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A cubical Squier’s theorem

Maxime LUCAS∗

Abstract

The homotopical Squier’s theorem relates rewriting properties of a presentation of a monoid with

homotopical invariants of this monoid. Lately, this theorem has been extended, enabling one to build

a so-called polygraphic resolution of a monoid starting from a presentation with suitable rewriting

properties.

It is currently a work in progress to get a better understanding of these results. We argue that

cubical categories are a more natural setting in which to express and possibly extend those results.

As a proof-of-concept, we give in this paper a new proof of Squier’s homotopical theorem using

cubical categories.

1 Introduction

Convergent rewriting systems are well-known tools in the study of the word-rewriting problem. In

particular, a presentation of a monoid by a finite convergent rewriting system gives an algorithm to

decide the word problem for this monoid. In (Squier, 1987) and (Squier, Otto and Kobayashi, 1994),

the authors proved that there exists a finitely presented monoid whose word problem was decidable but

which did not admit a finite convergent presentation. To do so, they constructed, for any convergent

presentation pG,Rq of a monoid M , a set of syzygies S corresponding to relations between the relations.

Let us make this result a bit more precise.

We start from a presentation of a monoid. For example a presentation of the braid monoid B`3 is

given by:

xa, s, t|ta “ as, sa “ a, sas “ aa, saa “ aaty

Presenting B`3 by a monoidal polygraph (or computad) Σ consists in choosing a name and an orientation

for the relations, giving for exaple:

Σ :“ xa, s, t|α : taÑ as, β : saÑ a, γ : sasÑ aa, δ : saaÑ aaty
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Such a monoidal polygraph Σ generates a free (strict) monoidal groupoid, denoted ΣJ, and a free (strict)

monoidal catgeory, denoted Σ˚. The 0-cells are the free monoid generated by a, s and t, and the 1-cells

are generated by α, β, γ and δ.

What we now want to do is to find a coherent presentation of B`3 . This corresponds to extending Σ

into a monoidal 2-polygraph such that the monoidal 2-groupoid it generates (denoted ΣJ) satisfies the

following property: for any couple of parallel 1-cells f and g in ΣJ, there exists a 2-cell A : f ñ g in

ΣJ. Squier’s homotopical theorem consists in finding sufficient conditions for an extension of Σ into a

2-polygraph to be a coherent presentation of B`3 :

Theorem 1.1 (Squier). Let Σ be a convergent monoidal 2-polygraph. Suppose that for every critical

pair pf1, f2q of Σ, there exist two 1-cells g1 and g2 in Σ˚ and a 2-cell A in ΣJ of the following shape:

f2

f1

g1
A

g2

Then Σ is coherent.

Let us delay the definition of convergence for now (see Definition 3.10). A branching is a pair of

1-cells in Σ˚1 with the same source. Critical branchings are a special case of branching (see Definition

3.8). In our case of Σ is convergent and there are four critical branchings pβa, sαq, pγt, saβq pγas, saγq

and pγaa, saγq. So what Squier’s theorem says is that the following extension of Σ into a 2-polygraph is

coherent:

sta aa

sas

βa

sα γ

A sast aat

saa

γt

saβ δ

B

sasas aaas

saaa aata

γas

saγ
δa

aaα

C
sasaa aaaa

saaat aatat aaast

γaa

saδ
δat aaαt

D

aaaβ

Squier’s theorem has recently been expanded in higher dimensions (see Guiraud and Malbos, 2012b),

where critical pairs are replaced by critical n-tuples. However, the natural shape of the confluence

diagram of an n-branching is an n-cube, which is hard to express in a globular ω-category. This makes

a lot of calculations from Guiraud and Malbos, 2012b very complicated.

This is a problem because, although Squier’s theorem has been extended to various structures other

than monoids (see Guiraud and Malbos, 2012a for example), an extension of the full resolution construc-
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ted in Guiraud and Malbos, 2012b seems more complicated. As a consequence, new tools are needed

in order to get a better understanding of this construction. In this paper, we argue in favour of cubical

categories as a good setting where this construction would be more natural.

Cubical categories were introduced in Al-Agl, Brown and Steiner, 2002a. Although they are equivalent

to globular ω-categories, their combinatorics makes them a good candidate to improve the proof of

Guiraud and Malbos, 2012b for two reasons. First as said earlier the confluence diagram of an n-

branching is an n-cube. Secondly, in Guiraud and Malbos, 2012b the authors rely on the construction of

an ω-natural transformation, an object that is once again easily described in cubical terms. Although we

come short to proving the full result of Guiraud and Malbos, 2012b, we show how to prove the Squier’s

homotopical theorem in our new framework:

Theorem 4.2. Let Σ be a convergent cubical 2-polygraph. Suppose that for every critical pair pf1, f2q

of Σ, there exists (up to exchange of f1 and f2) a 2-cell in ΣJ2 whose shell is of the form:

f2

f1

Then Σ is coherent.

In Section 2 we introduce cubical categories in low dimensions. In Section 3 we recall some standard

notions from word rewriting. Finally in Section 4 we prove our version of Squier’s theorem.

Acknowlegments This work was supported by the Sorbonne-Paris-Cité IDEX grant Focal and the

ANR grant ANR-13-BS02-0005-02 CATHRE. I also thank Yves Guiraud for the numerous helpful dis-

cussions we had during the preparation of this article.

2 Cubical 2-categories

The equivalence between globular and cubical ω-groupoids was proven in Brown and Higgins, 1977 and

Brown and Higgins, 1981. The case of ω-categories was covered in Al-Agl et al., 2002a. Finally the

description of cubical pω, pq-categories and their equivalence with their globular counterparts was done

in Lucas, 2016. Here we focus on cubical 2-categories, p2, 1q-categories and 2-groupoids.

Definition 2.1. A cubical 2-set consists of:

• Sets C0, C1 and C2, whose objects are respectively called the 0, 1 and 2-cells.

• Applications B`, B´ : C1 Ñ C0.
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• Applications B`1 , B
´
1 , B

`
2 , B

´
2 : C2 Ñ C1.

Satisfying the following relations for any α, β P t`,´u:

BαB
β
2 “ B

βBα1 .

Notation 2.2. We represent a 1-cell f in the following way : B´f B`f,
f

and a 2-cell A as:

B
´
2 A A

B
´
1 A

B
`
2 A

B
`
1 A

Cubical 2-categories. A cubical 2-category is a cubical 2-set equipped with extra structure. See

Al-Agl, Brown and Steiner, 2002b for a formal definition. We give here a run-down of the structure.

• An operation ‹ sending any two 1-cells x y z
f g to a 1-cell x z.

f‹g

• An operation ε sending any 0-cell x to a 1-cell x x,εx which we usually represent by x x.

• An operation ‹1 (resp. ‹2) associating, to any 2-cells A and B satisfying B`1 A “ B
´
1 B

(resp. B`2 A “ B
´
2 B), 2-cells

A ‹1 B A ‹2 B

• Operations ε1, ε2 : C1 Ñ C2 sending any 1-cell f to 2-cells ε1f

f

f

and f ε2f f .

• Operations Γ´,Γ` : C1 Ñ C2 sending any 1-cell f to 2-cells f Γ´f

f

and Γ`f f

f

.

Those operations have to satisfy a number of axioms. In particular, pC0, C1, B´, B`, ‹, εq and pC1, C2, B´i , B
`
i , ‹i, εiq

(for i “ 1, 2) are categories.

Remark 2.3. The cells Γα and εi are completely characterised by their faces. Hence we will omit them

when the context is clear in the rest of this paper.
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Cubical p2, 1q-categories. A cubical p2, 1q-category is given by a cubical 2-category C equipped with

an operation T : C2 Ñ C2 sending any 2-cell B´2 A A

B
´
1 A

B
`
2 A

B
`
1 A

to a 2-cell of shape B
´
1 A TA

B
´
2 A

B
`
1 A

B
`
2 A

such

that T 2 “ idC2
and:

TA

A

“ (1)

Remark 2.4. The operation A ÞÑ TA corresponds to the operation A ÞÑ A´1 in a globular setting. The

equation T 2 “ idC2
corresponds to the equality pA´1q´1 and the axiom (1) corresponds to the relation

A ‹1 A
´1 “ 1. See Lucas, 2016 for more details.

Cubical 2-groupoid. A cubical 2-groupoid is a cubical 2-category such that pC0, C1q is a groupoid (we

note f the inverse of a cell f ) and equipped with operations S1, S2 : C2 Ñ C2, sending any 2-cell

B
´
2 A A

B
´
1 A

B
`
2 A

B
`
1 A

to 2-cells of shape:

S1A

B
`
1 A

B
´
2 A

B
´
1 A

B
`
2 A B

`
2 A S2A

B
´
1 A

B
´
2 A

B
`
1 A

So that pC1, C2, B´i , B
`
i , ‹i, εi, Siq is a groupoid for i “ 1, 2.

Though the proof is not as straightforward as in the globular case, we still have the following expected

result (see Lucas, 2016):

Proposition 2.5. A cubical 2-groupoid is a cubical p2, 1q-category.

3 Word rewriting

In this section we redefine some of the standard concepts of higher-dimensional rewriting in our cubical

setting (see Guiraud and Malbos, 2016 for a more detailed exposition). In what follows, by monoidal

cubical pn, kq-categories, we mean monoid objects in the category of cubical pn, kq-categories.

Example 3.1. Let C be a monoidal cubical p2, 1q-category (resp. 2-category). Let f : u Ñ v ,and

g : u1 Ñ v1 be cells in C1. Then the monoid structure gives a 1-cell fg : uu1 Ñ vv1 in C1. We write simply

fv (resp. vf) for the cell fpεvq (resp. pεvqf). There is also a product of 2-cells in a similar fashion.
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Finally, these products are compatible with the identity maps which give for example the equation

εipfgq “ pεifqpεigq.

Polygraphs are presentations for higher-dimensional globular categories and were introduced by in

Burroni, 1993 and by Street under the name of computads (see Street, 1976 and Street, 1987). We adapt

them here to present monoidal cubical pn, kq-categories.

Definition 3.2. For any set E, we denote by E˚ the free monoid on E. A monoidal 1-polygraph Σ is

given by two sets Σ0, Σ1, together with maps Bα : Σ1 Ñ Σ˚0 (for α “ ˘).

We denote by Σ˚ (resp. ΣJ) the free monoidal category (resp. groupoid) generated by Σ.

Definition 3.3. A monoidal cubical 2-polygraph (resp. p2, 0q-polygraph) is given by three sets Σ0, Σ1

and Σ2, together with maps Bα : Σ1 Ñ Σ˚0 and Bαi : Σ2 Ñ Σ˚1 (resp. Bαi : Σ2 Ñ ΣJ1 ).

We denote by Σ˚ (resp. ΣJ) the free monoidal cubical p2, 1q-category (resp. 2-groupoid) generated

by Σ.

Example 3.4. If Σ is a monoidal cubical 2-polygraph, the cells of Σ and Σ˚ together with the faces

operations can be visualized as follows (a similar diagram could be drawn for ΣJ):

Σ0 Σ1 Σ2

Σ˚0 Σ˚1 Σ˚2

Example 3.5. In what follows we will use the following monoidal cubical 2-polygraph as our running

example. Let Σ be the following monoidal cubical 2-polygraph:

Σ0 “ ts, t, au

Σ1 “ tα : taÑ as, β : stÑ a, γ : sasÑ aa, δ : saaÑ aatu

And finally Σ2 consists of the following cells:

sta aa

sas aa

βa

sα A

γ

sast aat

saa aat

γt

saβ B

δ

sasas aaas

saaa aata aaas

γas

saγ C

δa aaα

sasaa aaaa

saaat aatat aaast aaaa

γaa

saδ D

δat aaαt aaaβ
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Remark 3.6. The presentation in this article is slightly different from that of Guiraud and Malbos, 2016.

Our monoidal pn, pq-categories are seen as one-object pn`1, p`1q-categories in Guiraud and Malbos, 2016.

One advantage of this approach is that it makes the many-object generalisation very straightforward. Our

approach on the other hand suggests a possible generalisation from monoidal objects in pn, pq-categories

to O-algebras in pn, pq-categories, where O would be some coloured set-theoretic non-symmetric operad.

Definition 3.7. Let Σ be a monoidal 1-polygraph. A rewriting step in Σ˚1 is a 1-cell of the form ufv,

where f is in Σ1, and u and v are elements of Σ˚0 .

Definition 3.8. Let Σ be a monoidal 1-polygraph. A branching is a pair of 1-cells f, g P Σ˚1 with the

same source. It is said to be local if f and g are rewriting steps.

Up to permutation of f and g, there are three distinct types of local branchings:

• If f “ g, pf, gq is said to be an aspherical branching.

• If there exists f 1, g1 P Σ˚1 and u, v P Σ˚0 such that f “ f 1v and g “ ug1 with B´f 1 “ u and B´g1 “ v,

pf, gq is said to be a Peiffer branching.

• Otherwise, pf, gq is said to be an overlapping branching.

Finally a critical branching is a minimal overlapping branching, where overlapping branchings are

ordered by the (well-founded) relation: pf, gq ď pufv, ugvq for u, v P Σ˚0

Example 3.9. Using our example, saγ and δa are rewriting steps, but not saγ ‹ δa or βaβ. Finally,

there are exactly four critical branchings: pβa, sαq, pγt, saβq pγas, saγq and pγaa, saγq.

Definition 3.10. Let Σ be a monoidal 1-polygraph. A branching pf, gq is confluent if there exists 1-cells

f 1 and g1 in Σ˚1 with the same target and such that B`f “ B´f 1 and B`g “ B´g1.

We say that Σ is locally confluent if any local branching is confluent, and Σ is confluent if any

branching is confluent.

It is terminating if there is no infinite sequence of rewriting steps f1, . . . , fn, . . . satisfying that B`fi “

B´fi`1 for all i.

It is convergent if it is both terminating and confluent.

Example 3.11. The shape of the cells of Σ2 shows that all the critical branching of Σ are confluent.

As a consequence Σ is locally confluent.

Moreover, Σ is terminating. To show this, we consider the order t ą a and s ą a on Σ0, and extend it

to Σ˚0 using the deglex ordering scheme (see Guiraud and Malbos, 2016). This is a well-founded ordering

of Σ˚0 compatible with multiplication, and we can check that for any cell f of Σ1, spfq ą tpfq.

By Newman’s Lemma, a terminating locally confluent rewriting system is confluent, and so Σ is

actually convergent.
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4 Squier’s theorem

Before stating Squier’s theorem, we need to define the cubical analogue to the notions of globe and of

coherence.

Definition 4.1. Let C be a cubical 2-category. A shell over C1 is a family of cells fαi in C1, (i “ 1, 2 and

α “ `,´) satisfying Bαfβ2 “ B
βfα1 for every α and β.

A filler in C2 of a shell S “ pfαi q over C1 is a cell A P C2 satisfying Bαi A “ fαi for every i and α.

If Σ is a monoidal p2, 0q-polygraph, we say that Σ is coherent if any shell over ΣJ1 admits a filler in

ΣJ2 .

The main result of this paper is the following:

Theorem 4.2 (Cubical Squier’s theorem). Let Σ be a convergent cubical p3, 2q-polygraph. Suppose that

for every critical pair pf1, f2q of Σ, there exists a 2-cell in ΣJ2 whose shell is of the form:

f2

f1

Then Σ is coherent.

The proof of this result occupies the rest of this article and loosely follows the proof of the globular

case from Guiraud and Malbos, 2016. Before that though, we show that this result applies to our

example.

Example 4.3. We have already proven that Σ is convergent. We have also made the list of all possible

critical branching, and we can check that each of them corresponds to a cell in Σ2. Thus by Theorem

4.2, every shell over ΣJ1 admits a filler un ΣJ2 .

Lemma 4.4. For every local branching pf1, f2q, there exists a cell A in ΣJ2 such that B´1 A “ f1 and

B
´
2 A “ f2. So A is of the following shape:

Af2

f1

Proof. The proof is similar to the globular case, by distinguishing cases depending on the form of the

branching pf1, f2q. Note first that if A is a suitable cell for the branching pf1, f2q, then TA satisfies the

conditions for the branching pf2, f1q, and uAv for the branching puf1v, uf2vq. So by hypothesis on Σ2,

it remains to show that the property holds for aspherical and Peiffer branchings.

If pf1, f2q “ pf, fq is an aspherical branching, then the 2-cell f Γ´f

f

satisfies the condition.
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If pf1, f2q “ pfv, ugq is a Peiffer branching, then the 2-cell pε1fqpε2gq satisfies the condition:

u ε1f

f

u1

f

¨ g ε2g

v

g

v1

“ ug pε1fqpε2gq

fv

u1g

fv1

Lemma 4.5. For every f, g P Σ˚1 of same source and of target a normal form, the shell f

g

admits

a filler in Σ˚1 .

Proof. Define the origin of a shell pfαi q as B´f
´
1 P Σ˚0 . Let us prove that for any u P Σ˚0 , any shell over

Σ˚1 of origin u and of the form f

g

admits a filler. We reason by induction on u. If u is a normal

form, then f “ g “ εu and ε1εu is a filler of the shell.

If u is not a normal form, then we can write f “ f1 ‹ f2 and g “ g1 ‹ g2 in Σ˚1 , where f1 and g1

are rewriting steps. Let A be a 2-cell in Σ˚2 such that B´1 A “ f1 and B´2 A “ g1 (which exists thanks to

the previous Lemma). Denote f 1 “ B`1 A and g1 “ B`2 A. Then we can apply the induction hypothesis to

both pf 1, g2q and pf2, g1q defining 2-cells B1 and B2, and we conclude using the following composite:

f1

g1 A

f2

g1 B2

f 1

g2 B1

Lemma 4.6. For every f P ΣJ1 , and every g1, g2 P Σ˚1 of target a normal form, the shell g1

f

g2

admits a filler in ΣJ2 .

Proof. To prove that the set of 1-cells f satisfying the Lemma is ΣJ1 , we show that it contains Σ˚1 , and

that it is closed under composition and inverses.

• It contains Σ˚1 . Indeed, let f, g1 and g2 be 1-cells in Σ˚1 . We can form the following composite,
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where the cell A is obtained by the previous Lemma:

f

g2

A

f

g1

g2

• It is stable under composition. Indeed, let f1, f2 P E be two composable 1-cells, and g1, g2 P Σ˚1 .

Let g3 P Σ˚1 be a 1-cell such that B´g3 “ B`f1, and whose target is a normal form. Then the

following composite shows that f1 ‹ f2 is in E, where A1 and A2 exist since f1 and f2 are in E:

A1

f1

g1 A2

f2

g3 g2

• It is stable under inverses. Indeed, let f P E, and let g1, g2 P Σ˚1 . We can construct the following

cell, where A comes from the fact that f is in E, applied to the pair pg2, g1q: g1 S2B

f

g2

Proof of Theorem 4.2. Let us fix a shell pfαi q over ΣJ1 . The following cell is a filler of fαi . The 1-cells g1,

g2, g3 and g4 are arbitrary 1-cells in Σ˚1 , with the appropriate source, and a normal form as target. The

cells B1, B2, B3 and B4 are obtained by the previous Lemma and rotated as needed using T , S1 and S2.

f´1

g1 B1 g2

g1

f´2 B2 B3

g2

f`2

g3

B4

g4

f`1

g3 g4
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