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Abstract A multiscale Hybrid High-Order method has been introduced recently
to approximate elliptic problems with oscillatory coefficients. In this work, with
a view toward implementation, we describe the general workflow of the method
and we present one possible way for accurately approximating the oscillatory basis
functions by means of a monoscale Hybrid High-Order method deployed on a fine-
scale mesh in each cell of the coarse-scale mesh.

1 Introduction

Let Ω be an open, bounded, connected polytopal subset of Rd, d ∈ {2, 3},
with some characteristic length scale `Ω . We consider the model problem{

−div(Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(1)

where f ∈ L2(Ω) is non-oscillatory, and Aε is an oscillatory, uniformly elliptic,
bounded, symmetric matrix-valued field onΩ. The parameter ε� `Ω encodes
the fine-scale oscillations of the coefficients. An accurate, monoscale approxi-
mation of this problem would require an overwhelming number of degrees of
freedom. In a multi-query context, where the solution is needed for a large
number of right-hand sides, multiscale methods may be preferred. To this
aim, different multiscale Finite Element Methods (msFEM) were proposed
in the literature; we refer the reader to [8] for an overview. Other paradigms
are also available to tackle multiscale problems, such as the Heterogeneous
Multiscale Method (HMM) [1]. In the case of periodic coefficients, msFEM
leads, on classical element shapes (e.g., simplices, quadrangles or hexahedra),
in the lowest-order case, and without oversampling, to energy-error estimates
of the form (

√
ε + H +

√
ε/H) where H represents the coarse-scale mesh-

size (the regime of interest is ε ≤ H � `Ω). Higher-order extensions using
simplical Lagrange elements of degree k ≥ 1 were devised in [2], leading in
the same setting of periodic coefficients to energy-error estimates of the form
(
√
ε+Hk +

√
ε/H).

Recently the authors devised and analyzed a multiscale Hybrid High-
Order (msHHO) method [3]. This method, which is a further development of
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the monoscale HHO method introduced in [6] for diffusion problems and in
[7] for linear elasticity, uses as discrete unknowns polynomials of degree k ≥ 0
on the mesh faces and of degree l ≥ 0 in the mesh cells. The crucial difference
with respect to the monoscale HHO method is that the msHHO method uses
oscillatory basis functions to define the local reconstruction operator, which
is the core ingredient in building HHO methods. Two variants of the msHHO
method were developed in [3], the mixed-order one (l = k − 1, k ≥ 1) and
the equal-order one (l = k, k ≥ 0). The motivations for considering HHO
methods are that these methods support polytopal meshes, share a common
design in any space dimension, are robust in various parametric regimes,
and allow one to express basic conservation principles at the cell level, while
offering computational efficiency since cell unknowns can be eliminated lo-
cally, leading to (compact-stencil) global problems with fewer unknowns. The
monoscale HHO method has been bridged in [5] to the Hybridizable Discon-
tinuous Galerkin (HDG) method and to the nonconforming Virtual Element
Method (ncVEM). In the case of periodic coefficients, the msHHO method
leads to energy-error estimates of the form (

√
ε+Hk+1+

√
ε/H). The msHHO

method can be viewed as a higher-order, polytopal version of the msFEM à
la Crouzeix–Raviart introduced in [10]. Other recent multiscale methods at-
taching discrete unknowns to the mesh faces include [9,11,12].

This contribution is organized as follows. In Section 2, we recall the os-
cillatory basis functions from [3] and discuss how they can be computed in
each mesh cell. In Section 3, we outline the general workflow of the msHHO
method. Finally, in Section 4, we present some numerical experiments illus-
trating how the accuracy in computing the oscillatory basis functions influ-
ences the accuracy of the msHHO method. For a detailed presentation of
the implementation of the monoscale HHO method, we refer the reader to
[4]. The present developments are part of the Disk++ library, available as
open-source under MPL license (https://github.com/datafl4sh/diskpp).

2 Oscillatory basis functions

Let GΩ := (TΩ ,FΩ) be a coarse-scale mesh discretizing Ω, where TΩ and FΩ
are, respectively, the collection of the mesh cells and faces. The oscillatory ba-
sis functions are defined on each mesh cell T ∈ TΩ . Let F∂T := {Fn}0≤n<mT
be the collection of the faces composing the boundary of the mesh cell T . The
purpose of the oscillatory basis functions is to provide a basis for the space

V k+1
ε,T :=

{
vε ∈ H1(T ) | div(Aε∇vε) ∈ Pk−1d (T ), Aε∇vε·nT ∈ Pkd−1(F∂T )

}
,

where nT is the unit outward normal to T , Pk−1d (T ) is the space of d-
variate polynomials of degree at most (k−1) in T (with the convention that
P−1d (T ) = {0}), and Pkd−1(F∂T ) is the space of piecewise (d−1)-variate poly-
nomials of degree at most k on the faces of T . The superscript (k+1) indicates
that V k+1

ε,T has the same approximation capacity for smooth functions as the

https://github.com/datafl4sh/diskpp
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polynomial space Pk+1
d (T ). Letting Nq

l := dim(Pql ), the space V k+1
ε,T is of

dimension Nk+1
T := Nk−1

d +mTN
k
d−1.

2.1 Variational definition of the basis functions

There are Nk−1
d oscillatory basis functions attached to the mesh cell T . Let

{Φk−1,iT }0≤i<Nk−1
d

denote a basis of Pk−1d (T ) and let ΛkF∂T := Pkd−1(F∂T ).

Then, the oscillatory basis function ϕ =: ϕk+1,i
ε,T , for all 0 ≤ i < Nk−1

d , is such

that the pair (ϕ, λ) ∈ H1(T )× ΛkF∂T solves{
(Aε∇ϕ,∇w)T + (λ,w)∂T = (Φk−1,iT , w)T ∀w ∈ H1(T ),

(ϕ, µ)∂T = 0 ∀µ ∈ ΛkF∂T .
(2)

Equivalently, ϕ is the unique minimizer in H1(T ) of the energy functional

vε 7→ 1
2 (Aε∇vε,∇vε)T −(Φk−1,iT , vε)T subjected to the constraint (vε, µ)∂T =

0 for all µ ∈ ΛkF∂T .

There are mTN
k
d−1 oscillatory basis functions attached to the boundary

of T . Let {Φk,jFn }0≤j<Nkd−1
denote a basis of Pkd−1(Fn) for all 0 ≤ n < mT , and

let us extend these functions by zero to the rest of ∂T . Then, the oscillatory

basis function ϕ =: ϕ
k+1,δ(j,n)
ε,T , with index δ(j, n) = Nk−1

d + nNk
d−1 + j for

all 0 ≤ j < Nk
d−1 and all 0 ≤ n < mT , is such that the pair (ϕ, λ) ∈

H1(T )× ΛkF∂T solves{
(Aε∇ϕ,∇w)T + (λ,w)∂T = 0 ∀w ∈ H1(T ),

(ϕ, µ)∂T = (Φk,jFn , µ)∂T ∀µ ∈ ΛkF∂T .
(3)

Equivalently, ϕ is the unique minimizer in H1(T ) of the energy functional

vε 7→ 1
2 (Aε∇vε,∇vε)T subjected to the constraint (vε, µ)∂T = (Φk,jFn , µ)∂T

for all µ ∈ ΛkF∂T . The variational problems (2) and (3) define the oscillatory

basis functions {ϕk+1,i
ε,T }0≤i<Nk+1

T
.

2.2 Discretization and algebraic realization

The oscillatory basis functions defined by (2) and (3) cannot be computed
explicitly, and one needs to approximate them by resorting to some discretiza-
tion method. In this work, we use the monoscale HHO method. We start by
submeshing the coarse-scale cell T by a fine-scale mesh GT = (TT ,FT ), where
TT is the collection of the fine-scale cells composing GT and FT is the collec-
tion of the fine-scale faces. On the fine-scale mesh GT , we use the monoscale
equal-order HHO method of degree κ ≥ 0. Let t ∈ TT be a fine-scale cell. We
introduce the local space of discrete unknowns

Uκt := Pκd(t)× Pκd−1(F∂t),
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where Pκd(t) is the space of d-variate polynomials of degree at most κ on t
and Pκd−1(F∂t) is the space of piecewise (d−1)-variate polynomials of degree at
most κ on the faces of t which are collected in the set F∂t. Following [6,7], the
key ingredients of the monoscale HHO method are the local reconstruction
operator pκ+1

t : Uκt → Pκ+1
d (t) and the stabilization operator sκ+1

t : Uκt →
Pκd−1(F∂t) such that, for all (vt, v∂t) ∈ Uκt , we have for the reconstruction
operator

(∇pκ+1
t (vt, v∂t),Aε∇q)t := (∇vt,Aε∇q)t + (v∂t − vt|∂t,Aε∇q·nt)∂t (4)

for all q ∈ Pκ+1
d (t), where nt is the unit outward normal to t, together with the

mean-value condition (pκ+1
t (vt, v∂t), 1)t = (vt, 1)t, and for the stabilization

operator, letting pκ+1
t := pκ+1

t (vt, v∂t),

sκ+1
t (vt, v∂t) := Πκ

F∂t

((
v∂t − pκ+1

t|∂t
)
−Πκ

t

(
vt − pκ+1

t

)
|∂t

)
, (5)

where Πκ
F∂t is the L2-orthogonal projector onto Pκd−1(F∂t) and Πκ

t is the L2-
orthogonal projector onto Pκd(t). The operators defined by (4) and (5) are
used to build the local bilinear form at : Uκt × Uκt → R so that

at((ut, u∂t), (vt, v∂t)) := (Aε∇pκ+1
t (ut, u∂t),∇pκ+1

t (vt, v∂t))t

+ (η∂ts
κ+1
t (ut, u∂t), s

κ+1
t (vt, v∂t))∂t,

where η∂t is a piecewise constant weighting coefficient on ∂t which is typically
equal on each fine-scale face f ∈ F∂t to the maximum value of nt·Aε|∂t·nt on
f divided by the diameter of f .

We are now ready to describe the discretization of (2) and (3) by the
monoscale HHO method. Based on the fine-scale mesh GT = (TT ,FT ) of the
coarse-scale cell T ∈ TΩ , we introduce the spaces

UκGT :=

{
×
t∈TT

Pκd(t)

}
×

{
×
f∈FT

Pκd−1(f)

}
, Wκ,k

T := UκGT × Λ
k
F∂T .

For a pair y = (yT , yF ) ∈ UκGT , we denote (yt, y∂t) ∈ Uκt the local compo-
nents attached to the fine-scale cell t ∈ TT , and we denote y∂T the function
defined on the boundary ∂T such that, for each fine-scale face f ⊂ ∂T ,
y∂T |f is the component of yF attached to the fine-scale face f . Note that
y∂T is generally not a member of the coarse-scale Lagrange multiplier space
ΛkF∂T since it is a fine-scale piecewise polynomial. We define the bilinear form

aGT : Wκ,k
T × Wκ,k

T → R such that

aGT ((y, λ), (z, µ)) :=
∑
t∈TT

at((yt, y∂t), (zt, z∂t)) + (λ, z∂T )∂T + (y∂T , µ)∂T .

For all 0 ≤ i < Nk+1
T , the oscillatory basis function ϕk+1,i

ε,T is approximated

by first finding the pair (yi, λi) ∈ Wκ,k
T such that

aGT ((yi, λi), (z, µ)) = Ψ i(z, µ) ∀(z, µ) ∈ Wκ,k
T ,
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where Ψ i(z, µ) := (Φk−1,iT , zT )T for all 0 ≤ i < Nk−1
d , and Ψ δ(j,n)(z, µ) :=

(Φk,jFn , µ)∂T for all 0 ≤ j < Nk
d−1 and all 0 ≤ n < mT . Then, we set

ϕk+1,i
ε,T |t := pκ+1

t (yit, y
i
∂t) ∀t ∈ TT , ∀0 ≤ i < Nk+1

T .

For each 0 ≤ i < Nk+1
T , after static condensation, the global problem

resulting from the above discretization is of size Nκ
d−1× card(FT ) +mTN

k
d−1,

and has the following block-structure:((
AFF −AFTA

−1
TT ATF

)
B

B> 0

)(
yiF
λi

)
=

(
−AFTA

−1
TT Ψ

i
T

Ψ iλ

)
, (6)

where the matrices ATT , ATF , AFT and AFF correspond to the monoscale
HHO matrices for a diffusion problem (see [4]), whereas the matrices B and
its transpose correspond to the imposition of the constraints by means of
the Lagrange multipliers. The matrix ATT is block-diagonal, with card(TT )
blocks of size Nκ

d ×Nκ
d , hence it is invertible at no cost. Once (6) has been

solved, one can recover yiT = A−1TT

(
Ψ iT −ATF y

i
F

)
. A crucial observation is

that the system matrix in (6) is independent of the index i enumerating the
oscillatory basis function. Thus, a single matrix factorization followed by a
multi-rhs solve is the procedure of choice.

Let us briefly describe the assembly of the matrix B that appears in (6).
Recall that the coarse-scale faces composing the boundary of T are enu-
merated as {Fn}0≤n<mT . Assume, for simplicity, that each coarse-scale face
contains the same number, mF , of fine-scale faces, and that the fine-scale
faces in FT are enumerated by counting first the fine-scale faces in F0, then
those in F1, and so on until FmT−1, and finally all the fine-scale faces located
inside T . Then we have

⋃
0≤β<mF fnmF+β = Fn for all 0 ≤ n < mT . The ma-

trix B has a block-structure composed of card(FT )×mT blocks, each block
having size Nκ

d−1 × Nk
d−1. For all 0 ≤ α < card(FT ) and 0 ≤ n < mT , the

block Bαn is zero whenever α < nmF or α ≥ (n+ 1)mF , otherwise we have

Bαn,ij =

∫
fα

Φκ,ifαΦ
k,j
Fn
,

for all 0 ≤ i < Nκ
d−1 and 0 ≤ j < Nk

d−1, where {Φκ,ifα }0≤i<Nκd−1
is a basis

of the polynomial space Pκd−1(fα). The block-structure of the matrix B is
illustrated in Figure 1 (for d = 2) with k = 1 and κ = 1, so that each block
is of size 2 × 2. The block-structure is composed of card(FT ) = 9 rows and
mT = 3 columns, and there are mF = 2 nonzero blocks in each column.

3 General workflow of the msHHO method

The workflow of a simulation using the msHHO method involves two phases,
an offline phase and an online phase. The offline phase is run first and con-
sists, for each coarse-scale cell, in computing and storing the oscillatory basis
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F0F0

F1F1
F2F2

f0f0
f1f1
f2f2

f3f3f4f4

f5f5 f6f6
f7f7

f8f8

Figure1. Illustration of the block-structure of the matrix B.

functions (cf. Sec. 2.2). During the offline phase, the multiscale reconstuction
operator (plus, possibly, the coarse-scale stabilization operator) are also com-
puted and stored, and the global system is assembled after local elimination
of the cell unknowns. The offline phase can substantially benefit from parallel
architectures. In the online phase, the computations done in the offline phase
can be re-used as many times as needed to solve problems where, e.g., the
source term is changed.

Let T ∈ TΩ be a coarse-scale cell. The local unknowns in the msHHO
method belong to the space U l,kT := Pld(T )×Pkd−1(F∂T ), where l = k−1, k ≥ 1
(mixed-order case) or l = k ≥ 0 (equal-order case). The multiscale reconstruc-

tion operator pk+1
ε,T : U l,kT → V k+1

ε,T is defined so that, for all (vT , v∂T ) ∈ U l,kT ,

we have for all qε ∈ V k+1
ε,T ,

(∇pk+1
ε,T (vT , v∂T ),Aε∇qε)T := −(vT ,div(Aε∇qε))T + (v∂T ,Aε∇qε·nT )∂T ,

(7)
together with the mean-value condition (pk+1

ε,T (vT , v∂T ), 1)T = (vT , 1)T . The

implementation of the multiscale reconstruction operator pk+1
ε,T is almost iden-

tical to that of its monoscale version detailed in [4]; only three differences need
to be noted. The first one is that in the multiscale case, the stiffness matrix
is of size Nk+1

T × Nk+1
T (recall that Nk+1

T = Nk−1
d + mTN

k
d−1) and is built

using the gradients of the oscillatory basis functions (one needs to split the
integral over T into a sum of integrals over t ∈ TT so as to employ standard
quadrature rules), whereas in the monoscale case, this matrix is of smaller
size, namely Nk+1

d ×Nk+1
d , and is built using the gradients of polynomial ba-

sis functions. The second difference is that in the multiscale case, one uses the
integrated form (7) of the rhs of (4), so as to take advantage of the fact that
functions in V k+1

ε,T have (piecewise) polynomial divergence and flux. Finally,

to enforce the above mean-value condition on pk+1
ε,T (vT , v∂T ), one employs

a Lagrange multiplier since the constant function is not directly accessible
as one of the oscillatory basis functions (alternatively, one can add the term
(Π0

T p
k+1
ε,T (vT , v∂T ), Π0

T qε)T with Π0
T q :=

∫
T
q/|T |d to the left-hand side of (7)

and then shift pk+1
ε,T (vT , v∂T ) by the constant Π0

T vT ). In the mixed-order case,
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the local bilinear form aε,T : Uk−1,kT × Uk−1,kT → R is defined as

aε,T ((uT , u∂T ), (vT , v∂T )) := (Aε∇pk+1
ε,T (uT , u∂T ),∇pk+1

ε,T (vT , v∂T ))T ,

and its implementation proceeds as in the monoscale case detailed in [4]. In

the equal-order case, the local bilinear form aε,T : Uk,kT ×Uk,kT → R is defined
as

aε,T ((uT , u∂T ), (vT , v∂T )) := (Aε∇pk+1
ε,T (uT , u∂T ),∇pk+1

ε,T (vT , v∂T ))T

+ (η∂T (uT −Πk
T (pk+1

ε,T (uT , u∂T ))), vT −Πk
T (pk+1

ε,T (vT , v∂T )))∂T ,

where the second term on the right-hand side is a coarse-scale stabilization
with η∂T being piecewise constant on ∂T and scaling on each face F ∈ F∂T as
the maximum value of nT ·Aε|∂T ·nT on F divided by the diameter of F . For a
mathematical discussion on this operator, we refer the reader to [3, Sec. 5.2],
whereas its implementation proceeds as in the monoscale case detailed in [4].
The static condensation procedure and the assembly of the global system are
then standard, and as in the monoscale HHO method. In any case (l = k−1
or l = k), the resulting global matrix has size Nk

d−1 × card(FΩ).

Finally, the online phase, which is problem-dependent, consists in com-
puting some coarse-scale projection of the right-hand side(s) and enforcing
the boundary conditions by zeroing out the degrees of freedom attached to
the coarse-scale faces on the boundary of Ω.

4 Numerical experiments

In this section we briefly illustrate the msHHO method on the periodic test-
case studied in [10]. We set Ω := (0, 1)2, f(x1, x2) := sin(x1) sin(x2), the
(isotropic) oscillatory coefficient Aε(x1, x2) := a(x1/ε, x2/ε)I2 with a(x, y) :=
1+100 cos2(πx) sin2(πy), and ε = π/150 ≈ 0.02. We build a sequence of hier-
archical triangular meshes of size Hl = 0.43×2−l with l ∈ {0, . . . , 9}; a refer-
ence solution is computed with the (equal-order) monoscale HHO method on
the mesh of level lref = 9 with polynomial degree kref = 2. The left panel of
Figure 2 presents relative energy-errors for the mixed-order msHHO method
(k = 2) as a function of the coarse-scale meshsize for various resolutions of
the oscillatory basis functions (fine-scale mesh corresponding to l ∈ {6, 7, 8}
and κ ∈ {0, 1}). We observe that insufficient resolution affects the quality
of the multiscale numerical solution. The right panel presents the errors for
the equal-order msHHO method of orders k ∈ {0, . . . , 4}, the oscillatory ba-
sis functions being computed with l = 8 and κ = 1. The benefit of using a
higher-order method is clearly visible up to k = 3, whereas for k = 4 the res-
olution of the reference solution (∼ 50Mdofs) comes into play. Of particular
interest is the regime for k = 3 where H > ε and the error is below 10%.
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Figure2. Energy-error as a function of the coarse-scale meshsize for various
resolutions of the oscillatory basis functions (left) and for various values of
k. The vertical red line indicates the value of ε.
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