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HÖLDER STABILITY FOR AN INVERSE MEDIUM PROBLEM
WITH INTERNAL DATA

MOURAD CHOULLI AND FAOUZI TRIKI

Abstract. We are interested in an inverse medium problem with internal
data. This problem is originated from multi-waves imaging. We aim in the
present work to study the well-posedness of the inversion in terms of the bound-
ary conditions. We precisely show that we have actually a stability estimate
of Hölder type. For sake of simplicity, we limited our study to the class of
Helmholtz equations ∆ ` V with bounded potential V .
Mathematics subject classification : 35R30.
Key words : Helmholtz equation, inverse medium problem, internal data,
Hölder stability, unique continuation.

1. Introduction

Let Ω be a C2-smooth bounded domain of Rn, n “ 2, 3, with boundary Γ.
Set

D “ tV P L8pΩq; 0 is not an eigenvalue of AV u,
where AV : L2pΩq Ñ L2pΩq is the unbounded operator defined by

AV “ ´∆´ V with DpAV q “ H2pΩq XH1
0 pΩq.

Note that
D Ą tV ; V pxq “ λ, x P Ω, for some λ P RzσpA0qu.

Here A0 is AV when V “ 0 and σpA0q is the spectrum of A0.
Let 0 ă k ă 1 be given and let V P D so that 2v0 ď V , where v0 ą 0 is fixed.

Consider then D0pk, v0, V q, the subset of D of those functions V P L8pΩq satisfying

}V ´ V }L8pΩq ď min
´

k{}A´1
V
}BpL2pΩqq, v0

¯

.

Pick p ą n and fix h P W 2´1{p,ppΓq non identically equal to zero and denote by
uV , V P D0pk, v0, V q, the solution of the following BVP for the Helmholtz equation:

∆u` V u “ 0 in Ω and u “ h on Γ.
According to [17, Theorem 3.1, page 1782], uV PW 2,ppΩq and the following estimate
holds
(1.1) }uV }W 2,ppΩq ďM “M

`

Ω, p, v0, k, V , h
˘

, V P D0pk, v0, V q.

We are mainly interested in determining the absorption coefficient V from the
internal data

IV “ V u2
V .

The authors are supported by the grant ANR-17-CE40-0029 of the French National Research
Agency ANR (project MultiOnde).
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This inverse problem is originated from multi-waves imaging. The term multi-
waves refers to the fact that two types of physical waves are used to probe the
medium under study. Usually, the first wave is sensitive to the contrast of the
desired parameter, the other types can carry the information revealed by the first
type of waves to the boundary of the medium where measurements can be taken.
In the present work, we assume that the first inversion has been performed, that
is the internal data IV is retrieved, and we focus on the second step. We refer to
[4, 5, 7, 8, 9, 10, 17] and reference therein for further details.

Choose K ą 0 sufficiently large in such a way that
D1pk, v0, V ,Kq “ D0pk, v0, V q X tV P C

0,1pΩq; }V }C0,1pΩq ď Ku ‰ ø.

Note that, according to Rademacher’s theorem, C0,1pΩq is continuously embedded
in W 1,8pΩq.

For the inverse problem under consideration we are going to prove various Hölder
stability estimates.

Theorem 1.1. pinterior stabilityq Let ω Ť Ω. Then, there exist two constants
C “ C

`

Ω, p, v0, k, V , h,K, ω
˘

ą 0 and µ “ µ
`

Ω, p, v0, k, V , h,K, ω
˘

so that, for
any V, Ṽ P D1pk, v0, V ,Kq satisfying V “ Ṽ on Γ, we have

}V ´ Ṽ }L8pωq ď C
›

›

›
I

1{2
V ´ I

1{2
Ṽ

›

›

›

µ

H1pΩq
.

A similar result was already proved by G. Alessandrini in [1] under different
assumptions.

When h does not vanish on a part of Γ, we obtain improved results which we
state in the following theorems.

Theorem 1.2. Under the assumption |h| ą κ ą 0 on Γ, there exist two constants
C “ C

`

Ω, p, v0, k, V , h,K
˘

ą 0 and µ “ µ
`

Ω, p, v0, k, V , h,K
˘

so that, for any
V, Ṽ P D1pk, v0, V ,Kq satisfying V “ Ṽ on Γ, we have

}V ´ Ṽ }L8pΩq ď C
›

›

›
I

1{2
V ´ I

1{2
Ṽ

›

›

›

µ

H1pΩq
.

Theorem 1.3. Let Ω̃ Ă Ω be a C2-smooth domain with boundary Γ̃ such that
γ̃ :“ Γ̃ X Γ satisfies 8̃γ ‰ ø, and let ω Ť Ω̃. Under the assumption |h| ą κ ą 0
on Γ, there exist two constants C “ C

`

Ω, p, v0, k, V , h,K, ω, Ω̃
˘

ą 0 and µ “

µ
`

Ω, p, v0, k, V , h,K, ω, Ω̃
˘

so that, for any V, Ṽ P D1pk, v0, V ,Kq satisfying V “ Ṽ

on Γ and ∇V “ ∇Ṽ on γ̃, we have

}V ´ Ṽ }L8pωq ď C
›

›

›
I

1{2
V ´ I

1{2
Ṽ

›

›

›

µ

H1pΩ̃q
.

In the following result we allow the Dirichlet boundary condition h to vanish on
Γ. Denote

Γ` “ tx P Γ; |hpxq| ą 0u and Γ0 “ tx P Γ; hpxq “ 0u.

Theorem 1.4. Let γ be a compact subset of Γ`Y 8Γ0 and ω Ť ΩYγ. Then, there ex-
ist two constants C “ C

`

Ω, p, v0, k, V , h,K, ω
˘

ą 0 and µ “ µ
`

Ω, p, v0, k, V , h,K, ω
˘

so that, for any V, Ṽ P D1pk, v0, V ,Kq satisfying V “ Ṽ on Γ, we have

}V ´ Ṽ }L8pωq ď C
›

›

›
I

1{2
V ´ I

1{2
Ṽ

›

›

›

µ

H1pΩq
.
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We deduce from Theorem 1.3 that it is possible to recover the potential V on a
small set ω of Ω if the medium is probed starting from γ̃, the part of the boundary
where h is intense, and by covering a neighboring region Ω̃ that contains ω. Unfor-
tunately h may in general settings be zero on some parts of the boundary Γ, and
Theorem 1.4 is an attempt to improve the results of Theorems 1.2 and 1.3 in this
direction.

In [2], the authors were able to prove a lower bound for the gradient of solutions
near the boundary when the boundary data is “qualitatively unimodal” (see [2]
for the definition). Roughly speaking, the key in their proof is that even if the
tangential gradient of solutions vanishes, there is, according to Hopf’s maximum
principle, a non zero contribution of the derivative of solutions in the normal direc-
tion. Unfortunately, there is no similar arguments that can be used in order to get
lower bound for solutions on the boundary.

The rest of this text consists in two sections and an appendix. We establish
in Section 2 weighted interpolation inequalities that are our main ingredient for
proving stability estimates. That is what we do in Section 3. We end by an
appendix that is devoted to prove a technical result we used in Section 2. This
result which is essential in our analysis gives a lower bound of the L2-norm of
solutions on a small ball, away from the boundary, in term of the radius of the ball.

2. Weighted interpolation inequalities

We start with some preliminaries involving the so-called frequency function. If
d is the diameter of Ω with respect to the euclidean metric and 0 ă δ ă d, let

Ωδ “ tx P Ω; distpx,Γq ě δu and Ωδ “ tx P Ω; distpx,Γq ď δu.

For 0 ă v0 ď V0 andM ą 0, set V pv0, V0q “ tV P L
8pΩq; v0 ď V ď V0u. Define

then

S pv0, V0q “ tu P H
2pΩq; ∆u` V u “ 0, for some V P V pv0, V0qu.

Let u P S pv0, V0q and x0 P Ωδ. We define, for 0 ă r ă δ,

Hupx0, rq “

ż

Spx0,rq

u2pxqdSpxq,

Dupx0, rq “

ż

Bpx0,rq

 

|∇upxq|2 ` V pxqu2pxq
(

dx,

Kupx0, rq “

ż

Bpx0,rq

u2pxqdSpxq.

Here Spx0, rq is the sphere of centrer x0 and radius r.
Henceforth, the first Dirichlet eingenvalue of the Laplace operator in the domain

D is denoted by λ1pDq.
Prior to define the frequency function, we need to prove the following lemma,

where

(2.1) ρ0 “
a

λ1pBp0, 1qq{V0.

Lemma 2.1. Let ρ0 be as in (2.1). Then, for any u P S pv0, V0q, u ‰ 0, x0 P Ωδ
and 0 ă r ă minpδ, ρ0q, we have Hupx0, rq ą 0.
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Proof. We proceed by contradiction. Pick then u P S pv0, V0q, u ‰ 0, x0 P Ωδ and
assume then that Hupx0, rq “ 0 for some 0 ă r ă minpδ, ρ0q. That is, u “ 0 on
Spx0, rq. Therefore Green’s formula gives

(2.2)
ż

Bpx0,rq

|∇u|2dx “
ż

Bpx0,rq

V u2dx ď V0

ż

Bpx0,rq

u2.

On the other hand, bearing in mind that λ1pBpx0, rqq “ λ1pBp0, 1qq{r2, Poincaré’s
inequality yields

ż

Bpx0,rq

u2dx ď
1

λ1pBpx0, rqq

ż

Bpx0,rq

|∇u|2dx(2.3)

ď
r2

λ1pBp0, 1qq

ż

Bpx0,rq

|∇u|2dx.

Note that we used here that u P H1
0 pBpx0, rqq.

Inequality (2.3) in (2.2) produce
ˆ

1´ r2V0

λ1pBp0, 1qq

˙
ż

Bpx0,rq

|∇u|2dx ď 0.

As 1 ´ r2V0{λ1pBp0, 1qq ą 0, we conclude that u “ 0 in Bpx0, rq and hence u is
identically equal to zero by the unique continuation property. This leads to the
expected contradiction. �

According to Lemma 2.1, if u P S pv0, V0q, u ‰ 0, we can define the frequency
function Nu, corresponding to u, by

Nupx0, rq “
rDupx0, rq

Hupx0, rq
.

The following two lemmas can be deduced from the calculations developed in
[19, 20] (see also [14]).
Lemma 2.2. For u P S pv0, V0q, u ‰ 0 and x0 P Ωδ, we have

Kupx0, rq ď rHupx0, rq, 0 ă r ă δ0 “ minpρ0, ρ1, δq,

where ρ0 is as in (2.1) and ρ1 “
a

pn´ 1q{V0.

Lemma 2.3. Let u P S pv0, V0q, u ‰ 0 and x0 P Ωδ. Then
Nupx0, rq ď C maxpNupx0, δ0q, 1q, 0 ă r ă δ0,

with a constant C “ CpΩ, V0q ą 0 and δ0 is as in Lemma 2.2.
Fix 0 ă α ď 1. We say that W Ă L1

`pΩq “ tw P L1pΩq; w ě 0u is a uniform set
of weights for the weighted interpolation inequality
(2.4) }f}L8pΩq ď C}f}1´µ

C0,αpΩq
}fw}µL1pΩq,

if the constants C ą 0 and 0 ă µ ă 1 in (2.4) can be chosen independently in
w PW and f P C0,αpΩq.

Similarly, we will say that W Ă L1
`pΩq is a uniform set of interior weights for

the interior weighted interpolation inequality, where ω Ť Ω is arbitrary,
(2.5) }f}L8pωq ď C}f}1´µ

C0,αpΩq
}fw}µL1pΩq

if the constants C ą 0 and 0 ă µ ă 1 in (2.5), depending on ω, can be chosen
independently in w PW and f P C0,αpΩq.
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Remark 2.1. Let W Ă L1
`pΩq be a uniform set of weights for the weighted in-

terpolation inequality (2.4). Pick w P W and consider Z “ tx P Ω; wpxq “ 0u.
We claim that Z has empty interior. Otherwise, if 8Z ‰ ø then we would find
f0 P C

8
0 p

8Zq non identically equal to zero. But (2.4) with f “ f0 would entail that
f0 “ 0. That is we have a contradiction and our claim is proved.

Let κ be the norm of the imbedding H2pΩq ãÑ CpΩq. We introduce two sets,
where 0 ă κ ď κM are given constants,

Swpv0, V0, κ,Mq “ tu P H
2pΩq; ∆u` V u “ 0, for some V P V pv0, V0q

and }u}H2pΩq ďM, }u}L8pΓq ě κu,

and
Sspv0, V0, κ,Mq “ tu P H

2pΩq; ∆u` V u “ 0, for some V P V pv0, V0q

and }u}H2pΩq ďM, |u| ě κ on Γu.
The main ingredient in establishing weighted interpolation inequalities is the

following theorem. Its proof, which is quite technical, is given in Appendix A.

Theorem 2.1. Let 0 ă δ ă d. Then there exists a constants c “ cpΩ, v0, V0, κ,M, δq ą
0 so that, for any x0 P Ωδ and u P Swpv0, V0, κ,Mq, we have

(2.6) e´e
c{δ

ď }u}L2pBpx0,δqq.

Theorem 2.2. (1) The set Wwpv0, V0, κ,Mq “ tw “ u2; u P Swpv0, V0, κ,Mqu is
a uniform set of interior weights for the interior weighted interpolation inequality
(2.5).
(2) The set Wspv0, V0, κ,Mq “ tw “ u2; u P Sspv0, V0, κ,Mqu is a uniform set of
weights for the weighted interpolation inequality (2.4).

Before proving this theorem, we establish some preliminaries.

Lemma 2.4. Let 0 ă δ ă d. There exists a constant C “ CpΩ, v0, V0, κ,M, δq ą 0
so that, for any u P Swpv0, V0, κ,Mq, we have

}Nu}L8pΩδˆp0,δ0qq ď C.

Here δ0 is as in Lemma 2.2.

Proof. Let x0 P Ωδ. From Theorem 2.1
(2.7) Kupx0, δ0q “ }u}

2
L2pBpx0,δ0qq

ě C.

Combined with Lemma 2.2, this estimate yields
(2.8) Hupx0, δ0q ě C.

In light of Lemma 2.3, we end up getting
Nupx0, rq ď C, 0 ă r ă δ0,

which leads immediately to the expected inequality. �

Proposition 2.1. Let 0 ă δ ă d. There exist two constants C “ CpΩ, v0, V0, κ,M, δq ą
0 and c “ cpΩ, v0, V0, κ,M, δq ą 0 so that, for any u P Swpv0, V0, κ,Mq, we have

Crc ď }u}L2pBpx0,rqq, x0 P Ωδ, 0 ă r ă δ0,

where δ0 is as in Lemma 2.2.
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Proof. Pick u P Swpv0, V0, κ,Mq and x0 P Ωδ. For simplicity’s sake, set H “ Hu

and N “ Nu. From the calculations carried out in [19, 20] (see also [14]), we have

BrHpx0, rq “
n´ 1
r

Hpx0, rq ` 2Dpx0, rq.

Whence
Br

ˆ

ln Hpx0, rq

rn´1

˙

“
BrHpx0, rq

Hpx0, rq
´
n´ 1
r

“
2Npx0, rq

r
.

This and Lemma 2.4 entail

Br

ˆ

ln Hpx0, rq

rn´1

˙

ď
C

r
, 0 ă r ă δ0.

Thus
ż sδ0

sr

Bt

ˆ

ln Hpx0, tq

tn´1

˙

dt “ ln Hpx0, sδ0qr
n´1

Hpx0, srqδ
n´1
0

ď ln δ
C
0
rC
, 0 ă s ă 1, 0 ă r ă δ0.

Hence
Hpx0, sδ0q ď

C

rc
Hpx0, srq, 0 ă r ă δ0,

and then

}u}2L2pBpx0,δ0qq
“ δn´1

0

ż 1

0
Hpx0, sδ0qs

n´1ds

ď
C

rc
rn´1

ż 1

0
Hpx0, srqs

n´1ds “
C

rc
}u}2L2pBpx0,rqq

, 0 ă r ă δ0.

Combined with (2.7), this estimate yields

Crc ď }u}L2pBpx0,rqq, 0 ă r ă δ0,

as expected. �

Proof of Theorem 2.2. (1) Let w P Wwpv0, V0, κ,Mq and u P Swpv0, V0, κ,Mq so
that w “ u2. Fix ω Ť Ω. We need to prove that (2.5) holds with constants C
and µ that are independent of w and f P C0,αpΩq. By homogeneity it is enough
to establish (2.5) when }f}C0,αpΩq “ 1. To this end, take f P C0,αpΩq satisfying
}f}C0,αpΩq “ 1.

Fix 0 ă δ ă d so that ω Ă Ωδ and pick x0 P ω so that |fpx0q| “ }f}L8pωq.
According to Proposition 2.1, there exist two constants C “ CpΩ, v0, V0, κ,M, δq ą
0 and c “ cpΩ, v0, V0, κ,M, δq ą 0 so that, for any u P Swpv0, V0, κ,Mq, we have

(2.9) Crc ď }u}L2pBpx0,rqq, 0 ă r ă δ0,

where δ0 is as in Lemma 2.2.
But

|fpx0q| “ }f}L8pωq ď |fpxq| ` r
α, for any x P Bpx0, rq.

Therefore

}f}L8pωq

ż

Bpx0,rq

upxq2dx ď 2
ż

Bpx0,rq

|fpxq|upxq2dx` 2rα
ż

Bpx0,rq

upxq2dx

ď 2
ż

Ω
|fpxq|upxq2dx` 2rα

ż

Bpx0,rq

upxq2dx.
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Note that, according to the unique continuation property,
ż

Bpx0,rq

upxq2dx ‰ 0, 0 ă r ă δ0.

Hence

}f}L8pΩq ď 2
}fu2}L1pΩq

}u}2L2pBpx0,rqq

` 2rα.

Combined with (2.9), this estimate yields

(2.10) }f}L8pωq ď Cp}fu2}L1pΩqr
´c ` rαq, 0 ă r ă δ0.

When }fu2}L1pΩq ă δc`α0 , we can take r “ }fu2}
1{pc`αq
L1pΩq in (2.10) in order to get

(2.11) }f}L8pωq ď C}fu2}µL1pΩq,

with µ “ α
c`α .

If }fu2}L1pΩq ě δc`α0 , we have

(2.12) }f}L8pωq ď δ
´pc`αq
0 }fu2}L1pΩq ď δ

´pc`αq
0 M2´2µ}fu2}µL1pΩq.

The expected inequality follows then from (2.11) and (2.12).
(2) Let w P Wspv0, V0, κ,Mq and u P Sspv0, V0, κ,Mq so that w “ u2. As in (1),

we have to prove that (2.4) holds with constants C and µ independent on w and
f P C0,αpΩq. As we have seen before, by homogeneity, it is enough to establish
(2.4) when }f}C0,αpΩq “ 1. Let then f P C0,αpΩq satisfying }f}C0,αpΩq “ 1.

Since H2pΩq is continuously embedded in C0,1{2pΩq, there exists a constant a “
apΩq ą 0 so that

rus1{2 “ sup
"

|upxq ´ upyq|

|x´ y|1{2
; x, y P Ω x ‰ y

*

ď a}u}H2pΩq ď aM.

Fix δ1 ď pκ{p2aMqq2. Then a straightforward computation gives

|u| ě κ{2 in Ωδ1 .

From the Hölder’s continuity of f , we get, where η “ δ1{4,

}f}L8pΩηq “ |fpx0q| ď |fpxq| ` r
α, x P Bpx0, rq, 0 ă r ă δ0 “ δ0pηq.

Whence, proceeding as in (1), we get

}f}L8pΩηq ď
}fu2}L1pΩq

}u}2L2pBpx0,rqq

` rα.

This and Proposition 2.1 yield

(2.13) }f}L8pΩηq ď Cp}fu2}L1pΩqr
´c ` rαq, 0 ă r ă δ0.

On the other hand, noting that Bpy, rq X Ω Ă Ωδ1 when y P Ω2η and 0 ă r ă η,
we find

}f}L8pΩ2ηq

ż

Bpy0,rqXΩ
upxq2dx “ |fpy0q|

ż

Bpy0,rqXΩ
upxq2dx

ď

ż

Bpy0,rqXΩ
|fpxq|upxq2dx` rα

ż

Bpy0,rqXΩ
upxq2dx.
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We have
ż

Bpy0,rqXΩ
upxq2dx ě κ2|Bpy0, rq X Ω|

Proceeding similarly to the proof of [15, Appendix A], we find ℵ “ ℵpΩq ą 0 and
0 ă r0 “ r0pΩ, κ,Mq ă η so that

|Bpy0, rq X Ω| ě ℵrn, 0 ă r ă r0.

Whence
}f}L8pΩ2ηq ď p1{ℵqr

´n}fu2}L1pΩq ` r
α, 0 ă r ă r0.

This means that an estimate of the form (2.13) holds with }f}L8pΩηq substituted
by }f}L8pΩ2ηq. In consequence,

}f}L8pΩq ď Cp}fu2}L1pΩqr
´c ` rαq, 0 ă r ă minpr0, δ0q.

We can then mimic the end of the proof of (1) in order to obtain the expected
inequality. �

3. Proof of the main results

Proof of Theorem 1.1. Pick ω Ť Ω. We firstly observe that, according to (1.1),
tuV ; V P D0pk, v0, V qu Ă Swpv0, V0, κ,Mq,

with κ “ }h}L8pΓq, V0 “ v0`}V }L8pΩq and M “M
`

Ω, p, v0, k, V , h
˘

is as in (1.1).
We then apply (1) of Theorem 2.2 in order to obtain

(3.1) }V ´ Ṽ }L8pωq ď C}pV ´ Ṽ qu2
V }

2µ
L1pΩq,

with C “ C
`

Ω, p, v0, k, V , h, ω
˘

and µ “ µ
`

Ω, p, v0, k, V , h, ω
˘

.
On the other hand, we have from [17, Theorem 2.2, page 1781]

(3.2) }I
1{2
V pV ´ Ṽ q}H1pΩq ď C}I

1{2
V ´ I

1{2
Ṽ
}
1{2
H1pΩq.

Set, for simplicity’s sake, u “ uV (resp. I “ IV ) and ũ “ uṼ (resp. Ĩ “ IṼ ).
Then

pV ´ Ṽ qu2 “ V u2 ´ Ṽ ũ2 ` Ṽ pu2 ´ ũ2q

“ I ´ Ĩ ` Ṽ p|u| ` |ũ|qp|u| ´ |ũ|q.

Hence
(3.3) }pV ´ Ṽ qu2}L1pΩq ď C

´

}I1{2 ´ Ĩ1{2}L1pΩq ` }|u| ´ |ũ|}L1pΩq

¯

.

But
|ũ| ´ |u| “

1
Ṽ

`

I ´ Ĩ
˘

`
I1{2

V Ṽ

”

`

V ´ Ṽ
˘

I1{2
ı

implying

(3.4) }pV ´ Ṽ qu2}L1pΩq ď C
´

}I1{2 ´ Ĩ1{2}L1pΩq ` }pV ´ Ṽ qI
1{2}L1pΩq

¯

.

Now a combination of (3.2), (3.3) and (3.4) yields

}V ´ Ṽ }L8pωq ď C}I1{2 ´ Ĩ1{2}µH1pΩq,

which is the expected inequality. �

Proof of Theorem 1.2. Quite similar to that of Theorem 1.1. We have only to apply
(2) of Theorem 2.2 instead of (1) of Theorem 2.2. �
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Proof of Theorem 1.3. The proof relies on an improvement of a weighted stability
estimate obtained in [17, Theorem 2.2, page 1781].

Lemma 3.1. Assume that the assumptions of Theorem 1.3 hold. Then there exist
C “ Cpv0, V , h,K, ω, Ω̃q ą 0 and 1 ą µ1 “ µ1pv0, V , h,K, ω, Ω̃q ą 0 such that

(3.5) }I
1{2
V pV ´ Ṽ q}L2pωq ď C}I

1{2
V ´ I

1{2
Ṽ
}
µ1

H1pΩ̃q.

Proof. We set θ “ V ´1{2 and J “ I
1{2
V . We deduce from the proof of [17, Theorem

2.2, page 1781] that θ satisfies

(3.6) J∆ pJθq “ ´J
2

θ
in Ω.

Referring to [22], we see, as uV is non identically equal to zero, that the set where
uV vanishes is of zero measure. Therefore, J “ V u2

V has the same property and
hence θ verifies

(3.7) ∆ pJθq “ ´J
θ

in Ω.

Let θ̃ “ Ṽ ´1{2 and J̃ “ I
1{2
Ṽ

. Identity (3.7), with V substituted by Ṽ , yields

(3.8) ∆
`

J̃ θ̃
˘

“ ´
J̃

θ̃
in Ω.

Taking the difference side by side of equations (3.7) and (3.8), we obtain

∆
`

Jpθ ´ θ̃q
˘

´
1
θθ̃
Jpθ ´ θ̃q “

J̃ ´ J

θ̃
`∆

`

θ̃pJ̃ ´ Jq
˘

.(3.9)

As Jpθ´ θ̃q has zero Cauchy data on γ̃, we deduce from [3, Theorem 1.7] that there
exists Cpv0, V , h,K, ω, Ω̃q ą 0 and 1 ą µ1pv0, V , h,K, ω, Ω̃q ą 0 so that

}Jpθ ´ θ̃q}L2pωq ď C

˜

›

›

›

›

J̃ ´ J

θ̃

›

›

›

›

L2pΩ̃q
`
›

›θ̃pJ̃ ´ Jq
›

›

H1pΩ̃q

¸µ1

.(3.10)

Whence the expected inequality follows. �

The rest of the proof is quite similar to that of Theorem 1.1. We apply again
(1) of Theorem 2.2 to inequality (3.5). �

Proof of Theorem 1.4. We split γ into two components γ` “ γXΓ` and γ0 “ γXΓ0.
Let V and Ṽ be as in the statement of Theorem 1.4. As p ą n, W 2,ppΩq is

continuously embedded in C1pΩq. Whence u2
V P W

2,ppΩq. Inspecting the proof of
[6, Proposition 3.1], we get that there exists a constant δ “ δ

`

Ω, p, v0, k, V , h, , γ0
˘

and a neighborhood U0 of γ0 in ω Y Γ0 so that |uV |´δ P L1pU0q. We get from the
proof of [6, Lemma 1.3] that there exists C0 “ C0

`

Ω, p, v0, k, V , h, γ0
˘

such that

}V ´ Ṽ }L2pU0q ď C0}pV ´ Ṽ qu
2
V }

δ{p2`δq
L1pU0q

.

In light of [16, Lemma B.1], this inequality entails
}V ´ Ṽ }L8pU0q ď C0}pV ´ Ṽ qu

2
V }

2µ0
L1pU0q

,

for some µ0 “ µ0
`

Ω, p, v0, k, V , h, , γ0
˘

.
As in Theorem 1.1, this inequality leads to the following one

(3.11) }V ´ Ṽ }L8pU0q ď C0}I
1{2
V ´ I

1{2
rV
}
µ0
H1pΩq.
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On the other hand, we easily check that

|uV | ě
1
2 min

γ`
|uV | “

1
2 min

γ`
|h| pą 0q

in a neighborhood U` of γ` in ω Y Γ`, depending only Ω, p, v0, k,V , h and γ`.
We apply once again [16, Lemma B.1] in order to get

}V ´ Ṽ }L8pU`q ď C`}pV ´ Ṽ qu
2
V }

µ`
L1pU`q,

for some µ` “ µ`
`

Ω, p, v0, k, V , h, , γ`
˘

and C` “ C`
`

Ω, p, v0, k, V , h, , γ`
˘

.
From this inequality we deduce, again similarly as in the proof of Theorem 1.1,

(3.12) }V ´ Ṽ }L8pU`q ď C`}I
1{2
V ´ I

1{2
Ṽ
}
µ`
H1pΩq.

Let ω̃ Ť Ω so that ω Ă ω̃YU0YU`. By the interior stability estimate in Theorem
1.1, there exists µ̃ “ µ̃

`

Ω, p, v0, k, V , h, , ω
˘

and C “ C
`

Ω, p, v0, k, V , h, ω
˘

so that

(3.13) }V ´ Ṽ }L8pω̃q ď C}I
1{2
V ´ I

1{2
Ṽ
}
µ̃
H1pΩq.

We end up getting the expected inequality by combining (3.11), (3.12) and (3.11),
with µ “ minpµ0, µ`, µ̃q. �

Appendix A

In this appendix, Ω is a bounded domain of Rn, n ě 2, with Lipschitz boundary
Γ. Let

L “ divpA∇ ¨q ` V,
where V P L8pΩq, A “ paijq is a symmetric matrix with coefficients in W 1,8pΩq
and there exist κ ą 0 and Λ ą 0 so that
(A.1) Apxqξ ¨ ξ ě κ|ξ|2, x P Ω, ξ P Rn,
and
(A.2) }V }L8pΩq ` }a

ij}W 1,8pΩq ď Λ, 1 ď i, j ď n.

Recall the following three-ball interpolation inequality, proved in [11] when V “ 0
but still holds for any bounded V (see also [14]).

Theorem A.1. Let 0 ă k ă ` ă m. There exist C ą 0 and 0 ă s ă 1, only
depending on Ω, k, `, m, κ and Λ, such that
(A.3) }v}L2pBpy,`rqq ď C}v}sL2pBpy,krqq}v}

1´s
L2pBpy,mrqq,

for all v P H1pΩq satisfying Lv “ 0 in Ω, y P Ω and 0 ă r ă distpy,Γq{m.

We know from [21, Theorem 2.4.7, page 53] that any Lipschitz domain has the
uniform interior cone condition, abbreviated to UICP in the sequel. In particular,
there exist R ą 0 and θ P

‰

0, π2
“

so that, to any x̃ P Γ corresponds ξ “ ξpx̃q P Sn´1

for which
Cpx̃q “ tx P Rn; 0 ă |x´ x̃| ă R, px´ x̃q ¨ ξ ą |x´ x̃| cos θu Ă Ω.

Define the geometric distance dDg , on a bounded domain D of Rn, by

dDg px, yq “ inf t`pψq; ψ : r0, 1s Ñ D Lipschitz path joining x to yu ,
where

`pψq “

ż 1

0
| 9ψptq|dt
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is the length of ψ.
Note that, according to Rademacher’s theorem, any Lipschitz continuous func-

tion ψ : r0, 1s Ñ D is almost everywhere differentiable with | 9ψptq| ď k a.e. t P r0, 1s,
where k is the Lipschitz constant of ψ.

Lemma A.1. Let D be a bounded Lipschitz domain of Rn. Then dDg P L8pDˆDq.

A proof of this lemma can be found in [18].
In the rest of this text

dg “ }dΩ
g }L8pΩˆΩq.

Proof of Theorem 2.1. In this proof C denote a generic constant that can depend
only on Ω, v0, V0, κ and M .

Step 1. Let y, y0 P Ω3δ and ψ : r0, 1s Ñ Ω be a Lipschitz path joining y0 to y so
that `pψq ď dΩ

g py0, yq`1. Let t0 “ 0 and tk`1 “ inftt P rtk, 1s; ψptq R Bpψptkq, δqu,
k ě 0. We claim that there exists an integer N ě 1 so that ψp1q P BpψptN q, δq. If
not, we would have ψp1q R Bpψptkq, δq for any k ě 0. As the sequence ptkq is non
decreasing and bounded from above by 1, it converges to t̂ ď 1. In particular, there
exists an integer k0 ě 1 so that ψptkq P B

`

ψpt̂q, δ{2
˘

, k ě k0. But this contradicts
the fact that |ψptk`1q ´ ψptkq| “ δ, k ě 0.

Let us check that N ď N0, where N0 only depends on dg and δ. Pick 1 ď j ď n
so that

max
1ďiďn

|ψiptk`1q ´ ψiptkq| “ |ψjptk`1q ´ ψjptkq| .

Then

δ ď n |ψjptk`1q ´ ψjptkq| “ n

ˇ

ˇ

ˇ

ˇ

ż tk`1

tk

9ψjptqdt

ˇ

ˇ

ˇ

ˇ

ď n

ż tk`1

tk

| 9ψptq|dt.

Consequently, where tN`1 “ 1,

pN ` 1qδ ď n
N
ÿ

k“0

ż tk`1

tk

| 9ψptq|dt “ n`pψq ď npdg ` 1q.

Therefore

N ď N0 “

„

npdg ` 1q
δ



.

Here rnpdg ` 1q{δs is the integer part of npdg ` 1q{δ.
Let yk “ ψptkq, 0 ď k ď N . If |z ´ yk`1| ă δ then

|z ´ yk| ď |z ´ yk`1| ` |yk`1 ´ yk| ă 2δ.

In other words, Bpyk`1, δq Ă Bpyk, 2δq.
We get from Theorem A.1

(A.4) }u}L2pBpyj ,2δqq ď C}u}1´sL2pBpyj ,3δqq}u}
s
L2pBpyj ,δqq

, 0 ď j ď N.

Set Ij “ }u}L2pBpyj ,δqq, 0 ď j ď N and IN`1 “ }u}L2pBpy,δqq. Since Bpyj`1, δq Ă
Bpyj , 2δq, 1 ď j ď N ´ 1, estimate (A.4) implies

(A.5) Ij`1 ď CM1´s
0 Isj , 0 ď j ď N,

where we set M0 “ }u}L2pΩq.
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Let C1 “ C1`s`...`sN`1 and β “ sN`1. Then, by a simple induction argument,
estimate (A.5) yields

(A.6) IN`1 ď C1M
1´β
0 Iβ0 .

Without loss of generality, we assume in the sequel that C ě 1 in (A.5). Using
that N ď N0, we have

β ě β0 “ sN0`1 ě se´
κ
δ “ ψpδq, where κ “ npdg ` 1q| ln s|,

C1 ď C
1

1´s ,
ˆ

I0
M0

˙β

ď

ˆ

I0
M0

˙β0

.

These estimates in (A.6) gives

IN`1

M0
ď C

ˆ

I0
M0

˙ψpδq

.

In other words,
}u}L2pBpy,δqq

}u}L2pΩq
ď C

ˆ

}u}L2pBpy0,δqq

}u}L2pΩq

˙ψpδq

.

Applying Young’s inequality, we get from this inequality

(A.7) }u}L2pBpy,δqq ď C
´

ε
1

1´ψpδq }u}L2pΩq ` ε
´ 1
ψpδq }u}L2pBpy0,δqq

¯

,

ε ą 0, y, y0 P Ω3δ.
Step 2. Fix x̃ P Γ so that |upx̃q| “ }u}L8pΓq. Let ξ “ ξpx̃q be as in the definition

of the UICP. Let x0 “ x̃ ` δξ, δ ď R{2, d0 “ |x0 ´ rx| “ δ and ρ0 “ d0 sin θ{3.
Note that Bpx0, 3ρ0q Ă Cpx̃q.

By induction in k, we construct a sequence of balls pBpxk, 3ρkqq, contained in
Cpx̃q, as follows

$

&

%

xk`1 “ xk ´ αkξ,
ρk`1 “ µρk,
dk`1 “ µdk,

where
dk “ |xk ´ x̃|, ρk “ ϑdk, αk “ p1´ µqdk,

with
ϑ “

sin θ
3 , µ “

3´ 2 sin θ
3´ sin θ .

Note that this construction guarantees that, for each k, Bpxk, 3ρkq Ă Cpx̃q and
(A.8) Bpxk`1, ρk`1q Ă Bpxk, 2ρkq.

We get, by applying Theorem A.1, that there exist C ą 0 and 0 ă s ă 1, only
depending on Ω, v0 and V0, so that

}u}L2pBpxk,2ρkqq ď C}u}1´sL2pBpxk,3ρkqq}u}
s
L2pBpxk,ρkqq

(A.9)

ď CM1´s}u}sL2pBpxk,ρkqq
.

In light of (A.8), (A.9) gives
(A.10) }u}L2pBpxk`1,ρk`1qq ď CM1´s}u}sL2pBpxk,ρkqq

.
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Let Jk “ }u}L2pBpxk,ρkqq, k ě 0. Then (A.10) is rewritten as follows

Jk`1 ď CM1´sJsk .

An induction in k yields

Jk ď C1`s`...`sk´1
M p1´sqp1`s`...`sk´1

qJs
k

0 .

That is

(A.11) Jk ď
”

C
1

1´sM
ı1´sk

Js
k

0 .

Applying Young’s inequality we obtain, for any ε ą 0,

Jk ď p1´ skqε
1

1´sk C
1

1´sM ` skε´
1
sk J0(A.12)

ď ε
1

1´sk C
1

1´sM ` ε´
1
sk J0

ď Cε
1

1´skM ` ε´
1
sk J0.

Now, since u P C0,1{2pΩq,

|upx̃q| ď rus1{2|x̃´ x|
1{2 ` |upxq|, x P Bpxk, ρkq.

Hence

|Sn´1|ρnk |upx̃q|
2 ď 2rus21{2

ż

Bpxk,ρkq

|x̃´ x|dx` 2
ż

Bpxk,ρkq

|upxq|2dx.

Or equivalently

|upx̃q|2 ď 2|Sn´1|´1ρ´nk

˜

rus21{2

ż

Bpxk,ρkq

|x̃´ x|dx`

ż

Bpxk,ρkq

|upxq|2dx

¸

.

A simple computation shows that dk “ µkd0. Then

|x̃´ x| ď |x̃´ xk| ` |xk ´ x| ď dk ` ρk “ p1` ϑqdk “ p1` ϑqµkd0.

Therefore,

|upx̃q|2 ď 2
´

M2p1` ϑq1{2d1{2
0 µk ` |Sn´1|´1pϑd0q

´nµ´nk}u}2L2pBpxk,ρkqq

¯

implying, when d0p“ δq ď 1,

(A.13) |upx̃q| ď C
´

Mµk{2 ` µ´nk{2δ´n{2Jk

¯

.

Inequalities (A.12) and (A.13) gives

(A.14) |upx̃q| ď C
´

µk{2M ` µ´nk{ε1{p1´s
k
qδ´n{2M ` µ´nk{2ε´1{skδ´n{2J0

¯

.

We get, by choosing ε “ µp1´s
k
qpn`1qk{2 in (A.14),

|upx̃q| ď C
´

µk{2M ` µk{2δ´n{2M ` µ´pn`1qk{p2skq`k{2δ´n{2J0

¯

.

Hence

(A.15) |upx̃q| ď Cδ´n{2
´

µk{2M ` µ´pn`1qk{p2skqJ0

¯

,

by using δ ď diampΩq.
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Let t ą 0 and k be the integer so that k ď t ă k ` 1. It follows from (A.15)

(A.16) |upx̃q| ď Cδ´n{2
´

µt{2M ` µ´tpn`1q{p2stqJ0

¯

.

Let p “ pn` 1q{2` | ln s|. Then (A.16) yields

(A.17) |upx̃q| ď Cδ´n{2
´

µt{2M ` µ´e
pt

J0

¯

.

Putting ept “ 1{ε, 0 ă ε ă 1, we get from (A.17)

(A.18) |upx̃q| ď Cδ´n{2
´

εβM ` e| lnµ|{εJ0

¯

,

where β “ | lnµ|{p2pq.
Step 3. A combination of (A.7) and (A.18) entails, with 0 ă ε ă 1 and ε1 ą 0,

|upx̃q| ď Cδ´n{2
´

εβM ` e| lnµ|{ε
´

ε
1{p1´ψpδqq
1 M ` ε

´1{ψpδq
1 }u}L2pBpy0,δqq

¯¯

.

Hence, where ` “ n{2 and ρ “ | lnµ|,

}u}L8pΓq ď Cδ´`
´

εβM ` eρ{ε
´

ε
1{p1´ψpδqq
1 M ` ε

´1{ψpδq
1 }u}L2pBpy0,δqqn

¯¯

.

In this inequality we take ε1 “ εβp1´ψpδqqe´ρp1´ψpδqq{ε. Using that

ε
´1{ψpδq
1 ď epρ`βqp1´ψpδqq{pεψpδqq,

we obtain in a straightforward manner

}u}L8pΓq ď Cδ´`
´

εβM ` epρ`βqp1´ψpδqq{pεψpδqq}u}L2pBpy0,δqqn

¯

.

If φpδq “ pρ`βqp1´ψpδqq{ψpδq then we can rewrite the previous estimate as follows

}u}L8pΓq ď Cδ´`
´

εβM ` eφpδq{ε}u}L2pBpy0,δqqn

¯

,

or equivalently

(A.19) }u}L8pΓq ď Cδ´`
´

t´βM ` etφpδq}u}L2pBpy0,δqq

¯

, t ą 1.

If M{}u}L2pBpy0,δqq ą eφpδq, we find t ą 1 so that M{}u}L2pBpy0,δqq “ tβetφpδq. The
estimate (A.19) with that t yields

}u}L8pΓq ď Cδ´`M

ˆ

1
pβ ` φpδq

ln
ˆ

M

}u}L2pBpy0,δqq

˙˙´β

.

In light of the inequality }u}L8pΓq ě η, this estimate implies

η ď Cδ´`M

ˆ

1
β ` φpδq

ln
ˆ

M

}u}L2pBpy0,δqq

˙˙´β

.

This inequality is equivalent to the following one

(A.20) Me´Cpβ`φpδqqδ
´`{β

pM{ηq1{β ď }u}L2pBpy0,δqq.

Otherwise,
(A.21) Me´φpδq ď }u}L2pBpy0,δqq.

We derive from (A.20) and (A.21) that, there exist C ą 0 and δ˚ so that

e´e
c{δ

ď }u}L2pBpy0,δqqn , 0 ă δ ď δ˚.

Obviously, a similar estimate holds for δ ě δ˚. �
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