0)
and set φε = φ + ε. Using (6.2) we see that there exists T0 > t0 > 0 and R0 > |x0| > 0
such that φε(t, x) ≥ 0 for (t, x) ∈

(
[T,∞)× RN

)⋃
([0,∞)×Bc

R), for all T ≥ T0 and R ≥ R0.
Furthermore there exists δ0 ∈ (0, t0) such that for any δ ∈ (0, δ0) such that φε(t, x) ≥ 0 for
(t, x) ∈ [0, δ)×

(
RN ∩ Σλ

)
. We set

Q = Σλ ∩ (δ, T0)×BR0 .

We apply Lemma 6.1 in [ δ2 , T )×BR and conclude that φε ≥ 0 in [ δ2 , T )×BR, which contradicts
the fact that φε(t0, x0) = ε− ε0 < 0. Hence (6.5) holds. Since λ > 0 is arbitrary, this implies in
particular by continuity that

∂u

∂x1
(t, x1, x

′) ≤ 0 ∀ (t, x1, x
′) ∈ R+ × R+ × RN−1. (6.8)

Similarly, we can get that

∂u

∂x1
(t, x1, x

′) ≥ 0 ∀ (t, x1, x
′) ∈ R+ × R− × RN−1. (6.9)

Since u(t, x) is radially symmetric with respect to x, it implies that u(t, x) ≥ u(t, x′) if |x| ≤ |x′|,
which ends the proof. �
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[4] W. Al Sayed and L. Véron. Initial trace of solutions of semilinear heat equations with
absorption, Nonlinear Analysis 93, 197-225 (2013).

[5] R. Banuelos and T. Kulczycki. The Cauchy process and the Steklov problem. J. Funct.
Anal. 211, 355-423 (2004).

[6] P. Baras and J. Goldstein. The heat equation with a singular potential. Trans. Amer. Math.
Soc. 284, 121-139 (1984).
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