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Abstract

The purpose of this article is to solve rough differential equations
with the theory of the regularity structures. These new tools recently
developed by Martin Hairer for solving semi-linear partial differential
stochastic equations were inspired by the rough path theory. We take
a pedagogical approach to facilitate the understanding of this new the-
ory. We recover results of the rough path theory with the regularity
structure framework. Hence, we show how to formulate a fixed point
problem in the abstract space of modelled distributions to solve the
rough differential equations. We also give a proof of the existence of a
rough path lift with the regularity structure theory.

Contents
1 Introduction
2 Notation

3 Holder spaces
3.1 Classical Holder spaces with a positive exponent . . . . . . .
3.2 Localised test functions and Holder spaces with a negative
exponent . . . ... Lo oL

4 Elements of rough path theory
4.1 The space of rough paths . . . . ... .. ... ... .....
4.2 Controlled rough paths . . . . . .. ... ... ... ... ...
4.3 Integration against rough paths . . . . . .. . ... ... ...
4.4 Young’s integration . . . . . . . . ... ...
4.5 Controlled rough path integration . . . . .. . ... ... ...

10
10
11
12

*Institut de Mathématiques de Toulouse. CNRS UMR 5219. Université Paul
Sabatier 118, route de Narbonne, F-31062 Toulouse Cedex 09, France. Email:

antoine.brault@math.univ-toulouse.fr



INTRODUCTION 2

5 Regularity structures 15
5.1 Definition of a regularity structure . . . .. ... .. ... .. 15
5.2 Definition of amodel . . . . . . ..o 17
5.3 The rough path regularity structure . . . .. ... ... ... 18

6 Modelled distributions 20
6.1 Definition and the reconstruction operator . . . . . . . . . .. 20
6.2 Modelled distribution of controlled rough paths . . . . . . .. 23

7 Rough path integral with the reconstruction map 24

8 Existence of a rough path lift 28

9 Composition with a smooth function 30

10 Solving the rough differential equations 33

List of symbols 36

1 Introduction

Suppose that we want to solve the following ordinary differential equation
dyr = F(y)dWy, Yo =¢§ (1)

where W : [0,T] — R™ and F : R? — £(R",R%) are regular functions. The
equation (1) can be reformulated as

vt e [OaT]v y =&+ /t F(yu)qu (2)
0

As W is smooth, the equation (1) is well-defined as

t
=€+ / Flya) Wadu,
0

Therefore, it can be solved by a fixed-point argument.

Unfortunately, there are many natural situations in which we would like
to consider the equation of type (2) for an irregular path W. This is notably
the case when dealing with stochastic processes. For example the paths of
the Brownian motion are almost surely nowhere differentiable [KS12|. It is
then impossible to interpret (1) in a classical sense. Indeed, even if W is
understood as a distribution, it is not possible in general to define a natural
product between distributions, as y is itself to be thought as a distribution.

On the one hand, to overcome this issue, It0’s theory [KS12| was built to
define properly an integral against a martingale M (for example the Brow-
nian motion) : fg ZwdM,,, where Z must have some good properties. The
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definition is not pathwise as it involves a limit in probability. Moreover, this
theory is successful to develop a stochastic calculus with martingales but
fails when this property vanishes. This is the case for the fractional Brow-
nian motion, a natural process in modelling. Another bad property is that
the map W +— y is not continuous in general with the associated uniform
topology.

On the other hand, L.C. Young proved in [You36| that we can define the
integral of f against g if f is a-Holder, g is S-Holder with o+ 8 > 1 as

/ fdg= lim 3" F(u)(g(v) — g(u)),
0 cp

|P|—0
u,v

where P is a subdivision of [0,¢] and |P| denotes its mesh. This result is
sharp, so that it is not possible to extend it to the case a 4+ 5 < 1 [You36].
If W is a-Holder it would seem natural to think that y is a-Holder, too. So
assuming o < 1/2 then 2o < 1, and Young’s integral fails to give a meaning
to (1). The fractional Brownian motion which depends on a parameter H
giving its Holder regularity cannot be dealt with Young’s integral as soon as
H<1)2.

T. Lyons introduced in |[Lyo98| the rough path theory which overcomes
Young’s limitation. The main idea is to construct for 0 < s <t < T an
object W, ; which “looks like” fst(Wu — Ws)dW,, and then define an integral
against (W, W). This theory enabled to solve (1) in most of the cases and
to define a topology such that the 1t6 map (W, W) — y is continuous. Here,
the rough path (W, W) “encodes” the path W with algebraic operations. It
is an extension of the Chen series developed in [Che57] and [Lyo94] to solve
controlled differential equations. Since the original article of T. Lyons, other
approaches of the rough paths theory were developed in [Dav07|, [Gub04]
and |Bail5|. The article [CL14] deals with the linear rough equations with
a bounded operators. For monographs about the rough path theory, the
reader can refer to [LQO02| or [FV10].

Recently, M. Hairer developed in [Hail4| the theory of the regularity
structures which can be viewed as a generalisation of the rough path theory
to deal with singular stochastic partial differential equation (SPDE). Another
fruitful theory was introduced to solve SPDE in |[GIP12] and also studied in
[BBF15].

Here we propose to solve (1), in the case where the Holder regularity of W
is in (1/3,1/2], with the theory of the regularity structures. In particular, we
build the rough integral (Theorem 4.16) and the integral of W againt itself
(Theorem 4.6). Our proofs of these results are different from the classical
approach. There are based on the reconstruction theorem. Moreover, we use
a different way that what is done in [FH14| (chapter 13).

The main goal of this approach is to make this new theory understand-
able to people who are familiar with rough differential equations or ordinary
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differential equations. In Section 3.1 we introduce the Hoélder space which
allows us to “measure” the regularity of a function. Then, we present the
rough path theory in Section 4. In the Sections 5 and 6 we give the frame-
work of the theory of the regularity structures and the modelled distributions
for solving (1). We prove in Sections 7 and 8 the existence of the controlled
rough path integral and the existence of a rough path lift. Finally, after
having defined the composition of a function with a modelled distribution in
Section 9, we solve the rough differential equation (1) in Section 10.

2 Notation

We denote by L(A, B), the set of linear continuous maps between two vector
spaces A and B. Throughout the article, C' denotes a positive constant
whose value may change. For two functions f and g, we write f < g if
there is a constant C' such that f < Cg. The symbol := means that the
right hand side of the equality defines the left hand side. For a function Z
from [0,77] to a vector space, its increment is denoted by Zs; := Z; — Z,.
If Xi,..., X} are k vectors of a linear space, we denote by Vect(Xj, ..., Xi)
the subspace generated by the linear combinations of these vectors. Let T
be a non-negative real, we denote by [0,7] a compact interval of R. For a
continuous function f : [0,7] — E, where (E,||-||) is a Banach space, we
denote by || f|,, 7 the supremum of || f(¢)|| for ¢ € [0,T]. The tensor product
is denoted by ®.

3 Holder spaces

3.1 Classical Holder spaces with a positive exponent

We introduce Hoélder spaces which allow us to characterize the regularity of
a non-differentiable function.

Definition 3.1. For 0 < a < 1 and T > 0, the function f : [0,7] — E is

a-Holder if .
wp WO—SON
s#t€[0,T) ’t - S’

We denote by C*(E) the space of a-Hdélder functions equipped with the
emon £ = )]
— f(s
[fllaz = sup :
T seor It —sl®

If & > 1 such that & = g+ where ¢ € Nand 8 € [0,1), we set f € C*(E)
if f has ¢ derivatives and f(@ is -Holder.
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We denote by C* = C%(R™). For ¢ € N, we denote by C} the set of all
functions f € C? such that

q
Iy =D |£9 . (3)
k=0

where f(*) is the derivative of order k (f©) = f).

Remark 3.2. The linear space of a-Holder functions C%(FE) is a non separable
Banach space endowed with one of the two equivalent norms || f(0)[|+|| f|[, 7
or [ flle + 1 fllaz-

Remark 3.3. If f is a-Holder on [0,7], then f is S-Holder for 5 < a, i.e.
CYE) c CA(E).

3.2 Localised test functions and Ho6lder spaces with a nega-
tive exponent

In the next section, we define a model of a regularity structure. A model
maps 7 with the space of Schwartz distributions D’(R,R™), i.e., the space
of linear continuous forms from D(R,R™) (the space of smooth functions
compactly supported from R to R™ with the topology of uniform convergence
over all compact intervals). For r > 0, we denote by B, the space of all
functions in n € C} compactly supported on [—1,1], such that ||77||C; <1

We define Hélder spaces with negative exponent which is a space of dis-
tributions.

Definition 3.4. For A > 0, s € R and a test function n € B,, we define the
test function localised in s by

o (t) = %n <t 3 S) ,

Remark 3.5. The lower is A, the more 1) is localised around s, as can be
seen in Figure 1.

for all t € R.

Remark 3.6. We work here with t, s € R, because we want to solve stochastic
ordinary differential equations. But in the case of stochastic partial differ-
ential equations, the parameters ¢ and s belong to R® where e is an integer,
see |[Hail4].

Definition 3.7. For a < 0, we define the Holder space C“ as the dual of Cjj
where r is an integer strictly greater than —a and such that for any £ € C¢
the following estimate holds

[€(n2)] < (D), (4)
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Figure 1: Representation of 70 for s = 1, A € {0.5,0.2,0.1,0.05} and with
1(s) = exp(—1/(1 — s)) L1 1)(s)-

where C(T) > 0 is a constant uniform over all s € [0,7], A € (0,1] and
n € B;.

We define the semi-norm on C“ as the lowest constant C'(T') for a fixed
compact [0,77], i.e

&)
|

1€llo == sup sup sup
s€[0, T n€Br A€(0,1]

Remark 3.8. The space C* does not depend on the choice of r, see for
example [FH14| Exercise 13.31, p. 2009.

Remark 3.9. With Definition 3.1, we can give a meaning of an a-Holder
function for v € R. Moreover it is possible to show that if f is a function in
C® with a = ¢+ § > 0 where ¢ is an integer and 8 € (0, 1), then for every
x € [0, 7] and localised functions ¢?,

[(f = Pa)(62)] < CAP,

where C' is uniform over z € [0,7], A € (0,1] and ¢ € B, (r a positive
integer), P, is the Taylor expansion of f of the order ¢ in z, and f — P, is
view as the canonical function associated.

Now, when we say that f € C* we should distinguish two cases :

e if >0, f is an a-Holder function in the sense of Definition 3.1

o if « <0, fis an a-Holder distribution in the sense of Definition 3.7.
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We give here a characterization of the space C* for a € (—1,0) which is
useful to make a link between the rough path and the regularity structures
theories.

Lemma 3.10. For any 8 € (0,1), the distribution ¢ € CP~1 if and only if
there exist a function z € C? such that 2(0) = 0 and

Vn € Bi, £(n) = —(z,7). (5)
Which means if z is view as a distribution that 2’ = &.

The proof of Lemma 3.10 requires introducing elements of the wavelet
theory which can be found in [Mey95].

Theorem 3.11. There exist ¢,v € C§(R) such that for alln € N
(g% == 22(2" - —k), k€ Z} U {] := 27/ 2p(2) - k), k€ Z, j > i} (6)

is an orthonormal basis of L*(R). This means that for all f € L?>(R), i € N
we can write

+0o0
F@& =D (LU + > (f, b (t), (7)
j>i keZ keZ

where the convergence is in L?(R). Moreover, we have the very useful prop-
erty,

/ w(t)tkdt = 0, (8)
for k € {0,1}.

Remark 3.12. The notation in Definition 3.4 for 72 and in Theorem 3.11 for
v, V7 are different.

We now procede to the proof of Lemma 3.10.
Proof of Lemma 5.10. The first implication is trivial and does not require

the wavelet analysis. If there exists z € C“ such that for any n € Cf,
&(n) = —(z,n), then for A € (0,1) and s € R,

) =5z [ =i (57 au

_ _é /R(z(u) — 2(s))n <“ . 3> du,

where the last equality holds because n is compactly supported. So finally,
with n € B, we obtain

1 o
€0 < 5 nller 121, A%, (9)
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so &€ CoL,
Now if £ € C*~! for a € (0,1) we define for t € [0, 1],

=S [+ Yted) [ ol (10)

keZ jeEN keZ

where ¢, 1 € C} are defined in Definition 3.11 and are compactly supported
in [0, 1].

We can assume that ¢, are compactly supported in [0,1], thus the
functions ¢} are compactly supported in [277k,277 (k4 1)]. We rewrite (10)

as _
291

=60 [0+ X 6ud [ ol (11)

JEN k=0

because the terms <wi, 1jp,1]) vanish for k ¢ [0,27 —1].
We need to justify that the series on the right hand side of (11) is con-
vergent in C'*. We denote for any integer N € N,

N
Sy = Z Sjs (12)

j=0
where S;(t) := Zj:_ol (€, 1[1%) fg d}i According to the continuity of £ and (4),
(€9} < O, and |(€,4)| < CP/27e, (13)

For |t — s| < 1, let jo < N be an integer such that 2770 < |t — s| < 27Jo+L,
This is always possible for N large enough. On the one hand, for 5 < jo,

155(t) = Sj(s)| < ||j[ It — s
271

<[t —s| sup > (&) e (w)]

u€l0,1] =
< 2=t — g,

where we use the fact that sz:“(;l [¥(27 — k)| < 1 because 9 is compactly

supported on [0, 1]. On the other hand, for j > jo,

155(t) = Si(s)] < 21155l (14)
27 -1
<2 sup Y & w1277 (), (15)
u€l0,1] 5
271
< 20279 sup Y [(2u— k) (16)

u€l0,1] ;7
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where ¢) := fg’ . But fR = 0, which implies that 1 is compactly supported,
and consequently 22 (200 — k)| < €. So finally, for j > jo,
[S;(t) = Sj(s)] < C279%,. (17)

Thus, combining (16), (17),

N
> 18t - |<C|t—s|2231 ) 4 ¢ Z o—ja
§=0

Jj=jo+1
<Ot - 5|a,

where C’ is a new constant. This proves that S% is converges in C* and
justifies the definition of z in (11).

Now, we want to check that & = Z in the distribution framework. For
any n € C3,

i = ey /m, )+ S e vl /W,'

jEN keZ
== (€)= > D (e ulwln)
keZ jEN kEZ
—(E> %) = Nl (i, m))
keZ jEN kEZ
= _<§777>7

where the commuting of the serie and £ is justified by the continuity of £ in
C} and the convergence of the following serie in Cf,

N 27-1

Sho=Y ">l m). (18)

7=0 k=0

Indeed, we have

(], m)] <279/ /1/1 n(277 (z + k))dz

<2792 / [(@)||n27 (z + k) —n(277 k) — 0 (277k)(272)|dw
< |Wllog ||7']] o, 27772275,

where we use the fact that f?/}(t)tk = 0 for an integer £ < 1. This implies
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that

N ||27-1 o N |[27-1 N |[27-1

MDD vl <> Z UACRN DY szw (4], )

=0 || k=0 o1 J=0 || k= o =0 k=0 o

> 274y 27 [l 17
=0 =0

which proves that S”N is absolutely convergent in C&.
Now by density of C? in C& and the continuity of £ on C’é we conclude
that (z,7) = —(¢,n) holds for n € C}. [ |

Remark 3.13. According to Theorem 3.11 and (11), we have for all integer
1 €N,
271

<)= wk/cbwzzgwk/wk (19)

7> k=0

4 Elements of rough path theory

We introduce here the elements of the rough path theory for solving equa-
tion (2). The notions discussed are reformulated in the regularity structure
framework in the following sections. For an extensive introduction the reader
can refer to |[FH14|, and for complete monographs to [LQ02, FV10].

4.1 The space of rough paths

Let W be a continuous function from [0, 77 to R".

We set o € (1/3,1/2]. We define a rough path associated to W € C?.
Because W is not smooth enough, we should improve it by adding a new
structure. The main idea of the rough path theory is to say that we only need
to define an object which has the same algebraic and analytical properties
as fst W, ® dW,, the integral of the increment of the path against itself.

The importance of the iterated integrals can be understood with the
classical linear differential equations where the solutions are provided with
the exponential function. Indeed, if W is a differential function from [0, 7]
to R, the solutions of

dyt = ytth7 (20)

are

t t rta
Ysit = exp(Ws,t) =1 —|—/ thl,S —|—/ / th2,8th17S =+ (21)

Definition 4.1. An a-Hélder rough path with o € (1/3,1/2] is an ordered
pair W := (W, W) of functions, where W : [0,T] — R™ and W : [0, T]?
R™ @ R™ such that
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1. For s,u,t € [0,T), Wy, — Wy, — W, = W, ® Wy, (Chen’s relation),
Le., for every 1 <i,j <n, Wy} — Wgi, — Wyl = Wi W) ..
2. The function W is a-Holder and W is 2a-Holder in the sense
Wt

|W| = sup ——5- < +oo.
2T e It — s

One calls W the second order process. We denote by €< the space of a-Hélder
rough paths endowed with the semi-norm

IWllaz = IWllaz + [[Wllya7 -

Remark 4.2. The second order process W, ; can be thought of as fst Wsu®
dW,,.

Remark 4.3. The first condition which is called Chen’s relation represents
the algebraic property of fst Wi ® dW,,. Indeed, if W is smooth,

t u t )
[ wiiiao = [Cwi o - [l = wiv,

forall1<i¢,j<nand 0<s<u<t.

Remark 4.4. The second condition is a natural analytic property. Indeed,
if W e C%, then typically for A € R, W), ¢ looks like A*W, ;. Hence,
according to the first property Wy, y; looks like /\Q‘XWM. So we should think
of W as a 2a-Hoélder function.

Remark 4.5. If W is a second order process of W, for any 2a-Holder function
F taking values in R" @ R", Wy ; + F; — F} satisfies also the two properties
of Definition 4.1. So if W exists, it is not unique at all.

It is always possible to build W from W (see [LV07]), but it is not easy
in practice.

Theorem 4.6. For any W € C* with o € (1/3,1/2] there exists a rough
path lift W, ie. W = (W, W) € €% in a way that the map W — W is
continuous for the topology defined in Definition 4.1.

Proof. We will prove of this theorem in the case a € (1/3,1/2] in Section 8
as an application of the theory of regularity structures. |

4.2 Controlled rough paths

The aim of this section is to define an integrand against W which we are
going to call a controlled rough path by W. This approach was developed
by Gubinelli in [Gub04]. We introduce a function with the same regularity
of W which is not differentiable with respect to time but with respect to W
itself. This is the concept of the Gubinelli’s derivative.
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Definition 4.7. Let W be in C%, we call a controlled rough path by W the
pair (y,y') € CY(R?) x C*(R¥") such that

Ysit = YW + R, (22)

with [|RY[|y, 7 < +00. The function y' is the Gubinelli’s derivative of y with
respect to W.

We denote Z3% the space of the controlled rough paths (y,y') driven by
W endowed with the semi-norm

(A1 oy 1 P (23)

Remark 4.8. The identity (22) looks like a Taylor expansion of first order
fr=Ffs+ £t =5)+ O(t = 5),

but (W — W) substitutes the usual polynomial expression (¢t — s), v, the
normal derivative and the remainder term is of order 2a¢ whereas order 2.
The theory of regularity structures is a deep generalization of this analogy.

Remark 4.9. The Gubinelli’s derivative 3’ is matrix-valued which depends
on y and W.

Remark 4.10. Unlike € in the Definition 4.1, which is not a linear space,
23 is a Banach space with the norm [Jyol| + ||yl + | (v, y’)Hg‘;,T or the norm

19lloor + 1Y |7 + I (¥, y’)||12/‘;7T. These two norms are equivalent.

Remark 4.11. The uniqueness of 3’ depends on the regularity of W. If W
is too smooth, for example in C?%, then y is in C?®, and every continuous
function 3’ matches with the definition of the Gubinelli’s derivative, partic-
ularly ¥/ = 0. But we can prove that y’ is uniquely determined by y when
W is irregular enough. The reader can refer to the Chapter 4 of [FH14| for
detailed explanations.

Remark 4.12. Tt is not trivial to exhibit a non trivial controlled rough path.
In fact, most of functions of the space match with solutions of rough differ-
ential equations.

4.3 Integration against rough paths

In the linear case, the differential equation (1) can be restated on an integral
form as

¢
ye=¢ +/ YudWy,. (24)
0

To give a meaning to this equation we must define an integral driven by an
irregular noise W for a set of suitable integrands y that we make precise
now.
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First we define Young’s integral for the case where W € C¢, y € C# with
a+ B > 1. The solution y should inherit of the regularity of W. So Young’s
theory allows us to solve (24) when o > 1/2 (2a > 1).

Then, we show that if « + 8 < 1, Young’s integration fails and that we
have to “improve” the path of W. We build the rough integral of a controlled
rough path (y,y') € Z2% against a rough path (W, W) € €.

4.4 Young’s integration

Young’s integral was developed by Young in [You36] and then used by T.
Lyons in [Lyo94| to deal with differential equations driving by a stochastic
process in the nineties.

It is the same construction as for the Riemann sum. Let P be a subdivi-
sion of [s, t], we denote by |P| the mesh of P. We want to define the integral
as follows:

t
/5 YudWy, = |7131‘I_H>0 Z quu,’v?
u,vEP

where u,v € P denotes successive points of the subdivision.

Theorem 4.13. If W € C® and y € CP with a + 8 > 1, Zu,vG’P YuWap
converges when |P| — 0. The limit is independent of the choice of P, and
1t 1s denoted as fst Yy dWy,.. Moreover the bilinear map (W,y) — f; YudW,, is
continuous from C* x CP to C?.

Proof. For the original proof cf. [You36]. |
Some important properties of the classical Riemann integration holds.
Proposition 4.14. 1. Chasles’ relation holds.

2. When t — s we have the following approrimation

t
/ yud Wy = yaWe s + O([t — 5|5, (25)
S

3. The map t — fst YudWo, is a-Hélder continuous.

4. If F is C', F(y) is CB-Hélder and the Young integral fst F(yy)dW,, is
well-defined as above.

Remark 4.15. Unfortunately with Young’s construction, when o < 1/2; we
can find two sequences of smooth functions W™ and W?" converging to W
in C* but such that fStF(Wl’")dWL" and fst F(W?2m™),dW?2" converge to
two different limits for a smooth function F' . See for an example the Lejay’s
area bubbles in [Lej12].
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4.5 Controlled rough path integration

The rough integral relies on the controlled rough paths introduced previously.
Remark 4.15 shows that if y, W € C“, we cannot define a continuous integral
such as fst yudW,, looks like ysWs ; when t — s. We must use the structure of
controlled rough paths to define a “good” integral of y against W. Then, given
a rough path W € €“ and considering a controlled rough path (y,y’) € .@a?
we would like to build an integral fst y,dW,, as a good approximation of
ysWst + v, Wy, when t — s.

Theorem 4.16. For o € (1/3,1/2], let W= (W, W) € €“ be an a-Hdélder
rough path. Given a controlled rough path driven by W : (y,y') € 23& we
consider the sum Zu,ve? YuWao + Y, Wy, where P is a subdivision of [s,t]
(s <t €[0,T]). This sum converges when the mesh of P goes to 0. We
define the integral of y against W as

t
/ yuqu = lim Z quu,v"i_yq:Wu,v-
s [P|—=0
u,vEP

The limit exists and does not depend on the choice of the subdivision.
Moreover, the map (y,y') — (t € [0,T] — f(f Yud Wy, y) from 2% into itself
18 continuous.

Proof. The classical proof uses the Sewing Lemma. We can find all the
details in [FH14|. Here we are going to give a proof with the reconstruc-
tion map which is one of the main theorems of the theory of the regularity
structures. |

For solving (1), we need to show that F(y;) remains a controlled rough
path if F' is a smooth function. The following Proposition shows that
(F(y), (F(y))") which is defined by :

F(y) = F(yt), F(ZJ)Q = F/<yt)yt7 (26)

is a controlled rough path.

Proposition 4.17. Let F € C? be a function from R™ to R? x R™ twice
continuously differentiable such that F' and its derivative are bounded. Given
(y,y) € D3 let (F(y), F(y)) € 2% defined as above (26). Then, there is
a constant Co, 1 depending only on o and T' such as

1F ), F®) |30 7 < Ca [ Fllez (14 W2 [w6]| + |y, ¥/ g0. )
where || Fllgz = | Flloo + 17 lloo + 17"l -

Proof. We can find the proof in [FH14|. This Theorem is equivalent to
Theorem 9.1, which is formulated in the regularity structure framework. M
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5 Regularity structures

5.1 Definition of a regularity structure

The theory of the regularity structures was introduced by Martin Hairer in
[Hail4]. The tools developed in this theory allow us to solve a very wide range
of semi-linear partial differential equations driving by an irregular noise.

This theory can be viewed as a generalisation of the Taylor expansion
theory to irregular functions. The main idea is to describe the regularity
of a function in each point and then to reconstruct this function with an
operator.

First we give the definition of a regularity structure.

Definition 5.1. A regularity structure is a 3-tuple . = (A, T,G) where

e The set of index A C R is bounded from below, locally finite and such
that 0 € A.

e The model space T is a graded linear space indexed by A : T =
@Doca Ta, where each T, is a non empty Banach space. The elements
of T, are said of homogeneity . For T € T, we denote ||7||, the norm
of the component of 7 in 7. Furthermore, 7y = Vect(1) is isomorphic
to R.

e The set G is a set of continuous linear operators acting on 7 such as
forTeg, I'(1)=1landT €Ty, I'T7—7T € @B<a7f’3' The set G is called
structure group.

Remark 5.2. We underline the elements of the model space for the sake of
clarity.
Remark 5.3. For m := min A so I't = 7 for every 7 € Tp,.

Let us explain the motivations of this definition. The classic polynomial
Taylor expansion of order m € N is given, between t € R and 0, where ¢
converges to 0 by

(k)
S !(O)tk‘

f(t) = P(t)+ o(t™), where P(t) =) -
k=0

In this case the approximation P of f is indexed by integers and the space T
is the polynomial space. For all h € R, the operator I';, associates a Taylor
expansion at point ¢, a Taylor expansion at a point ¢ + h. The polynomial
I'n(P(t)) — P(t) is of order less than m — 1 :

m (k)
Tn(P(t)) — P(t):=P(t+h) — P(t) = Z ! k'(O) ((t+ h)'C — tk).
k=0 ’
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Moreover we have the structure of group on (I'y,h € R) :
d—1 ,p
0
Iy o FhP =1y (Z > = f ( )Fh’((t + h)k)

— ka(o)(t+h+h’)k

k!
k=0

Hence, we can define the polynomial regularity structure as following.

Definition 5.4. We define 7! = (A, T1,G') the canonical polynomial
reqularity structure as

e Al = N is the index set.

e For k € A! we define 7, = Vect(X*). The subspace T;! contains the
monomial of order k. The polynomial model space is 7' = Dirca T

e For h € R, I‘,ll € G' is given by
Ih(XF) = (X + h1)¥.
For P, € El, there is a; € R such that P, = a;X*. We define the
norm on T;! by [Pyl = |ax|.

With the same arguments we define the polynomial regularity structure
and its model associated in R".

Definition 5.5. We define 9P = (AP, TP ,GP) the canonical polynomial
reqularity structure on R™ as

o AP = N is the index set.
e For § € AP, and k a multi-index of N” such that |k| := k1+---+k, =9,
we define 7% = Vect(X* := [, Xf", |k| = 8). This space T} is a

linear space of homogeneous polynomial with n variables and of order
6. For Ps; € Tf, there are real coefficients (ak)jk|=s such that Ps =

> [k|=s arX". We chose the norm on T¥ such that || Ps||; := 2 |kj=s |-
We define 77 = @ 4 T} as the polynomial model space.

e For h € R™, Ffl € GP is given by

Remark 5.6. The polynomial regularity structure is a trivial example of reg-
ularity structure which we introduce for a better understanding. But the
strength of this theory is to deal with negative degree of homogeneity.
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5.2 Definition of a model

Definition 5.7. Given a regularity structure .7 = (A, T,G), a model M =
(I1,T) is two sets of functions such that for s,¢,u € R

e The operator Il is continuous and linear from 7 to D'(R,R™).

I't s belongs to G, so it is a linear operator acting on 7.

The following algebraic relations hold: II,I'y ; = II; and I's ;I'; , = I's .

The following analytic relations hold : for every v > 0, < a < v
with o, 5 € A and 7 € T,, there is a constant C(7T',7) uniform over
s,t €10,T], A € (0,1], ¢ € B, such that

() (62)] < C(T, A |17lly and [Tue(r)llg < CT,7)t=s]"" |7, -

(27)
We denote respectively by [|IIf|,  and ||T'[[, ;- the smallest constants
such that the bounds (27) hold. Namely,

11 A
HH 4,7 *= Sup Sup sup sup sup U@M
) 86[07T} (beBr AE(O,I] a<lyT€ET, A H’Z—Ha
ITse ()]
and HI’H%T ;= sup sup sup 5 B

s#t€[0,T] B<a<y TE€T, It — Sfaf’g ||7——”a‘
The two operators ||-[|, ;- define semi-norms.

The easiest regularity structure which we can describe is the polynomial
one (see Definition 5.5). We can now define the model associated to this
regularity structure.

Definition 5.8. Given that JP = (AP, TP?,GP) the canonical polynomial
regularity structure on R™ defined in the Definition 5.5, we define the model
of the polynomial regularity structure MP = (IIP,T'?) such that for all x,y €
R"™ and k a multi-index of order n,

Hg(xk)(y) = ((yl - xl)kla SRR (yn - -’L‘n)k"%
[2, () = Ty (XF)

Proof. 1t is straightforward to check that this definition is in accordance with
the definition of a model (Definition 6.1 below). [

Remark 5.9. The operator II; which associates to an element of the abstract
space a distribution which approximates this element in s. Typically for
polynomial regularity structure on R,

(X*) = (t = (t —5)").
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Remark 5.10. In the model space, the operator I'; gives an expansion in a
point s, given an expansion in a point ¢t. For example

TL(XY) =T (X)) = (X + (s =)D~ (28)

Remark 5.11. The first algebraic relation means that if a distribution looks
like 7 near ¢, the same distribution looks like I's¢(7) near s. In practice,
we use this relation to find the suitable operator I'; . The second algebraic
relation is natural. It says that moving an expansion from u to s is the same
as moving an expansion from u to ¢ and then from ¢ to s.

Remark 5.12. The first analytic relation has to be understood as Il approx-
imating 7 € T, in s with the precision A*. The relation (28) shows that the
second analytic relation is natural. Indeed,

(X + (t—s)1)k = zk: (’j) (- oix,

1=0

so for ¢ < k,
coefficients.

th(ﬁ)m = (]:) |t—s|*=*, where (’f) = i!(kkii)! are the binomial

5.3 The rough path regularity structure

We now reformulate the results of Subsections 4.1 and 4.2 on rough paths
to build up a regularity structure.

For finding the regularity structure, we make some computations for
n = 1, then we give the proof in the general case after the Definition 5.13.

We fix a € (1/3,1/2] and a rough path W = (W, W) € €. We want to
show that @%‘}‘ can be viewed as a regularity structure.

Let (y,y') € 23 be a controlled rough path. According to Definition 4.7,
Yr = Ys Ty, Wi+ +O(|t—s**). So to describe the expansion of y with the reg-
ularity structure framework, we need the symbol 1 constant of homogeneity
0 and the symbol W of homogeneity «. This leads us to define the elements
of the regularity structure of the controlled rough path (y,y’) evaluated at
time t by

Y(t) =yl +yW

Moreover, we would like to build the rough path integral [ ydW in the
regularity structure context. So we introduce abstract elements W and W
which “represent” dW = d(W, W). The function W is a-Hoélder, so we define
the homogeneity of W as a — 1. The second order process W is 2a-Hélder,
which leads us to define the homogeneity of W as 2a — 1.

Finally, with the notation of Definition 5.1, A = {a—1,2a—1,0,a}, T =
Vect(W, W, 1, W). Besides, we order the elements in Vect(-) by homogeneity.

It remains to define G and an associated model. We start by building
the model (I, T"). For s € [0,7], II; should transform the elements of T
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to distributions (or functions when it is possible) which approximate this
elements at the point s. On the one hand we define

= [otwam, @) = [ oaw.,

where ¢ is a test function. Both integrals are well-defined because ¢ is
smooth. The homogeneities of W and W are negative, so they are mapped
with distributions. On the other hand, 1 and W have positive homogeneities,
SO we can approximate them in s with functions as

M)t =1, I (W)(t) := Wy

Now, we define I's (1) for every f € A and s,t € [0,7] and 7 € T3 .
According to Definition 5.7 : II,I's +(7)(¢) = ILI(7)(¢). Moreover, following
Definition 5.1, I'; s should be a linear combination of elements of homogeneity
lower than 7 and with the coefficient 1 in front of 7. First, it seems obvious
to set I's1(1) = 1, because 1 represents a constant. Then we can look for
[s+(W) = W+as,1 as a function where a, ¢ has to be determined. If it is not
enough, we would look for 'y ;(W) with more elements of our structure T
By linearity

Hs(w + as,tl)(u) = Ws,u + asg,

so we want that Wy, + a5 = II;(W)(u) = Wy y. Finally, we have to choose
Qs t = Wt s. Given that W has the lowest homogeneity of our structure, we
set T (W) = W in order to respect the last item of Definition 5.1. With
the same reason as for W and using the Chen’s relation of Defintion 4.1, we
find that T's (W) = W + W, (W (see the proof of Definition 5.13).

All we did here is in one dimension. With the same arguments we can
find the regularity structure of a rough path in R".

Definition 5.13. For o € (1/3,1/2], given a rough path W = (W, W) € ¢*
which take value in R" € (R" @ R™). We define the regularity structure of
rough paths I = (A", T",G") and the model associated M" = (II",I'") as

i) Index set A" := {av — 1,20 — 1,0, ar}.
ii) Model space T" :=T,_ 1D Ty, 1 DTy DT, , with
Tr = Vect(Whi=1,---,n), Tor 1 = Vect(Wh 4,5 =1,--- ,n)
Ty = Vect(1), Tr = Vect(W' i=1,---,n).

iii) For 4, j integers between 1 and n, h € R™ and I'} in the structure group
g, the following relations hold

LW =W THWY) =W + n'i?
I7(1):=1, and T5 (W) := W'+ n'l.
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iv) For i,j two integers between 1 and n, for s,t € [0,T],
I (W ( / S(t)AW;,  IIL(WH)( / () AW,

ML) =1,  MHW)() = Wy,
where ¢ is a test function.

v) For s,t € R, I'g; : =T, .-

Proof. Checking that this definition respects the definitions of a regularity
structure (Definition 5.1) and of a model (Definition 5.7) is straightforward.

Here we only show where the Chen’s relation of Definition 4.1 is funda-
mental to show that the algebraic condition of Definition 5.7 : H;Fg}tw =

II;W holds. ' ' '
According to the definition above I' §7tWi’j = Wi + h*WJ. So we have
L )(0) = [ oW, + W, [ewawl, @)

In differentiating the Chen’s relation W5), = W;Jt + WZ’] + W;tWtu with
respect to u we get dW5), = dWi’J + W tthJ Tt follows that

(I W79 (6) = / o(u) AW + W, / o(u)dWi, + Wi, / o(u)dW? .

(30)
Finally II7(I', ;W"7)(¢) = [ ¢(u dWZ’] = II}W, which is the algebraic con-
dition required. |

6 Modelled distributions

6.1 Definition and the reconstruction operator

We have defined a regularity structure. We now introduce the space of func-
tions from [0,7] to T, the model space of a regularity structure. These
abstract functions should represent at each point of [0, 7], a “Taylor expan-
sion” of a real function.

We showed in Section 5.3 how to build an abstract function Y (t) =
w1l + y;W which represents the expansion of a real controlled rough path
(y,v') at a point ¢. The most important result of the theory of regularity
structures is to show how to build a real function or distribution from an
abstract function. Namely, given an approximation of a function at each
time, how to reconstruct “continuously” the function. This is given by the
reconstruction map theorem.
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Definition 6.1. Given a regularity structure (A, 7,G) and a model M =
(IL,T), for v € R we define the space D], of modelled distributions as func-
tions f : [0,T] = T<y := @4, T such that for all s, € [0,7] and for all
B <~

1£65) = Coal 5Ol < OO~ 57,

where C(T') is a constant which depends only on 7.
Recalling that [-[|5 is the norm of the component in 73, we define by

1£) = Tes (£l
|t — s|7=F

1A, = S Sup

a semi-norm on the space D]},. It is also possible to consider the norm

415 7= s s g, + -

)

Moreover HH;,T is equivalent to
up f 0 =+ 1| ] s
S< H,( )H,B H, H'%Z

so from now we use these two norms without distinction.

Remark 6.2. For a fixed model M, the modelled distributions space DX4 is
a Banach space with the norm || || 7.

Remark 6.3. We choose the same notation for the semi-norm on _@{,YV the
space of modelled distributions and on C® the space of Hélder functions or
distributions.

So when f € D7, we have to understand HfH«, o with Definition 6.1 but
when f € C% | f]l, is the Holder norm of Definition 3.1 (for functions
a > 0) or 3.7 (for distributions « < 0).

Remark 6.4. The modelled distribution space DX4 can be thought of as ab-
stract y-Holder functions. Indeed, for an integer p and ¢ € [0,1) such that
v =p+9,if fis a smooth function

P (k)
F®(y) k 5
fla) =) =y —a)f| < Clt—sl’,
k=0

according to the Taylor’s inequality. So Definition 6.1 of modelled distribu-
tions has to be seen as an extension of the Taylor inequality in a no classical
way.

Now we are able to outline the main theorem of the theory of the reg-
ularity structures which given a modelled distribution allows us to build a
“real” distribution approximated at each point by the modelled distribution.
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Theorem 6.5 (Reconstruction map). Given a regularity structure I =
(A, 7,G) and a model M = (ILT), for a real v > o, = min A and an
integer T > || there is a linear continuous map R : D}, — C** such that
for all f € D},

| [R(S) = TL(f ()] (#2)] < C L7 [[£]]7 1 A7, (31)

where C' depends uniformly over ¢ € B, X\ € (0,1], s € [0,T].
Moreover if v > 0, the bound (31) defined R(f) uniquely.

If(f[, ') is an other model for and R the reconstruction map associated
to the model, we have the bound

IR(f) = R(f) = Ws(f(5)) + Ls(F ()] ()]

<o (i, I+ - et ) o o

where C' depends uniformly over ¢ € B, X\ € (0,1], s € [0,T], as above.

Proof. The proof uses the wavelet analysis in decomposing the function f in
a smooth wavelet basis. The proof requires many computation. A complete
on can be found in [Hail4]| and a less exhaustive one is in [FH14|. The
construction of R(f) is the following. We define a sequence (R7(f));en such
that . o .

RI(S) 1= 3" o (F0/27)) ()6 (33)

kEZ

where qbi is defined in Definition 3.11 with a regularity at almost r. Then,
we show that R7(f) converges weakly to a distribution R(f) which means
that R7(f)(n) converges to R(f)(n) for all n € C§. And we show that the

bound (31) holds. [ |

Remark 6.6. It can be proved that if for all s € [0,7] and 7 € T, Il7 is a
continuous function then R(f) is also a continuous function such that

R(f)(s) = Ts(f(s))(s)- (34)

Corollary 6.7. With the same notation as in Theorem 6.5, for every v > 0,
there is a constant C such as

IR, < ClITL 2 1

Proof. According to Theorem 6.5, for ¢ € B;.,

(RIS _ IHs(£())(60)]
P Ao

FC 1]
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and according to the Definition 5.7,

ITL(£(5))(62)]
— = <l 1]

So finally

ROz = I AL+ CT 2 L 2 A

C |11

IN

o 115 2

which, by letting A going to 0 proves the inequality. |

6.2 Modelled distribution of controlled rough paths

We reformulate the definition of a controlled rough path in the regularity
structures framework.

Definition 6.8. Given (W,W) € €%, (y,y') € @%?‘, the rough path reg-
ularity structure (A", 7",G") and M" = (II",I'") the model associated (cf.
Definition 5.13), we define a modelled distribution Y € D3%, such that

Y(t) =yl +y,W, Vtel0,T].

The space Dﬁ‘r is the space of the modelled distributions of the controlled
rough paths.

Remark 6.9. This definition is a particular case of modelled distributions of
Definition 6.1.

Proof. Let check that Y is in D3%,. For every s,t € [0, 7],

Y(t) -T7,(Y(s) = Y() = I7,(ysl + W)

Y
V(1) = (ys1 + ysW + y, Wi 1),

using the Definition 5.13. Then, we have
1Y (#) = Ty (Y ()|, = ly(®) = y(s) = o/ (s)Wa|| < CJt — s,
according to the definition 4.7 of controlled rough paths. Besides,
Y () = T3 Y ()|, = [/ () — ¥/ ()] < Clt — sl
which proves that Y € D%ﬁ}r. |

Proposition 6.10. With the notations of Definition 6.8, the application
(v,y) € Zir — Y € D3} is an isomorphism and the norms |yl r +

W .
19l oo, + 1%, ¥ )20, and Y |57 are equivalent.
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Proof. We prove the only equivalence between the two norms.
With the notation of Definition 4.7, we recall that

Ys,t = YWt + R, (35)

and that [|(y, y’)||12/z7T = [|¢/[lo. + [[R¥[l90 7- Then according to the previous
proof and Definition 6.1,

1Y llzq,r = 5D { [/l s 1 Nz } (36)

w w .
So we have [ ¥ llgar < 15 1)1 7 and (9, 9)1%, 7 < 2 Yl - In adding
the terms [|y[| o, 7 + |9/l 7 to each semi-norms, we obtain the result. W

7 Rough path integral with the reconstruction map

The power of the theory of the regularity structures is to give a sense in some
cases of a product of distributions. Indeed, it is not possible in general to
extend the natural product between functions to the distribution space.

To build the controlled rough path integral of Theorem 4.16, with the
theory of regularity structures we need to give a meaning to the product
between y and W, where W is a distribution. We start by giving a meaning to
the abstract product between Y and W. If this product has good properties,
it will be possible the use the reconstruction map (Theorem 6.5) to define a
“real” multiplication.

Definition 7.1 (Multiplication in the model space). Given a regularity
structure (A, 7,G), we say that the continuous bilinear map x : 72 — T
defines a multiplication (product) on the model space T if

e forallT€T,onhas 1x7 =1,

e for every 7 € T, and ¢ € Tg, on has 7 x o € T4, with the condition

a+ e A

We denote by |7| the homogeneity « of the symbol 7. The last item of the
definition can be rephrased as |1 x g| = |7] + |o].

Remark 7.2. For example in the following Theorem 7.3, we define in the
regularity structure of rough paths the multiplication described in the table
below:

W W

==

=
= |- (IS

=

S|~ IS =1 *

I=1{I=
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Theorem 7.3. We set o« € (1/3,1/2]. There is a linear map I : D3¢, — C*
such that for allY € DMT, I(Y)(0) = 0 and such that the map L defined by

vt €[0,T], LY)(t) == I(Y)())1 + (Y (£), HW

is linear and continuous from D3% 1% into itself. The symbol (-,1) denotes the
coordinate along 1.

Remark 7.4. Recalling that if Y € D3% 17+» according to the Definition 6.8 there
is (y,y') € 22 such that

Y(t) =yl +y W, (37)

we show in the proof of the Theorem 7.3 that
t
- / Y.dW,, (38)
0

where fg Y.dW is defined in Theorem 4.16. Thus L is the equivalent in the
modeled distribution space of the map

(v,y') € D — (/ ydeS,y-> € 9. (39)
0

Remark 7.5. The proof of the existence of I is the same as in Theorem 4.16
(classical sewing lemma). But we show how Theorem 6.5 (reconstruction
map) can be adapted to recover the result.

Proof. ForY in DJQ\;‘T, we define the point-wise product between Y and W as
in Remark 7.2, i.e Y (¢ )*W =y W 4+ WW, where WIW := W x W := W.
We denote this product XW( ), to simplify the notation. Using the fact that
|W|+ |[W|=2a —1=|W]| it is straightforward to check that the product is
consistent with the Definition 7.1.

We check now that }fﬂ/ is in Dﬁ?,._ L According to Definition 5.13 item
v, we compute

IR (ZW(S)) = (ys + YW )W + y. W,
since Y € D%?,. with Definition 6.8,

YW -5, (YW )| =l —viWee S =5, @40)

| -y, (vw)|, =il S 1= sl (41)

Thus, by Definition 6.1, we get that YW € D3°‘ L
Thus, given that 3a — 1 > 0, we can apply the reconstruction theorem
in the positive case. So there is a unique distribution R(YW) in Co1
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such that for every s € [0,7], A > 0 and every localized test function 77 of
Definition 3.4,

< Clnller X7,
(42)

ROYW)(0Y) - v, / M (w)dW, — o, / P (w)dW,,

where we use relations of the item iv of Definition 5.13.

We define with Lemma 3.10 the operator I : D%j‘r — C% such that
I(Y) € C“ is associated to R(YW). It means that I(Y)(0) := 0 and
(I(Y),n) == —(R(YW),n). Moreover according to Remark 3.13, we have
for |t — s| <1 and all integer jo € N,

200 —1 A t 21 _ oot
10),0= 0 REWLA) [ o + 3 S RO [ 0f 6
k=0 s j>jo k=0 5
We choose the integer jo such that 2770 < [t — s| < 27701 then we have
2]071 . . . t .
HY)ot = 0sWes =W = Y (ROCW) = L), o) [0 (40)
k=0 5
271 ' . ot
=30 ST RO - L (). ) [ o
3=jo k=0 y
(45)

We have
(RYW) = TL, (YW (5), 9]} = (ROYW) — o (YW (K/27), 0]
+ (Mo (YW (k/27)) = TL(YW(s)), %) (46)
The first term of the right side of (46) is bounded by (31),
(ROYW) — Ty os (YW (k/27)), )| < C279/2270730) (47

For bounding the second term of the right side of (46) we use the algebraic
relations between II and I' as well as the relations (27),

(Mg o (VI (/%)) = T (YW (), 600 = (Mgos (YT (/20) = Ty YW(s) ) ).

Yet XW S D?\?fl, so with (40) and (41), we have
Hl/ﬂ/(k'/Qj) — Fk/2j7s}jﬂ/(5)Hﬁ < Clk/2 — sppa—1-8,

for € {2a¢ — 1, — 1}. Finally, we obtain with the bounds (27),

‘<Hk/2j (YW (k/27)) — HS(XW(S)),¢£>‘ < Z 27IB=i/2| ) i — |31,

Be{2a—1,a—1}
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Moreover 1 has a compact support in [0, 1], so wi has a compact support in
[k/27,(k+1)/27]. The only non-zero term in (45) satisfies |k/27 — s| < 277.
Finally,

(Meyas (YW (k/27)) = T (YW (5)), 4})| < C2H/227%0% - (45)
Summing (47) and (48) we have
(ROYW) — T (YW(s)), )| < C279/227073), (49)
With (49) and (42), we bound the first sum of the right side of (45)

290 —1

Y (REYW) - (YW (s)),9]) / twi" < CJt — s2770B=D (50
k=0 §

< C|t — s3>, (51)

where we use the fact that ¢ has a compact support. In the same way,

> ROW) - LY W).of) [ of| <Cle-sfe 62

k=0
It remains to obtain a bound of (45). We observe that

271

t . .
> [ <crn (53)
k=0 "%

because a primitive of ¢ has a compact support on [0, 1] thanks to the fact
that [¢ = 0. Then, combining (49) and (53) we obtain from the choice
of jo,

27 -1

. . . t - .
S (REYW) - (YW (s), ¥) / yi| < 3 2%
J>jo k=0 s J>Jo
< 2 3jo

< C|t — s (54)
With (51), (52) and (54) we obtain the bound of (45),
(Y )st = ys Wit — ysWs 4| < Clt — 3’3(1- (55)
For showing that L(Y) is in D3¢, we compute I} ((L(Y)(s)) = (1(Y)(s)+
ysWs )1 + ysW and we use the estimation (55). Thus, we have
[LOY)(t) = T (L))o = [T () = I(Y)(5) — ysWall (56)
<Y oo Wllaa r [8 = 5% + CJt = s>,
(57)
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and [|L(Y) () = Te,s(L(Y) ()|, = lyst

which proves that L(Y) is in D3%.
It remains to prove the continuity of L. According to (31), the constant
C in (55) is proportional to [[Y[|” . So we have,

| < llylla It =% (58)

(Y )st = Ys Wl < |16/ [| o0 [Wllaa It = sI** + C 1Y I3 7 It — s>,
which allows with the previous computation (57) and (58) to bound
L) 30,7 < C Y [l50,7 - (59)
This concludes the proof. |

8 Existence of a rough path lift

As an application of the reconstruction operator in the case v < 0, we prove
Theorem 4.6 which states that for any W € C* (a € (1/3,1/2]) with values
in R™, it exists a rough path lift W and that the map W +— W is continuous
from C® to €“.

Proof (Theorem /.6). We consider the regularity structure (A€, 7¢, G¢) such
that A° = {a—1,0}, T¢ = Vect(W',i = 1,...,n) @ Vect(1) and for I'§, € G,
T5(W) = W, T%(1) = 1. We associate the model M¢ = (II°,T°) such that
for every s,t € [0,T], n € By we have

IS (W) (1) = / n(OdW, L)) =1,

and I'g , := 1Ty, .

For 0 < s <t <1, and integers 0 < 4,5 < n, the modelled distribution
W given by W7 (s) := WIW7 is in D2¢71. Indeed W/ (t) —Tis <M(s)) =
WiW? — WiW? = Wi, W, then

) o, (9 (s))

< |t —s]*.
1

e
So, v—(a—1) = «a, we have v = 2a—1. We conclude using the Definition 6.1.

Given that o € (1/3,1/2], we have 2 — 1 < 0 so the uniqueness of the
reconstruction map does not hold. But, according to Theorem 6.5, there
exists R(W) € C*~! such that

[R(W) — I (W)](ng)] < CN*H, (60)

where 7 € By. With Lemma 3.10, we define z € C as the primitive of

R(W) such that z(0) = 0. Moreover, according to Remark 3.13, we have for
all integer jo € N and s,t € [0, 1],

200 —1 27 1

s = Y (RO [ o+ S S RN [ w6

k=0 Jj=jo k=0
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and,
290 -1 ' 271
Wer= oo o+ XS wsoned (vl 62
k=0 7>70 k=0
which yields to
2101 ' 271 o
Wyo Wy = S (IE(W(s)), 6f) / o+ Y S s vl [ o
k=0 3>jo k=0 ®
6

If there is a constant C' > 0 such that,
250 — Ws @ Wy 4| < Ct — 5|, (64)

then setting W ; := 2z, s —Ws®@W, 4, the pair (W, W) belongs to € according
to the Definition 4.1. Let us prove (64). We choose the integer jy such that
2770 < |t — 5] < 2790+ Thus, we have

270 —1

e = We Wy = Y (R(W) = T (), 0) [ ol
k=0 s
2J_1 . . . t .
+ 30 SR - 1), ) [ ol
i>jo k=0 s

We proceed exactly as in the proof of the Theorem 7.3 equation (49) to show
that

[(R(W) — TIS(W(s)), ¢7,)| < C277/277 G, (65)
and

[(R(W) — TIE(W(s)), )| < C27/277 D), (66)
Then, using the Taylor’s inequality,

200 —1

>~ (ROW) - E(W0(3)),6) [ ] < Cle = sf2ioe D)
k=0 s
< Clt —s[% (67)

and we have the same estimation if we replace ¢ by . It remains to control

20 —1 27 -1

DD (R(W) — IE(W(s)), 9L / Yl < €277 gy N / A

Jj>jo k=0 stef0,1] .2,
27 -1
< 027772 sup > [P(20t — k)|
te[0,1] =
< C27j2a
< Clt — s> (68)
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where 9 is a primitive of ¢ with a compact support in [0, 1] because [ = 0.
Combining the bounds (67),(68), we obtain the bound (64), which concludes
the proof of the existence of W.

It remains to show the continuity. If there is another path W e C%, we

define as for W, a model (II, "), a modelled distribution W, a reconstruction
map R and then W. By denoting

ATl 95 := [I(W(k/27)) — TI(W(s)) — (W (k/27)) + TI(W(s))](4]), (69)
we have
|AHS,k/2j|

SHW—W

. (||W||a,T + HWHa T> s — k/29|20/20=2)9=i/2 (70)

According to the bounds (32), (67),(68), (70) and in writing

[R(W) — T1,(W(s)) — ROW) + 1, (W (5))) (1)

= R(W) — Ty, (W(k/27)) — R(W) + Ty s (W(k/27)) + ATL, o

we get
W= Wi <O( |8, [ -], -,
20—1,T 20—1,T 20—1,T 20—1,T
7 T _ o|2a
+ HW W\L,T (W + 7] ) )1t = s
Yet we have, + ’ W-—W , and
2a—1,T 00, T o, T
Hn—ﬁ‘ <CHW ‘ . (71)
200—1,T a, T
So finally,
HW—VV gCHW—W‘ , (72)
a,T a, T
which proves the continuity.
|

Remark 8.1. Given that 2o — 1 is negative, the uniqueness of W does not
hold, which is in accordance with Remark 4.5.

9 Composition with a smooth function

Before solving the general rough differential equation (1) with the theory of
regularity structures, we should give a sense of the composition of a modelled
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distribution with a function. Then we will be able to consider (1) in the space
of the modelled distributions.

The composition of a modelled distribution f € D}, with a smooth
function F is developed in [Hail4]. The author gives a general theorem which
allows the composition with an arbitrary smooth function F when f takes
its values in a model space T such that the smallest index of homogeneity is
equal to 0, i.e. Vt € R, f(t) € Vect(l,...). Thus, it is possible to define the

composition as a Taylor expansion

R (k) (F
Fofy =3 U0

] QI (73)
k

[y

where f is the coordinate of f onto 1. The definition above makes no sense
if the product between elements of the regularity structure is not defined.
We can also find the general definition in [Hail4] but it is not useful here.
The idea of the decomposition (73) is to compute a Taylor expansion of F'
in f the part of f which is the first approximation of Rf.

Here we just prove (what is needed for solving (1)) that Fo [ lives in the

same space as f and that Fis Lipschitz in the particular case of modelled
distribution of controlled rough paths.

Theorem 9.1. Let be F € CZ(R%, L(R",RY)). For o € (1/3,1/2], given a
rough path W = (W, W) € €2, the controlled rough path (y,y') € D%, for
all Y € D39, defined by Y (t) = yi1 + y,W, the map F such that

FoY(t):=F(y)l+ F (y)yW, (74)

is in D3%.. Moreover if F € C} the function associated F is Lipschitz, i.e.
forallY,Y € D?\f}r

* *

F(Y) - F(Y)

el

(75)

20, T 20,7

where C' is a constant.

Proof. Firstly, let us show that F' is a map from D32, to D3%.. A straight-
forward computation leads us to the two following expressions

)

[P -1, (FOO)||, = 17 00yt = (o)

PO~ Ty, (FOO) || = 17 = Fg) = Fly)yiWee -

Let us denote the left-hand of the first equality Ag,t and of the second one
AYy. We obtain

1" o) [ Nl = wisl| + ([l [1F" (we) = F' (o)
1 oo 19l 18 = 1% 118 oo 2 1l 1Y N 18 = 1

0
As,t

VARV
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and
AL = ||F(y) — Flys) — F'(ys)(yse — RL,) ||
< | Fye) = Flys) = F'(ys)yse|| + || ' (ys) R,
< 2|7 o 1B 1t — s/
< DI g W 5P 4 | DR 5P

This proves that F(Y) € D3¢,

We now prove the inequality (75). A more general proof can be found in
[Hail4]. We define Z=Y —Y, which is in D3%. by linearity. We denote by
Q<24 the projection onto T<a,. Using the integration by parts formula, one
can check that

F(Y(s)) - F(Y Z / FO G+ uz)Qena [ [0+ u) W) Z(s)] du

Then, we compute the expansion between s and t of A(s) := F(Y( ) —
F(Y(s)). We denote Ay (s) := Y (s)+uZ(s). When u is fixed, 4, is in D3¢,
We have

1 1 _
Tosls) = 3 | FO(Au()T0sQez0 (140 W1Z(5)) du
k=0

1 1

F NICes (AL (s)W)]FTy o Z(s)du + R(s, t),

Il
o\..

=0

where R is a remainder such that [[R(s,t)|5 < [t — s|?2@=F for B € {0,a}.
From now, we denote by R all the remainder terms which satisfy this prop-
erty.

We now shift the last expression from s to ¢. On the one hand

T} (AL ()W) =T jAu(s) — Au(s)1 = Au(t) — Au(s)1 + R(s,t).

On the other hand N N
Iy Z(s) = Z(t) + R(s.1).

This yields

1 1 _
Iy sA( Z/ F® (A () [AL (W +(Au(t) — Au(s))1]¥Z (s)du+ R(s, t).
k=070
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It remains to shift F*) from s to ¢. With the classical Taylor expansion
formula,

F(k)<Au(3)) = Z F(kJrl)(Au(t))(Au(s) — Au<t))l + O(‘t _ S|2a7ka>7
0<l+k<1

because ||Ay(t) — Ayu(s)|| < |t — s|* And the bound
| AL + (Aut) — AuDH| | < 1o - sl

holds. Finally, with the two previous expressions,

DG = Y FEDA0)(Au(s) — Aud)
0<I+k<1
x LALOW + (Au(t) — AuDDIZE) + | 2], ot - )
= Y FOAALOWIZ0 + |2 ot - s
0<k<1 ’
= 20+ |2, o —sr=",
which proves the inequality. |

10 Solving the rough differential equations

Theorem 7.3 combined with Theorem 9.1 allow us to solve the rough differ-
ential equations in the modelled distribution space D?\?T.

Theorem 10.1. Given ¢ € R, F € C3(RY, L(R™,R?)), a rough path W =
(W, W) € €% with B € (1/3,1/2), there is a unique modelled distribution
Y € D%ﬁ,« such that for all t < 9,

Y(t) = &1+ LF(Y)(®), (76)

where § > 0 and L is defined in Theorem 7.3. If F € Cg’ the solution s
global in time.

Proof. We prove that the operator N(Y) := €1+ L(F(Y)) where L is defined
in Theorem 7.3, has a unique fixed point. For this we show that the unit
ball of DZQ\?T is invariant under the action of N, and then that IV is a strict
contraction.

These two properties can be obtained by choosing a wise time interval
[0,T]. We take a rough path W = (W, W) € ¢° C €* with 1/3 < a < 3 <
1/2 and Y € D2%.. This trick allows us to have a 79~ in our estimates.
Thus, with a T" small enough we prove the fixed point property. We start by
choosing 7' < 1.
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According to Theorem 9.1 F(Y) € D3%,, thus Theorem 7.3 shows that
N(Y) € D3%.. If Y is a fixed point of N then Y € DJQV’?T, thanks to the fact
that W € €. Indeed,

1Y (8) = TesY ()l = lysll < 19l W llag iz 18— 81+ I BY g It =517,

and
1Y () = TesY (5)llg = [yt = vsWat | < ¥/ [| o [Wisiell + O(It — s[*%).

As a result of the fixed point property ' = F(y). This proves that Y € D% IV
We recall that ¥ [[50.7 = $uPeco.a) 1Y () + ¥ o0 7, where

v B 1Y (£) = T,s Y (s)
1Y ||2a,T = sup p :
s€[0,T],ec{0,a} ‘t - S‘

It is more convenient to work with the semi-norm ||-[|5, 7, so we define the
affine ball unit on [0, 7]

BT = {Y S DMr, Y (0) = 51 + f(g)W, ”XHQQ,T < 1}

Invariance: ForY € Bp,on has

|z

PO, 4 < ¥l and [N (Y) g =

On the on hand, according to the reconstruction map,

2aT

H IF )st - F(ys)Ws,t

< F @Y oo 1Wlzar It = 51 +CHF(¥)H = s
< |E@,,  IWlaalt = 5P+ OB, 1= sl
< F oo (1O W50z Wl TPt s|2a+ouY|rzaT|t—s|2aTa

because [|-[| 5 < ||, TP~2. Using the fact that 7% < T~ and that Y € By
we obtain
IN(Y)l < CT77,

where C' is independent of Y. On the other hand7

lysall < N1/l W lla [t = s + [ BY 50,1 It = s>
< Y Wz IWllsr T7701t = s1% + | RY |00 Tt — s|°
< Y 50z Wl T7700t = 8| + Y N300 Tt — 51

Using the last inequality

IFW oz < 1F|l o lllar
Y [z W 1 T2 = 1% + 1Y 130 TNt — 51,

N
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which leads to | N(Y)||,, < CT#~%. Finally, we obtain the following estimate
INY) g1 < CTP~*, where C does not depend on Y. By choosing T = Ty
small enough, we show that N(Br,) C Br,.

Contraction: ForY,Y € D32,

|v) - N

|v@) -~ @) + v - )

IN

2a,T a

IN

C|lEe) - B, T+ 1w - Pl

vl s ' 7
< cHz XHQO&VTT | F N o My = Gl s

according to (75). Then it is easy to show that

Y -Y

ly —gll, <CT*

2a,T '

< TPy — Sr/ where C' does not de-

2a,T 2a,T
pend on neither Y nor Y. So with T small enough, N(Br) C By and N is a
strict contraction. So, there is a unique solution Y € D3%. to (76) on [0, 7].

Finally, | N(Y) — N(¥)

As mentioned at the beginning of the proof, Y is inD?\fT. |

Corollary 10.2. Given & € R, F € C3(R?, L(R™,RY)), a rough path W =
(W, W) € €° with € (1/3,1/2), there is a unique controlled rough path
(y,y) € .@aé such that for all t < 6,

y(t) =€ + /0 Fy)d W, (77)

where & > 0 and the integral has to be understood as the controlled rough
path integral (Theorem J.16). Furthermore, we have y' = F(y). If F € Cg’
the solution is global in time.

Proof. 1t suffices to project Equation (76) onto 1 and onto W. |
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