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Abstract

The multiscale Hybrid High-Order method has been introduced
recently to approximate elliptic problems with oscillatory coefficients.
In this work, with a view toward implementation, we describe the
general workflow of the method and we present one possible way for
accurately approximating the oscillatory basis functions by means of
a monoscale Hybrid High-Order method deployed on a fine-scale mesh
in each cell of the coarse-scale mesh.

1 Introduction

Let Ω be an open, bounded, connected polytopal subset of Rd, d ∈ {2, 3},
with some characteristic length scale `Ω. We consider the model problem{

−div(Aε~∇uε) = f in Ω,

uε = 0 on ∂Ω,
(1)

where f ∈ L2(Ω) is non-oscillatory, and Aε is an oscillatory, uniformly ellip-
tic, bounded, symmetric matrix-valued field on Ω. The parameter ε � `Ω
encodes the fine-scale oscillations of the coefficients. An accurate, monoscale
approximation of this problem would require an overwhelming number of
degrees of freedom. In a multi-query context, where the solution is needed
for a large number of right-hand sides, multiscale methods may be pre-
ferred. To this aim, different multiscale Finite Element Methods (msFEM)
were proposed in the literature; we refer the reader to [10] for an overview.
Other paradigms are also available to tackle multiscale problems, such as
the Heterogeneous Multiscale Method (HMM) [1]. In the case of periodic
coefficients, msFEM leads, on classical element shapes (e.g., simplices, quad-
rangles or hexahedra), in the lowest-order case, and without oversampling,
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to energy-error estimates of the form (
√
ε + H +

√
ε/H) where H repre-

sents the coarse-scale meshsize (the regime of interest is ε ≤ H � `Ω).
Higher-order extensions using simplical Lagrange elements of degree k ≥ 1
were devised in [2], leading in the same setting of periodic coefficients to
energy-error estimates of the form (

√
ε+Hk +

√
ε/H).

Recently the authors devised and analyzed a multiscale Hybrid High-
Order (msHHO) method [4]. This method, which is a further development
of the monoscale HHO method introduced in [8] for diffusion problems and
in [9] for linear elasticity, uses as discrete unknowns polynomials of degree
k ≥ 0 on the mesh faces and of degree l ≥ 0 in the mesh cells. The crucial
difference with respect to the monoscale HHO method is that the msHHO
method uses oscillatory basis functions to define the local reconstruction op-
erator, which is the core ingredient in building HHO methods. Two variants
of the msHHO method were developed in [4], the mixed-order one (l = k−1,
k ≥ 1) and the equal-order one (l = k, k ≥ 0). The motivations for con-
sidering HHO methods are that these methods support polytopal meshes,
share a common design in any space dimension, are robust in various para-
metric regimes, and allow one to express basic conservation principles at the
cell level, while offering computational efficiency since cell unknowns can be
eliminated locally, leading to (compact-stencil) global problems with fewer
unknowns. The monoscale HHO method has been bridged in [6] to the
Hybridizable Discontinuous Galerkin (HDG) method of [7] and to the non-
conforming Virtual Element Method (ncVEM) of [3]. In the case of periodic
coefficients, the msHHO method leads to energy-error estimates of the form
(
√
ε+Hk+1+

√
ε/H). The msHHO method can be viewed as a higher-order,

polytopal version of the msFEM à la Crouzeix–Raviart introduced in [12].
Other recent multiscale methods attaching discrete unknowns to the mesh
faces include [11, 13].

This contribution is organized as follows. In Section 2, we recall the os-
cillatory basis functions from [4] and discuss how they can be computed in
each mesh cell. In Section 3, we outline the general workflow of the msHHO
method. Finally, in Section 4, we present some numerical experiments illus-
trating how the accuracy in computing the oscillatory basis functions influ-
ences the accuracy of the msHHO method. For a detailed presentation of the
implementation of the monoscale HHO method, we refer the reader to [5].
The present developments are part of the Disk++ library, available as open-
source under MPL license (https://github.com/datafl4sh/diskpp).
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2 Oscillatory basis functions

Let GΩ := (TΩ,FΩ) be a coarse-scale mesh discretizing Ω, where TΩ and
FΩ are, respectively, the collection of the mesh cells and faces. The oscil-
latory basis functions are defined on each mesh cell T ∈ TΩ. Let F∂T :=
{Fn}0≤n<mT be the collection of the faces composing the boundary of the
mesh cell T . The purpose of the oscillatory basis functions is to provide a
basis for the space

V k+1
ε,T :=

{
vε ∈ H1(T ) | div(Aε~∇vε) ∈ Pk−1

d (T ), Aε~∇vε·nT ∈ Pkd−1(F∂T )
}
,

where nT is the unit outward normal to T , Pk−1
d (T ) is the space of d-

variate polynomials of degree at most (k−1) in T (with the convention that
P−1
d (T ) = {0}), and Pkd−1(F∂T ) is the space of piecewise (d−1)-variate poly-

nomials of degree at most k on the faces of T . The superscript (k+1) indi-
cates that V k+1

ε,T has the same approximation capacity for smooth functions

as the polynomial space Pk+1
d (T ). Letting N q

l := dim(Pql ), the space V k+1
ε,T

is of dimension Nk+1
T := Nk−1

d +mTN
k
d−1.

2.1 Variational definition of the basis functions

There are Nk−1
d oscillatory basis functions attached to the mesh cell T . Let

{Φk−1,i
T }0≤i<Nk−1

d
denote a basis of Pk−1

d (T ) and let ΛkF∂T := Pkd−1(F∂T ).

Then, the oscillatory basis function ϕ =: ϕk+1,i
ε,T , for all 0 ≤ i < Nk−1

d , is

such that the pair (ϕ, λ) ∈ H1(T )× ΛkF∂T solves{
(Aε~∇ϕ, ~∇w)T + (λ,w)∂T = (Φk−1,i

T , w)T ∀w ∈ H1(T ),

(ϕ, µ)∂T = 0 ∀µ ∈ ΛkF∂T .
(2)

Equivalently, ϕ is the unique minimizer in H1(T ) of the energy functional

vε 7→ 1
2(Aε~∇vε, ~∇vε)T − (Φk−1,i

T , vε)T subjected to the constraint (vε, µ)∂T =
0 for all µ ∈ ΛkF∂T .

There are mTN
k
d−1 oscillatory basis functions attached to the boundary

of T . Let {Φk,j
Fn
}0≤j<Nk

d−1
denote a basis of Pkd−1(Fn) for all 0 ≤ n < mT , and

let us extend these functions by zero to the rest of ∂T . Then, the oscillatory

basis function ϕ =: ϕ
k+1,δ(j,n)
ε,T , with index δ(j, n) = Nk−1

d + nNk
d−1 + j for

all 0 ≤ j < Nk
d−1 and all 0 ≤ n < mT , is such that the pair (ϕ, λ) ∈
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H1(T )× ΛkF∂T solves{
(Aε~∇ϕ, ~∇w)T + (λ,w)∂T = 0 ∀w ∈ H1(T ),

(ϕ, µ)∂T = (Φk,j
Fn
, µ)∂T ∀µ ∈ ΛkF∂T .

(3)

Equivalently, ϕ is the unique minimizer in H1(T ) of the energy functional

vε 7→ 1
2(Aε~∇vε, ~∇vε)T subjected to the constraint (vε, µ)∂T = (Φk,j

Fn
, µ)∂T for

all µ ∈ ΛkF∂T . The variational problems (2) and (3) define the oscillatory

basis functions {ϕk+1,i
ε,T }0≤i<Nk+1

T
.

2.2 Discretization and algebraic realization

The oscillatory basis functions defined by (2) and (3) cannot be computed ex-
plicitly, and one needs to approximate them by resorting to some discretiza-
tion method. In this work, we use the monoscale HHO method. We start
by submeshing the coarse-scale cell T by a fine-scale mesh GT = (TT ,FT ),
where TT is the collection of the fine-scale cells composing GT and FT is
the collection of the fine-scale faces. On the fine-scale mesh GT , we use
the monoscale equal-order HHO method of degree κ ≥ 0. Let t ∈ TT be a
fine-scale cell. We introduce the local space of discrete unknowns

Uκt := Pκd(t)× Pκd−1(F∂t),

where Pκd(t) is the space of d-variate polynomials of degree at most κ on t and
Pκd−1(F∂t) is the space of piecewise (d−1)-variate polynomials of degree at
most κ on the faces of t which are collected in the set F∂t. Following [8, 9], the
key ingredients of the monoscale HHO method are the local reconstruction
operator pκ+1

t : Uκt → Pκ+1
d (t) and the stabilization operator sκ+1

t : Uκt →
Pκd−1(F∂t) such that, for all (vt, v∂t) ∈ Uκt , we have for the reconstruction
operator

(~∇pκ+1
t (vt, v∂t),Aε~∇q)t := (~∇vt,Aε~∇q)t + (v∂t − vt|∂t,Aε~∇q·nt)∂t (4)

for all q ∈ Pκ+1
d (t), where nt is the unit outward normal to t, together with

the mean-value condition (pκ+1
t (vt, v∂t), 1)t = (vt, 1)t, and for the stabiliza-

tion operator, letting pκ+1
t := pκ+1

t (vt, v∂t),

sκ+1
t (vt, v∂t) := Πκ

F∂t

((
v∂t − pκ+1

t|∂t
)
−Πκ

t

(
vt − pκ+1

t

)
|∂t

)
, (5)

where Πκ
F∂t is the L2-orthogonal projector onto Pκd−1(F∂t) and Πκ

t is the L2-
orthogonal projector onto Pκd(t). The operators defined by (4) and (5) are
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used to build the local bilienar form at : Uκt × Uκt → R so that

at((ut, u∂t), (vt, v∂t)) := (Aε~∇pκ+1
t (ut, u∂t), ~∇pκ+1

t (vt, v∂t))t

+ (η∂ts
κ+1
t (ut, u∂t), s

κ+1
t (vt, v∂t))∂t,

where η∂t is a piecewise constant weighting coefficient on ∂t which is typically
equal on each fine-scale face f ∈ F∂t to the maximum value of nt·Aε|∂t·nt
on f divided by the diameter of f .

We are now ready to describe the discretization of (2) and (3) by the
monoscale HHO method. Based on the fine-scale mesh GT = (TT ,FT ) of the
coarse-scale cell T ∈ TΩ, we introduce the spaces

UκGT :=

{
×
t∈TT

Pκd(t)

}
×

{
×
f∈FT

Pκd−1(f)

}
, Wκ,k

T := UκGT × ΛkF∂T .

For a pair y = (yT , yF ) ∈ UκGT , we denote (yt, y∂t) ∈ Uκt the local components
attached to the fine-scale cell t ∈ TT , and we denote y∂T the function defined
on the boundary ∂T such that, for each fine-scale face f ⊂ ∂T , y∂T |f is
the component of yF attached to the fine-scale face f . Note that y∂T is
generally not a member of the coarse-scale Lagrange multiplier space ΛkF∂T
since it is a fine-scale piecewise polynomial. We define the bilinear form
aGT :Wκ,k

T ×Wκ,k
T → R such that

aGT ((y, λ), (z, µ)) :=
∑
t∈TT

at((yt, y∂t), (zt, z∂t)) + (λ, z∂T )∂T + (y∂T , µ)∂T .

For all 0 ≤ i < Nk+1
T , the oscillatory basis function ϕk+1,i

ε,T is approximated

by first finding the pair (yi, λi) ∈ Wκ,k
T such that

aGT ((yi, λi), (z, µ)) = Ψi(z, µ) ∀(z, µ) ∈ Wκ,k
T ,

where Ψi(z, µ) := (Φk−1,i
T , zT )T for all 0 ≤ i < Nk−1

d , and Ψδ(j,n)(z, µ) :=

(Φk,j
Fn
, µ)∂T for all 0 ≤ j < Nk

d−1 and all 0 ≤ n < mT . Then, we set

ϕk+1,i
ε,T |t := pκ+1

t (yit, y
i
∂t) ∀t ∈ TT , ∀0 ≤ i < Nk+1

T .

For each 0 ≤ i < Nk+1
T , after static condensation, the global problem

resulting from the above discretization is of size Nκ
d−1×card(FT )+mTN

k
d−1,

and has the following block-structure:((
AFF −AFTA

−1
TT ATF

)
B

B> 0

)(
yiF
λi

)
=

(
−AFTA

−1
TT Ψi

T
Ψi
λ

)
, (6)
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where the matrices ATT , ATF , AFT and AFF correspond to the monoscale
HHO matrices for a diffusion problem (see [5]), whereas the matrices B and
its transpose correspond to the imposition of the constraints by means of
the Lagrange multipliers. The matrix ATT is block-diagonal, with card(TT )
blocks of size Nκ

d ×Nκ
d , hence it is invertible at no cost. Once (6) has been

solved, one can recover yiT = A−1
TT

(
Ψi

T −ATF y
i
F
)
. A crucial observation is

that the system matrix in (6) is independent of the index i enumerating the
oscillatory basis function. Thus, a single matrix factorization followed by a
multi-rhs solve is the procedure of choice.

Let us briefly describe the assembly of the matrix B. Recall that the
coarse-scale faces composing the boundary of T are enumerated as {Fn}0≤n<mT .
Assume, for simplicity, that each coarse-scale face contains the same number,
mF , of fine-scale faces, and that the fine-scale faces in FT are enumerated
by counting first the fine-scale faces in F0, then those in F1, and so on un-
til FmT−1, and finally all the fine-scale faces located inside T . Then we
have

⋃
0≤β<mF fnmF+β = Fn for all 0 ≤ n < mT . The matrix B has a

block-structure composed of card(FT ) ×mT blocks, each block having size
Nκ
d−1 ×Nk

d−1. For all 0 ≤ α < card(FT ) and 0 ≤ n < mT , the block Bαn is
zero whenever α < nmF or α ≥ (n+ 1)mF , otherwise we have

Bαn,ij =

∫
fα

Φκ,i
fα

Φk,j
Fn
,

for all 0 ≤ i < Nκ
d−1 and 0 ≤ j < Nk

d−1, where {Φκ,i
fα
}0≤i<Nκ

d−1
is a basis

of the polynomial space Pκd−1(fα). The block-structure of the matrix B is
illustrated in Figure 1 with k = 1 and κ = 1, so that each block is of size
2 × 2. The block-structure is composed of card(FT ) = 9 rows and mT = 3
columns, and there are mF = 2 nonzero blocks in each column.

F0F0

F1F1
F2F2

f0f0
f1f1
f2f2

f3f3f4f4

f5f5 f6f6
f7f7

f8f8

Figure 1: Illustration of the block-structure of the matrix B.

6



3 General workflow of the msHHO method

The workflow of a simulation using the msHHO method involves two phases,
an offline phase and an online phase. The offline phase is run first and con-
sists, for each coarse-scale cell, in computing and storing the oscillatory basis
functions (cf. Sec. 2.2). During the offline phase, the multiscale reconstuc-
tion operator (plus, possibly, the coarse-scale stabilization operator) are also
computed and stored, and the global system is assembled after local elim-
ination of the cell unknowns. The offline phase can substantially benefit
from parallel architectures. In the online phase, the computations done in
the offline phase can be re-used as many times as needed to solve problems
where, e.g., the source term is changed.

Let T ∈ TΩ be a coarse-scale cell. The local unknowns in the msHHO
method belong to the space U l,kT := Pld(T ) × Pkd−1(F∂T ), where l = k−1,
k ≥ 1 (mixed-order case) or l = k ≥ 0 (equal-order case). The multi-

scale reconstruction operator pk+1
ε,T : U l,kT → V k+1

ε,T is defined so that, for all

(vT , v∂T ) ∈ U l,kT , we have for all qε ∈ V k+1
ε,T ,

(~∇pk+1
ε,T (vT , v∂T ),Aε~∇qε)T := −(vT ,div(Aε~∇qε))T + (v∂T ,Aε~∇qε·nT )∂T ,

(7)
together with the mean-value condition (pk+1

ε,T (vT , v∂T ), 1)T = (vT , 1)T . The

implementation of the multiscale reconstruction operator pk+1
ε,T is almost

identical to that of its monoscale version detailed in [5]; only three dif-
ferences need to be noted. The first one is that in the multiscale case, the
stiffness matrix is of size Nk+1

T ×Nk+1
T (recall that Nk+1

T = Nk−1
d +mTN

k
d−1)

and is built using the gradients of the oscillatory basis functions (one needs
to split the integral over T into a sum of integrals over t ∈ TT so as to employ
standard quadrature rules), whereas in the monoscale case, this matrix is of
smaller size, namely Nk+1

d ×Nk+1
d , and is built using the gradients of poly-

nomial basis functions. The second difference is that in the multiscale case,
one uses the integrated form (7) of the rhs of (4), so as to take advantage of
the fact that functions in V k+1

ε,T have (piecewise) polynomial divergence and

flux. Finally, to enforce the above mean-value condition on pk+1
ε,T (vT , v∂T ),

one employs a Lagrange multiplier since the constant function is not directly
accessible as one of the oscillatory basis functions (alternatively, one can find
the decomposition of the constant function as a linear combination of the
oscillatory basis functions). In the mixed-order case, the local bilinear form

aε,T : Uk−1,k
T × Uk−1,k

T → R is defined as

aε,T ((uT , u∂T ), (vT , v∂T )) := (Aε~∇pk+1
ε,T (uT , u∂T ), ~∇pk+1

ε,T (vT , v∂T ))T ,
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and its implementation proceeds as in the monoscale case detailed in [5]. In

the equal-order case, the local bilinear form aε,T : Uk,kT ×U
k,k
T → R is defined

as

aε,T ((uT , u∂T ), (vT , v∂T )) := (Aε~∇pk+1
ε,T (uT , u∂T ), ~∇pk+1

ε,T (vT , v∂T ))T

+ (η∂T (uT −Πk
T (pk+1

ε,T (uT , u∂T ))), vT −Πk
T (pk+1

ε,T (vT , v∂T )))∂T ,

where the second term on the right-hand side is a coarse-scale stabilization
with η∂T being piecewise constant on ∂T and scaling on each face F ∈ F∂T as
the maximum value of nT ·Aε|∂T ·nT on F divided by the diameter of F . For a
mathematical discussion on this operator, we refer the reader to [4, Sec. 5.2],
whereas its implementation proceeds as in the monoscale case detailed in [5].
The static condensation procedure and the assembly of the global system are
then standard, and as in the monoscale HHO method. In any case (l = k−1
or l = k), the resulting global matrix has size Nk

d−1 × card(FΩ).
Finally, the online phase, which is problem-dependent, consists in com-

puting the right-hand side(s) and enforcing the boundary conditions. Dirich-
let boundary conditions are enforced either by means of Lagrange multipliers
or by zeroing out the degrees of freedom attached to the coarse-scale faces
on the boundary of Ω.

4 Numerical experiments

In this section we briefly illustrate the msHHO method on the periodic
test-case studied in [12]. We set Ω := (0, 1)2, f(x1, x2) := sin(x1) sin(x2),
the (isotropic) oscillatory coefficient Aε(x1, x2) := a(x1/ε, x2/ε)I2 with
a(x, y) := 1 + 100 cos2(πx) sin2(πy), and ε = π/150 ≈ 0.02. We build a
sequence of hierarchical triangular meshes of size Hl = 0.43 × 2−l with
l ∈ {0, . . . , 9}; a reference solution is computed with the (equal-order)
monoscale HHO method on the mesh of level lref = 9 with polynomial de-
gree kref = 2. The left panel of Figure 2 presents relative energy-errors for
the mixed-order msHHO method (k = 2) as a function of the coarse-scale
meshsize for various resolutions of the oscillatory basis functions (fine-scale
mesh corresponding to l ∈ {6, 7, 8} and κ ∈ {0, 1}). We observe that in-
sufficient resolution affects the quality of the multiscale numerical solution.
The right panel presents the errors for the equal-order msHHO method of
orders k ∈ {0, . . . , 4}, the oscillatory basis functions being computed with
l = 8 and κ = 1. The benefit of using a higher-order method is clearly vis-
ible up to k = 3, whereas for k = 4 the resolution of the reference solution
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(∼ 50Mdofs) comes into play. Of particular interest is the regime for k = 3
where H > ε and the error is below 10%.
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Figure 2: Energy-error as a function of the coarse-scale meshsize for various
resolutions of the oscillatory basis functions (left) and for various values of
k. The vertical red line indicates the value of ε.
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