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Abstract

In this paper, we prove the existence of an initial trace 7, for any positive solution u to
the semilinear fractional diffusion equation (H)

du+ (—A)u+ f(t,z,u) =0 in (0,400) x RY,

where N > 1, the operator (—A)® with s € (0, 1) is the fractional Laplacian, f : R, x RY x
Ry — Ris a Caratheodory function satisfying f(¢,z,u)u > 0 for all (¢,z,u) € Ry x RV xR
and R, = [0, +00). We define the regular set of the trace T, as an open subset of R,, C RY
carrying a nonnegative Radon measure v, such that

lim u(t,x)((m)dwz/ Cdv,, VC¢e€CERL),
t—0 Ru R

and the singular set S, = RV \ R,, as the set points a such that

limsup/ u(t,x) de = 400 for any p > 0.
t—=0 Bp(a)

We also study the reverse problem of constructing a positive solution to (H) with a given
initial trace (S,v), where S C R¥ is a closed set and v is a positive Radon measure on
R =RY\ S and develop the case f(t,z,u) = tPuP with 3 > —1 and p > 1.
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1 Introduction

The first aim of this paper is to study the existence of an initial trace of positive solutions to
the semilinear fractional diffusion equation

Ou+ (=AY u+ f(t,z,u) =0 in Qe :=RY xRY, (1.1)
where f: R} x RY x R — R is a Caratheodory function satisfying
ft,z,u)u >0, V(t,z,u) Ry x RY x R, (1.2)

and R% = (0,400). The fractional Laplacian(—A)* with s € (0,1) is defined in the principal
value sense that
(=A)%u(z) = lim (=A)Zu(z),

e—0t c
where
u(z) ~ u(z)
(~A)zu(e) = —axs | I = 2z ans =

for e > 0 and

(r) = 0 if rel0,¢]
Xell) = 1 if r>e.

The solutions of (1.1) are intended in the classical sense and, in order (—A)*u(t,z) to be well-
defined, we always assume that u(t,.) € £5(RY) for any ¢ > 0, where

LRY) = {¢ € LL (RY) sit. ||¢||cs ;:/R e(@)ldz_ +oo}. (1.4)

N1+ ’x|N+2s
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Notice that the constant functions belong to £5(RY). If w ¢ RY and 0 < T < 400, we set
Q% =(0,T) x w, QH}QN = Q7, Qoo = R% x RY and denote by B,(z) (resp. K,(z)) the open ball
(resp. open cube with sides parallel to the axis) with center z € RY and radius (side length)
p > 0. We define the regular set of the initial trace of a positive solution u of (1.1) by

Ry = {z eRY:3p>0 st. //QBP<Z)f(t,:L‘,u) dzxdt < +oo} . (1.5)
1

Clearly R, is open. The gonditz’onal stngular set S’u is RV \ R, and the conditional initial trace
is the couple Trc(u) := (Sy,v). Our first result is the following statement which is the starting
point of our work.

Theorem A Let u be a nonnegative classical solution of (1.1) and the regular set R, of u is
given in (1.5), then there exists a nonnegative Radon measure v, on R, such that

lim [ w(t,z)C(x)dr = | Cdvy, Y€ CEHRL). (1.6)
t—0 Ru Ru

The problem of the initial trace of nonnegative solutions for semilinear heat equations was
initiated by Marcus and Véron in [37] with equation

Ou—Au+u’ =0 in Qu, (1.7)

for p > 1. They showed the existence of an initial trace T'r(u) represented by a closed subset
S, of RV and a nonnegative Radon measure v, on R, = RN \ Su. On R, the initial trace is
achieved as in (1.6). On S, they proved that for any z € S,

lim u(t,z)dx = +oo for any p > 0. (1.8)
t—0 B,(2)

They also highlighted the existence of a critical exponent p. = 1+ %, which plays a crucial role
in the fine analysis of the initial trace. For example they obtained that if p is subcritical, i.e.
1 < p < pe, (1.6) can be sharpened in the form

c2(p, N) < liminf trilu(z,t) < limsup tp%lu(z,t) < c1(p), (1.9)
t—0 t—0

for some positive constants cj(p) > ca(p, N). Furthermore they proved that for any couple
(S,v), where S is a closed subset of RY and v a nonnegative Radon measure on R = RV \ S,
there exists a unique nonnegative solution u of (1.7) with the initial trace T'r(u) = (S,v). The
supercritical case p > p. turned out to be much more delicate and was finally elucidated in a
series of works by Marcus and Véron [41] and Gkikas and Véron [32] following some deep ideas
introduced by Marcus and Véron in [40] and Marcus [36] for solving similar questions dealing
with semilinear elliptic equations. Al Sayed and Véron in [4] extended the subcritical analysis
performed in [37] to the non-autonomous equation

Ou—Au+tPuP =0 in Qe, (1.10)



with 8§ > —1 and p > 1. Note that the choice § > —1 is natural otherwise the initial trace would
be essentialy zero as it can be verified with the equation without absorption.

The main difficulty to extend some of the previous results dealing with (1.7) and (1.10)
comes from the fact that the fractional Laplacian is a non-local operator. A more precise
characterization of the conditional singular set needs additional assumptions on u or on f. We
define the singular set S, of u by

t—0

Sy = {z eRY: limsup/ u(t, x)dr = 400 for any p > O} . (1.11)
Bp(z)

This set is closed and it follows from Theorem A that S, C S,. The initial trace is the couple
Tr(u) := (Sy,v). This initial trace can also be seen as an outer regular Borel measure with
regular part (or Radon part) v and singular part S,,. When s = 1 then Tr(u) = T'r.(u) because
the set S, is also characterized as the set of z € RN where

T
/2 f(t,z,u)dxdt = oo for any p > 0. (1.12)
0 By(z)

When 0 < s < 1 and no extra assumption on f are made, Tr(u) could be different from T'r.(u).

Theorem B Assume that u is a nonnegative solution of (1.1). If u € LY(0,T; £5(RY)), then
Sy = Sy and more precisely for any z € Sy,

lim u(t,z)dr = +oo for any p > 0. (1.13)
t—0 Bp(z)

The above assumption on u can be verified when the absorption is strong and the singular set
is compact. Another type of characterization of the singular set needs the following assumptions
on f: f(t,z,u) satisfies f(t,x,0) =0 and

0< f(t,z,u) <t’g(u) V(t,z,u) € Ry x RN x Ry, (1.14)

where R, = [0, +00), 5 > —1, g is nondecreasing, continuous and verifies the subcritical growth
assumption,

(o)
/Q(S)S_l_pﬁds<+oo, (1.15)
1
with 25(1 1 )
s(1+
P e 1.1
pg=1+—x (1.16)

The role of the subcritical growth assumption (1.1) has been highlighted in [28] as the natural
condition to solve the initial value problem with a bounded positive Radon measure for equation
(1.1) (see Section 2.2).

Theorem C Assume (1.14) and either (1.15) holds if —1 < 3 <0, or

/ g(s)sfzfll\?ds < 400, (1.17)
1
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if B> 0. If u is a nonnegative solution of (1.1) with initial trace (Sy,vy). If Sy # 0 and z € Sy,
then (1.13) holds. More precisely w > u o where U, oo = klim ugs, and ugs, s the solution of
—00

Opu+ (—A)u+tPglu) =0 in Qu (1.18)
u(0,.) = k..

The existence and uniqueness of solutions to (1.18) follow from [28, Th 1.1]. If g : R — Ry
is nondecreasing and satisfies that

> ds
Gg(t) ::/ —— < 400 for t >0, 1.19
¢ 9(s) ( )
tB+1
and if 8 > —1, denote U(t) = g—l(m), where G~! is the inverse function of G, then the
function U verifies that
/°° ds o1 (1.20)
s : 1.20
vwd(s) B+1

and defines as the maximal solution of the ODE

U +1Pg(U) =0 on R% satisfying U(0) = +o0. (1.21)

Theorem D Assume that f(t,xz,7) > t3g(r), where § > —1 and g satisfies (1.19). If u is a
nonnegative solution of (1.1) belonging to L, (0,T; L3(RY)), then

u(t,z) <U(), V(tz)€ Qu. (1.22)

Furthermore, if g satisfies

& sds

s

then S, = S, and (1.13) holds for any z € S,,.

< 400, (1.23)

Theorem E Assume that f(t,z,s) = tPg(s), where 8 > —1 and g satisfies (1.19), is nonde-
creasing and is locally Lipschitz continuous. If u is a nonnegative solution of (1.1) belonging to
Ll (0,T; L5(RN)), then either

u(t,z) <U((t), VY(t,z)€ Qoo, (1.24)

u(t,z) = U(t), V(tz)€ Qu. (1.25)

In the second part of this paper we study in detail the initial trace problem for the equation

o+ (=AY u+t°uP =0 in Qe (1.26)



when s € (0,1), 5> —1and p € (1,pg). A second critical value of p appears

" 25(1+ )
12T 1.2
Ps TN T os (1.27)

Actually, if uy, := ugs, is unique solution to

O+ (—A)*u + thuP =0 in Qoo,

1.28
u(0,-) = kdo in RY, (1.28)

it is proved in [28] that u = klim uy, is very different according 1 < p < p§" or pg* < p < pj.
—00
Precisely, (i) if 1 <p < pg’, then

1
1 p=1 148
1@@@:%Mﬂ:<+fy £ (1.29)
p—
The absorption is dominant, as if s = 0.
(ii) If p5 < p < pj, then
_148 x
Uso(t, ) =V (t,x) ==t 1w < : > ) (1.30)
tas
where v is the minimal positive solution of
1 1
(—A)v — —Vuv-n— +/Bv+vp:0 in RV,
2s -1
) 25(146) (1.31)
lim |n|"#=1 " wv(n) = 0.

[n|—o0

The function V is called the very singular solution of (1.26). In this case the diffusion is
dominant, as when s = 1.

We first prove the following result which complements Theorem C in the case where 3 > 0.
The proof is delicate and uses a form of parabolic Harnack inequality valid for solutions of (1.26).

Theorem F Assume > —1, 1 <p< pz and u is a nonnegative solution of (1.26) with initial
trace (Sy,vy). If Sy # 0 and z € S,, then u > u, .

We observe that S,.. = S, = {0} when ps < p < pj and Suo. = Su, = RY when
1<p< pz*. Notice that the case p = pz* remained unsolved in [28]. In this paper, we prove

that S, = RY also for p = p5". Our main result concerning (1.26) is the following.

Theorem G Let u be a positive solution of (1.26).

(i) If p € (1,p5] and Sy # 0. Then S, = RY and u > U,s. If we assume moreover that
u € Ll (0,00 L5(RY)), then u=U,g.

loc

(i) If there exists k € [, N] NN such that p € (1,pj) N <1,1 + 28}5;5)} and S, contains an

affine plane L of codimension k. Then the conclusions of (i) hold.



N[ =

If Kk = N, (ii) is just (i). Note that if 0 < s < 5 or if & > N — 2, then (p5",pj) N

sk 2s(1 *k ok : : ko %k *ok 2s(1
(pﬁ 1+ ‘;(_Jf)] = (pﬁ ,pﬁ),whlle, 1f% < s<landk = N—1, then (p/B ,pﬁ)ﬂ(pﬁ 1+ ‘;(_Sf)} =

2s5(1+0)
<p7;’*’ 1+ N—1+25]'
Conversely, given a closed set of S C RY and a nonnegative Radon measure on v on R = RY\

S, we study the existence of solution of (1.26) with a given initial trace Tr.(u) = Tr(u) = (S,v),
that is a solution of the following problem

Opu + (—A)Su 4 tPuP =0 in Qx (1.32)

Tr(u) = (S,v). '
This means that u is a classical solution of the equation in Qs and that (1.6) and (1.22) hold.
By Theorem G any closed set cannot be the singular part of the initial trace of a positive solution
of (1.26) if p is too small (diffusion effect) or if p is too large. In the same sense any positive
bounded Radon measure v cannot be the regular part of the initial trace of a positive solution
of (1.26) since condition (1.15) is equivalent to p < pj;. However this condition is restrictive and
there exist several sufficient conditions linking v, s, 8 and p. Hence we say that a nonnegative
bounded measure v is an admissible measure if the initial value problem

o+ (=A¥u+tPuP =0 in Qs

w(0,) = v, (1.33)

admits a solution u,, always unique, and it is a good measure if it is stable in the sense that if v
is replaced by v * p,, for some sequence of mollifiers, then u,.,, and tﬁuﬁ*p" converges to u, and
tPul, respectively in L'(Qr). We denote by Hy is the kernel in R% x RY associated to (—A)*.
It is expressed by

1 - N . .
Hy(t,z) = — Hs ( i) where H,(x) :/ eirE=IE1 g (1.34)
‘[jQS t2s RN

It is proved in [24], [15] that H; satisfies the following two-side estimate,

ezt
$l4ae 4 || N2

cst
t1+§’—s + |z|N+2s

< Hy(t,x) < V(t,z) € RY x RY. (1.35)

The associated potential H,[v] of a bounded Radon measure v in RY is defined by

Hs[v](t,2) = | Hy(t,z —y)dv(y).
RN
We first prove that a nonnegative bounded measure with Lebesgue decomposition v = v + v,
where 1y € Ll(RN ) and v; is singular with respect to the N-dim Lebesgue measure is a good
measures if t7(H[v])? € L'(Q1). The expression of admissibility for a Radon measure needs the
introduction of Bessel capacities which are presented in Section 4.1. Our main existence result
of solutions for (1.33) is the following.



Theorem H Let N > 1, p> 1 and —1 < 8 < p—1. Then a nonnegative bounded measure
v in RN is an admissible measure if and only if v vanishes on Borel subsets of RV with zero
capﬁfglw -Bessel capacity.

771’

p

Concerning problem (1.32) we have the following general result.

Theorem I Assume that N > 1 andp > 1+ 251(41_;5). If S is a closed subset of RN such that

S = intS and v is a nonnegative Radon measure on R = S¢ such that for any compact set
K CR, x,v is an admissible measure. Then problem (1.32) admits a solution.

It is interesting to compare this result with [37, Th. 4.11] dealing with the case s = 1. It
is proved there that for any closed set satisfying a non-thinness condition (expressed later on

in terms of Bessel capacity [32]) but always fulfilled when 1 < p < 1+ ]%, and any nonnegative

admissible Radon measure, problem (1.32) admits a solution. There the condition p > 1+ 1(4155 )

has no counterpart when s = 1. Theorem L shows that this condition is fundamental in order
to have existence without condition at infinity, even in the case where S = () and v is a mere
L} (RY) function. In some particular cases, the existence of a solution to (1.32) with no extra
condition on § or v can be proved as the next results show it.

Theorem J Assume that 8 > —1, p > 1 and one of the following assumptions is fulfilled:
(i) either N =1 and 1 + 2s(45) p<1+42s(1+p0),

1+2s
(ii))or N=2,1<s<1 andl—l—Qsl(}r;f) <p<l+s(1+p0).

Then for any closed set S C RY and any nonnegative measure v in R = S¢, there exists a
nonnegative solution u to (1.32).

As a consequence of the previous results we obtain existence with initial data measure in
RY of solutions without condition at infinity in the spirit of Brezis classical result [17].

Corollary K Let N > 1, > —1 and p > 1.

(a) If p > 1—{—281&42_5) and —1 < B < p—1, then there exists a positive solutionu € L}, (0, 00; L3(RY))
to problem (1.33) for any nonnegative Radon measure v in RN if and only if for any n € N*,

Xp, V i an admissible measure.

(b) If one of the assumptions (i) or (ii) of Theorem J is fulfilled, then for any nonnegative Radon
measure v in RN there exists a positive solution to problem (1.33).

Conditions (i) or (ii) of Theorem J are essentially necessary for unconditional existence, since
we have the following result.

Theorem L Assume that > —1,p > 1 and 1 < p < 1+ % If € LL (RY) is a
nonnegative function which satisfies

: p(x)
lim — = = +o0o, 1.
|| —o00 ‘mfﬂf;;) (1.36)

then the sequence of solutions {un} of (1.33) with initial data v = v, = inf{¢, ¢,}, where
¢n = Inf{@(2) : 2| > n} is increasing and converges to U(t).



This implies that there exists no solution of (1.33) with initial data ¢. Notice that §+2 —p
is positive for p < 1 + % For the mere heat equation a theory of maximal growth for
admissibility growth of initial data has been developed in [51] and for the fractional heat equation
in [15]. In both cases the representation formulas play an important role. For equations with

potential a phenomenon of instantaneous blow-up is proved [6] for solution of
Ou—Au—V(@x)u=0 in Q, (1.37)

when V' ~ ¢|z|~2, for any nonnegative initial data. This phenomenon of instantaneous blow-up
has been recently highlighted in [48] for the the semilinear equation

Ou—Au+u(lnfu+1)*=0 in Qu, (1.38)

when 1 < a < 2. It is shown there that the limit of a sequence of solutions with fast growing
initial data is the maximal solution of v’ + u (In(u + 1))* = 0 on (0, o).
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2 Initial trace with general nonlinearity

2.1 Existence of an initial trace

Proof of Theorem A. For any bounded domain w C R, we denote by Cg(w) the space of
functions ¢ : RV — R which are C? and have compact support in @. We always assume that
N >1and 0 < s < 1. Let ¢, be the first eigenfunction of (—A)® in H{(w), with corresponding
eigenvalue A\, > 0, i.e. the solution of

(_A)s¢w = Awu %Il w (2‘1)
o, =0 in w°

Existence and basic properties of the eigenfunctions can be found in [5], [16]. We normalize ¢,
by sup ¢, = 1. We say that w is of class E. S. C. if it satisfies the exterior sphere condition. It
is known by [45, Prop 1.1] that ¢, (z) < ¢(dist (z,0w))® in w, and there exists ¢ > 2 such that
¢, € C3(w). We denote by K,(z) the open cube with sides parallel to the axis of center z € RY
and length sides p > 0, and K; := K;(0). Then

T—z MK,

) and )\KP(Z) - p23'

¢Kp(z)(x) = ¢K1 <

The next lemma is an improvement of [26, Lemma 2.3].



Lemma 2.1 Let ¢ € NN [2,00) and ( € C3(w), ¢ >0, then

a q —(9x) — _ T q—1
(=AY CIx) = g0t () (—AYC () — : N,s CIly) = @) —a(Cly) = (@) (Y)

(q—1) Jrn |x — y|N+2s

2
> qu_l(l‘)(—A)SC(m) __ ONs Cq_z(l,)/R (C(y) — ¢(x)) dy

q Ny N

(2.2)
Proof. From [26, Lemma 2.3], we know that

¢(v)
(-8 ¢1(a) = ¢ @) (~A)V ) g~ Daxe | | ( [ - t)tﬂdt) e

By integration by parts, we obtain that

@) 1
V424t — q —(Uz) — — ()T Yz
[ (€ =02 = 2P () - ) gl — () @)
9 =L [rm1y) 4 (2 )00) + o+ ) ) — (g = 16 0]

Since for any a,b > 0
b 4 abd=2 4 ..a% 2 — (¢ — 1)ad™!
=017 — a4 a2 —a972) + a?(b73 —a?3) + ... +a?2(b—a)
=(b—a) [(072+ab?3 + .. +a??) +a (b3 +abl + 4+ a?3) + .+ a??
> (q—1)(b—a)a®?,
we obtain (2.2). O
Remark. By the mean value theorem, we see that there exists m¢ € {z = ((w) : w € RV} such
that
an,s ¢Uy) — ¢Ux) — a(¢ly) — ¢(2)¢1 (@
. W)~ ~alCly) ),
q(qg —1) Jry |z -yl

= ey [ (ORI
R

2 ¢ N |z —y|N+2s

(2.3)

Proposition 2.2 Assume that f satisfies (1.2) and u is a nonnegative solution of (1.1) such
that u(t,-) € L5RYN) for allt € (0,T). If f(-,-,u) € LY(QL) for some bounded domain w C RN
of class E. S. C. and T > 0. Then there exists £,, > 0 such that

%LI% /wu(t,x)qﬂ)(x)dm = ly. (2.4)

Furthermore, we have that

aN,s T a— (Du(y) — ¢w(x))2
Ew + q A /RNU(S7x)¢w 2($) </]RN |.7) _ y|N+2s dy) dx

T
§eq)‘“TX(T)+/ /f(s,x,u)¢$(x)qu“sdxdt.
0 Jw

(2.5)

10



Proof. Since ¢f, € C?(w), there holds
& Jutos@ie+ [ ato-ars@det [ @i =o0. (20
w RN w
Set
X(t) = /u(t,m)tbg(x)dm,

then

% <eq)‘th(t) - /tT/wf(s,x,u)¢$(x)eq)‘wsdxds> = quwt/RNL(%)(x)da: > 0. (2.7)

This implies that lim_,0 X (t) = £, exists and

T T
4q AwS q s ot
ot [ [ Mot utosaydods + [ o udgbia)er - dads = ATXT)

which implies (2.5) by Lemma 2.1. O

As an immediate consequence we have,

Corollary 2.3 Under the assumptions of Theorem A, u € Ll(Qg) for any compact set G C R,.

The proof of Theorem A is completed by the following statement:

Proposition 2.4 There exists a nonnegative Radon measure p,, on R, such that for any ¢ €

C3(Ry), there holds
lim u(t,x){(a;)d:c:/ Cd iy, (2.8)

t—0 Ru

u

Proof. Let ( € Cg(Ru) with support K and let G be an open subset containing K such that
0@ is smooth and G is a compact subset of R, and assume 0 < ¢ < 1. We put

Y(t) = /R ult, @) () = /G u(t, z)¢(x)dx,

and

f@wM@MZmeWWM%

RN
then

Y'(t) + /RNu(t,x)(A)sC(as)d:c + /Gf(t,:c,u)g(x)d:v =0.

11



Since ¢ > 0, we have that

]' S
o [l 8) (e

ity [ =CW) ol

[ it [ S-Sy + [ tta)a) [
—/u(t,a:) Md dx — /C (t,:c)/G‘x_i(j’J])V%dydx (2.9)

G
/ / ’LU y’N+23

S/u(t,:c) Mdydw +/G (t,x )C(:B)/Gc‘x_wdaz

G

If we define the regional fractional Laplacian of order s relative to G by

(—A)5C(x) = an. /G W@’

then the right-hand side of (2.9) is bounded from above by

d
A0 = (15l + e [ D) [t

since ¢ is C? with support in K € G € G € R,. By Corollary 2.3, A € L'(0,7). Because

d T
pn (Y(t) —/t <A(s) + /Gf(t,x,u)C(x)dx> d5> >0, (2.10)
and
T
/ (A(s) + / f(t,x,u)C(@dx) ds < o0 (2.11)
0 G
Combining (2.10) and (2.11) we infer that the following limit exists
lm Y (t) = lim [ u(t,z)((x)dx := f,(C). (2.12)
t—0 t—=0 Jo

By replacing ¢ by ||¢|| ¢ we can drop the condition ¢ < 1. with support in K, then

0 < lim GU(t, z)¢()dz = [1(C) < La ¢l Lo~ (2.13)

Next we assume that ¢ € Cyp(R,) is nonnegative, with support K C G C G € R, then there
exists an increasing sequences {¢,} C C3(R,) of nonnegative functions smaller than ¢ which
converges to ¢ uniformly (take for example ¢, = (( —n~1); * p, for some sequence of mollifiers
{pn} with supp(pn) C B,,-2). The sequence {/i,((,)} is increasing and bounded from above by
Mg supg ¢. Hence it is convergent and its limit, still denoted by fi,,(¢) is independent of the
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sequence {(,}. We can also consider a uniform approximation of ¢ from above in considering
G = (o +€) * pp, where 0, ="'y, and K, = {z € RY : dist (z, K) < n~'}. Actually,

fi(C) = sup{fiu(n) : n € C§(Ru),0 <1 < ¢} = nf{fu(n) : v € CF(RW), ¢ <7’} (2.14)

This implies that for all  and 7 belonging to C2(R,) such that n < ¢ <#7’, we have that

fu(n) < liminf/ u(t, x)¢(x)dr < limsup/ u(t, z)(z)dr < (). (2.15)
t—0 Ru t—0

u

Combined with (2.14) we infer the existence of the limit and

lim [ u(t, 2)¢(z)dz = fiu(C)- (2.16)
R

Finally, if ¢ € Cyp(R,,) is a signed function we write { = (4 — ¢ and p,(¢) = fu(¢4) — fu(C-).
Hence p,, is a positive Radon measure on R,, and (2.8) follows from (2.16) with ¢ replaced by
(4 and C_. O

Lemma 2.5 Assume that G C RY is a bounded smooth domain and n € C2(G). Then there
exists cs > 0 such that

s csl|nllc2

Moreover, assume thatn > 0 in G, then (—A)*n < 0 in G¢ and for any § > 0 there exists cs > 1
independent of n such that

Il csllnllp
— < —(=A)° < ———— 2.18
(1 + [a|N+2s) = (=A)n(z) < 1+ [z|N¥2s° (2.18)

for x € {z € RN : dist (2, G) > 6}.

Proof. Let x € G¢ and y € RV, then n(x) — n(y) < 0 and hence (—A)*n < 0in G°. For y € G
and x € G° satisfying dist (x, G) > 0, there exists c¢g > 1 such that

Cgl(l + ’x‘N-i-Qs) < ‘m _ y‘N—i-Qs < 06(1 + |$’N+25).
Together with
(—A)*n(z) = —a W) g vrece
n N,s o ’y—.%"N—"_QS Yy 3
one obtains the claim. O

Remark. Estimate (2.17) has essentially been already obtained in [11, Lemma 2.1] but we kept
it for the sake of completeness. (2.17). Estimate (2.20) is new and will be useful in the sequel.
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Proof of Theorem B. Let p > p' > 0 and ¢ € C3(B,(z)) such that 0 < ¢ <1 and ( =1 on
B,(z)). Then there holds

T
/ u(t, z)¢(x)dx —/ u(T,w)C(x)dm—i—/ f(s,z,u)((x)dzds
BP(Z) BP(Z) 13 BP(Z)

T
—I-/ / u(s,z)(—A)*¢(x)dzds.
t JRN
The function ¢ satisfies

s csl[Cllo2
(-arc@) < (2, Vo e R,

Since (t,x) — (1 + |z|N+2)~tu((t, ) € L (Qr), we infer that

lim u(t, z)((z)dr = +o0, (2.19)
t—0 BP(Z)

which implies the claim. O

2.2 Pointwise estimates

Proof of Theorem C. In what follows we characterize the singular set of the initial trace when
the absorption reaction is subcritical, that is it satisfies (1.14), (1.15) and (1.16) hold. Under
these two last assumptions for any bounded Radon measure in RY | it is proved in [28, Th 1.1]
that there exists a unique weak solution u := u, to

du+ (—A)u+tPg(u) =0  in Qu

u(0,-) =p  in RV, (2.20)

We recall by a weak solution, we mean a function u € L'(Qr) such that t°g(u) € L'(Qr) for
all T > 0 satisfying

T
| [ ot cargus e dode= [ comdne)  vee v @21)
0 JRN RN
where Y, 7 is the space of functions { defined in () satisfying

(@) NEllzr@r) + 1€l Lo (@r) + 10l Lo (@r) + [(=A)*El| Lo (@) < +00,
(11) &(T) =0and for 0 <t < T,there exist M > 0 and €y > 0 such that for 0 < e < ¢,
[(=A)E(E, ) oo mrvy < M.
Furthermore, if p; converges to u weakly in the sense of measures, then u,; converges to uy

locally uniformly in Q.. Up to translation we can assume that z = 0. Since (1.22) holds, for
any k > 0 there exist two sequences {t,} and {p,} converging to 0 such that

/B u(ty, z)dr = k. (2.22)

Pn
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Case 1: f <0. For R > 0, let vf be the solution of

o + (=AY v +tPg(v) =0 in (t,,00) X Bg
v(t,z) =0 in (t,,o00) x By (2.23)
v(tp,.) = u(tn,a:)XBpn in Bg,
where Bp denote the ball in RV centered at origin with the radius R. By the comparison
principle, u > v in [t,, 00) x Bgr. We set vE(t,z) = vE(r +t,, ) = 0% (7, 2). Since 8 < 0, there
holds
Ol + (—A)*oF +7Pg(5) > 0 in (0,00) x Bp.

Hence 92 > uff where uf? is the solution of

o+ (—A)*v+tg(v) =0 in (0,00) x Br
v(t,z) =0 in (0,00) x By (2.24)
v(0,.) = ultn, ©)Xp, in Bpg.

Letting R — oo we infer that u/f increases and converges to the solution uS® of

v+ (—A)*v+tPg(v) =0 in (0,00) x RY

2.25
v(0,.) = ultn, ©)X 5, in RV, (2.25)

and there holds u(t, + 7,2) > u°(7,z) in (0,00) x RY. Letting n — oo and using the above
mentioned stability result, we obtain that u;° converges to uys, and u > ugs,. Since it holds
true for any k, the claim follows.

Case 2: B > 0. Clearly u > v;° where v;° satisfies

o+ (A v +tPg(v) =0 in (tp,o0) x RY

. 2.26
U(tn,.) = ultn, 2)Xp, in RY, (2.26)

Then vi2(t, ) < Hslu(tn, 2)xp,, [(t — tn,2). Since g satisfies (1.17) it follows from [28, Proof
of Th 1.1] that the set of function {g (Hs[u(tn, Xz, ) =t ))} is uniformly integrable in
(tn,00) x RN and it is the same with {g(v;°)}. Therefore, for any T > 0, {t°g (v3°)} is
uniformly integrable in (¢,,T") x RY. Hence {v3°} converges locally in (0,00) x RY to ugs, and

u > ugs, as above.
O

Remark. We will see in Theorem F that if g(u) = u” the concentration result holds under the
mere condition (1.15) whatever is the sign of 8. The difficulty in the case 8 > 0 comes from the
fact that the ball B, may shrink very quickly with ¢, and that a pointwise isolated singularity
at (7,z) with 7 > 0 can be removable for equation (2.20). In the power case we can control the
rate of shrinking thanks to a Harnack-type inequality.

Proof of Theorem D. (i) Proof of (1.22). Let v € C*(R) be a convex nondecreasing function
vanishing on (—o0,0] such that vy(r) < ry. For € > 0, let U, be the solution of
U +t°Pg(U) =0 in (e, +00)

U(e) = +oo. (2:27)
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Indeed
’ B+ _ (B

i1 )
where G~1 is the inverse function of G, see (1.20). Then there holds
(A y(ult,.) = Ue(t)(z) = ' ((u(t,z) — Ue(t))(—A)*u(x)
"(u(t, zz) — Ue(t u(t,y) — u(t,x))?
U CCORALY O TR

Notice that the integral is convergent if ¢ > €, since y(u(t,-) — U(t — €)) = y(u(t,.) — Uc(t)),
where 0 < u(t, ) < Uc(t) and u satisfies

UE(t) = g_l(

— QN,s

u(-, x)dx .
/RNW < 400 a.e. 11 (O,T)

< (u(t, x) = Ue(t)) - (Brult, x) — BU(t) + (=A) u(x))

< Vl(u(tax) - Ue(t)) ’ (tﬁg(Ue(t)) - f(ta x?“(ta'r)))
<0.

Therefore, y(u(:,-) — Uc(+)) is a subsolution. Let n € C§°(RY) be a nonnegative function. Using

Lemma 2.5 we have that
s u(t, x)dz
| tultn) = Vo) (=8 nde| < s | TR

Since u € Lloc(O,T;ﬁs(RN)), for almost all s,t such that € < s < t, there holds

| ottt ~vom@ds+ [ | atura) - Vo)A ntdsdr
< /}RNv(u(s,x) —Uc(s))n(x)dx.

Since vy(u(s,z) — Uc(s))n(z) < u(s,z)n(z) and u(s,.)n € L'(RN), we get from the dominated
convergence theorem that

1;?51 N’y(u(s, x) — Ue(s))n(x)dx = 0.

Hence, letting s — € and ~(r) 1 r4, we get

/RN (u(t, z) = Ue(t))+n(x)dz < . (u(r, 2) = Ue(t))+(—=A) n(x)dxdr

U (1)
<aaliles [ [ GO dnar

16

(2.28)




Next, for n > 1, we replace 1 by n,(x) = n(n~'z), where 0 < n < 1, n(z) = 1 on By and
supp(n) C Bs. We can also assume that 7 is radially decreasing and 7(0 ) = 1. Since |||z <
Inllc2, we obtain from (2.28) and the monotone convergence theorem that the following holds
for almost all ¢ € (¢,T)

[ utta) = vo)de < csbplen [ [ MDD g 2o)

This inequality implies that (u(t,.) — Uc(t))+ € LY(RY) for almost all ¢ € (¢, T'). We set

= [ [ DD b

v = [ DT < [ () - U < calllleaa (o)

1+ |o|N+2s

Then

Since W, (e) = 0 we obtain W (¢) = 0 on (0,7, hence u(t, z) < U(t) a.e. on (¢,T) x RY. Letting
e — 0, we get the claim.

(ii) End of the proof. Because of Theorem B it is sufficient to prove that if (1.23) holds true,
then U € L'(0,1). Indeed, we recall that

o) - [ 5

Clearly, G is an decreasing diffeomorphism from R onto (0, ®(0)) and U(t) = G~* (g}“) Set
U(t) = s, then t = ((8 + 1)9(8))W and we get

1 U(1)
/ U(t)dt = / 5G/(s) (B +1)G(s)) "7 ds
0

[e.9]

_B8 [ d
=(f+1) ﬁ+1/ 5as 57— < +00,

which completes the proof. O

The following weight function plays an important role in the description of the initial trace
problem for positive solutions of the fractional heat equation

d(z) = ! e vz eRY. (2.30)
(14 (o = 1)%)
It has the remarkable property that
—c6®(x) < (~A)®(z) < c6P(x), Yz eRY, (2.31)
for some constant c¢g > 0 (see [15], [11]). Furthermore, for some ¢z > 1,
L <B(z) < — Vo eRY, (2.32)

(T 7% = 2 S T v
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Lemma 2.6 Let f:RY x RN xR, — Ry be a Caratheodory function which satisfies (1.2) and
is nondecreasing with respect to the variable u. For given ug € L'(RY) is nonnegative, problem

u+ (—A)’u+ f(t,z,u) =0 in Qoo,

2.33
u(0,-) = ugp in RV (2:33)

has a unique weak solution v € C(R*; LY(RN)) satisfying that

/RNu(t, x)@(m)da:—i—/o /RN (u(s,z)(=A)*®(x) + f(s,z,u)P(x)) deds = /RNuo(:c)q)(x)c(lz.M)

Proof. Since u is a weak solution of (2.33) and the function ® satisfies the assumptions (i)-(ii)
in [28, Def. 1.1], we get (2.34). O

Corollary 2.7 Assume that [ satisfies the assumptions of Lemma 2.6 and that inequalities
(1.14)-(1.15)-(1.16) hold. Then for any nonnegative measure pu in RY wverifying

/ O(x) dp(r) < +oo, (2.35)
RN
there exists a weak solution u € Cp(RT; L5(RN)) N LY(R*; £5(RY)) of (2.33) in the sense that

(0, z)dpu(x),
(2.36)

/ / (= (04 + (=AY u + £f (s, 2, u)] duds + / w(t, 2)E(t 3)dz =
0 JRN

§
RN RN
for any &€ € C3(Qy) satisfying the assumptions (i)-(ii) in [28, Def. 1.1]. Furthermore,
t
/ u(t,a:)@(;r)dx+// [u(s,z)(—A)°®(z) + f(s,z,u)P(x)] da;ds:/ O (x)du(x).
# 0 - (2.37)

Proof. By the assumptions on f and for any n > 0, it follows from [28, Th. 1.1] that

ou~+ (—=A)’u+ f(t,xz,u) =0 in Qo

2.38
u(0,-) = ppn == xB,up  in RV, (2.38)

has a unique solution u,, € L*(Qr) verifying f(-,-,u,) € L*(Qr). If py is a sequence of mollifiers
with compact supports and ju, x = (XB,%0) * pk, the sequence {uy, 1} of weak solutions of

Ou+ (—A)Y’u+ f(t,x,u) =0 ?n Q]ovo (2.30)
'LL(O, ) = /'Ln,k in R y
then w,, ;, satisfies that
t
/ Up i (L, )P (z)dz +/ / (U i (5, 2) (—A)P(z) + f(s, 2, un k) P(z)] drds
RN 0 JRYN (2.40)

RN
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When k£ — oo, we know from the proof of [28, Th. 1.1] that, up to a subsequence, {un}x
converges a.e. in Q7 to some function wn, {f(-, -, un k) }x converges a.e. to {f(-,-,un)} and that
{tnxtx and {f (-, -, up k) }x are uniformly integrable in L!(Qr). Furthermore u,, € C([0,T]; L (RY))
and for any t € (0,7, {unx(t,)}x converges to u,(t,-) in L*(RY). This implies that

/RNun(t,x)q)(x)dx+/o/RN [t (5, 2) (A DB(2) + F (5,7, 1n) ()] da:ds:/RNq)(x)dun(x).

(2.41)
Furthermore,

/Ot/RN [— (0 + (=A)*E)up + Ef (5,2, u,)] duds +/

RN

wita)s(ta)s = [ €0.2)dun o)

(2.42)
for all ¢ € C3(Qy) satisfying the assumptions (i)-(ii) in [28, Def. 1.1]. When n — oo, u,, T u and
f(s,z,un) T f(s,2,u). Using the monotone convergent theorem we see that u satisfies (2.37),and
that the sequences {u,}, and {f(:,-,un)}, converges to u and f(-,-,u) in L'(0,T;L3(RN))
respectively. Using estimate (2.17) we can let n to infinity in (2.42) and obtain (2.36). O

As it is pointed out in [15], the weight function ® plays a role similar to an eigenfunction of
(—A)*. We prove a backward-forward uniqueness result for solutions of (1.1) inspired from [15,
Lemma 4.2].

Theorem 2.8 Assume that u — f(t,z,u) is locally Lipschitz continuous on R, uniformly with
respect to x € RN and locally uniformly with respect to t € R%. If u1 and uz belong to
LL (R L5(RY)) N LES (R*; L2°(RY)) and are weak solutions of (1.1) in Qr which coincide

fort=1tg >0, then uy = us in Q.

Proof. For any 0 < ¢ < t) < T < 00, u; and uy are uniformly bounded in [e, T] x RY. Hence
the function D defined by

flt,zui(t, x)) — f(t, z,u2(t, x)) )
D(t,x) = Ul(t, .%') —UQ(t,:C) if U1(t,$) # u2(t,x)
0 if wi(t,z) = ua(t,x)

is bounded in [¢, 7] x RY by some constant M = M (e, T) > 0. Set w = uy — uz, it satisfies
Oyw + (—A)Sw +Dw=0 in Qp,

and is uniformly bounded in [¢, 7] x R". Hence

d

7 RNw(t,:n)@(m)dz: + / w(t, z)(—A)°®(z)dr + D(t,z)w(t,z)®(xz)dz = 0.

RN RN

Using (2.31) we get

—(c5 + M)/RNw(t,x)CI)(a:)dx < % IRNw(t, z)P(z)dr < (c5 + M)/RNw(t,a:)@(a:)dx. (2.43)
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This implies

(es + M)/RNw(t,:n)@(x)dm < jt/RNw(t,x)q)(m)dx < (es + M)/ w(t,2)0(z)de,  (2.44)

RN
and
(7) / w(t,x)P(x)dr < e(C5+M)(t_s)/ w(s, x)P(x)dz,
R RY (2.45)
(11) e(C5+M)(s_t)/ w(s,z)®(x)dr < / w(t, z)®(x)dz,
RN RN
for all e < s <t < T. Taking s = tp in (i) and ¢ = tg in (i) yields w = 0 in [¢, 7] x RV, O

Proof of Theorem E. By Theorem D we know that u < U. If there exists some (g, zg) € Qr
such that u((tg, z0)) = Ul(to), then either u((tg,z)) = U(tp) for all z € RY, or

(—A)*(u—U)(to,z0) <0  VaeRY.

Since f(t,z,u) —t?g(U) > 0 and 9;(u— U)(tg, z0) = 0 we infer that u((to,.)) = U(ty). Since g is
nondecreasing this situation is impossible, hence u((to,.)) = U(tp). Since g is locally Lipschitz
continuous, this implies u = U in Q7 by Theorem 2.8. U

A straightforward consequence of Theorems B, C and D is the next statement.

Corollary 2.9 Let f(t,z,r) = tPg(r), where f > —1 and g : R, — R, is continuous and
nondecreasing and satisfies (1.15), (1.19) and (1.23). If u is a nonnegative of (1.1) in Qr
belonging to L} (0,T; L5(RN)) such that S, # 0, there holds

u(t, ) > Uoo (1, ) = Uso o(T — 2, 1) V(t,z) € Qr. (2.46)

loc

3 The case f(t,x,u) = t'u?
We denote by (—A)°  the fractional Laplacian in R* and (—A)D‘: v = (=A)°. The following
standard lemma will be useful in the sequel.

Lemma 3.1 Let 1 < k < N — 1 be an integer. If u € C*(R%) N L3(RF) and @(x1,2") = u(z)
for (z1,2") € RF x RV=F, then

(—A)u(xy,2') = (=A): u(wy). (3.47)
Proof. This more or less well known lemma is based upon the explicit value of the constant
an,s in the definition of (—A)®. For the sake of completeness we give here the proof.

(—A)*u(z, @ —aNs/ / w(zy) — uly) dy’dyl
R JRY s (21 — )2 4 |0 — y[2) 2

dy’
s, </RN (o — P+ ) +8>( I

d T1) —u
o (o) L
RN-x (1 + ’Z/| ) S R~ ’1‘1 —yl\

a N k—1 r
= 2N (SN 1= “\/ d >(—A)§Nu(:c1).

1—1—7"2
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Since

and (see e.g. [46, p. 103])

k— N—
/oo PN=£=1p _1B(N2_H7;+5):1F(S+S)F( 2&)
0

(1 +T2)%+5 - 2

by Euler’s formula, where B denotes beta function, we deduce that
‘ GN-1- m} / rNoe ldr
(1+ 7“2
which yields (3.47). O

The next statement is a straightforward consequence.

Corollary 3.2 Assume that u(x) = u(zy,...x Zuj xj), then

(—A)a(z) =) ((—A)3uy) (z)). (3.48)

3.1 Proof of Theorem F

By Theorem E there holds u(t,z) < ¢t »=1 for some ¢, = ¢,(5,p) > 0, hence u satisfies

cb), o, (3.49)

O+ (—A)u+ "

where 0 < c(t,z) = tPuP~1(t,7) < &1 .= C,. Let dy be the fractional parabolic pseudo-distance
(i.e. the triangle inequality holds up to a multiplicative constant if s < %) in RV x R,

du((t,2), (5,)) = \ |z — w2 + |t — 5|
Lemma 3.3 If z € S, there holds

N
limsup  t2su(t,z) = oo. (3.50)
ds((t7x)7(072))_)0

Proof. If (3.50) does not hold there exists m, ey > 0 such that
u(t,z) < mt ™ 2s V(t,z)s.t. |z —z|® + ts < €.

Hence
(p 1)

vt ) = tPuP(t, x) < mPtP~ V(t,x) € (0,t1) X B, (2),
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where €; = ¢ and t; = (%)28 €5- By assumption p < pg, or equivalently 3 — % > —1. Hence

Y(@) = v DllL=(B., (2)) € L'(0,t1). We write the equation satisfied by u in B, (2) x (0,#1) in
the form
o+ (—A)Y’u~+~(t,z)u =0, (3.51)

and, as in the proof of Theorem A, we take for test function ¢?, where ¢ > 2 and ¢ = ¢p,(2)
is the first normalized eigenfunction of (—A)* in H§(¢p,(»)) for some 0 < € < e1. If A is the
corresponding eigenvalue, we obtain as in Proposition 2.2,

d
eq)‘ﬁt/ upldr + eq)‘ét’y(t)/ ugpldx > 0.
dt Be(2) Be(2)

If we put X(t) = eq’\ft/ upddx, then X’ + 5(t)X > 0 on (0,t1), which implies that the
Bc(2)

function ¢ — elo ()45 X (1) is increasing on (0,¢;). Hence

lim U(., t)¢gdac < 6qA€t1+‘[gl '?/(s)ds/ ’LL(., t1)¢gd$7
t—0 Bc(2) Be(2)

which implies that z € R, contradiction. O

Notice that the above lemma contains a result which is interesting in itself.

Corollary 3.4 If v is a measurable function in RN x (0,T) such that for any compact set
K C RV the function Jx(t) := esssup |y(t,z)| is integrable on (0,T), then any nonnegative
zeK

function u € Li, (0, T; L5(RY) satisfying (5.51) admits an initial trace v which is a nonegative

Radon measure in RN .

The next result is an Harnack-type inequality valid for positive solutions of (1.26). For the
mere fractional heat equation, two-sided Harnack inequalitis are proved in [11] and [15].

Lemma 3.5 Let 6 > 0 and w be a nonnegative solution of (1.26) in Q. Then for any t > % >
s> % and z,y € RY such that |z —y| < Qt%s, there holds

w(t,y) = Mw(z, s), (3.52)
where M > 0 depends on N, s, 3, p and 6.

Proof. Since w satisfies o
ow + (—A)*w + T*w >0, (3.53)

tCw(t,.) is a supersolution of the fractional diffusion equation d;v + (—A)%v = 0, hence

C
t *
(Cw(t,z) > (4) [ (%2 = 2wl i
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which implies, thanks to identity (1.35),

3t w(t, 2)dz
w(t,x) > 4C*+1/ — 1+N(4 ) o
O F o ()R g — ofre
Since w is a subsolution of the fractional diffusion equation,

w(t, 2)dz

gy ly — Z|N+25'

w(s,y) < /RNHS(S_ Z,y—z)w(z,z)dz < c3(s— 4)/RN (s — ﬁ)

Hence N
24Ci+1 t 3ty 1+ N+42s
c34 5—1 T) = tjr—z
wis,yy < D) (g, (§) Al w(t, z) (3.54)
3t 2€RN (5 — i)“’g + |y — z|N+2s
If we assume that |x — y| < ft2s for some 6 > 0, we obtain the claim. O

End of the proof of Theorem F. By Lemma 3.3 there exists a sequence {t,,z,} C Qo
converging to (0, z) such that

N
u(sp, Tn) > nsp > (3.55)
By Lemma 3.5, there holds with t,, = 2s,,,
_N 1
u(ty, ) > Mnty? > enHg(ty, z — xy) Ve e RY sit. |z — z,| < 012, (3.56)
for some ¢ > 0 depending on M and 6. This implies
/ L u(ty, x)dr > cn/ \ Hs(tn,z — z)dz > cn. (3.57)
|e—xn| <Ot25 |x—zn | <Ot25

Then for any k € (0,n) there exists k, € (0,n) such that
ckn/  Ho(ty, x — xp)dx = k. (3.58)
|z —xn| <025

Using (1.34)
/ Hy(tnx —en)de = | Ha(y)dy,
|

x—xn\get? By

hence ky, < ck for some ¢ > 0 independent of n. Set vn(z) = cknHs(tn,. — Tn)XB | (2,)- Then
025

u is bounded from below in (¢,,00) X RN by the function w,, which satisfies
Otn + (—A)up +tPul, =0 in  (t,,00) x RY
un(tna ) = Un,

which in turn, satisfies
Un(t, ) < H[op](t — tn, ) < ckpHy(t,x — ) in (tn,00) x RY,

Since p < pj, it is proved in [28, Th 1.1] that the set of functions {tP (cknHs(.,. — 2,))P}
is uniformly integrable in Q.., and this property is shared by the set {t% (u,)’}. Because
U (tn,.) = ki, it follows that u, — wugs, locally uniformly in Qo, and u > ugs,. Since k is
arbitrary, the claim follows. O
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3.2 Proof of Theorem G (i)

When f(t,z,u) = t°g(u) := t?uP, conditions (1.19) and (1.23) are fulfilled when p > 1 and
p > B+ 2 respectively. Condition 1 < p < pg® is not compatible with p > 3 + 2, and condition

Py < p < pj necessitates f+2 <1+ w, equivalently f+ 1 < 2—]\‘;

Step 1. The case 1 < p <1+ 2}9\&;?)) Let z € S,. Since r — rP satisfies (1.15) there holds

U > U 00 by Theorem C. Since u, o = Uy by (1.29), we obtaind that v > U, g. If we assume
that u € L} _(0,T; £5(RY)) then u = U, 3 by Theorem D.

Step 2. The case p =1+ 2‘?\&—;5) We set oo = Up,00. From [28, Lemma 5.3] ,
t_N+2S
2s
oot ) > — T V(t,z) € (0,1) x RV, (3.60)
1+ |t 2| N2
where ¢7 > 0. Since
N+2s
/ o de t_l/l rN=Ldr
B+ [t maNt2s  Jo LN
it follows from (3.60) that
1
/ / Uso (t, x)dxdt = +00. (3.61)
0 JBi(0)

By Proposition 6.1 in Appendix, x — ug(t, z) is radially symmetric and decreasing, so is .
Therefore, if we are able to prove that there exists z € RY \ {0} such that %iné Uso(t, ) = 00, it
_)

will imply

}in% Uso(t, 2) = 00 uniformly with respect to z in Bjy(0).
%

Hence B|;|(0) C Sy,, and by Theorem C,
Uoo(t, ) > Uy oo(t, T) = Uso (L, x — 2) Vz € By (0) (3.62)
Because uq is radially symmetric and decreasing, it implies that
Uso(t, ) = Uoo(t, z — 2) ¥z € By (0). (3.63)

By iterating this process we infer that ue (¢, x) is indeed independent of x and tends to co when
t — 0. It coincides therefore to the maximal solution U, g of (1.21) with g(u) = u?.

Henceforth we are lead to prove that S, NRY \ {0} # (). We proceed by contradiction in
supposing that it does not hold, and let zg € S NRY \ {0}. Then lim sup uss (¢, z9) < oo and
t—0

SUDP Uoo(t, ) < sUp Uwo(t, o) := M < oo uniformly with respect to z in Ffm(O). (3.64)
0<t<1 0<t<1

By rescaling we can assume that |xg] = 1. Let & € §§ and 1 € C2(B1 (%)) such that n > 0 and
n=1on B1(Z). We denote
2

X,() = /R oo (1, 2)(2)d, Yi(t) = 1 /R ul(t, 2)n(@)de, Za(t) = /R oot ) (~ A)*n(2)dz,

N N N
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and there holds
Xi(t)+ Z1(t) + Yi(t) =0 on (0,1]. (3.65)

Since us is bounded in (0,1] x Ba(Z) by (3.64), Xi(¢) and Yi(¢) remains bounded on (0, 1].
Zi(t) = /uoo(t,x)(A)sn(x)dx + /uoo(t,x)(A)Sn(:U)dx = Z11(t) + Z12().
B B¢
Since 7 has its support in By (Z), there exists cg > 0 such that
(—=A)n(z) < —cs Va e B1(0).

Using (3.61) we obtain that
1
/ Z11(8)ds = —o0.
0

Using (2.17) in Lemma 2.5, we have

Uso (t, x)dx /°° rN=ldr
Z19(t)] < —F—-- < T Naioe-
Aol < sl |15 s <o | e

Hence

1
/ Z1(s)ds = —o0.
0
Integrating (3.65) it contradicts the boundedness of X; and Y;. Hence, for any z € RV,

lim sup uo (t, 2) = 00. (3.66)
t—0

Using again the fact that x +— us (¢, ) is radial and decreasing with respect to |z|, we get

t—0

lim sup/ Uso (t, x)dx = 00 Yp>0. (3.67)
By(z)

By Theorem C, we infer that ueo(t, ) > U, 00(t, ) = uso(t,z — 2). Interchanging 0 and z we
conclude again that u.(t,z) depends only on ¢, hence it coincides with Ug,(t), and clearly
Su.. =RV, O

3.3 Proof of Theorem G (ii)

We assume that £ > 1 and £ = {Ogx} x RV 7% We set © = (21,2') € R x RV=%. We
use Theorem G (i) with N replace by N — k to prove the part (i7). If x = (x1,2’), then
T =(0,2") € L, hence by [28, Th 1.3 (ii)]
N+2s N+2s
t " 2s t7 " 2s
Uso(t,x — T) > Cl? ’ = €10 . : .
T4 (0 B fr— 2V 11 (6 E )V
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By Theorem C, we obtain

_ N+2s
Clot 2s

u(t,x) >

> V(t,x) = (t,z1,2") € R x R® x RN7F, (3.68)
1+ (t72—13|x1’)N+2s +

2 _ dy’ _ p1
For n € N*, set t, = n~2%, /’O_fRN*NW’ X =p§~" and

148
ci0Ao(potn) P71

1+ ((potn)~%]a1])

fn(l'l) =

N+2s*

Then
k148 o] rnfldr

x1)dr1 = cetn” P —_—
Rnfn( 1) 1 KoM 0 1 4 pN+2s
for some ¢, > 0. Since p < 1+ M the above integral is finite for any n but tends to oo with

n. Hence we fix m > 0, then for any n € N* there exists €, > 0 such that

_ N+2s
enmtn 2 k=1

/ w148
2s p—1

fu(x1)dry = m = ekt —_—
|$1‘S6n,m 0 1 + TN+28

Hence €, — 0 when n — oco. This implies that for any ¢ € C§°(R"),
lim fa(z1)dz1 = m((0).
N300 |1’1|§€n,m

Equivalently f,m = fnX Be — mdp in the sense of measures in R”. Let w, ,, be the solution

of
Ou+ (—A)S u+thuP =0 in R* x R*

uw(0,-) = fam in R*,

in which formula (—A)?  denotes the fractional Laplacian in R*, an index omitted if x = N.
Then Wy, 1 (t, 1, 2") = Wy m(t, 1) is a solution of

(3.69)

Opu + (—A)su 4 tPuP =0 in R* x RN

hu+ (—A) : Sy (3.70)

uw(0,:) = fam in RY,

With frm(21,2") = fam(z1). Since u(tn,z) > fu(z) in RN, we obtain by the comparison

principle that u(t + t,, ) > Wy m(t, ) in R% x RY. Hence, by letting successively n — oo and
m — 00,

u(t + tn, x1,2") > Wy m(t, x1) = u(t,z1,2") > Upso (B, 1) == ult, 21, ') > ul(t,x), (3.71)

where we have denoted by uy 5 and uf, respectively the solution of the equation in (3.69) with
mdg as initial data and the limit of this solution when m — oo. Since 1 < p < 1+ ’fés,
ufly, = Upp by (i), which ends the proof. O

oo T

Remark. 1t appears interesting to investigate whether the fact that the singular set S, contains
a (N-k)-dimensional plane can be replaced by S, contains a (N-x)-dimensional submanifold.
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4 Solution with a given initial trace: the general case

4.1 Problem with initial data measure

If v is a bounded Radon measure on an open set R C R, that we note v € MP(R)), we extend
it by 0 in S = RY \ R and the new measure still denoted by v, belongs to the space M’(RY)
of bounded Radon measures on RY. Conversely, if v € M*(RY) vanishes on S = RV \ R its
restriction to R belongs to M°(R).

Definition 4.1 A nonnegative bounded Radon measure v in RN is an admissible measure if
there exists a function u = u, € LY(Qr) with t°uP € LY(Qr) solution of

Opu + (—A)Su+ tPuP =0 in Qx

u(0,.) =v. (4.1)

It is a good measure if the sequence w,, of solutions of (4.1) with initial data vy, = v * py,
where {p,} is a sequence of mollifiers, converges to u, in LY (Qr) and if t°ub, converges to
thuP € Ll(QT).

Uniqueness of solutions is proved in [28] as a result of the choice of Y 7 as space of test functions.
Notice also that if p < pj any nonnegative bounded measure is good. The following result will
be useful in the sequel.

Proposition 4.1 Letp > 1 and 8 > —1. Ifv,u € EITIZ_(]RN) are good measures (resp. admissible
measures), then v + i is a good measure (resp. admissible measure).

Proof. We set v, = v * p, and p, = p * p, and denote by u,,,, u,, and u,,4,, the solutions
of the initial value problem (4.1) with v replaced by v, u, and v, + p, respectively. Since
p > 1, u,, + u,, is a supersolution of (1.26). Hence wy, 4, < wy, + uyu,. When n — oo,
Uy, 4y, CONVeErges a.e. to some function u (see [28]). Since w,, and wu,, converges in L'(Qr),
the sequence u,, 4, is uniformly integrable in Q7, it converges to some w (up to extraction of
a subsequence). Furthermore,

(ul/"—hu")p S (ul’n + u.u’n)p S 2p_1 (uzljn + uf‘n) .

Since tPul, and tﬁuﬁn converges in L'(Qr) to tul, and tﬁuﬂ respectively, they are uniformly
integrable. Hence the sequence {t”(uy, 1,,)P} is uniformly integrable in Q7 and thus, up to
extraction of a second subsequence, t°(u,, 4,,)P converges to t’w? in L'(Qr). Going to the
limit in the formulation (2.21) of the fact w,, 1, is a weak solution of (4.1) with initial data
Un + fin, it follows that w satisfies the same equation (4.1) but now with initial data u + v. By
uniqueness (see [28, Th 1.1] and notice that therein uniqueness needs no more condition on h
than monotonicity), w = u,4, and the whole sequence {,, 4+, } converges to u,,. The proof
in the case of admissible measures is similar. |

Proposition 4.2 Let p > 1 and 8 > —1. If {v} C S)JTZ(RN) is a nondecreasing sequence of
admissible measures converging to v € mti(RN), then v is an admissible measure.
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Proof. The sequence {u,, } is increasing. Furthermore,
Uy, < Hs[yk] < HS[V]-

Hence there exists some u € L'(Qr) for any T > 0, u > 0, such that u,, — v in L'(Qr) and
a.e. in Q. By identity (3.25) in the proof of [28, Th. 1.1], we have for 7 > T,

1
/ / (uyk + (17 — t)t5u§k> dxdt + (1 — T)/ Uy, (T, x)dx = T/ dvp < 27[[v|lgp - (4.2)
0o JRN RN RN *

Hence tPu? € L' (Qr) and tPuf, — tPu? in L'(Qr). By (2.21) there holds

/01/RN {uw (=0 + (—A)°¢) + tﬂugkf} dadt = /RNf(O’x)dV’“(x)’

for all £ € Yy 7, so it follows that u = w,. Hence v is an admissible measure. O

The whole description of the set of admissible measures necessitates the introduction of
Bessel capacities as in the case s = 1, see [37], [41]. We have a first partial answer.

Lemma 4.3 Let p > 1 and 8 > —1. If v € MY (RY) satisfies t° (H,[v])P € LY (Qr), then v is a
good measure.

Proof. Let v, = v * p,, by the maximum principle
Uy, < Hs[Vn] = HS[V * pn] = Hs[y] * Pn.

Since H[v] € LY(Qr), Hy[v] * pp — Hg[v] in LY (Q7). Similarly t*(H[v] % p,)P — t°(H[v])P in
LY(Q7). Since u,, < H,[v]#*p,, we conclude that the sequences {u,, } and {t?u}, } are uniformly
integrable in L'(Qr), hence they are precompact by Vitali’s convergence theorem. As in the
proof of Proposition 4.1 any cluster point w in the L!(Qr)-topology of the sequence {u,, } is
a weak solution of (4.1) with initial data v hence w = u, and wu,, — u, by uniqueness of the
solution. OJ

Proposition 4.4 Let p > 1 and 8 > —1. Assume that v € E)LTZZ(RN) with Lebesgue decompo-
sition v = vy + vs, where vy and v belong to ME (RY), vy € LYRY) and vy is singular with
respect to the N-dim Lebesque measure. If t°(H[v,])P € LY(Q7), then v is a good measure.

Proof. By [28, Lemma 3.2] there exists a unique solution wu,, (resp. vs) to problem (4.1) with
v replaced by 1. (resp. vs). By [28, Lemma 3.2] the sequences {uyy«p, } and {tPul.,, } are
Cauchy sequences in L'(Qr). By Lemma 4.3, the sequences {uy,.,, } and {t’u}, ., } share the
same property. Hence vy and v are good measures and we conclude with Proposition 4.1.

O

We recall some classical results about Bessel potentials, capacities and interpolation. For
0 < v < N, the Bessel kernel .J, is defined in RY \ {0} by J,(z) = F~! ((1 + |£\2)_%), where

F is the Fourier transform in R, and the Bessel potential of a positive measure is
3 0ul(w) = s o) = [T = )ty (4.3)
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For 1 <r < oo, the Bessel capacity cap ]57]: of a compact set is

cap iy (K) = inf {13, [} r e : € € wich, (4.4)

where wy is the subset of nonnegative function belonging to the Schwartz space S(RY) , with
value larger or equal to 1 on K. Furthermore

(—A+1D)2p=( = J,[(] = ¢ (4.5)

If a linear m-accretive operator A in L"(RY) with domain D(A) is the infinitesimal generator
of an analytic semigroup of bounded linear operators S4(t), i.e.

d
u(t) = S; 4w Vt20<:>d—1:+Au:0 on R’ , u(0) = v, (4.6)

the real interpolation classes between D(A) and L"(R™) can be obtained (see [49, p. 96]) by

1
[D(A), " (®Y)], = {U € I'(RY) : / / t(l’g)’”|ASfU]7"dar% < —i—oo} @
’ 0 JRN
and

1

. 1
. Cdt\"

[vllipay,Lm,, = llvller + (/0 It GAStAUHLr*t ) : (4.8)

If A= (—A)*+1, its domain D(A) in L"(R") is the Bessel potential space (I —A)~*(L"(RY)) =
L7 (RN): the result is stated in [34, Th 1] but it is an easy consequence of [47, Chap. 4, Th 3]
applied to the Fourier multipliers (I + [£]2)*(1+ |€[?*)~ and (1 +]£]?)~*(1 + |¢[?). By classical
interpolation properties of Bessel potential spaces (see e.g. [49]),

[D(A), L7 (RY)], = L2 (RY) = (T — A) (L (RY)). (49)
Since A is coercive, [49, Sec. 1.14.5], (4.8) can be replaced by

1
v AN
Ioliogaan,, = ([ I-tastoln ) (4.10)

Proposition 4.5 Let N > 1, p > 1 and —1 < 8 < p— 1. If problem (4.1) admits a positive

solution u, for some v € SJTZF(RN), then v wvanishes on Borel subsets of R with zero Bessel

. N .
capacity cap s, s y where p' = z%’ i.e.
p J.

VK ¢ RV, K Borel, capﬂil\(rl%) p,(K) =0=v(K)=0. (4.11)
P 2.

Proof. Assume that u := u, is the solution of (4.1). Since cap I§jfl+ﬁ) , is a Choquet capacity,
—p P

let K ¢ RY is compact and ¢ € S(RY) be such that 0 < ¢ in RY and ¢ > 1 on K. We set
® = e 'H,[¢] and take ® as a test function. Then

1
/u@pl(l,.)dm+// [(—@@P’+(—A)S<I>P’)u+t5up<1ﬂ?’} da;dt:/ O dy.  (4.12)
RN 0 JRN RN
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Note that (—A)*®? > p/®P' ~1(—A)*® and ;P + (—A)*® + & = 0, hence
—Q 7 + (—A)DP > 2 BP T (—A)D.

Then we adapt the duality argument of [7] and get from Hélder’s inequality

1 1

/ 1 i / v 1 / P

/ u®? (1, r)dr + 2p’ (/ / 5 |(—A)® + | dxdt) ’ (/ / tPuPoP d:vdt) ’
RN 0 JRN 0 JRN

1
+// tPuP o dadt > v(K).
0 JRN

Applying (4.7), (4.9) with r =p', 6 = %, we obtain directly for some c11 > 1,

1
7

1 Lo _ws : v
— <l 25048 , < (// % [(—A)*® + OF dxdt) < en||¢]] 2e0es - (4.13)
C11 L~ » P o JrN L~ p P

If cap%ﬁlw) p,(K) = 0, there exists a sequence {(,} C wg such that HCnHLzsupw) L, — 0as
p 9.
n — oo. Furthermore it is possible to assume ¢, < 1in RY (see [3]). Hence, up to a subsequence,

Cun — 0 a.e. in RY. This implies ®,, <1 and ®,, — 0 a.e. in Qoo. Therefore,

1
lim ud? (1, z)dx and lim// tPuP DY dadt = 0.
o JRY

n—oo JpN n—00

Combining the previous inequalities we infer that v(K) = 0. O
Proposition 4.5 is the necessary condition in Theorem H. The next result provides the suffi-

cient condition.

Proposition 4.6 Let N > 1,p>1, -1 <pf<p—1landv € zm;j(]RN) which vanishes on Borel
subsets of RN with zero capI;R:(]HB) p/—Bessel capacity. Then v is an admissible measure.
p 9.

. . N . . .
Proof. If v vanishes Borel subsets with zero capﬂi(1 Ls ,» there exists an increasing sequence
71}2

P
25(148) / 2:0148)
71 ).

= J”(RN)) =L v

of nonnegative measures {v,,} C | L (RY) such that v, — v in the

sense of measures. This results is classical in the integer case and a proof in the Bessel case
(similar in fact) can be found in [50, Prop. 3.6].
Next let ¢ € S(RY) and ® = e *H,[(], then

1
/ BHL 1] (1, 2)dz + / Hy[n] (2(—A)'® + B) dadt = | Cdvn,
RN 0 JRN RN
Hence

1
| [ Bl (2704 @) dedt < ]l _sisin 6] s,
0o JRN L~ p-1 L p-1 >
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Consider the mapping

s L(C) = /Ol/RNtﬁﬂs[un]t—ﬁ (—A)*® + 50) dad.

It satisfies

LI < vnll _2s04m) IS 20048
Lo et P LT

1 '3 i, (414)
_P
< cflvall _23<1+a>p<// £ (=)D + 5| dxdt) :
L p—1 0o JRN

8
by (4.13). Hence t» H;[v,] € LP(Q1) and

1
( / / 8 (H dedt> < coolvnll  nasn . (4.15)
RN L p—1 P

Hence the v,, are good measures by Lemma 4.3. Then by Proposition 4.2, v is an admissible
measure. Il

Remark. When s = 1 and 3 = 0, it is proved in [7] that the admissibility condition for measures

is strongly linked to the removability for Borel sets in the sense that if K C R is a Borel set

with zero capgz,—capacity, any u € C(Q, \ {(0,K)})NCY?(Q) solution of (1.14) in Qo which
p7

vanishes on (0, z) for any x € RV \ K is identically zero. The set K is said removable. Further-
more, the condition is also necessary. Now, for equation (1.14) it is clear that a compact set K

with positive caup]lij\(’1 15 -capacity it is not removable since it is the support of the capacitary
772)

p
25(1+B)

4 (R™), [1, Chap. 2]) which is a good measure
by Lemma 4.3. We conjecture that the condition cap2§1+ﬁ) ,(K) = 0 implies the removability

measure (a positive measure belonging to L

of the compact set K for equation (1.26) in the sense gwen above

4.2 Barrier function for N =1

We set ( )
In(e 4+ z .
_ ) T 220
W(z) = + 2z (4.16)
1 if z<0,
where e is Neper constant, and
_ 148 1
w(t,z) =t = IW(t 252), V(t,z) € R} xR. (4.17)
When ¢ — 0, the function w satisfies
9t 3 i1 Int
2s r—1 [n
; tx) = ———(1 1 if > 0,
@ wl) =T (o) i w1
145
(44) w(t,z) =t »-1 it x<0.
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Lemma 4.1 Assume that p > 1+ 251(135). Then there exists A\g > 0 such that for A > Aqg, the
function wy := Aw satisfies

Swx + (—A) wy + tPuf > 0 in R%: xR
li = if
lim w(t,x) =0 if x>0 (4.19)
limw(t,z) = oo it x<0.
t—0

Proof. Clearly the assertions concerning the limit of w(¢,2) when ¢ — 0 are satisfied since

71552 5 — —;_r[f > 0 by assumption. Then
A L8 A 148
hrwx(tx) = _;jf)t 1 hw(z) - 2t fw'(2)z,

with z = fﬁx and
Hence

1 1+ (4.20)

dywa(t,x) + (—A)wy(t, x) + tPul (¢, 2)
—it w'(z)z — ——w(z) + )\p_lwp(z)] .

R

=M1 [(—A)Sw(z) ~ 5

If z > 0, we obtain that

1, 1+ [T +2s 21128 1+8 2%(e+2%)7!
52— ) = | - Jute)

2s 142125 p—1  sln(e+ 2?)

Since 15—5‘9 > Ilfj, zl—glo% =1 and Zli_)rgom = 0, then there exist Ry > 0 and g9 > 0
such that
—iw’(z)z - ﬂw(z) > oow(z) Vz >R (4.21)
2s p—1 =70 = '

Next we deal with (—A) w(z) and put
N In(e + 22)
w(z) = 1+ |22

so that (—A)Sw(z) = (—A)Sw(2) + (=A) (1 —dx, )(2).

For z > 2, using the equivalent definition of fractional Laplacian, we have that

VzeR,

In(e+|z+7|?) + In(e+|z—7|?)  2In(e+2?)
7| 1+2s —g|1+2s 1+2s
—(-A)p() = Tt | R T
—o0 9] (4.22)
_ al,sw(z) o Iz(y)
T 9425 oo |yt
where
L(y) = 1+ 2N+2s In(e + 22[1 + y|?) 1+ 212 In(e + 221 — y|?) 5
2\Y) =7 + 2192 |1  y[142s In(e + 22) 14 21425]1 — y[1+2s In(e + 22) :
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Step 1: There exists c1o > 0 such that

[ I.(y) dy < -2 (4.23)

Actually, for —% <y< —%, there exists c;3 > 0 such that

14 zl+2s In(e + 22|11 — y|?)
14211251 — y[1+2s  In(e + 22)

< ci3

and then

_1 1 14-2s 2,2
/ 2 Iz(y)d - 2/2 1+ 2 ln(e-i-zr)errc14
_3 0

2

s = 1+ (27)1%25 In(e + 22)

2 > In(e + t2)
< dt
- w(z)z /0 14 t+2s e
< C15

)

w(z)z

where c14,c15 > 0, and the last inequality holds since w(z)z — 0 as z — +o00. Similarly,

3
2 I(y) C16
dy; < .
[ V= )

Step 2: There exists c17 > 0 such that

1
2 L(y)

/1 Wdy S C17. (424)
2

Indeed, since function I, is C? in [—3, 1] and satisfies
1:(0) =0 and I.(y) = I.(-y),
then I7(0) = 0 and there exists ¢i1g > 0 such that
[IZ(y)| < c1s for any y € [—3, 3.

Then we have )
18
11:(y)] < 7yz for any y € [~1, 3],

2 Ly)
2 z\Y
/1 ‘y|1+2sdy <

> C19.
2

which implies that

Step 3: There exists cag > 0 such that

L.(y) ‘
dy S C20, 4.25
/A |y[+2s (4.25)
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where A = (—o00,—3) U (3,400). In fact, for y € A, we observe that there exists ca; > 0 such

2
that I, (y) < co1 and

I.(y) oo ey
/A ‘y|1+2sdy <2 s [y[ttes dy < ca2

2

for some cg9 > 0. Consequently, by (4.22)-(4.25), there exists ca3 > 0 such that

. €23
Since 1 —wyx, =1inR; and 1 -wy, <1inR_, we have also

(—A) (1 —wx, )(z) >0 Vz>0.

Therefore, we obtain that

C23

FTigm TEER

(4.26)

Combining (4.21) and (4.26), we infer that there exists Ry > Ry + 2 such that for z > Ry,

1, 1+ €23
(—A);w(z) - %w (Z)Z - EM(Z) Z O'OUJ(Z) — m
—w(z) (o9 — —2
In(e 4 22)
> 0.
For z < Ry, there exists cog > 0 such that
1 1
(-8 - 5w (2)z — () =~
and there exists co5 > 0 dependent of Ry such that
w(z) > c95.

Therefore, one can find Ay > 0 such that for A > Ay,

1 148
- —w

(-A)(E) - g (D) -

R

(2) + W luwP(z) >0  VzeR,

which, together with (4.20), implies that (4.19) holds true. This ends the proof.
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4.3 Solutions with initial trace (S,0)

Lemma 4.7 Assume that N > 1 and p > 1+ % Then for any R > 0 there exists a

positive function u = us B, minimal among the solutions of (1.26) in Quo, which satisfy

limu(t, z) = 0o uniformly in  Bpg
%IH(I] u(t,x) =0 uniformly in  Bf, for any R’ > R.
—

Furthermore, the mapping R — uso B, 1S increasing.

Proof. By scaling we can assume that R = 1 and we fix A > A\g. We denote by e; the point
with coordinates (1,0, ...,0) in RY. The function

148
t,x) = we, (t,xy, ') =Xt 1 W t=2s 1 — 1)), 4.29
1
is a super solution of (1.26) in Q~, which satisfies
1 limy—o we, (¢, z1,2') = 00 uniformly in  (—o0, 1] x RVN—1,
' (4.30)
.30
1 limy_9 we, (t,z) =0 uniformly in  [1 4 €, 00) x RN71,
1

Since equation (1.26) is invariant under rotations and translations, for any a € 9B; there exists
a rotation R, with center 0 such that R,(a) = e;. Therefore, the function (¢,z) — wq(t,x) :=
We, (t, Ra(x)) is a solution of (1.26) in Q~ and it satisfies

(7) limy 0 wq(t, ) = 00 uniformly in  {x € RV : (z,a) < 1}, (4.31)
31
(44) im0 we, (t,z) =0 uniformly in  {x € RN : (z,a) > 1+ ge}.
For k € N*, let uyy . be the solution of
1
Opu+ (—A)*u + thuP = 0 in
t ( ) Qoo (4'32)

u(0,.) = kxp, in RN,

Then the sequence {“ka }r is increasing. For any a € 0By, Uy, < Wq, the following limit
1 1
exists,
oo = Jm i,
and there holds
Uso,B; < inf{w, :a € 0B1}.

This solution u is clearly minimal by construction and the monotonicity of the mapping R —
Uoo, By, follows. O

Remark. In the previous result, the ball Br can be replaced by any closed convex set with a
non-empty interior. If @ € K, let H, be an affine separation hyperplane, with outer normal
vector n, and

H;:{$€RN3<$—G,HCL>>O} and Ha_:{xGRN:(x—a,na)<0}.
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The supersolutions w, are expressed by
_1+58 1
(t,z) = we(t,x) = At P TW(t" 25 (x — a,n,))

and have initial trace (0, H, ). Then we construct the minimal solution u = ux i of (1.26) with
initial trace (0, K') such that

(1) limy o u(t, z) = oo uniformly in K, (433)
(14) limy o u(t,z) =0 uniformly in  {x € K¢: dist (z, K) > e} Ve > 0. .

Furthermore, the mapping K +— us i is nondecreasing.

Proposition 4.8 Assume that N > 1 andp > 1+ 251&;5). Then for any closed set S such that

int(S) = S there exists a positive function u = us,s minimal among the solutions of (1.26) in
Qoo which satisfy

(1) limyo u(t, z) = 0o locally uniformly in S,

(17) limyou(t,z) =0 locally uniformly in {x € §¢:dist (z,S) > €} Ve>0.

(4.34)
In particular Tr(us,s) = (S,0). Furthermore,
1
In (e +t 5 (dist (z,8))?
US,00(t, ) < 0915_110%/f ( ) V(t,z) € Qoo- (4.35)

1+t 2 (dist (z, S))1+2s

Proof. We first assume that S is compact, hence precompact, and for any § > 0 there exists a
finite number of points {; € S, 1 < j < ng such that

S C U E(;(f]) = Ss.

J=I

Clearly the mapping 0 — ngs is nondecreasing, furthermore we can choose the points §; such that
6 +— Ss is decreasing for the order relation of inclusion between sets. Since p > 1, the function

ns
WSs = YU Ty ey (4.36)
Jj=1

is a supersolution of (1.26) in Q~ and by Lemma 4.7 it satisfies

(1) limy 0 ws; (£, ) = 00 uniformly in S, (4.37)
) limy 0 ws, (t,z) =0 uniformly in {z € S§ : dist (z,S;5) > €} Ve > 0. .

For k € N* let uy, ; be the solution of (1.26) in Qoo with initial data kx. It exists since S has a

non-empty interior, and it coincides with the solution of (1.26) in Q. with initial data ky,

Clearly there holds uy, . < ws, and the sequence {uy, _} is increasing, then there exists
S S

nt(S)
Uso,S = kli_}m Uk g -
oo
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It is a positive solution of (1.26) in Qo which tends to infinity on S, by construction, and
satisfies Uoo, 5 < ws;. This implies in particular that for any € > 0,

21in% Uso,s(t,x) =0 uniformly in  {z € S§ : dist (z,Ss5) > €} .
—>

Since this holds for any d, e > 0, the second assertion in (4.34) follows.

If S is unbounded, for any p > 0 large enough, §¥ := SN Ep is a nonempty compact set and
S” = int(SP). Hence there exists a solution ung se of (1.26) in Qs with initial trace (0,S”). By
construction p — ux sr is nondecreasing and converges to a nonnegative solution u, s of (1.26)
in Q. Let a = (aq,...,an) € 8¢ and 7 > 0 such that

Qp = {a = (@1,.on) : 2 — aj < 7} C 5

We put
_1+8

W,t, ;) = M vt (W(t—i(;ﬂj —aj )+ Wt (a7 — xj))

with A > Xg, then W; is a supersolution of (1.26) in R4 x R and it satisfies

(1) %ir% Wj(t,z) =0 locally uniformly in  (a; — 7,a; + 7),
%
(44) }g% Wj(t,x) = o0 uniformly in  (—o0, a; — 7] [a; + 7, 00).

Hence Wy (t,z) = 3_; Wj(t, x) is a supersolution of (1.26) in Qo and it satisfies

(7) %in% Wo:(t,z) =0 locally uniformly in @7,
H

(74) %in% Wq: (t, ) = oo uniformly in R\ Q7.
—

By construction ue s» < Wer which implies us s < Wor. Hence u s satisfies (4.34). The
estimate from above can be made more precise (it does not depend from the fact that S = int S)
using (4.16) since

14 In (e + t_%7'2)

Wor(a) < 2Nt -1 . 4.38

Qa( ) < 1+t_1-53237—1+28 ( )
If we take 7 = %, we obtain (4.35). Furthermore uq s is clearly minimal as the limit of
an increasing sequence of solutions with bounded initial data having compact support. O

4.4 Proof of Theorem I

If K C R is compact, then vg = x, v € imi(R); we extend it by zero and still denote by
VK € Emb(]RN) its extension. For p > 0, 8 :=§ ﬂ§p and for £ € N*, Exsp dx is a good measure.
Since v is a good measure, vg + EXS,, dx is a good measure by Proposition 4.1. Then there
exists a solution u := Unge+lxg d of (4.1) in Qoo with initial data vk + xs dr and it satisfies

sup {UVK7UZX$pd:I:} < UVK—MXSP do < Uy + UZXSP do < Upy + Uoso,S- (439)
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Since (¢, p) — Ugy, de 1S Increasing, we can let £ and p go to infinity succesively and obtain that
P

Unge+exg, de CONIVEIEES to a positive solution g of (1.26) in Q+ and that

SUp { Uy, Uoso,5} < Uk < Uppe + Uso,S- (4.40)

This estimate implies that Tr(ux) = (S,vk). To end the proof we consider an increasing
sequence {K,} of compact sets such that |J, K, = R. Then estimate (4.40) holds with K
replaced by K. Furthermore the sequences {u,,. } and {i,} are increasing. In order to prove
that the sequence {u,, } converges to some solution 7, of (1.26) in Qo which admits v as the
regular part of its initial trace, for R > 0 we write vk, = X, VEn + X-.—VK, (both solutions

Br
exist since K, is admissible). Then

Uy, < UXFR vic, T UXB% i, < UX§RV + Uoo, BgNK, < UXERV + Yoo, BE,NR (4.41)

which implies that the following limit exists and satisfies the upper estimate for any R > 0,

71113010 Upge = Ty < UXER”K + Une, BER" (4.42)
In turns it implies
sup {ly, oo, s} < lim ug, =10 < Uy + Uso S- (4.43)
n—oo

Furthermore, since R > 0 in inequality (4.42) we infer that v is the regular part of the initial
trace of 4, (notice that the singular part is not empty since v can be unbounded). Hence
Tr(a) = (S,v). O

4.5 Proof of Corollary K, part (a)

If v vanishes on Borel sets with zero cap I§:\(71 .s ,-capacity, for any compact set K C RN,
77p

VK = XV vanishes also on the same Borel sets. Hence there exists a solution u,, to (4.1) with
initial data vk (instead of v). Next we replace K by an increasing sequence { By, }nen+, and set
Vn = X5 V. Estimate (4.41) holds in the form

Uy < Uy y + Uso, BE Vn,R>1.
n Bp "R
This implies that w, satisfies the same estimate for any R > 0, which in turn implies that
lim Uy (t, z)((x)dx = Cdv V(€ C3RY).

Hence Tr (i) = ({0},v). The fact that @, € L}, .(0,T; £L5(RY)) follows from the upper estimate
0 < @y < Upp.

Conversaly (and here we do not use the assumption p > 1+ 251&;5 ) ), ifu € L}, (0,00, L5(RY))
is a solution with initial trace T'r(u) = ({0}, v), then u < U, 3, by Theorem D. We proceed as
in the proof of Proposition 4.5. Let K C Br C RY be compact and © € C§°(Bag) such that

0<O©<1and ©=1on Bp. Since

108l yrsr < ek, P Gllyprsr Vo € CEP(RY)
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for all k € N* by Leibnitz formula, it follows by interpolation that
109 2s0esr , < e(s,D)|@] 2s01s , V¢ € C(RY). (4.44)
L= L~ p
If T € C*(R;) satisfies

sup [T ()(B)] < L< oo,  Vj=0,1,..0= E[2ED] 4,
t>0

then, by the smooth truncation theorem (see [1, Th. 3.3.3]),

I (Taa1s06]) | stysm ) < ALW ssgeo bl sasso = ALWO men, 9 € GF(RY)
P L r P L r 7 L pr

(4.45)
If we take in particular a function 7' with value 1 in [1,00) we infer that if cap & 2s<1+6) (K)=0,
P

there exists a sequence {(,} C CK(BQR) such that 0 < (, <1, (, =1 on K and HCnH 260040) —

0 as n — co. We set @, = e 'Hj[(,] and take @ﬁ for test function. Then for any € > 0 we have

% 1 ) .
/ (Wl ) (1, 2)da + 2/ <// A)$®,, + 6D, |" dxdt)p <// tﬁuptbﬂdxdt>p
RN RN e JRN
1
+// tﬁup®ﬁdxdt2/ (udh ) (e, z)dw.
e JRN Baogr

When € — 0, the right-hand side of the above inequality converges to Cﬁ/du > v(K). Fur-
Bar
thermore, we have that

lim [ (u®?)(1,z)dz =0,

n—0o0 ]RN

by the dominated convergence theorem since u < U, 3 and @ﬁ/(l, x) — 0 for all z € RV, and

T A :
lim hm/ / t™ P |(=A)D, + 5P, |P dadt =0,
n—ooe—0 /o JpN

as in the proof of Proposition ?7?7. For the last term, we have

1 1 1
/ / tPuP P dudt = / / tPuPDY dadt + / / PP O drdt = I, + Je.
e JRN e JBaR € 2R

By assumption t’u? € L'((0,1) x Bag), then lim hm I.,, = 0 by the dominated convergence

n—oo €e—
ct

{F 2 4 || N2

theorem. Finally, since v < Uy, g by Theorem H and H,(t,z) < y (1.35), we
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obtain with various ¢ > 0 independent of R

/

1 ’ dy P
Jen <c / / (-1 / = dzdt
e /B, Bon 1725 4 |o — y|N+2
1
< CRNP’/ t(l—p')ﬁ/ az .
¢ BSp, (tH% || N+2s P

1 / o N-1
N _ (N+2s) r
o [t 7
¢ 3Rt~ 25 (1 4 rN+25)P

1
< eRN=2s0" [ (=18 gy

€

RN*QSPI
S ST
(Note that the assumption 8 < p—1 is crucial). Hence li_)m lin% I ,, = 0, always by the dominated
n o0 e—>
convergence theorem. This implies that v(K) = 0. O

5 The subcritical case
For equation (1.26), the subcritical case corresponds to the fact that
_1+8 1
Uso(t,x) =V (t,z) =t r=To(t" 2s5x) V(t,z) € Qoo,

where v is the minimal positive solution of (1.31).

5.1 Proof of Theorem J

Proposition 5.1 Assume that 1+ 2;(,}:;5) <p<l+ &]\fﬂ) and u is a nonnegative solution of

(1.82) where S # (). Then

_ 1+
ciot -1

14 (t~25d(x, S))N+2s

@

u(t,z) > V(t,z) € Qoo- (5.1)

for some c19 > 0.

Proof. By Theorem C, for any xg € S,

_ 14

u(t,x) > uso(t,x —xg) =t P-1 v(tifls(x —20)) V(t,z) € Qoo,

I

which implies that

148 1

u(t,x) >t =1 sup v(t™ 25 (z — x9)) V(t,z) € Qoo- (5.2)
ToES

The maximum of V' is achieved at 0, hence, for any = € S,

1+8 1+

u(t,z) >t p=1V(0) = cq1t »-1. (5.3)

I
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If © € §¢, there exists Z € S such that dist (z,S) = |z — z|. It follows from [28, Theorem 1.2]
that,

o
=
u(t,z) > 10 . (5.4)
1+ (¢~ 2sdist (z,S))N+2s
Then (5.1) holds true. 0

The next result shows that any closed set can be the singular set of the initial trace of a
positive solution of (1.26).

Proposition 5.1 Assume that 1+ % <p<l+ w and S C RY is a nonempty closed
set. Then there exists a minimal solution u := us  with initial trace (S,0). Furthermore it

satisfies (4.35).

Proof. We first notice that the condition 1 + 281(}55 ) < p <1+ w is equivalent to the
conditions stated in Theorem J, i.e.
(1) either N =1and 1+ 281(_336) <p<1l+2s(1+p), (5.5)
(i) or N=2 l<s<iandl+Z00 <p <1451+ 8).
Let A :={z,}nen} be a countable dense subset of S. For k € N,, set
k
pe=k>» 0, (5.6)
j=1
and let u = u,, be the solution of
ou + (—A)su 4+ tPuP =0 in
t ( ) Qoo (57)

u(0,.) =pp  in RN,
The sequence {u,, } is increasing. If a € §¢ and d, = dist (a,S). By construction there holds
Upy, < uBga(a),OO' (58)

Hence u,, converges to some solution % of (1.26) in QQ» which has zero initial trace on By, (a),
for any a € §¢ since (5.8) still holds with @ instead of u,, , and satisfies @ > u.,  for any z; € A.
Hence Tr(a) = (S,0). Estimate (4.35) is independent of the geometry of S. O

Proof of Theorem J. It is similar to the one of Theorem I . We consider an increasing sequence
of compact sets { K} }ren+ included in R such that (J, K = R, set v, = X,V and o = vi + iy,
where (i, is defined by (5.6). Then the solution of (1.26) with initial data v, satisfies

sup{up,, upu,, b < up, < Uy, + Uy, (5.9)

By the same argument as in the proof of Theorem I , the sequence {u,, } is increasing and
converges to a solution w, (1.26) with initial trace ({0}, ). Hence the sequence {uz, } which is
also increasing. converges to some solution @ of (1.26) which satisfies

sup{ty, Uoo s} < U < Uy + Uoo,s- (5.10)
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Then @ has initial trace (S,v). O
The proof of Corollary K, part (b) is straightforward.

Remark. We conjecture that the following more general version of Theorem J holds: For any
integer k € [1, N] any p > 1 such that 1 + % <p<l+ w, any closed set S contained
in an affine plane of codimension x and any bounded measure in S¢, there exists a solution u
of problem (1.32). We notice that the condition on p can be fulfilled for some p if and only if
N — Kk < 2s, hence either kK = N i.e. S is a single point and no condition on s, or kK = N — 1

hence S is contained in a straight line and % <s <1l

5.2 Proof of Theorem L
The proof uses the method developed in [48]. The function

(z) = nf{o(y) : lyl = |z}, (5.11)
is radial, nondecreasing, smaller that ¢ and we write it as ¢(|z|). Furthermore it satisfies
Jim 2|71 (z) > 0. (5.12)
T|—00

We set ~
- { o(x) if [z| <n

¢n xr) = -
(@) o(n) if |z| > n.

The existence of a solution uj of (1.26) with initial trace ({0, én} follows from the fact that

H[¢n] exists by [15] and that Hy[p,] > ug, ~ for any k € N*. Hence ug is the increasing

limit of u ‘J;nXB,c when k — oo. it is obtained by replacing ggn by qzznx B, and by letting k — oo.
The solution Y;, of the differential equation Y’ (t) 4+ t?Y?(t) = 0 with initial data Y (0) = ¢(n) is
expressed by 3
Y (t) = ¢(n) — (5.13)
(1+ B @met)

It larger than o Let us denote by w,, the solution of

Aywy + (—A)w, + YL (t)w, =0 in  (0,00) x RN (5.14)
wy (0, ) = b (z) in RV, .
Since Y7 > ugfl, wy, is smaller that u 3, moreover wy, can be explicitely computed
Wt x) = e o ST @ [ g p ) (y)dy. (5.15)

RN
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In particular,

wa(t,0) = e Jo Y (5)ds ( ; H(t, y)on(y)dy + BCHs(t,y)cEn(y)dy>

2 cte” f(f SBY,{)_l(S)dSQ‘;(n)/ dy

B%tN;;Qs + ‘y|N+28

o rN=1ldr

_ [t gByP1 b
> cte Jos"Yn (8)ds gy /
- ¢( ) n tN2+S2s +TN+28

> ctn~2e o Y0 (s Gy,

Next

e[t P@mpds s
_/0 SPYL (s)ds = _/0 1+ 5B (g(n)p—t p—1 n (1 + Bt @m) 1) '

We write

=250~ Sﬁyffl(s)dsgg(n) _ n(td(m)) -2 1nn_ﬁ1n(1+g;+}tﬁ+1(q3(n))17*1)

1 P (g(n)P—!
_ epil 7L25(p71)(l+g;+%t5+1($(n))p71) .

If we take t = ¢,, such that
B+1

lim t2~' ¢(n) = +o0, (5.16)

n—oo

the expansion of the term in the logarithm gives

tp—l(@g(’n,))p—l _ B+ 1n—2s(p—1)tg—2—ﬂ(1 + 0(1)) as 7 — 0O, (517)
n2s(p-1) (1 + g;étlﬁrl(é(n))pfl) p—1

If besides (5.16) it is assumed that

lim n~2P~Dp=2=8 — 4 o, (5.18)

n—oo

we infer that w,,(0,,) — 0o as n — co. Clearly the origin can be replaced by any z € RV and
the previous calculation shows that this limit is uniform for z belonging to compact sets on R¥.
Since u 3, = Wn, we infer that

lim uj (tn,2) =400 = lim u; = ue = Uppg, (5.19)

n—oo én n—oo n

by using (1.29). O
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6 Appendix: symmetry and monotonicity results

The following is a variant of the maximum principle which will be used in the sequel.

Lemma 6.1 Let R, T > 0, § € [0,T) and Q be a domain of Qo such that Q C (5, T) x Bg.

Assume that h > 0 in Q and ¥ € C(Q) satisfies

O+ (~A) ) +h(t,2)p >0 in Q

¥ >0 in ([5,T) x Bg)\ Q. (6.1)

Then 1) is nonnegative in [0,T) X Bg.

Proof. Let e € (0,7 — §]. We first claim that v is nonnegative in [§,T — €] x Bg. If it does not
hold, and since ¢ > 0 in ([0, T") x Bg) \ Q, then there exists (t9,zo9) € QN ([0, T — €] x Br) such
that

to, o) = i t 0.
Vlto,zo) = min o W(tT) <

Then 0y (tg, z0) < 0 and (—A)*Y(to, z9) < 0. Since h > 0 in @ and (to,xo) € @, there holds
I(to, wo) + (—A)*¥(to, o) + h(to, z0)¥ (to, z0) <0,

which is a contradiction. Thus, 1 is nonnegative in [0,7 — €] x Bgr. Since € is arbitrary, the
result follows. Notice that we can take R = oo in the above proof provided @ is a bounded
domain. O

Next we prove the following result.

Proposition 6.1 Let N > 1, 8 > —1, p > 1 and g € C(RN) be a nonnegative contin-
uous radially symmetric and nonincreasing function which tends to 0 when |z| — oo. If
u € L}.(0,00; L5RY) N C(Qy) is a nonnegative solution of (1.26) in Qs which converges
to g uniformly when t — 0, then u is radially symmetric and nonincreasing.

Proof. Since u € L}, (0,00; L5(RY))NC(Q), it is bounded from above by Hy[g] and uniqueness
holds as for the linear equation [15]. Since the initial data is radially symmetric and the equation
is invariant by rotations in RY, u(t,.) is also radially symmetric. Because of uniqueness and
stability, it is sufficient to prove the result for a function v which initial data is obtained from the
previous one by multiplying it by a smooth, even, nonincreasing and nonnegative function with
compact support. The corresponding solution of (1.26) in @, still denoted by w, is smooth in

@ and bounded from above by H[g]. Hence it satisfies

(1) limy o0 u(t,z) =0 uniformly in z € RY,
(44) limy, o0 u(t,z) =0 uniformly in ¢ € R, (6.2)
(7i7) limy—yo u(t, z) = g(z) uniformly in x € RV,

Next we use a moving plane method (see [44] for other applications). For A € R, we set
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)y = 2\ —mx1,2') if z = (21,2") € RV,
Yy ={z=(z1,2) eRY | 21 < A} (6.3)

and
Ty ={z = (z1,2/) e RN | 21 = \}.

We observe that if A > 0, then {z) | z € ¥y} = {x € RN| 21 > A} and
|zx| > |z| for x € Xj. (6.4)
We claim that for any A > 0,
u(t,x) > u(t,xy) V(t,z) € Ry x X). (6.5)
Set p(t,z) = u(t,x) — u(t,x)) and suppose that (6.5) does not hold. Because of (6.2) there

holds lim ¢(¢,x) = 0 uniformly with respect to ¢t > 0, tlim @(t, ) = 0 uniformly with respect
—00

|z]—o0

to x € RV and %iH(l) o(t,r) = g(x) — g(xx) > 0 uniformly with respect to 2 € RV, It follows that
_>
there exists €9 > 0 and (to,z0) € R} x 3 such that

o(to,z0) = min @(t,z) = —eo < 0. (6.6)
(t,l’)ez/\
The function ¢ satisfies
Op+ (—A)p+ h(t,x)p =0 in Qo (6.7)

for some h(t,z) > 0, and it has initial data ¢(0,z) = g(z) — g(x)) in RY. Take e € (0,¢)
and set ¢ = ¢ + €. Using (6.2) we see that there exists Ty > t9 > 0 and Ry > |xg| > 0
such that ¢c(t,z) > 0 for (t,z) € ([T,00) x RY) J ([0, 00) x BE), for all T > Ty and R > Ry.
Furthermore there exists g € (0,%y) such that for any § € (0,d9) such that ¢.(t,z) > 0 for
(t,z) €[0,6) x (RN NX,). We set

Q=XN ((5,T0) X BRO-

We apply Lemma 6.1 in [g, T) x Br and conclude that ¢, > 0 in [g, T) x Br, which contradicts
the fact that ¢.(to,xo) = € — g < 0. Hence (6.5) holds. Since A > 0 is arbitrary, this implies in
particular by continuity that

;:(t,xl,x/) <0 V(t,z,2') € Ry x Ry x RV 7L, (6.8)
1
Similarly, we can get that

u ’ / N—-1

Tm(t,xl,x)z() V(t,z1,2") e Ry x R x R, (6.9)

Since u(t, z) is radially symmetric with respect to x, it implies that w(t, z) > u(t, ') if |z] < |2/],
which ends the proof. O
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