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Initial trace of positive solutions to fractional
diffusion equation with absorption

Huyuan Chen! Laurent Véron?

Abstract

In this paper, we prove the existence of an initial trace 7, of any positive solution u of
the semilinear fractional diffusion equation (H)

du+ (=A)u+ f(t,z,u) =0 in R xRY,

where N > 1 where the operator (—A)* with a € (0,1) is the fractional Laplacian and
f:RT xRN xR, + R is a Caratheodory function satisfying f(t,x,u)u > 0 for all (¢,z,u) €
R x RN x R,. We define the regular set of the trace 7, as an open subset of R, C RY
carrying a nonnegative Radon measive v, such that

tiy [ it )¢ = /. Gy e CRR),

and the singular set S, = RV \ R,, as the set points a such that

t—0

lim sup/ u(t, z)dr = oo Vp > 0.
Bp(a)

We study the reverse problem of constructing a positive solution to (H) with a given initial
trace (S,v) where S C R¥ is a closed set and v is a positive Radon measure on R = RV \ S
and develop the case f(t,z,u) = t?u? where f > —1 and p > 1.
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1 Introduction

The first aim of this paper is to study the existence of an initial trace of positive solutions to
the semilinear fractional diffusion equation

du+ (=A)*u+ f(t,z,u) =0 in Qo :=RY xRY, (1.1)
where f: R} x RY x R — R is a Caratheodory function satisfying
flt,z,w)u >0 (tz,u) €RY x RY xR, (1.2)
and (—A)® is the fractional Laplacian with o € (0, 1) defined by

(—A)*u(x) = lim (~A)u(z),

€
e—0t

where

u(z) — u(z)

. I(§ +a)
(—A)du(z) := —AaN,a /]RN m){s(’w —z|)dz , aN,a = —

%F(Q—a)a(l —a), (1.3)

T
for e > 0 and

"”:
Xe(r) 1 if r>e.

{O if relo,¢],

The solutions of (1.1) are intended in the classical sense and, in order (—A)%u(¢,x) be defined,
we always assume that u(t,.) € LY(RY) for any ¢t > 0, where

Lo®Y) = {¢eL}OC<RN> P <oo}. (1.4)

N1+ | X |N+2a

Notice that the constant functions belong to £*(RY). If w ¢ RY and 0 < T < oo we set
Q% =(0,T) x w, QH%N = Qr, Qoo = R x RN and denote by B,(z) (resp. K,(z)) the open ball



(resp. open cube with sides parallel to the axis) with center z € RY and radius (side length)
p > 0. We define the regular set of the initial trace of a positive solution u of (1.1) by

Ru=<{zeRY:3p>0s.t. f(t, x, u)dxdt < oo p . (1.5)
Q]13P<Z>

Clearly R, is open. The gondz’tz’onal singular set Su is RN \ R, and the conditional initial trace

is the couple T'r.(u) := (Sy,v). Our first result is the following statement which is the starting
point of our work.

Theorem A There exists a nonnegative Radon measure v, on R, such that

lim Ruu(t,x)((m)dac:/ Cdv, V¢ € CE(RY). (1.6)

u

The problem of the initial trace of nonnegative solutions of semilinear heat equations was
initiated by Marcus and Véron in [30] with equation

Ou—Au+uP =0 in Qoo, (1.7)

with p > 1. They shew the existence of an initial trace T'r(u) represented by a closed subset
S, of RY and a nonnegative Radon measure v, on R, = RY \ Sy. On R, the initial trace is
achieved as in (1.6). On S, they proved that

lim u(t, z)dx = oo Vz e Sy, Vp > 0. (1.8)
t—0 Bp(z)

They also highlighted the existence of a critical exponent p. =1+ % which plays a crucial role
in the fine analysis of the initial trace. For example they obtained that if p is subcritical, i.e.
1 < p < pe, (1.6) can be sharpened under the form

c2(p, N) < liminf tﬁu(z,t) < lim sup tﬁu(z,t) < c1(p). (1.9)
=0 t—0

for some positive constants ci(p) > ca(p, N). Furthermore they proved that for any couple (S, )
where S is a closed subset of RY and v a nonnegative Radon measure on R = RV \ S there exists
a unique nonnegative solution w of (1.7) with initial trace Tr(u) = (S,v). The supercritical case
p > pe turned out to be much more delicate and was finally elucidated in a series of works
by Marcus and Véron [34] and Gkikas and Véron [25] following some deep ideas introduced by
Marcus and Véron in [33] and Marcus [29] for solving similar questions dealing with semilinear
elliptic equations. Al Sayed and Véron extended in [3] the subcritical analysis performed in [30]
to the non-autonomous equation

du—Au+tPuP =0 in Qe, (1.10)

with 8 > —1 and p > 1.



The main difficulty to extend some of the previous results dealing with (1.7) and (1.10)
comes from the fact that the fractional Laplacian is a non-local operator. A more precise
characterization of the conditional singular set needs additional assumptions on u or on f. We
define the singular set S, of u by

t—0

Su = {ZERN :limsup/ u(t, z)dr = 0o Vp>0}. (1.11)
BP(Z)

This set is closed and it follows from Theorem A that S, C Su The initial trace is the couple
Tr(u) := (Sy,v). Notice that when 0 < o < 1, T'r(u) could be different from Tr.(u), in sharp
contrast with the case a = 1, as a consequence of the non-local aspect of (A)“.

Theorem B Assume u is a nonnegative solution of (1.1). If u € L'(0,T; L*(RN), then S, = S,
and more precisely for any z € S, and p > 0,

lim u(t, z)dr = 0o Vp > 0. (1.12)
t—0 Bp(z)

The above assumption on u can be verified when the absorption is strong and the singular set
is compact. Another type of characterization of the singular set needs the following assumptions
on f: f(t,z,u) satisfies f(¢,x,0) =0 and

0 < f(t,z,u) < tPg(u) V(t,z,u) € Ry x RN x Ry, (1.13)

where 8 > —1, g is nondecreasing, continuous and verifies the subcritical growth assumption,

/g(s)s_l_pzds<oo, (1.14)
1
with 20(1 + 5)
a(l+
=14 ——=. 1.1
pg=1+ =% (1.15)

Theorem C Assume (1.13) and (1.14) hold and w is a nonnegative solution of (1.1) with
initial trace (Sy,vy). If Sy # 0 and z € Sy, then (1.12) holds. More precisely u > u, o where
Uz oo = klim ugs, and ugs, s the solution of

—00

Ou+ (—A)u+tPg(u) =0 in Qu

w(0,.) = kS.. (1.16)

The existence and uniqueness of a solution to (1.16) follows from [21, Th 1.1]. If g : R — R
is nondecreasing and satisfies
> ds
— < 00, (1.17)
1

g(s)



and if § > —1, then the expression

> ds A+
&t 1.18
/U(t)g(s) B+1 (1.18)

defines the function U as the maximal solution of the ODE
QU +t°g(U)=0 on R% s.t. U(0) = cc. (1.19)

Theorem D Assume f(t,x,r) > tPg(r) where B > —1 and g satisfies (1.17). If u is a nonneg-
ative solution of (1.1) belonging to L}, (0,T; LX(RY)), then

u(z,t) < U(t) V(t, z) € Qoo (1.20)

Furthermore, if g satisfies

e sds
/1 —— < 00, (1.21)

o ([ 5m) "

then S, = S, and (1.12) holds for any z € S,.

Theorem E Assume f(t,z,7) = t°g(r) where B > —1 and g satisfies (1.17), is nondecreas-
ing and is locally Lipschitz continuous. If u is a nonnegative solution of (1.1) belonging to

Ll (0,T; LYRN)), either

loc

u(z,t) < U(t) V(t,z) € Qoo, (1.22)

wz,t) =U(t)  Y(t,2) € Qu. (1.23)

In the second part of this paper we study in detail the initial trace problem for the equation
du+ (—A)u+tPuP =0  in Qe (1.24)

when a € (0,1), 8> -1 and p € (l,pg). A second critical value of p appears

20(1 + B)
=14 —". 1.25
Ps =1 N ioa (1.25)
Actually, if uy, := ugs, is unique solution to
Opu + (—A)%u + thuP = 0 in Qoo, (1.26)

u(0,-) =ké in RN,

it is proved in [21] that us = klim uy, is very different according 1 < p < p§" or pg" < p < pj.
—00

Notice that the case p = pj" remained unsolved in [21].



HIfl<p< ps, then

1+B>pll _148

Uso(t, ) = Up g(t) := (p— . tr-t. (1.27)

The absorption is dominent, as if a = 0.

(ii) If Py < p <pj, then

oo (t,7) = V(t,2) = £ 7T (”“) , (1.28)

where v is the minimal positive solution of

5 . 1 v+0P =0 in RV
“ P ates) (1.29)

The function V is called the very singular solution of (1.24). In this case the diffusion is
dominent, as when o = 1.

We observe that S, = S, = {0} when py < p < pj and Su.. = Su. = RY when
1 <p< p}}*. In this paper, we first prove that S, = RY for p = pZ,*. Our main result
concerning (1.24) is the following.

Theorem F Let u be a positive solution of (1.24).

(i) If p € (1,p5] and Sy # . Then S, = RY and uw > U,p. If we assume moreover that
u € L} (0,00; LYRN)), then u = U, .

loc

(ii) If there exists k € [1, N| NN such that p € (1,p}) N (1,1 + 2?‘48&225)] and S, contains an

affine plane L of codimension k. Then the conclusions of (i) hold.

If kK = N, (ii) is just (i). Note that if 0 < a < 1 or if Kk > N — 2, then (p5".p5) N

*ok 2a(1 *ok % : : *k ok *% 2a(1
(pﬁ , 1+ i&;f)} = (pﬂ ,pﬁ), while, 11‘% <a<landk = N—1, then (p/B ,pﬁ)ﬂ<p5 1+ (Z(Jr;f)

*ok 2a(14-8)
(p,B 1+ N—1+20¢]
Conversely, given a closed set of S C RY and a nonnegative Radon measure on v on R = R¥\

S, we study the existence of solution of (1.24) with a given initial trace Tr.(u) = Tr(u) = (S,v),
that is a solution of the following problem

O+ (—A)%u + thuP = 0 in Qoo

1.30
Tr(u) = (S,v). (1.30)

This means that u is a classical solution of the equation in () and that (1.6) and (1.20) hold.
By Theorem F any closed set cannot be the singular part of the initial trace of a positive solution
of (1.24) if p is too small (diffusion effect) or if p is too large. In the same sense any positive
bounded Radon measure v cannot be the regular part of the initial trace of a positive solution



of (1.24) since condition (1.14) is equivalent to p < pj;. However this condition is restrictive and
there exist several sufficient conditions linking v, «, 5 and p. Hence we say that a nonnegative
bounded measure v is an admissible measure if the initial value problem

Ou+ (=A)u+tPuP =0 in Qu,

1.31
u(0,.) = v, (1.31)

admits a solution u,, always unique, and it is a good measure if it is stable in the sense that if v
is replaced by v * p,, for some sequence of mollifiers, then u,.,, and tﬂug*pn converges to u, and
tPul, respectively in L' (Qr). We denote by H, is the kernel in R*. x RY associated to (—A)?.
It is expressed by
1 - . , §
H,(t,z) = —Ha (il) where Hy(x) = / e 18 ge (1.32)
RN

t2a t2a

and let H,[] be the associated potential of v € MY (RY), defined by

Ha[v](t,2) = |  Ha(t,z —y)dv(y).
RN
We first prove that a nonnegative bounded measure with Lebesgue decomposition v = 1y + v,
where vy € L'(RY) and v is singular with respect to the N-dim Lebesgue measure is a good
measures if t*(H, [v])P € L' (Q1). Our main existence result for solution of (1.31) is the following:

Theorem G Let N > 1, p > 1 and —1 < f < p— 1. A nonnegative bounded measure v
in RY is an admissible measure if and only if v vanishes on Borel subsets of RN with zero
capﬂiv(um -Bessel capacity.

—p P

Concerning problem (1.30) we have the following general result,

Theorem H Assume N > 1 and p > 1+ 2ci$;aﬁ). If S is a closed subset of RY such that
S =int S and v is a nonnegative good bounded Radon measure on R = 8¢, then problem (1.30)

admits a solution.

To state the next result, Now we state the result as follows.

Theorem I Assume 8> —1, p > 1 and one of the following assumptions is fulfilled:
(i) either N =1 and 1+ 2058 ) < 1+ 2a(1+5),

142«
(i)or N=2,1<a<1 andl+%<[)<l+a(l+ﬁ).

Then for any closed set S C RN and any nonnegative bounded measure v in R = S¢ there exists
a nonnegative solution u to (1.50).

2 Initial trace with general nonlinearity

2.1 Existence of an initial trace

Proof of Theorem A. For any bounded domain w C R¥, we denote by CZ2(w) the space of
functions £ : RY — R which are C? and have compact support in . We always assume that



N >1and 0 < o < 1. Let ¢, be the first eigenfunction of (—A)% in Hf(w), with corresponding
eigenvalue A\, > 0, i.e. the solution of

(_A)ad)w = A®w in w
¢, =0 in  wC. (2.1)
Existence and basic properties of the eigenfunctions can be found in [4], [10]. We normalize ¢,
by sup ¢, = 1. We say that w is of class E. S. C. if it satisfies the exterior sphere condition. It
is known by [37, Prop 1.1] that ¢, (x) < ¢(dist (x,0w))® in w, and there exists ¢ > 2 such that
¢, € C3(w). We denote by K,(z) the open cube with sides parallel to the axis of center z € RY
and length sides p > 0, and K; := K;(0). Then

r—z

A
Pr,(2)(T) = Ok, < ) and = Ag,(z) = péii'

The next lemma is a precision of [19, Lemma 2.3].

Lemma 2.1 Let g € NN [2,00) and ( € CZ(w), ¢ > 0, then
et — a1 () Ay () N [ CI(y) = (@) = (Cly) — ()¢ (y)
(~8)7¢7(0) = ¢ @) A C(a) - e [ e dy
(Cy) = ¢@)?*

N |$_y|N+2o¢

L) (- o‘:c—aN—’a —2(g
> (17 @) (<) () — e <>/R

Proof. By [19, Lemma 2.3],

¢(y)
(—A)*¢U () = g™ @) (~A)*¢(z) — qlg — 1)aN,a/RN </<( | (Cy) — t)tq‘th> [z —y N2

By integration by parts

(y) 2 1 2 () N
[ (€ = = T ()~ ) —alC) — e @)

C(y) — ((x)

) ) ) o ) (g 1) (@)

Since for any a,b > 0

bit +ab? 2 + a?72b — (¢ — 1)ad™!
=b97t — @t 4 a(b972 — a9 2) + a2 (b2 — a?73) + ...+ a?2(b— a)
=(b—a)[(072+ab? 3+ .. +a?T?) +a (b3 +abl + 4+ a?3) + .+ a??
> (¢ —1)(b—a)a?™?,

we derive (2.2). O



Remark. By the mean value theorem, we see that there exists m¢ € {z = ((w) : w € RV} such

that
¢y ._ _Na ¢Uy) — ¢U@) — a(Cly) — {(2))¢I" (=)
L(C ) T q(q—l) RN ‘x_y‘N—i-ro dy

WNa g2 / W) —C@)*
R

2 ¢ N |z —y |[Nt2e

(2.3)

Proposition 2.2 Assume f satisfies (1.2) and u is a nonnegative solution of (1.1) such that
u(t,.) € LYRN) for all t € (0,T). If f(.,.,u) € LY(QTL) for some bounded domain w C RN of
class E. S. C. and T > 0. Then there exists £, > 0 such that

lim/u(t, x)od (x)dx = £,,. (2.4)

t—0

Furthermore

AN« T q— (¢w(y) - ¢w(x))2

T
geq’\wTX(T)—l—/ /f(t,x,u)qbgj(x)eqkwsdzdt.
0 Jw

Proof. Since ¢, € C2(w), there holds

% wu(t,a:)gbf{,(:c)dw + ANu(t,x)(—A)a¢g(m)dx + /wf(t,x,u)(ﬁgj(x)da: =0. (2.6)
Set
X(0) = [ u(t.2)o (@)

then

% <e‘1’\th(t) — /t ' /w f(t,x,umg(x)eq%mxds) = et /R NL(¢3)(x)dx > 0. (2.7)

This implies that lim;_,0 X (¢) = £, exists and

r T
q Aws — AT q Aus
ew+/0 /RNL(%)(a:)eq u(s, z)dxds = e? X(T)+/O /wf(t,;p,uww(x)eq dzds,

which implies (2.5) by Lemma 2.1. O
The proof of Theorem A is completed by the following statement:

Proposition 2.3 There exists a nonnegative Radon measure i, on R, such that for any ¢ €
C2(Ry) there holds

lim [ u(t,z)((z)dx = Cd iy (2.8)
t—0 w Ru



Proof. Let ¢ € Cg(l?,u) with support K and let G be an open subset containing K such that
0G is smooth and G is a compact subset of R, and assume 0 < ¢ < 1. We put

Y(t) = /RNu(t,$)C(x)d:U = /Gu(t,x)C(:p)daz,

and

f(t,x,u){(:c)dx:/Gf(t,x,u)g(:c)dx

RN
Then
Y'(t) + /RNu(t,w)(—A)ag(m)da; + /Gf(t,w,u)C(x)dx =0.

Since ¢ > 0 we have

/ u(t,x)(—A)*((z)dzx
RN

:/RNu(t,x)/Gmczydx +/G ult, )C(w)/(}cw_zz"/lvmdfﬂ
/ / |z — yIN““

< [t [ S ttvte s [t t(a) [ o

% <Y(t) - /t ' ( /R ult, ) (~A)C(a)da + /G f(t,:r,u)C(x)d:c) d8> >0, (2.10)

Notice that @) - ()
ono [ Ty = (- )

is the regional fractional Laplacian of order a. Since ¢ is C? with support in K C G C G @ R,
there exists M such that

N«

Hence

@) A + o) [

This implies that

< cspL(z) VreRY.

[uxe (=2)¢| + £ (s u)] € LHQE)- (2.11)
Combining (2.10) and (2.11) we infer that the following limit exists

%iH(l] Y(t)= liH(l) u(t, z)((z)dr = [, (C). (2.12)
s =0 /o

10



If we drop the restriction { < 1 we get

0 <lim [ w(t,z){(z)dx = f1,(¢) < cslsup(. (2.13)
t—=0 Jo& a

Next we assume that ¢ € Cp(R,,) is nonnegative, with support K € G C G € R,. Then there
exists an increasing sequences {¢,} C CZ(R.) of nonnegative functions smaller than ¢ which
converges to ¢ uniformly (take for example ¢, = (¢ —n~!); * p, for some sequence of mollifiers
{pn} with supp(p,) C B,,-2). The sequence {1, ((,)} is increasing and bounded from above by
M{qsupg ¢. Hence it is convergent and its limit, still denoted by fi,,(¢) is independent of the
sequence {(,}. We can also consider a uniform approximation of ¢ from above in considering
¢ = (o0 +¢) * pp where 0, =1y, and K, = {z € RN : dist (z, K) <n~'}. Actually,

fiu(C) = sup{fiu(n) : m € Cg(Ru>a 0<n<(t= inf{ﬁu(n,) S Cg(Ru)a ¢< 77/}- (2.14)

This implies that for all n and 1" belonging to C2(R,) such that n < ¢ <7’ we have

fu(n) < liminf/R u(t, z)((z)dx < limsup/ u(t, )¢ (z)dz < fi,(n'). (2.15)

t—=0 t—0 u

Combined with (2.14) we derive the existence of the limit and

lim [ w(t,z)((z)dz = [(y(C). (2.16)
t—0 Ru
Finally, if ¢ € Cp(R,,) is a signed function we write ¢ = (4 — ¢~ and py(¢) = i (¢4+) — fu(C-).
Hence p,, is a positive Radon measure on R,,, and (2.8) follows from (2.16) with ¢ replaced by
<_|_ and C_. ]

Lemma 2.4 Assume that G C RY is a bounded smooth domain and n € C3(G). Then there
exists ¢4 > 0 such that

«a c4||IMc2
(~a)n(2)] < 1+|||J;\HNC+ Vo eRY, (2.17)

Moreover, assume thatn > 0 in G, then (—A)*n < 0 in G¢ and for any 6 > 0 there exists cs > 1
independent of n such that

7]l 21 cslnllzr
< —(=A)* < — 2.18
cs(1+ |z V+2a) = (=A)*n(x) < 11 |z|N+2e (2.18)

for x € {z € RN : dist (z,G) > §}.

Proof. Let € G¢ and y € RV, then n(x) — n(y) < 0 and hence (—A)%n < 0 in G¢. For y € G
and = € G¢ satisfying dist (z, G) > 6, there exists ¢g > 1 such that

Cgl(l + ‘x|N+2a) < |l‘ _y|N+2a < CG(l + |JZ|N+2O‘).

11



Together with
o n(y) c
(—A)*n(z) = —ana /G Py Ve e G
one obtains the claim. O

Proof of Theorem B. Let p > p/ > 0 and ¢ € CZ(B,(z)) such that 0 < ¢ < 1 and ( =1 on
B, (z)). Then there holds

/Bp(z)u(t,m)C(a:)dx = /B,,(z)U(T’ x)((x)damL/tT/Bp(Z)f(s,x,u)g(x)dwds

T
+/ / u(s, x)(—A)*((x)dzds.
t JRN
The function ¢ satisfies

o IS
| (~A)(e) < 1+T|L '”g;a Vo € RV,

Since (t,x) — (14 | z [NF20)~ly((t,7) € LY (Q7) we derive

lim u(t, z)((x)dxr = oo, 2.19
fi [, u(ta<(o) (2.19)

which implies the claim. O

2.2 Pointwise estimates

Proof of Theorem C. In what follows we characterize the singular set of the initial trace when the
absorption reaction is subcritical, that is it satisfies (1.13), and (1.14) and (1.15) hold. Under
these two last assumptions for any bounded Radon measure in RY | it is proved in [21, Th 1.1]
that there exists a unique weak solution u := u, to

Ou + (=A)*u+tPg(u) =0 in Qo
u(0,.) = p in RY. (2.20)

We recall by a weak solution, we mean a function u € L'(Qr) such that t°g(u) € L'(Qr) for
all T' > 0 satisfying

T
[ [coe s+ -argus gt dude = [ 0.0)duto). (221)
0 RN RN
for all £ in the space Y, 7 of functions defined in ()« satisfying

(@) M€l @r) + 1€llzoe@r) + 10kl Loe(@r) + I(=2) ¢l (@) < +00
(i) &(T) =0and for 0 <t < T,there exist M > 0 and ¢y > Osuch that for 0 < e < ¢,

()€t oy < M.

12



Furthermore, if p; converges to pu weakly in the sense of measures, then u,; converges to uy
locally uniformly in Q. Up to translation we can assume that z = 0. Since (1.20) holds, for
any k > 0 there exist two sequences {t,} and {p,} converging to 0 such that

/B u(ty, z)dr = k. (2.22)

For R > 0, let u? be the solution of

ou + (=A)u +tPg(u) =0 in (t,,00) X Bg
u(z,t) =0 in (tp,00) x Bf (2.23)
U(tn, ) = ultn, T)xp,, in Bp.

By comparison u > uf in [t,, 00) x Br. Letting R — 0o we infer that u/* increases and converges
to the solution u;° of

du+ (—A)*u+tPg(u) =0 in (t,,o0) x RY (2.24)
U(tn,.) = ultn, 2)Xp, in RV, '
and there still holds v > u2°. Letting n — oo and using the above mentioned stability result, we
derive that u;° converges to ugs, and u > ugs,. Since it holds for any &, the claim follows.
O

Proof of Theorem D. (i) Proof of (1.20). Let v € C%(R) be a convex nondecreasing function
vanishing on (—o0, 0] such that v(r) < r4. For € > 0 let U be the solution of

U +tPg(U) =0 in (e,00)
Ule) = oc.

* ds 1
P (4841 B+
/Ue(t)g(s) B+1 (t ¢ ) : (2.26)

(2.25)

Hence

Then there holds

— aN,«

7" (ult, z) — Ue(t))/ (ulty) —ult,2)? )
RN

2 ’x_y|N+2a

Notice that the integral is convergent if ¢ > € since y(u(t,.) — U(t —€)) = y(u*(t,.) — U(t))
where 0 < u*(t,.) < Uc(t) and u satisfies

u(., x)dx .
/RNl—Haj'VV"'O‘<OO a.e. 11 (O,T)
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Then
Oy (u(t, x) = Ue(t)) + (=2)*y(ult, ) = Ue(t))(x)
< ((u(t, ) = Ue(t) (Qru(t, ) — O,Ue(t) + (=A)*u(x))
< ((u(t,2) = Ue(t)) (Pg(Ue(t)) = f(t, 2, u(t, 2))))
<0.

Therefore v(u(.,.) — Ue(.)) is a subsolution. Let n € C$*(RY), n > 0. Using Lemma 2.4 we have

u(t,x)dz
<aille: |

N1+ ‘ x |N+2O‘.

[ tutt.a) = V) =) ds

Since u € Li,.(0,T; L*(RY)), for almost all s, such that € < s < ¢ there holds

/RN'Y(u(t,x) d:v+//RN w(r,z) — Ud(t))(—A)on(z)dwdr
/W@ ) U

Since y(u(s, ) — Uc(s))n(z) < u(s,z)n(z) and u(s,.)n € L'(RY) we derive from the dominated
convergence theorem that

lslﬂl N’y(u(s, x) — Uc(s))n(x)dx = 0.

Hence, letting s — € and v(r) T r4, we get

/R Jult2) = U en(e)de < | [ (@) = Ut)) 4 (=) n(a)dodr

Ue(t))+
< 04]]7]]02/ / 1+ | . |N+2a dxdr.

Next, for n > 1, we replace 1 by n,(x) = n(n~tz), where 0 < n < 1, n(z) = 1 on By and
supp(n) C Bs. We can also assume that 7 is radially decreasing and 7n(0) = 1. Since ||n,|/c2 <
Inllc2, we derive from (2.27) and the monotone convergence theorem that the following holds
for almost all ¢ € (¢,T)

[ uttn) = vorde < canlen [ [ DL g 2

This inequality implies that (u(t,.) — Uc(t))y € LY(RY) for almost all t € (¢, T). We set

//RN 1_|_‘x|N+(2a))+dd

14
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Then

v = [ DB < [ (i) - U0 < el a0

Since W, (€) = 0 we derive W (t) = 0 on (0,7, hence u(t,z) < Uc(t) a.e. on (¢,T) x RV, Letting
€ — 0, we derive the claim.

(ii) End of the proof. Because of Theorem B it is sufficient to prove that if (1.21) holds, then
U € LY(0,1). Indeed we denote by ® the function

* ds
() = /¢ on

Clearly ® is an decreasing diffeomorphism from R* onto (0,®(0) and U(t) = &~ * (tﬁ+i). In

the next integral we set U(t) = s, then t = ((8 + 1)‘1)(8))ﬁ and we get

1 U(1)
/ U(t)dt :/ s®(s) (B +1)B(s))" 71 ds
0 00

> sds

< Q.

=B+ —
b )
g

The following weight function plays an important role in the description of the initial trace
problem for positive solutions of the fractional heat equation

1

O(x) = N Ve € RY. (2.29)
(+(zp-13) °
It has the remarkable property that
—c®(z) < (—A)*®B(z) < e®(x)  VzeRY, (2.30)
for some constant ¢ > 0 (see [9], [8]). Furthermore
L < P(z) < — - Vo e RY. (2.31)

01(1—1— | T ‘N+2a) — -1+ | x |N+2a

Lemma 2.5 Let f : R* x RNV x Ry — Ry be a Caratheodory function which satisfies (1.2)
and is nonnecreasing with respect to the variable u. If ug € L'(RY) is nonnegative and u €
C(R*; LY(RYN)) is the unique the weak solution of

o+ (—A)*u+ f(t,z,u) =0 in Qoo

u(0,.) = ugp in RY, (2.32)

satisfies, for some constant ¢y, > 0

/RNu(t, x)@(x)d:c+/0 /]RN (u(s, z)(=A)*®(x) + f(s,z,u)®(x)) dzds = ANuo(x)®(x)?§.33)
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Proof. Since u is a weak solution of (2.32) and the function ® satisfies the assumptions (i)-(ii)
in [21, Def. 1.1], we get (2.33). O

Corollary 2.6 Assume f satisfies the assumptions of Lemma 2.5 and that inequalities (1.13)-
(1.14)-(1.15) hold. Then for any nonnegative measure ju in RY verifying

/ O (z)du(z) < oo, (2.34)
RN

there exists a weak solution u € Cy(R*; L2(RN)) N LY(RT; LYRY)) of (2.32) in the sense that

(0, z)du(z),
(2.35)

/ / (= (O + (=A)*u+ & f (s, z,u)) dxds —|—/ u(t,x)&(t, x)dr =
0 JRN

£
RN RN

for all € € C3(Qr) satisfying the assumptions (i)-(i) in [21, Def. 1.1]. Furthermore

/RNu(t, x)®(z)dx —|—/0 /]RN (u(s, ) (=A)*®(z) + f(s,z,u)P(x)) deds = /RN<I>(x)du(x()2. "

Proof. By the assumptions on f, for any n > 0 there exists a unique u, € L'(Qr) verifying
f(, . up) € LY(Qr) and is a weak solution of

Ou~+ (—A)*u+ f(t,z,u) =0 in Qo

u(0,.) = fin, == XB, U0 in RV, (2.37)

from [21, Th. 1.1]. If py is a sequence of mollifiers with compact support and fi,, , = (X B, ©0) * Pk,
the sequence {u, 1} of weak solutions of

ou+ (—A)*u+ f(t,z,u) =0 in Qoo
t w(0,) = ki RV, (238)
then w,, ; satisfies
t
/ Un k(t, ©)®(x)dz +/ / (un (s, 2)(=A)*® () + f (s, 7, un k) (x)) dxds
RN 0 JRY (2.39)

RN

When k£ — oo, we know from the proof of [21, Th. 1.1] that, up to a subsequence, {un}xr
converges a.e. in Q7 to some function wun, {f(.,., un k) }x converges a.e. to {f(.,.,un)} and that
{tnk}r and {f(., ., un k) }x are uniformly integrable in L*(Qr). Furthermore u,, € C([0, T]; L*(RY))
and for any t € (0,7, {unx(t,.)}x converges to u,(t,.) in L*(RY). This implies that

/RNun(t,x)CI)(a;)dx —i—/o /RN (un (s, 2)(=A)*®(z) + f(s,x,u,)P(x)) dxds = /RNCD(m)dun((;lO)
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Furthermore

/Ot/RN (= (0 + (=A)up + Ef (s, 2,uy)) daxds —l—/

RN

w(ta)s(ta)de = [ €0.a)du (o),

(2.41)
for all ¢ € C2(Qy) satisfying the assumptions (i)-(ii) in [21, Def. 1.1]. When n — o0, u,, T u and
f(s,z,up) T f(s,x,u). Using the monotone convergent theorem we see that u satisfies (2.36),and
that the sequences {u,}, and {f(.,.,un)}, converges to u and f(.,.,u) in L'(0,T; LYRY))
respectively. Using estimate (2.17) we can let n to infinity in (2.41) and derive (2.35). O

As it is pointed out in [9], the weight function ® plays a role similar to an eigenfunction of
(—A)* we prove a backward-forward uniqueness result for solutions of (1.1) inspired from [9,
Lemma 4.2].

Theorem 2.7 Assume u — f(t,x,u) is locally Lipschitz continuous on R, wuniformly with
respect to x € RN and locally uniformly with respect to t € R% . If up and up belong to
L} (RA; LY9RN)) N LR L°(RY)) and are weak solutions of (1.1) in Qr which coincide

fort =1ty >0, then u; = ug in Qr.

Proof. For any 0 < ¢ < tg < T < 00, u; and ug are uniformly bounded in [¢, T] x RY. Hence
the function D defined by

flt o n(te) — foust )
D(t, .CL‘) = Uy (t, $) - UQ(t, JZ‘) if Ul(t,X) 7é UQ(t, X)
0 if uy(t,x) = ua(t,x),

is bounded in [¢, T] x RY by some constant M = M (e, T) > 0. Set w = uj — ug, it satisfies
ow + (—A)O‘w +Dw=0 in Qp

and is uniformly bounded in [¢, T] x RY. Hence

d

& |0+ / w(t, ) (=A)*(@)dz + | Dt w)w(t,x)dz = 0.

RN RN
Using (2.30) we derive
—(ec+ M)/RNw(t,m)CI)(ac)dx < % RNw(t, z)®(z)dx < (c+ M)/RNw(t,a;)q)(x)dx. (2.42)

This implies

—(c+ M)/H{Nw(t,x)q)(a:)dx < di w(t, z)®(z)dr < (c+ M)/ w(t, z)®(z)dz, (2.43)

RN RN

and

) w(t, z)®(z)dz < elcTMI=9) w(s, z)®(x)dr
0 [ wita)pa) < [ ot a)e@) -

(i1) e(C+M)(s_t)/IRNw(s,x)@(x)da: < /RNw(t,x)q)(x)da:
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for all e < s <t <T. Taking s = tg in (i) and t = tg in (ii) yields w = 0 in [¢, T] x RV, O

Proof of Theorem E. By Theorem D we know that v < U. If there exists some (tg, o) € Qr

such that u((tp, z0)) = Ul(to), then either u((to,z)) = U(tp) for all z € RV, or
(*A)Q(U*U)(to,l‘o) <0 VI‘GRN.

Since f(t,z,u) — t’g(U) > 0 and 9;(u — U)(to, z0) = 0 we derive that u((to,.)) = U(tg). Since g
is nondecreasing this situation is impossible, hence u((to,.)) = U(tp). Since g is locally Lipschitz
continuous, this implies u = U in Q7 by Theorem 2.7. |

A straightforward consequence of Theorems B1-B-4 is the next statement.

Corollary 2.8 Assume f(t,z,7) = t’g(r) where B > —1 and g : Ry ~ Ry is continuous and
nondecreasing and satisfies (1.14), (1.17) and (1.21). If u is a nonnegative of (1.1) in Qr
belonging to L} (0,T; L*(RN)) such that S, # 0, there holds

loc

wW(x,t) > Uoo (2, 1) = Uso o(x — 2, 1) V(z,t) € Qr. (2.45)

3 The case f(t,x,u) = t'u?

We denote by (—A)j the fractional Laplacian in R® and (—A)Y = (—A)%. The following
standard lemma will be usefull in the sequel.

Lemma 3.1 Let 1 <k < N —1 be an integer. If u € C3(R®) N LY(R®) and @(z1,2") = u(z1) if
(z1,2") € R x RN=F, then

(—=A)*U(z1,2") = (—A)2 u(zy). (3.46)

Proof. This more or less well known lemma is based upon the explicit value of the constant ay
in the definition of (—A)®. For the sake of completeness we give here the proof.

(—A)*u(wy, 2’ —CLNa// (@1) — ulyr) v dy’dy1
RN (21— 1) 2+|l’ —y )=t

dy’
~axa | ( / ! N+a> (u(w1) — u(y)) dyn
IRV (21 — 1)+ |y 2)2
dz’' w(xy) —u
= ON,a / N %dyl
RN—& (1_|_ ‘ 2! |2)7+a R~ ‘ 1 — Y1 ‘

aN.a pN—r— ldr o
_ ONa |SN=1- n‘/ (—A) u(xr).
1—}—7“2

Since
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and (see e.g. [38, p. 103])

/°° rN=r=1gr 1B<N—/€ n+ > 1F(g+a)F(N;”)
~ T _tp( = a) =2
0 (14r2)ite 2 2 2 ¥

by Euler’s formula, where B denotes beta function, we deduce that

A, _ ‘SN—I—,%}/OO rN=s =y
aN,o 0 (1+T‘2)%+0"

which yields (3.46). O

The next statement is a straightforward consequence.

Corollary 3.2 Assume u(x) = u(zy,...x Zuj (xj), then
N d2 «
(ayile) =30 (=2 | ustay) (3.47)
j=1 J

3.1 Proof of Theorem F (i)

When f(t,z,u) = t%g(u) := tPuP, conditions (1.17) and (1.21) are fulfilled when p > 1 and
p > [+ 2 respectively. Condition 1 < p < pg* is not compatible with p > 5 + 2, and condition

2a(14-5)
N

P < p < pj necessitates f+2 <1+ , equivalently 5+ 1 < %O‘

Step 1. The case 1 < p <1+ 2a(i+5)). Let z € S,. Since r — rP satisfies (1.14) there holds
U > Uz oo by Theorem C. Since u, o = U, g by (1.27), we derived that u > U, 3. If we assume
that u € LL (0, T; L4(RY)) then u = U, 3 by Theorem D.

Step 2. The casep =1+ N(}L;f) We set U = g oo. From [21, Theorem 1.3 (it)] ,

_ NA2«
C7t 2a

1+ ‘tfi:dzwza

Uoo (t, ) > Y (t,z) € (0,1) x RY, (3.48)

where ¢y > 0. Then

N+2a

1
/ / Uso (8, x)dxds > 07/ / dxds
t B;(0) B1(0) 1 + |S 2a$|N+2a
& 7dwds

— 400 as t— 0T,

v

thus,
1
/ / Uoo(t, )dxdt = +00. (3.49)
0 JBi(0)
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By Proposition 6.1 in Appendix, x — ug(t, z) is radially symmetric and decreasing, so is .
Therefore, if we prove that there exists z € RY \ {0} such that }ir% Uso (t, &) = 00, it will imply
ﬁ.

%ir% Uoo(t, 2) = 00 uniformly with respect to z in §|m|.
ey

Hence E\xl C Sy, and by Theorem C,
Uoo(t, T) > Uz 0o(t, ) = Uso(t, x — 2) Vz € By, (3.50)
Because u is radially symmetric and decreasing, it implies that
Uso (b, ) = Uoo(t, T — 2) Vz € By (3.51)

By iterating this process we infer that ue (¢, x) is indeed independent of x and tends to co when
t — 0. It coincides therefore to the maximal solution U, g of (1.19) with g(u) = u?.

Next we assume that S;_ # () and let o € S . Hence lim sup ue (¢, 29) < 0o and
t—0

SUP Ueo(t, ) < SUp Uno(t,xg) := M < oo uniformly with respect to x in Flcxol‘ (3.52)
0<t<1 0<t<1

By rescaling we can assume that | zg |= 1. Let € By and 5 € C3(B;(Z)) such that 5 > 0 and
n=1on P% (z). We denote
() = [ b omla)de, Yit) =¢° [ (tome)dn, 210 = [ weelta)(-A) na)d
RN RN RN

and there holds
X1(t)+ Z1(t) +Yi(t) =0 on (0, 1]. (3.53)

Since uo is bounded in (0,1] x Bg(Z) by (3.52), X;(t) and Y3 (t) remains bounded on (0, 1].

Zi(t) = /Buoo(t,a:)(—A)an(m)dx + /Bzcloo(t,a;)(—A)an(a:)dx = Z11(t) + Z12(t)

Since 7 has it support in B;(Z), there exists cg > 0 such that
(—A)*n(x) < —cs Vx € Bj.
Using (3.49) we derive that

1
/ Z11(8)ds = —o0.
0

Using (2.17) in Lemma 2.4, we have

Uoso (t, z)dx < pN=1gqp
| Z1a00) < exllen | colt, 2) s [
B 1

61+|x|N+2a— 1+TN+2a'
1
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Hence

1
/ Z1(s)ds = —o0.
0
Integrating (3.53) it contradicts the boundedness of X7 and Y;. Hence, for any z € RN ,

lim sup ue (¢, 2) = oc. (3.54)
t—0

Using again the fact that  — us (¢, x) is radial and decreasing with respect to | x |, we derive

lim sup/ Uso (t, x)dx = 00 Vp > 0. (3.55)
t=0  JB,(2)

By Theorem C, we infer that us(t, ) > Uz 00(t, ) = uso(t,x — 2). Interverting 0 and z we
conclude again that ue(t,z) depends only on ¢, hence it coincides with Ug,(t), and clearly
Su., =RV, O

3.2 Proof of Theorem F (ii)

We assume that x > 1 and £ = {Opx} x RV 7%, We set z = (z1,2') € R* x RV=%. We use
Theorem F (i) with N replace by N —k to prove the part (ii). If x = (21, 2’), then z = (0,2') € L,
hence by [21, Th 1.3 (ii)]
N+2a N+2a
t7  2a t7 2«
Uso(t,x — T) > 617 ’ = 671 ’ .
1+ (t72a |o—2|)NT2e 14 (t72a |2 [)N+2

By Theorem C, we obtain

C7t_N;a2a , i . Nox
u(t,z) 2 1 V(t,x) := (t,21,2') € R} x R® x RN 7%, (3.56)
1+ (t_ﬁ ‘ x |)N+20‘
dy/ =1
For n € N*, set t, = n~>%, pg = Jrv—s W’ Ao =pg " and
148

crho(potn) P71
1
1+ ((Potn) 20 | @ |

fn(l'l) =

)N+2a :

Then
k148 oo 7,.l-:—ldr

fo(x1)dzy = ctp 771

R= 0 1 =+ TN+2a,

%ﬁ) the above integral is finite for any n but tends to oo
with n. Hence, for any n,k € N* there exists €, ; > 0 such that

for somme ¢ > 0. Since p < 1 + 2

_N;»Za
1+8 €n. it @ k—1
/ fn(z1)dr) =k = ct;a_p—l/ i rtdr
21| <en 0 1 pfii2e
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Hence €, — 0 when n — oo. This implies that for any ¢ € C§°(R"),

lim fa(@1)dz1 = kC(0).

o lelgen,k

Equivalently fy, 1 := faXx B, T ko in the sense of measures in R". Let w,, ; be the solution of

w4+ (—A)2u + thuP = 0 in RY x R® (357
u(0,.) = for in RE '
Then Wy, i (t, x1,2") = wy (¢, 1) is a solution of
Opu + (—A)%u + thuP = 0 in R% x RY
(3.58)

w(0,.) = fur in RY,

with f, x(21,2") = fax(z1). Since u(t,,z) > fu(x) in RY, we derive by the comparison principle
that u(t + tn, o) > W,k (t, ) in R% x RY. Hence, by letting successively n — oo and k — oo,

u(t + tn,ﬂzl,x/) > wy(t, 1) = u(t,z1,2') > “Zéo (t,z1) = u(t, 1, x/) > ul (t,x1), (3.59)

where we have denoted by uj; and uf, respectively the solution of the equation in (3.57) with

kdg as initial data and the limit of this solution when & — co. Since 1 < p < 1+ 5_25&, us, = Upp

by (i), which ends the proof. O

Remark. Tt appears interesting to investigate whether the fact that the singular set S,, contains
a (N-k)-dimensional plane can be replaced S, contains a (N-x)-dimensional submanifold.

4 Solution with a given initial trace: the general case

4.1 Problem with initial data measure

If v is a bounded Radon measure on an open set R C RV, that we note v € 9)?"(72)), we extend
it by 0in S = RY \ R and the new measure still denoted by v, belongs to the space 9’(RY)
of bounded Radon measures on RY. Conversely, if v € 9M(RY) vanishes on S = RV \ R its
restriction to R belongs to M°(R).

Definition 4.1 A nonnegative bounded Radon measure v in RN is an admissible measure if
there exists a function u = u, € L' (Qr) with t°u? € L' (Q7) to

o+ (=A)u+tPuP =0  in Qu,

4.1
u(0,.) = v. 1)

It is a good measure if the sequence w,, of solutions of (4.1) with initial data v, = v * py,
where {pn} is a sequence of mollifiers, converges to w, in LY(Qr) and if t°ul,, converges to
thuP € Ll(QT).
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Uniqueness of solutions is proved in [21]. The following result will be useful in the sequel

Proposition 4.1 Letp > 1 and > —1. Ifv,u € i)ﬁi(]RN) are good measures (resp. admissible
measures), then v + u is a good measure (resp. admissible measure).

Proof. We set v, = v * p, and p, = p * p, and denote by w,,,, u,, and u,, 1,, the solutions
of the initial value problem (4.1) with v replaced by vy, u, and v, + u, respectively. Since
p > 1, u,, + u,, is a supersolution of (1.24). Hence wy, 4, < wy, + Uyu,. When n — oo,
Uy, +p, CONVerges a.e. to some function u (see [21]). Since w,, and wu,, converges in L'(Qr),
the sequence u,,, 1, is uniformly integrable in Q7, it converges to some w (up to extraction of
a subsequence). Furthermore

(W )P < (-, )P < 2270 (il +f, )

Since t%u, and tPul,, converges in L'(Qr) to tPul and t%ul, respectively, they are uniformly
integrable. Hence the sequence {t®(uy, 4, )P} is uniformly integrable in Q7 and thus, up to
extraction of a second subsequence, t°(u,, ;,,)P converges to t’w? in L'(Qr). Going to the
limit in the integral expression of the fact that w,,y,, satisfies (4.1) with initial data v, + fin,
it follows that w satisfies the same equation with initial data p + v. Hence w = w,4, and by
uniqueness, the whole sequence {u,,, 4, } converges to w,.,. The proof in the case of admissible
measures is similar. O

Proposition 4.2 Let p > 1 and 8 > —1. If {vx} C ML (RY) is a nondecreasing sequence of
admissible measures converging to v € Smi(]RN ), then v is an admissible measure.

Proof. The sequence {u,, } is increasing. Furthermore.
Uy, < Ha[Vk] < Ha[V]-

Hence there exists some u € L'(Qr) for any T > 0, u > 0, such that u,, — u in L'(Q7) and
a.e. in Q. By identity (3.25) in the proof of [21, Th. 1.1], we have for 7 > T,

1
/ / (u,,,C + (7 — t)tﬁugk) dxdt + (1 — T)/ wy, (T, z)dr = T/ dvi < 7|[vllgpe - (4.2)
0 JRN RN RN +

Hence tPu? € L' (Qr) and tPuf, — tPu? in L'(Qr). By (2.21) there holds

/01/RN [uuk (=0 + (=A)%E) +tﬂugk§] dzdt = /RNg(O?x)dyk(;l;)’

for all £ € Y, 1, it follows that v = w,. Hence v is an admissible measure. O

The whole description of the set of admissible measures necessitates the introduction of
Bessel capacities as in the case v = 1, see [30], MV5). We have a first partial answer.

Lemma 4.3 Letp > 1 and B> —1. If v € M (RY) satisfies t°(Ha[v])P € LY(Q7), then v is a
good measure.
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Proof. Let v, = v % p,. By the maximum principle
Uy, < Hylvp] = Holv * pn] = Hy[V] * pn.

Since Hy[v] € LYQr), Hua[V] * pr — Halv] in LY(Qr). Similarly 3 (Hy[v] * p,)P — t8(Hu[v])P
in L'(Qr). Since u,, < Ha[v] * p,, we conclude that the sequences {u,, } and {t°u},} are
uniformly integrable in L'(Qr), hence they are precompact by Vitali’s convergence theorem and

subsequences are Cauchy sequences in L'(Qr). We end the proof as above, using uniqueness.
a

Proposition 4.4 Let p > 1 and 8 > —1. Let v € M, (RY) with Lebesque decomposition
v = 1y + vs where vy and v, belong to Sﬁg(RN), vy € LY(RN) and v, is singular with respect to
the N-dim Lebesque measure. If t°(Hy[vs))P € LY(Qr), then v is a good measure.

Proof. By [21, Lemma 3.2] there exists a unique solution u,, (resp. vs) to problem (4.1) with
v replaced by vg. (resp. vs. By [21, Lemma 3.2] the sequences {u,,«p,} and {t?ul ., } are
Cauchy sequences in L!(Qr). By Lemma 4.3, the sequences {uy,.p, } and {t?ul,,,} share the

same property. Hence vy. and v are good measures and we conclude with Proposition 4.1.
O

We recall some classical results about Bessel potentials, capacities and interpolation. For
0 <7 < N, the Bessel kernel J, is defined in R™ \ {0} by J,(z) = F~! ((1 + |§]2)*%) where F

is the Fouriier transform in RY, and the Bessel potential of a positive measure is
T ful(e) = 1, ua) = [ Ty la =)t (4.3

For 1 < r < oo, the Bessel capacity cap EJT,V of a compact set is

cap S, (K) = inf {35l ey - € € wrch (4.4)

where wg is the subset of nonnegative function belonging to the Schwartz space S(RY) , with
value larger or equal to 1 on K. Furthermore

(A)2 ¢ = (= T[] = ¢. (4.5)

If a linear m-accretive operator A in L"(RY) with domain D(A) is the infinitesimal generator
of an analytic semigroup of bounded linear operators SA(t), i.e.

d
u(t) = S; 4w Vt20<:>£+AU:0 on R, u(0) = v, (4.6)

the real intermolation classes between D(A) and L"(RY) can be obtained (see [39, p. 96]) by

! dt
[D(A), L"(RV)], = {U e L"(RY) : /0 /RNtO—%As;‘det < oo} : (4.7)
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and )
— ! 1-0 A, (T dt\ "

lvllipeay,Ln,, = Ivller + ; It AS oL~ ) (4.8)

If A= (=A)*+ I for some § > 0, its domain D(A) in L"(RY) is the Bessel potential space

(I —A)=(L"(RN)) = L2*"(RN) (see [27, Th 1]). By classical interpolation properties of Bessel
potential spaces (see e.g. [39]),

[D(A), L"(RM)], = L¥*"(RY) = (I - &)~ (L"(RY)). (4.9)

Furthermore (4.8) can be replaced by

! 1-6 A, (T dt %
Ilvllipeay,Ln,, = ; [t ASE ol | (4.10)

Proposition 4.5 Let N > 1, p > 1 and —1 < 8 < p— 1. If problem (4.1) admits a positive
solution u, for some v € im:(]RN), then v wvanishes on Borel subsets of R with zero Bessel

capacity cap ]12{5(1”) i 1.e.
P ).
VK c RN, K Borel, cap%a, LK) = 0= v(K) =0. (4.11)
P ’.

Proof. Assume u := u,, is the solution of (4.1). Since cap ]12@5(1%) . is a Choquet capacity we can
771)

p
assume that K C RY is compact and let ¢ € S(RY) be such that 0 < ¢ in RV and ¢ > 1 on K.
We set ® = e 9"H?[(] for some & € (0,1) and take ® as a test function. Then

1
/ ud” (1,.)dz + / / [(~00 + (—2)°0" ) u+ turer’ | dudt = / o dv.  (4.12)
RN 0 JRN RN
Note that (—A)*®? > p/®” ~1(—A)*® and 9;® + (—A)*® + 6 = 0, hence
_at@p/ + (_A)aq)p' > 2p/(bpl*1(_A)a(I)’

and we derive from Holder’s inequality

1 1

, 1 '8 , 2 1 , P

/ ud? (1,7)dr + 2p’ </ / = |(—A)*® + 6|7 dxdt) ’ (/ / tPuPoP dxdt) ’
RN 0 JRN 0 JRN

1
+// tPupd drdt > v(K).
0 JRN

Applying (4.7), (4.9) with r =p', 6 = lJ;fB, we obtain directly for some ¢ > 1,

[~

P

<l za0:m) - (4.13)
L D g

1 1 o8 ,
Lhell sms |, < / / 5 1(—A)D 1 60| dudt
c L r o ? 0o JrRN
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If capgiv(l%) p,(K) = 0, there exists a sequence {(,} C wg such that ||<nHL2a(;+B) L, —0as
p I

n — oo. Furthermore it is possible to assume ¢, < 1in RY (see [2]). Hence, up to a subsequence,
¢n — 0 a.e. in RN, This implies ®, < 1 and ®,, — 0 a.e. in Q. Therefore

1
lim u®® (1, z)dz and lim// tPuP DY dadt = 0.
0 JRN

n—oo JpN n—00

Combining the previous inequalities we derive that v(K) = 0. O

The following result provides a complete characterization of good measure.

Theorem 4.6 Let N > 1, p > 1 and —1 < 8 < p — 1. A nonnegative bounded measure v
in RN is an admissible measure if and only if v vanishes on Borel subsets of RN with zero

N .
capﬂM . -Bessel capacity.
P B

: . N . . .
Proof. If v vanishes Borel subsets with zero caupﬂsa(1 .s > there exists an increasing sequence of
771’

P
2a(148) ! 20(148)

nonnegative measures {v,} C [ L™ »1 ' (RM)) =L »1 P(RN) such that v, — v in the

sense of measures. This results is classical in the integer case and a proof in the Bessel case
(similar in fact) can be found in [40, Prop. 3.6]. Let ¢ € S(RY) and ® = e %H,[(], then

1
/RN(ID]H[O[[Vn}(l,m)dx +/O RNHQ[Vn] (2(=A)*® + 6®) drdt = /RNCan.

Hence .
(0%
| Balrd (8070 + 09 dodt < ol sy I 2,

Consider the mapping
Lros _8
¢ L(C) = / / trHo[va]t ™ ? ((—A)*® + 6®) dxdt.
0 JRN

It satisfies

| L(C) [< lvnll 20048 pHCH 20(146)
L p-1 L~ p—1
1 '8 i (414)
_p ’
< dlvnll 20048 (// 7 [(~A)*® + 5D d:cdt) _
L= 1" \Jo JRN

by (4.13). Hence tgHa[Vn] € LP(Q;) and

1
1 v
<// P (Ha[un])pdxdt) < c||vnll 20048 - (4.15)
0 JRN L

We end the proof with Proposition 4.2. O
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4.2 Barrier function for N =1

We set )
1
mets) L0
W(z) = 1+ zhtee (4.16)
1 if z<0,
and s )
w(t,x) =t P~ IW(t 2ax), (t,z) € RL xR, (4.17)
where e is Neper constant. When ¢ — 0, the function w satisfies
2t %" i1 Int
2a r—1 [n
1 w(t,r) = ———(1 4+ 0o(1 if x>0
0wt = T (L ol1) ws)
_1+8
(77) w(t,z) =1t p-1 it x<0.

Lemma 4.1 Assume that p > 1+ % Then there exists Ag > 0 such that for A > Ao, the
function wy := A\w satisfies

O + (=A)Fwy + tPwf > 0 in R} xR
lim w(t, z) = 0 if >0 (4.19)
limw(t,x) = o0 if <0
t—0

Proof. Clearly the assertions concerning the limit of w(x,t) when t — 0 are satisfied since

1;—2& _ ;;%3 > 0 by assumption. Then

Owy\ (t,x) = —Wt_ﬁ—lw(z) — el (2)z,

with z = f%x, and
Hence

dwy(t, ) + (—A)§wy(t, z) + tPwl (¢, z)
_ 148 (4.20)

=\t T (=A)qw(z) — ! w'(2)z — ﬂw(,z) + AP lwP(2)] .
p

2a

If z > 0, we obtain that

—iw’(z)z— 1+5w(z) 1420 2P 148 e+ w(z)
2 p—1 | 20 14220 p 1 aln(e + 22) ’
. 142 1+ . 1+2c . 1 - .
Sln}cle hma > o7 zlimolj'zm =1 and zll)rgom = 0, then there exist Rg > 0 and g9 > 0
such that
1, 1+3
——w'(2)z — ——w(z) > cow(z) Vz > Ry. (4.21)
2c p—1



Next we deal with (—A){w(z) and put

B In(e + 22
w(z) = H(":’—l—ﬂ)a Vz € R,
so that (—A)fw(z) = (—A)§0(2) + (—A)F(1 — dx, )(2).

For z > 2, using the alternative definition of fractional Laplacian, we have that
In(e+|24+4|?) In(e+|z—4|?) 21In(e+22)

~ N (],La o 1+|Z+g‘l+2a + 1+|Z_g‘l+2a - 1+Z1+2a ~
—(=A)*i(z) = 5 T2 d

—00 (4.22)
o al,aw(z) o Iz(y)
T 920 | Jy[irea Y
where
Liy) = 1+ N+2e In(e + 221 + y|?) 1+ 2112 In(e + 22|11 — y|?) .
2\Y) =7 + Z1H2a|] 4 y|l+2a In(e + 22) 1+ 214201 —y|1+2a In(e + 22) :
Step 1: There exists c1o > 0 such that
I.(y) €12
—dy < . (4.23)
/;Sylgg ly|t+2e w(z)z
Actually, for —% <y < —%, there exists ci3 > 0 such that
1+ plt2e In(e + 221 — y|?) <
1+ 21201 — y[i+20 In(e+22) = O
and then
1 1
-3 ] 3 1 1+2« 1 2,.2
/ 2 zl(yz) vy = 2/2 = 1+2 e+ 2 : )dr+014
_3 y|ttRe o 14 (zr)"*2* In(e +2%)
2 > In(e + t2)
< dt
~ w(z)z /0 [ 4 g1z @0 T C1s
< C15 ’
— w(z)z
where c14, c15 > 0, and the last inequality holds since w(z)z — 0 as z — 4o00. Similarly,
: L(y)
2 LY C16
dyp < .
/é yN+2a =002
Step 2: There exists c17 > 0 such that
> L(y)
2 1 \Y
/1 Wdy S C17. (424)
2
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Indeed, since function I, is C? in [—3, 3] and satisfies
I.(0) =0 and I.(y) = L.(~y),
then I(0) = 0 and there exists ¢1g > 0 such that
() <eas yel-3 35

Then we have

which implies that

Step 3: There exists c17 > 0 such that

IL.(y) ’
dy| < e20, (4.25)
‘/A |y|1+2e

where A = (—o00, —3) U (2,400). In fact, for y € A, we observe that there exists ca; > 0 such
2 2

that I.(y) < co1 and
Iz(y) oo C21
[ pima <2 [, ity < e

2

for some cg99 > 0. Consequently, by (4.22)-(4.25), there exists ca3 > 0 such that

o~ Ca3

Since 1 —wyx, =1inR; and 1 —-wy, <1inR_, we have also
(—A)*(1 —wx, )(2) >0 Vz>0.

Therefore, we derive

o €23
Combining (4.21) and (4.26), we infer that there exists Ry > Ry + 2 such that for z > Ry,
1 1
(—A)aw(z) — %w/(z)z — pt'fw(z) > O'OU)(Z) — 1_1_02%
_ 3
= wlz) (00 In(e + z2)>
>0

For z < Ry, there exists cog > 0 such that



and there exists co5 > 0 dependent of R; such that
w(z) > cg5.

Therefore, one can find Ay > 0 such that for A > Ag,

1 1
(—A)%w(z) — Q—w’(z)z — wa(z) + M wP(2) >0 VzER, (4.27)
a p—
which together with (4.20), implies that (4.19) holds, which ends the proof. O

4.3 Solutions with initial trace (S,0)

Lemma 4.7 Assume N > 1 and p > 1+ %;f) Then for any R > O there exists a positive

function w = uso g, minimal among the solutions of (1.24) in Qo which satisfy

limu(t,r) = oo  uniformly in Bpg

t—0 (4.28)
%irr(l) u(t,z) =0 uniformly in B%, VR > R.

_>

Furthermore R — uso By, 15 increasing.

Proof. By scaling we can assume that R = 1 and we fix A > Ag. We denote by e; the point with
coordinates (1,0, ...,0) in RY. The function

148
(t,2) = we, (21, 2") = X1 W (t 20 (2 — 1)), (4.29)
is a super solution of (1.24) in o, which satisfies
lim we, (t,71,2") = 0o uniformly in  (—oo0, 1] x RN~!
t—0 (4.30)
%iH(l) We, (t,2) =0 uniformly in[1 + ¢, 00) x RV~L.
_>

Since equation (1.24) is invariant under rotations and translations, for any a € 0B; there exists
a rotation R, with center 0 such that R,(a) = e;. Therefore the function (t,z) — wy(t, x) =
We, (t, Rq(x)) is a solution of (1.24) in () and it satisfies

%in% we(t,x) = 0o uniformly in  {z € RV : (z,a) < 1}
- 4.31
}in% We, (t,2) =0 uniformly in  {x € RV : (z,a) > 1+ gel. (4:31)
—
For k € N* let Uky be the solution of
1
Opu + (—A)%u + thuP = 0 in Qo
u(0,.) = kxp, in RN, (4.32)

Then {ukXB1 } is increasing. For any a € 0B, Uk, < wyg, the following limit exists,
U = lim w
00,B1 Pt kXBla
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and there holds
Uso,B, < inf{w, :a € 0B;1}.

This solution wu is clearly minimal by construction and the monotonicity of the mapping R —
Uso, By, follows. O

Remark. In the previous result, the ball B can be replaced by any closed convex set with a
non-empty interior. If a € 0K let H, be an affine separation hyperplane, with outer normal
vector n, and

Hf={zeRY:(z—a,n,) >0} and H, ={zcRY:(x—a,n,) <0}
The supersolutions w, are expressed by
_1+8 1
(t,z) — we(t,x) = At P~I1W(t 22 (x — a,nyg)),

and have initial trace (0, H, ). Then we construct the minimal solution u = us i of (1.24) with
initial trace (0, K) such that

lim u(t,z) = oo uniformly in K

L0 , _ _ (4.33)
}111(1) u(t,z) =0 uniformly in  {x € K¢:dist (z, K) > ¢} Ve > 0.

4>

Furthermore the mapping K +— uq i is nondecreasing.

Proposition 4.8 Assume N > 1 and p > 1 + % Then for any closed set S such that

int(S) = S there exists a positive function u = us,s minimal among the solutions of (1.24) in
Qoo which satisfy

limu(t,z) = oo  locally uniformly in S
t-0 . . . (4.34)
%H% u(t,x) =0 locally uniformly in {z € §¢: dist (z,S) > €} Ve > 0.
%
In particular Tr(us,s) = (S,0). Furthermore
s In (e ot w (dist (x, 5))2)
1+t 2" (dist (2, S))+20

US,00(t, ) < cgt™ 1 V(t,z) € Qoo- (4.35)

Proof. We first assume that S is compact, hence precompact, and for any § > 0 there exists a
finite number of points £;, 1 < j < ns such that

ns

S C | JB&) = Ss.
j=I

Clearly ns is nondecreasing, furthermore we can choose the points {; such that e — Ss is
nonincreasing. Since p > 1, the function

ns
Q,US(; = ZUOO,§5(§J')’ (436)
j=1
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is a supersolution of (1.24) in Q) and it satisfies

lim wg, (¢, z) = 0o uniformly in ~ S;
=0 . . . (4.37)
lim wg, (t,z) =0 uniformly in {z € S§ : dist (z,S;5) > €} Ve > 0.

t—0

For k € N* let Ugy ; e the solution of (1.24) in Qo with initial data kx,. It exists since S has a
non-empty interior, and it coincides with the solution of (1.24) in Q. with initial data ky,
Clearly there holds uy, . < ws, and the sequence {uy, _}; is increasing. There exists

S S

nt(S) "

Uso,S = kli_}m Uk g -
o0

It is a positive solution of (1.24) in QQ» which tends to infinity on S, by construction, and
satisfies U0 5 < ws;. This implies in particular that for any € > 0,

21in% Uso,s(t,x) =0 uniformly in {z € S§ : dist (z,Ss5) > €} .
—>

Since this holds for any d, e > 0, the second assertion in (4.34) follows.

If S is unbounded, for any p > 0 large enough, §¥ := SN Pp is a nonempty compact set and
S” = int(SP). Hence there exists a solution uso s of (1.24) in Qs with initial trace (0,S”). By
construction p — s se is nondecreasing and converges to a nonnegative solution s s of (1.24)
in Q. Let a = (ay,...,an) € 8¢ and 7 > 0 such that

Qy ={r=(z1,...,2N) | 2j —a; |< T} C S“.

We put
145

Wy(t,ag) = Mot (W3 (a5 — a5+ 7) + W3 (a5 + 7 — ) ),
with A > Ag, then W is a supersolution of (1.24) in Ry x R which satisfies

(i) lim;_0 Wj(t,z) =0 locally uniformly in  (a; — 7,a; + 7)
(i) lim;_,o Wj(t,x) = o0 uniformly in  (—o0,a; — 7] U[a; + 7, 00).

Hence W (t,z) = >_,; Wj(t, x) is a supersolution of (1.24) in Qoo which satisfies

(i) limg 0 W (t,2) =0 locally uniformly in = Q7]
(i) limg o Wo: (2, 2) = oo uniformly in  RY \ Q7.

The estimate from above can be made more precise (it does not depend on the fact that S =
int S) using (4.16).

By construction e sp < Wer which implies uqo s < Wgr. Hence uq s satisfies (4.34). The
estimate from above can be made more precise (it does not depend from the fact that S = int S)
using (4.16) since.

118 In (e + t_572>

T < 2N Tp-1 4
WQa (a) = At P 14+ 1-;20( 1420 ( 38)

If we take 7 = dlL\/%;S) we derive (4.35). Furthermore uo s is clearly minimal as the limit of
an increasing sequence of solutions with bounded initial data with compact support. O
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4.4 Proof of Theorem G

If v € MP(R), we extend it by zero and still denote by v € IMP(RY) its extension. For p > 0,

SP =S8N B, and for k € N*, szp dx is a good measure. Since v is a good measure, v + szp dx

is a good measure by Proposition 4.1 and there exists a solution u := Uptkyg do of (1.24) in Qs
P

with initial data v + szp dx and it satisfies

sup {um uk‘xsp da:} < UqukXSpdz < uy + ukxsp de < Uy + Uso,S- (439)

Since (k, p) — Uky g do 1S InCreasing, we can let (K and p go to infinity succesively and obtain
P

that Unthxg, du CONVEIges to a positive solution @ of (1.24) in Q and

sup {uy, Uoo,s} < U < Uy + Uso,s- (4.40)

This estimate implies that Tr(a) = (S, v). O

5 The subcritical case

For equation (1.24), the subcritical case corresponds to the fact that

oo (t, ) = V(t,2) =t 7 To(t"2az)  Y(t2) € Qu,

™

where v is the minimal positive solution of (1.29).

5.1 Proof of Theorem 1

Proposition 5.1 Assume that 1 + Q%i;rf) <p<l1l+4 w and u is a nonnegative solution

of (1.30) where S # (). Then

_ 1+
ciot »-1

1+ (t"2ad(z,S))N+20

189

u(t,x) > V(t,x) € Qoo (5.1)

for some c19 > 0 such that for

Proof. By Theorem C, for any xg € S,

Jun

u(t,x) > uso(t,x — x9) = £ v(t‘i(m —20)) V(t,z) € Qoo

™

which implies that

w(t, ) >t 5T sup o(t % (z — 20))  V(t,2) € Quo. (5.2)
ToES

™

The maximum of V' is achieved at 0, hence, for any = € S,

148 14+

u(t,z) >t p=1V(0) = cq1t »-1. (5.3)

I
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If © € 8¢, there exists Z € S such that dist (z,S) = |x — z|. It follows from [21, Theorem 1.2]
that,

o3
=
u(t,z) > 10 . (5.4)
1+ (¢~ 2adist (v, S))N+2«
Then (5.1) holds. O

The next result shows that any closed set can be the singular set of the initial trace of a
positive solution of (1.24).
Proposition 5.1 Assume 1+ % <p<l+4 w and S C RY is a nonempty closed set.
Then there exists a minimal solution u := ugs o with initial trace (S,0). Furthermore it satisfies

(4.35).

Proof. We first notice that condition 1+ 26;(4}; aﬁ ) < p<1l+ w is equivalent to the conditions
stated in Theorem I, i.e.

(1) eitheerlandl—&—zol‘(J:;f)<p<1—|—20z(1—|—ﬁ),

(5.5)
(i) orN=2L<a<landl+20P <p<14a(+h)
Let A := {zn}nen} be a countable dense subset of S. For k € N,, set
k
=k 0, (5.6)
j=1
and let u = u,, be the solution of
Opu + (—A)%u + tPuP = 0 in Q (5.7)
u(0,.) = pg in RV, '

The sequence {u,,, } is increasing. If a € §¢ and d, = dist (a, S). By construction there holds
Uy, < U’B;a(a),m' (58)

Hence u,, converges to some solution % of (1.24) in Q) which has zero initial trace on By, (a),
for any a € §¢ since (5.8) still holds with @ instead of u,, , and satisfies @ > u,  for any z; € A.
Hence Tr(u) = (S,0). Estimate (4.35) is independent of the geometry of S. O

Proof of Theorem I. It is similar to the one of Theorem G. We set vy = v + up where py is
defined by (5.6). Then the solution of (1.24) with initial data v, satisfies

sup{uy, upy, b < uy, < uy +uy, . (5.9)
The sequence {u,, } is increasing and converges to some solution @ of (1.24) which satisfies

sUp{ty, Uoo s} < U < Uy + Uoo,S- (5.10)
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Then @ has initial trace (S,v). O

Remark. We conjecture that the following more general version of Theorem I holds: For any
integer k € [1, N] any p > 1 such that 1 + 2'2(_&;5) <p<l+ w, any closed set S contained
i an affine plane of codimension k and any bounded measure in S¢, there exists a solution u
of problem (1.30). We notice that the condition on p can be fulfilled for some p if and only if
N — k < 2a, hence either kK = N i.e. § is a single point and no condition on «, or Kk = N — 1

hence § is contained in a straight line and % <a<l

6 Appendix: symmetry and monotonicity results

The following is a variant of the maximum principle which will be used in the sequel.

Lemma 6.1 Let R, T > 0, § € [0,T) and Q be a domain of Qo such that Q C (5,T) x Bg.

Assume that h > 0 in Q and ¥ € C(Q) satisfies

3151/1 + (_A)ad} + h(ta 55)1/1 > 0 in Qa

$>0 i ([5,T)x Bp)\ Q. (6.1)

Then v is nonnegative in [6,T) x Bg.

Proof. Let e € (0,7 — §]. We first claim that 1 is nonnegative in [§,T — €] x Bg. If it does not
hold, and since ¢ > 0 in ([0,T) x Bgr) \ Q, there exists (tp,zo) € QN ([0, T — €] x Bg) such that

t = i t .
¥(to, 7o) (t,ac)e[gglI_le]xBRd)( @) <0

Then 0,9 (tg, z9) < 0 and (—A)*(tp, xo) < 0. Since h > 0 in Q and (tg,zg) € @, there holds
Ip(to, zo) + (—A)*(to, zo) + h(to, x0)1(to, o) <0,

contradiction. Thus, ¢ is nonnegative in [§,T — €] x Bg. Since € is arbitrary, the result follows.
Notice that we can take R = oo in the above proof provided @) is a bounded domain.
O

Next we prove the following result.

Proposition 6.1 Let N > 1, 3 > —1, p > 1 and g € C(R") is a nonnegative contin-
uwous radially symmetric and nonincreasing function which tends to 0 when |z| — oco. If
u € L} (0,00; L2(RY) N C(Qn) is a nonnegative solution of (1.24) in Qoo which converges
to g uniformly when t — 0, then u is radially symmetric and nonincreasing.

Proof. Since u € L}, (0, oo; LYRN )) NC(Qy), it is dominated by H[g] and uniqueness holds
as for the linear equation [9]. Since the initial data is radially symmetric and the equation
is invariant by rotations in RY, u(t,.) is also radially symmetric. Because of uniqueness and
stability, it is sufficient to prove the result for a function u which initial data is obtained from

the previous one by multiplying it by a smooth, even, nonincreasing and nonnegative function
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with compact support. The corresponding solution of (1.24) in @« still denoted by wu, is smooth
in Qs and bounded from above by H%[g]. Hence it satisfies

(1) limy o0 uct, z) =0 uniformly in z € RV
(i) limy, o0 wt, ) = 0 uniformly in ¢ € Ry (6.2)
(4i7) limy o u(t, ) = g(z) uniformly in z € RV,

For A € R, we set oy = (2\ — 1, 2') if z = (x1,2') € RV,
Yy ={z=(z1,2) eRY | 21 < A} (6.3)
and
Ty ={z = (z1,2/) e RN | z; = \}.
We observe that if A > 0, then {z) | x € ¥z} = {x € RY| 21 > A} and
|zx| > |z| for x € Xj. (6.4)
We claim that for any A > 0
u(t, ) > u(t,zy) V(t,z) € R} x Xj. (6.5)

We set ¢(t,x) = u(t,z) — u(t,z)) and suppose that (6.5) does not hold. Because of (6.2) there
holds lim ¢(t,z) = 0 uniformly with respect to ¢t > 0, tlim ©(t,x) = 0 uniformly with respect
— 00

|z| =00

to x € RY and }in% ¢(t,7) = g(x) — g(x)) > 0 uniformly with respect to x € R, It follows that
H
there exists g > 0 and (to, zg) € R% x X such that

o(to,xo) = min  p(t,z) = —ep < 0. (6.6)
(:E,t)EZ)\
The function ¢ satisfies
O+ (—A)*¢+ h(t,z)p =0 in Qoo, (6.7)

for some h(t,z) > 0, and it has initial data ¢(0,z) = g(z) — g(x)) in RY. Take e € (0,¢)
and set ¢ = ¢ + €. Using (6.2) we see that there exists Ty > to > 0 and Ry > |xg| > 0
such that ¢c(z,t) > 0 for (t,z) € ([T,00) x RY) J ([0, 00) x BE), for all T > Ty and R > Ry.
Furthermore there exists g € (0,%9) such that for any § € (0,d9) such that ¢.(z,t) > 0 for
(t,z) €[0,6) x (RN NX,). We set

Q=X\N(4,TpH) x Bg,.
We apply Lemma 6.1 in [g, T) x Br and conclude that ¢, > 0 in [g, T) x Br, which contradicts

the fact that ¢.(to,xo) = € — €p < 0. Hence (6.5) holds. Since A > 0 is arbitrary, this implies in
particular by continuity that

ou

a—m(t,xl,x’) <0  VY(tz,2')eRy x Ry x RV7L (6.8)
Similarly

g;‘l(t,xl,x’) >0  Y(t,r,2) € Ry x R x RN (6.9)
Since u(t, z) is radially symmetric with respect to x, it implies that w(t, z) > u(t, ') if |z] < |2/],
which ends the proof. O
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