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Introduction

Convergent rewriting systems are well-known tools in the study of the word-rewriting problem. In particular, a presentation of a monoid by a finite convergent rewriting system gives an algorithm to decide the word problem for this monoid. In [START_REF] Squier | Word problems and a homological finiteness condition for monoids[END_REF] and [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], the authors proved that there exists a finitely presented monoid whose word problem was decidable but which did not admit a finite convergent presentation. To do so, they constructed, for any convergent presentation pG, Rq of a monoid M , a set of syzygies S corresponding to relations between the relations.

Let us make this result a bit more precise.

We start from a presentation of a monoid. For example a presentation of the braid monoid B 3 is given by: xa, s, t|ta " as, sa " a, sas " aa, saa " aaty Presenting B 3 by a monoidal polygraph (or computad) Σ consists in choosing a name and an orientation for the relations, giving for exaple: Σ :" xa, s, t|α : ta Ñ as, β : sa Ñ a, γ : sas Ñ aa, δ : saa Ñ aaty 1 Such a monoidal polygraph Σ generates a free (strict) monoidal groupoid, denoted Σ J , and a free (strict) monoidal catgeory, denoted Σ ˚. The 0-cells are the free monoid generated by a, s and t, and the 1-cells are generated by α, β, γ and δ.

What we now want to do is to find a coherent presentation of B 3 . This corresponds to extending Σ into a monoidal 2-polygraph such that the monoidal 2-groupoid it generates (denoted Σ J ) satisfies the following property: for any couple of parallel 1-cells f and g in Σ J , there exists a 2-cell A : f ñ g in Σ J . Squier's homotopical theorem consists in finding sufficient conditions for an extension of Σ into a 2-polygraph to be a coherent presentation of B 3 : Theorem 1.1 (Squier). Let Σ be a convergent monoidal 2-polygraph. Suppose that for every critical pair pf 1 , f 2 q of Σ, there exist two 1-cells g 1 and g 2 in Σ ˚and a 2-cell A in Σ J of the following shape: Squier's theorem has recently been expanded in higher dimensions (see [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF],

where critical pairs are replaced by critical n-tuples. However, the natural shape of the confluence diagram of an n-branching is an n-cube, which is hard to express in a globular ω-category. This makes a lot of calculations from Guiraud and Malbos, 2012b very complicated. This is a problem because, although Squier's theorem has been extended to various structures other than monoids (see Guiraud and Malbos, 2012a for example), an extension of the full resolution construc-ted in Guiraud and Malbos, 2012b seems more complicated. As a consequence, new tools are needed in order to get a better understanding of this construction. In this paper, we argue in favour of cubical categories as a good setting where this construction would be more natural.

Cubical categories were introduced in Al-Agl, Brown and Steiner, 2002a. Although they are equivalent to globular ω-categories, their combinatorics makes them a good candidate to improve the proof of [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] for two reasons. First as said earlier the confluence diagram of an nbranching is an n-cube. Secondly, in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] the authors rely on the construction of an ω-natural transformation, an object that is once again easily described in cubical terms. Although we come short to proving the full result of Guiraud and Malbos, 2012b, we show how to prove the Squier's homotopical theorem in our new framework:

Theorem 4.2. Let Σ be a convergent cubical 2-polygraph. Suppose that for every critical pair pf 1 , f 2 q of Σ, there exists (up to exchange of f 1 and f 2 ) a 2-cell in Σ J 2 whose shell is of the form:

f2 f1
Then Σ is coherent.

In Section 2 we introduce cubical categories in low dimensions. In Section 3 we recall some standard notions from word rewriting. Finally in Section 4 we prove our version of Squier's theorem.
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Cubical 2-categories

The equivalence between globular and cubical ω-groupoids was proven in Brown and[START_REF] Brown | Sur les complexes croises, omega-groupoides et t-complexes[END_REF]Brown and[START_REF] Brown | On the algebra of cubes[END_REF]. The case of ω-categories was covered in Al-Agl et al., 2002a. Finally the description of cubical pω, pq-categories and their equivalence with their globular counterparts was done in Lucas, 2016. Here we focus on cubical 2-categories, p2, 1q-categories and 2-groupoids.

Definition 2.1. A cubical 2-set consists of:

• Sets C 0 , C 1 and C 2 , whose objects are respectively called the 0, 1 and 2-cells.

• Applications B `, B ´: C 1 Ñ C 0 . • Applications B 1 , B 1 , B 2 , B 2 : C 2 Ñ C 1 .
Satisfying the following relations for any α, β P t`, ´u:

B α B β 2 " B β B α 1 .
Notation 2.2. We represent a 1-cell f in the following way :

B ´f B `f, f
and a 2-cell A as: [START_REF] Al-Agl | Multiple categories: the equivalence of a globular and a cubical approach[END_REF] for a formal definition. We give here a run-down of the structure.

B 2 A A B 1 A B 2 A B 1 A Cubical 2-categories. A cubical 2-category is a cubical 2-set equipped with extra structure. See Al-Agl,
• An operation ‹ sending any two 1-cells x y z f g

to a 1-cell x z.

f ‹g

• An operation sending any 0-cell x to a 1-cell x x,

x which we usually represent by x x.

• An operation ‹ 1 (resp. ‹ 2 ) associating, to any 2-cells

A and B satisfying B 1 A " B 1 B (resp. B 2 A " B 2 B), 2-cells A ‹ 1 B A ‹ 2 B • Operations 1 , 2 : C 1 Ñ C 2 sending any 1-cell f to 2-cells 1 f f f and f 2 f f . • Operations Γ ´, Γ `: C 1 Ñ C 2 sending any 1-cell f to 2-cells f Γ ´f f and Γ `f f f .
Those operations have to satisfy a number of axioms. In particular, pC 0 , C 1 , B ´, B `, ‹, q and pC 1 , C 2 , B í , B ì , ‹ i , i q (for i " 1, 2) are categories.

Remark 2.3. The cells Γ α and i are completely characterised by their faces. Hence we will omit them when the context is clear in the rest of this paper.

Cubical p2, 1q-categories. A cubical p2, 1q-category is given by a cubical 2-category C equipped with an operation T :

C 2 Ñ C 2 sending any 2-cell B 2 A A B 1 A B 2 A B 1 A to a 2-cell of shape B 1 A T A B 2 A B 1 A B 2 A
such that T 2 " id C2 and:

T A A " (1) 
Remark 2.4. The operation A Þ Ñ T A corresponds to the operation A Þ Ñ A ´1 in a globular setting. The equation T 2 " id C2 corresponds to the equality pA ´1q ´1 and the axiom (1) corresponds to the relation

A ‹ 1 A ´1 " 1. See
Lucas, 2016 for more details.

Cubical 2-groupoid. A cubical 2-groupoid is a cubical 2-category such that pC 0 , C 1 q is a groupoid (we note f the inverse of a cell f ) and equipped with operations S 1 , S 2 : C 2 Ñ C 2 , sending any 2-cell

B 2 A A B 1 A B 2 A B 1 A
to 2-cells of shape:

S 1 A B 1 A B 2 A B 1 A B 2 A B 2 A S 2 A B 1 A B 2 A B 1 A So that pC 1 , C 2 , B í , B ì , ‹ i , i , S i q is a groupoid for i " 1, 2.
Though the proof is not as straightforward as in the globular case, we still have the following expected result (see [START_REF] Lucas | Cubical (omega, p)-categories[END_REF]):

Proposition 2.5. A cubical 2-groupoid is a cubical p2, 1q-category.

Word rewriting

In this section we redefine some of the standard concepts of higher-dimensional rewriting in our cubical setting (see [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF] for a more detailed exposition). In what follows, by monoidal cubical pn, kq-categories, we mean monoid objects in the category of cubical pn, kq-categories.

Example 3.1. Let C be a monoidal cubical p2, 1q-category (resp. 2-category). Let f : u Ñ v ,and g : u 1 Ñ v 1 be cells in C 1 . Then the monoid structure gives a 1-cell f g : uu 1 Ñ vv 1 in C 1 . We write simply f v (resp. vf ) for the cell f p vq (resp. p vqf ). There is also a product of 2-cells in a similar fashion.

Finally, these products are compatible with the identity maps which give for example the equation i pf gq " p i f qp i gq.

Polygraphs are presentations for higher-dimensional globular categories and were introduced by in Burroni, 1993 and by Street under the name of computads (see [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Street | The algebra of oriented simplexes[END_REF]. We adapt them here to present monoidal cubical pn, kq-categories.

Definition 3.2. For any set E, we denote by E ˚the free monoid on E. A monoidal 1-polygraph Σ is given by two sets Σ 0 , Σ 1 , together with maps B α : Σ 1 Ñ Σ 0 (for α " ˘).

We denote by Σ ˚(resp. Σ J ) the free monoidal category (resp. groupoid) generated by Σ.

Definition 3.3. A monoidal cubical 2-polygraph (resp. p2, 0q-polygraph) is given by three sets Σ 0 , Σ 1 and Σ 2 , together with maps

B α : Σ 1 Ñ Σ 0 and B α i : Σ 2 Ñ Σ 1 (resp. B α i : Σ 2 Ñ Σ J 1 ).
We denote by Σ ˚(resp. Σ J ) the free monoidal cubical p2, 1q-category (resp. 2-groupoid) generated by Σ.

Example 3.4. If Σ is a monoidal cubical 2-polygraph, the cells of Σ and Σ ˚together with the faces operations can be visualized as follows (a similar diagram could be drawn for Σ J ):

Σ 0 Σ 1 Σ 2 Σ 0 Σ 1 Σ 2 Example 3.5.
In what follows we will use the following monoidal cubical 2-polygraph as our running example. Let Σ be the following monoidal cubical 2-polygraph: Remark 3.6. The presentation in this article is slightly different from that of Guiraud and Malbos, 2016.

Our monoidal pn, pq-categories are seen as one-object pn`1, p`1q-categories in Guiraud and Malbos, 2016.

One advantage of this approach is that it makes the many-object generalisation very straightforward. Our approach on the other hand suggests a possible generalisation from monoidal objects in pn, pq-categories to O-algebras in pn, pq-categories, where O would be some coloured set-theoretic non-symmetric operad.

Definition 3.7. Let Σ be a monoidal 1-polygraph. A rewriting step in Σ 1 is a 1-cell of the form uf v, where f is in Σ 1 , and u and v are elements of Σ 0 .

Definition 3.8. Let Σ be a monoidal 1-polygraph. A branching is a pair of 1-cells f, g P Σ 1 with the same source. It is said to be local if f and g are rewriting steps.

Up to permutation of f and g, there are three distinct types of local branchings:

• If f " g, pf, gq is said to be an aspherical branching.

• If there exists f 1 , g 1 P Σ 1 and u, v P Σ 0 such that f " f 1 v and g " ug 1 with B ´f 1 " u and B ´g1 " v, pf, gq is said to be a Peiffer branching.

• Otherwise, pf, gq is said to be an overlapping branching.

Finally a critical branching is a minimal overlapping branching, where overlapping branchings are ordered by the (well-founded) relation: pf, gq ď puf v, ugvq for u, v P Σ 0 Example 3.9. Using our example, saγ and δa are rewriting steps, but not saγ ‹ δa or βaβ. Finally, there are exactly four critical branchings: pβa, sαq, pγt, saβq pγas, saγq and pγaa, saγq.

Definition 3.10. Let Σ be a monoidal 1-polygraph. A branching pf, gq is confluent if there exists 1-cells f 1 and g 1 in Σ 1 with the same target and such that B `f " B ´f 1 and B `g " B ´g1 .

We say that Σ is locally confluent if any local branching is confluent, and Σ is confluent if any branching is confluent.

It is terminating if there is no infinite sequence of rewriting steps f 1 , . . . , f n , . . . satisfying that B `fi " B ´fi`1 for all i.

It is convergent if it is both terminating and confluent.

Example 3.11. The shape of the cells of Σ 2 shows that all the critical branching of Σ are confluent.

As a consequence Σ is locally confluent.

Moreover, Σ is terminating. To show this, we consider the order t ą a and s ą a on Σ 0 , and extend it to Σ 0 using the deglex ordering scheme (see [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF]. This is a well-founded ordering of Σ 0 compatible with multiplication, and we can check that for any cell f of Σ 1 , spf q ą tpf q.

By Newman's Lemma, a terminating locally confluent rewriting system is confluent, and so Σ is actually convergent.

If pf 1 , f 2 q " pf v, ugq is a Peiffer branching, then the 2-cell p 1 f qp 2 gq satisfies the condition:

u 1 f f u 1 f ¨g 2 g v g v 1 " ug p 1 f qp 2 gq f v u 1 g f v 1
Lemma 4.5. For every f, g P Σ 1 of same source and of target a normal form, the shell f g admits a filler in Σ 1 .

Proof. Define the origin of a shell pf α i q as B ´f 1 P Σ 0 . Let us prove that for any u P Σ 0 , any shell over Σ 1 of origin u and of the form f g admits a filler. We reason by induction on u. If u is a normal form, then f " g " u and 1 u is a filler of the shell.

If u is not a normal form, then we can write f " f 1 ‹ f 2 and g " g 1 ‹ g 2 in Σ 1 , where f 1 and g 1 are rewriting steps. Let A be a 2-cell in Σ 2 such that B 1 A " f 1 and B 2 A " g 1 (which exists thanks to the previous Lemma). Denote f 1 " B 1 A and g 1 " B 2 A. Then we can apply the induction hypothesis to both pf 1 , g 2 q and pf 2 , g 1 q defining 2-cells B 1 and B 2 , and we conclude using the following composite:

f1 g1 A f2 g 1 B 2 f 1 g2 B 1
Lemma 4.6. For every f P Σ J 1 , and every g 1 , g 2 P Σ 1 of target a normal form, the shell g1 f g2 admits a filler in Σ J 2 .

Proof. To prove that the set of 1-cells f satisfying the Lemma is Σ J 1 , we show that it contains Σ 1 , and that it is closed under composition and inverses.

• It contains Σ 1 . Indeed, let f, g 1 and g 2 be 1-cells in Σ 1 . We can form the following composite, where the cell A is obtained by the previous Lemma:

f g2 A f g1 g2
• It is stable under composition. Indeed, let f 1 , f 2 P E be two composable 1-cells, and g 1 , g 2 P Σ 1 .

Let g 3 P Σ 1 be a 1-cell such that B ´g3 " B `f1 , and whose target is a normal form. Then the following composite shows that f 1 ‹ f 2 is in E, where A 1 and A 2 exist since f 1 and f 2 are in E:

A 1 f1 g1 A 2 f2 g3 g2
• It is stable under inverses. Indeed, let f P E, and let g 1 , g 2 P Σ 1 . We can construct the following cell, where A comes from the fact that f is in E, applied to the pair pg 2 , g 1 q: g1 S 2 B f g2

Proof of Theorem 4.2. Let us fix a shell pf α i q over Σ J 1 . The following cell is a filler of f α i . The 1-cells g 1 , g 2 , g 3 and g 4 are arbitrary 1-cells in Σ 1 , with the appropriate source, and a normal form as target. The cells B 1 , B 2 , B 3 and B 4 are obtained by the previous Lemma and rotated as needed using T , S 1 and S 2 . 

  coherent.Let us delay the definition of convergence for now (see Definition 3.10). A branching is a pair of 1-cells in Σ 1 with the same source. Critical branchings are a special case of branching (see Definition 3.8). In our case of Σ is convergent and there are four critical branchings pβa, sαq, pγt, saβq pγas, saγq and pγaa, saγq. So what Squier's theorem says is that the following extension of Σ into a 2-polygraph is coherent:

Σ 0

 0 " ts, t, au Σ 1 " tα : ta Ñ as, β : st Ñ a, γ : sas Ñ aa, δ : saa Ñ aatu And finally Σ 2 consists of the following cells:

Squier's theorem

Before stating Squier's theorem, we need to define the cubical analogue to the notions of globe and of coherence.

Definition 4.1. Let C be a cubical 2-category. A shell over C 1 is a family of cells f α i in C 1 , (i " 1, 2 and α " `, ´) satisfying B α f β 2 " B β f α 1 for every α and β.

A filler in C 2 of a shell S " pf α i q over C 1 is a cell A P C 2 satisfying B α i A " f α i for every i and α.

If Σ is a monoidal p2, 0q-polygraph, we say that Σ is coherent if any shell over Σ J 1 admits a filler in

The main result of this paper is the following:

Theorem 4.2 (Cubical Squier's theorem). Let Σ be a convergent cubical p3, 2q-polygraph. Suppose that for every critical pair pf 1 , f 2 q of Σ, there exists a 2-cell in Σ J 2 whose shell is of the form:

Then Σ is coherent.

The proof of this result occupies the rest of this article and loosely follows the proof of the globular case from [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF]. Before that though, we show that this result applies to our example.

Example 4.3. We have already proven that Σ is convergent. We have also made the list of all possible critical branching, and we can check that each of them corresponds to a cell in Σ 2 . Thus by Theorem 4.2, every shell over Σ J 1 admits a filler un Σ J 2 .

Lemma 4.4. For every local branching pf 1 , f 2 q, there exists a cell A in Σ J 2 such that B 1 A " f 1 and

Proof. The proof is similar to the globular case, by distinguishing cases depending on the form of the branching pf 1 , f 2 q. Note first that if A is a suitable cell for the branching pf 1 , f 2 q, then T A satisfies the conditions for the branching pf 2 , f 1 q, and uAv for the branching puf 1 v, uf 2 vq. So by hypothesis on Σ 2 , it remains to show that the property holds for aspherical and Peiffer branchings.

If pf 1 , f 2 q " pf, f q is an aspherical branching, then the 2-cell f Γ ´f f satisfies the condition.