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Abstract

In the first part of this work, we introduce a new relaxation system
in order to approximate the solutions to the barotropic Euler equa-
tions. We show that the solutions to this two-speed relaxation model
can be understood as viscous approximations of the solutions to the
barotropic Euler equations under appropriate sub-characteristic con-
ditions. Our relaxation system is a generalization of the well-known
Suliciu relaxation system, and it is entropy satisfying. A Godunov-
type finite volume scheme based on the exact resolution of the Riemann
problem associated with the relaxation system is deduced, as well as its
stability properties. In the second part of this work, we show how the
new relaxation approach can be successfully applied to the numerical
approximation of low Mach number flows. We prove that the under-
lying scheme satisfies the well-known asymptotic-preserving property
in the sense that it is uniformly (first-order) accurate with respect to
the Mach number, and at the same time it satisfies a fully discrete
entropy inequality. This discrete entropy inequality allows us to prove
strong stability properties in the low Mach regime. At last, numerical
experiments are given to illustrate the behaviour of our scheme.

Keywords. Barotropic Euler equations, low Mach number regime, re-
laxation system, entropy inequality.

1 Introduction

Relaxation approximations to hyperbolic systems of conservation laws have
been introduced in [33, 16, 42], see also [36, 37]. They allow to design cheap
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and accurate Godunov-type finite volume methods. Moreover they can be
designed to satisfy an entropy inequality. These methods are based on the
knowledge of the Riemann solution to the relaxation system, and can be
also interpreted in the well-known Harten Lax and Van Leer’s framework
of approximate Riemann solvers [31, 4, 3]. Without any attempt to be ex-
haustive, we also refer the reader to [18, 6, 1, 13, 10, 11] and the references
therein. A class of relaxation approximations to fluid systems is derived
from Suliciu’s one [42]. In these relaxation systems the main idea, related
to the particular fluid structure [26], basically consists in linearizing the flux
function, and more precisely the underlying pressure term, which encom-
passes the genuine nonlinearities of the model, while keeping unchanged the
the convective part of the system and the linearly degenerate characteris-
tic field. This procedure enables the derivation of an extended relaxation
system which is consistent with both the original system and its entropy
inequality in the limit of a vanishing relaxation parameter. By extended, we
mean that it contains additional variables associated with the linearization
process. The relaxation models are hyperbolic with only linearly degener-
ated characteristic fields, so that the associated Riemann problem is easy
to solve. This makes the whole procedure particularly adapted to construct
efficient Godunov-type methods based on approximate Riemann solvers, see
[18, 4, 2, 41, 8, 19, 5, 9].

In the same spirit, we propose here a new relaxation approximation of
the barotropic Euler equations based on the relaxation of both the pressure
and velocity variables, leading to an enlarged relaxation system made of two
additional relaxation variables, instead of one usually in the Suliciu spirit.
We thus have two velocities, one for the conserved momentum and one for
the convective fluxes. This idea to have two velocities was indeed present
in [28]. The two relaxation variables (pressure and velocity) are associated
with two relaxation speeds, which explains the two-speed relaxation system
terminology. As usual they must satisfy subcharacteristic conditions for
the scheme to be entropy satisfying. With these two speeds we are able to
monitor independently the numerical viscosity on the density and velocity
variables. This non-standard relaxation approach provides us with a new
entropy satisfying Riemann solver that generalizes the classical one, and
which could be well-adapted to several situations because of its ability to
design a particular shape for the numerical diffusion matrix. In the present
work, we are especially interested in the situation of low Mach numbers.

Let us briefly recall that two important issues naturally arise when con-
sidering low Mach number flows. The first one is concerned with the now
very well-known excessive numerical diffusion of standard Godunov-type
schemes in the low Mach number regime, leading to poor numerical solu-
tions for coarse meshes. By coarse meshes, we mean here that the size
of the mesh is large compared to the mean Mach number of the flow.
This topic has been the subject of many research works, see for instance
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[44, 29, 17, 35, 30, 39, 21, 22, 20, 24, 23], and more recently [14, 15, 25, 43, 32],
which most of the time address the problem by modifying the viscosity ma-
trices of the schemes in order to reduce the numerical diffusion in low Mach
number regimes. By doing so they give up with the entropy inequality.

The second issue is concerned with the CFL condition driving the time
steps of the usual explicit in time Godunov-type solvers in the low Mach
regime, i.e. when the fluid is slow compared to the acoustic waves. In such
situation, the (fast) acoustic waves do not play an important role in the
solution itself, but are responsible for very restrictive CFL conditions and
therefore the use of very small timesteps for the sake of stability. Several
implicit or implicit-explicit schemes which do not suffer from such restrictive
CFL conditions have been proposed in the literature, see for instance [35,
21, 20, 22, 14, 15, 30, 27, 34] and the above references.
In the present work, it is shown that the proposed two-speed relaxation
scheme enables to derive a new solver which is accurate in all Mach number
regimes, while it keeps satisfied a fully discrete entropy inequality. Moreover
the explicit CFL condition can be monitored to reduce to a parabolic-like
CFL condition in the low Mach regime.

The outline of the paper is as follows. In Section 2, the two-speed
relaxation model is introduced in order to approximate the solutions to
the barotropic Euler equations. In particular, it is shown that the solu-
tions of the relaxation model can be seen as a viscous approximation of the
barotropic Euler system under appropriate subcharacteristic conditions on
the underlying wave speeds. The same subcharacteristic conditions imply
the existence of an extended entropy, ensuring the entropy inequality. A
Godunov-type scheme based on the exact resolution of the Riemann prob-
lem to the relaxation model is then proposed. We prove that the scheme is
positive and satisfies a discrete entropy inequality. In Section 3 we consider
the low Mach number regime, and we prove that the two-speed relaxation
scheme is asymptotic-preserving (i.e. it is uniformly first-order accurate
with respect to the Mach number) for an adequate choice of the speeds.
Moreover we prove that for small Mach number M our scheme becomes
consistent with the incompressible Euler equations, with particularly strong
stability properties. Numerical results in 2d are presented that confirm the
theoretical properties. A conclusion is given in Section 4.

2 A two-speed relaxation scheme for the barotropic
Euler equations

In this section, we first recall the governing equations of the barotropic
Euler system. We then introduce our two-speed relaxation model in order
to approximate the solutions. A Godunov-type finite volume scheme is then
proposed, based on the exact resolution of the Riemann problem associated
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to the relaxation model. The stability properties of the relaxation scheme
are established and a fully discrete entropy property is proved. Finally, a
numerical experiment is presented to illustrate the effect of the choice of the
speeds.

2.1 The barotropic Euler equations

We are interested in the very classical barotropic Euler equations given in
one space dimension by

∂t

(
ρ
ρu

)
+ ∂x

(
ρu

ρu2 + p

)
= 0, x ∈ R, t > 0, (2.1)

where the pressure law p = p(ρ) is assumed to satisfy the monotonicity and
convexity properties p′(ρ) > 0 and

d

dρ

(
ρ
√
p′(ρ)

)
> 0 for all ρ > 0. (2.2)

Under these assumptions, this system is well-known to be hyperbolic with
eigenvalues given by λ± = u ± c, where the sound speed c is given by
c =

√
p′(ρ), with genuinely nonlinear characteristic fields. We will also

assume that

d

dρ

(
ρ
√
p′(ρ)

)
≤ β

√
p′(ρ) for some constant β > 1. (2.3)

Setting U = (ρ, ρu)T and F (U) = (ρu, ρu2 + p)T , the entropy inequality
associated with (2.1) is given by

∂tη(U) + ∂xG(U) ≤ 0, (2.4)

where the strictly convex entropy U → η(U) is nothing but the total energy
defined by

η(U) = ρ
u2

2
+ ρe(ρ), (2.5)

with the internal energy e(ρ) such that

e′(ρ) =
p(ρ)

ρ2
, (2.6)

and the associated entropy flux U → G(U) given by

G(U) =
(
η(U) + p(ρ)

)
u. (2.7)

In particular, integrating (2.4) with vanishing conditions at ±∞ gives

d

dt

∫
R
η(U) dx ≤ 0.
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2.2 A two-speed relaxation system

We consider the approximation of the Euler system (2.1) by the following
relaxation system,

∂tρ+ ∂x(ρv) = 0, (2.8)

∂t(ρu) + ∂x(ρuv + π) = 0, (2.9)

∂t(ρv) + ∂x(ρv2) +
a

b
∂xπ = ρ

u− v
ε

, (2.10)

∂t(ρπ) + ∂x(ρπv) + ab∂xv = ρ
p− π
ε

, (2.11)

∂ta+ v∂xa = 0,
∂tb+ v∂xb = 0,

(2.12)

where π and v are two relaxation variables associated with the pressure
p = p(ρ) and the velocity u, and a, b are positive quantities. When a ≡ b
and v ≡ u we recover the usual Suliciu relaxation system. The positive
constant ε is the so-called relaxation parameter. We notice that as is usual,
the equations (2.10), (2.11), (2.12) can be written in conservative form by
using (2.8), as

∂t
ρvb

a
+ ∂x(ρv2 b

a
+ π) =

b

a
ρ
u− v
ε

, (2.13)

∂t(
ρπ

ab
) + ∂x(ρπ

v

ab
+ v) =

1

ab
ρ
p− π
ε

, (2.14)

∂t(ρa) + ∂x(ρav) = 0,
∂t(ρb) + ∂x(ρbv) = 0.

(2.15)

We can remark that at least formally, in the asymptotic limit ε→ 0 we have
π = p and v = u and we recover the original system (2.1). However and
in order to prevent this relaxation process from instabilities, it is now well
established that some subcharacteristic conditions must be imposed. Here,
we will see that these conditions are concerned with a and b and express
that they must be sufficiently large. This issue will be made more precise in
the next subsection.

From the system (2.8)-(2.12) one can easily derive the following equa-
tions,

ρ(∂tu+ v∂xu) + ∂xπ = 0, (2.16)

ρ(∂tv + v∂xv) +
a

b
∂xπ = ρ

u− v
ε

, (2.17)

ρ(∂tπ + v∂xπ) + ab∂xv = ρ
p− π
ε

. (2.18)

We deduce the quasi diagonal form of the system

∂t(π + bv) + (v + a/ρ)∂x(π + bv)− av

ρ
∂xb =

p− π + b(u− v)

ε
, (2.19)

5



∂t(π − bv) + (v − a/ρ)∂x(π − bv)− av

ρ
∂xb =

p− π − b(u− v)

ε
, (2.20)

∂t

(
1

ρ
+
π

ab

)
+ v∂x

(
1

ρ
+
π

ab

)
=

1

ab

p− π
ε

, (2.21)

∂t

(
u− b

a
v

)
+ v∂x

(
u− b

a
v

)
= − b

a

u− v
ε

, (2.22)

completed with (2.12). Therefore, it can be easily proved that the relaxation
system (2.8)-(2.12) is hyperbolic with three eigenvalues given by

λr± = v ± a/ρ, λ0 = v, (2.23)

the latter having multiplicity 4. Note that λr± are nothing but approxima-
tions of the exact eigenvalues λ±. More importantly, the characteristic fields
associated with these eigenvalues are all linearly degenerate, which allows to
solve analytically the Riemann problem associated with the left-hand side
of (2.8)-(2.12). This will be the purpose of subsection 2.4. Note that this
property is sufficient to justify the introduction of our relaxation system to
approximate the solutions to the barotropic Euler equations.

2.3 Viscous approximation

In this paragraph, we prove that the solutions of the two-speed relaxation
system (2.8)-(2.12) can be seen as a viscous approximation of the solution
of the barotropic Euler system (2.1) under suitable conditions on the wave
speeds a and b. We start noticing that from (2.10), (2.11) it follows

v = u− ε

ρ

(
∂t(ρv) + ∂x(ρv2) +

a

b
∂xπ

)
,

π = p− ε

ρ

(
∂t(ρπ) + ∂x(ρπv) + ab∂xv

)
.

(2.24)

By inserting (2.24) into (2.8) and (2.9) one obtains

∂tρ+ ∂x(ρu)− ε∂x
(
∂t(ρu) + ∂x(ρu2) +

a

b
∂xp
)

= O(ε2),

∂t(ρu) + ∂x(ρu2 + p)

− ε∂x
(
u∂t(ρu) + u∂x(ρu2) + u

a

b
∂xp
)

− ε∂x
(1

ρ
∂t(ρp) +

1

ρ
∂x(ρpu) +

ab

ρ
∂xu

)
= O(ε2).

(2.25)

Using now the fact that

∂t(ρu) = −∂x(ρu2)− ∂xp+O(ε),

∂t(ρp) = −(p(ρ) + ρp′(ρ))∂x(ρu) +O(ε) = −∂x(ρpu)− ρ2p′(ρ)∂xu+O(ε),
(2.26)
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one obtains the system

∂t

(
ρ
ρu

)
+ ∂x

(
ρu

ρu2 + p

)
− ε∂x

(
D∂x

(
ρ
ρu

))
= O(ε2), (2.27)

with

D =

 (
a

b
− 1)p′(ρ) 0

u(ab − 1)p′(ρ)− u( ab
ρ2
− p′(ρ))

ab

ρ2
− p′(ρ)

 . (2.28)

Therefore the solutions of the two-speed relaxation model (2.8)-(2.12) can be
seen as a viscous approximation of the solutions of the barotropic Euler sys-
tem (2.1) as soon as the viscosity matrix (2.28) has nonnegative eigenvalues,
which holds true under the subcharacteristic conditions

a ≥ b, ab ≥ ρ2p′(ρ) = ρ2c2. (2.29)

One can check moreover thatDT η′′(U) is symmetric with η the entropy given
by (2.5), a condition of entropy compatibility of the viscous system (2.27),
see [3]. It is interesting to note that in the case a = b, which corresponds to
the usual Suliciu relaxation approximation of the barotropic Euler equations,
see for instance [4], one gets the usual subcharacteristic condition a2 ≥ ρ2c2.
It is thus clear from (2.28) that the new relaxation procedure adds numerical
diffusion on the density variable. This property will be useful to understand
the low Mach number regime in Section 3. It is also interesting to notice
that the relaxation system (2.8)-(2.12) appears exactly under the form of an
entropy compatible viscous system, those being characterized in [28].

2.4 Riemann problem

We give in this section the solution to the Riemann problem associated with
the left-hand side of the relaxation system (2.8)-(2.12). Let us denote U r the
unknown vector (“r” stands here for “relaxation”) and recall that the Rie-
mann problem consists in solving the governing equations when considering
an initial data made of two constant states U r,L on the left and U r,R on the
right, separated by an initial discontinuity located at x = 0. Since the system
under consideration is hyperbolic with three linearly degenerate characteris-
tic fields, the exact Riemann solutions are self-similar and made of three con-
tact discontinuities propagating with velocities σL = λr−(U r,L) = λr−(U r,L∗),
σ∗ = λr0(U r,L∗) = λr0(U r,R∗), σR = λr+(U r,R∗) = λr+(U r,R) and separating
two intermediates states U r,L∗ on the left and U r,R∗ on the right. We will
assume here that

σL < σ∗ < σR, (2.30)
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which will be proved in subsection 2.6.3 under appropriate choices of a and
b. We thus have

U r(x/t;U r,L, U r,R) =


U r,L if x

t < σL,
U r,L∗ if σL < x

t < σ∗,
U r,R∗ if σ∗ < x

t < σR,
U r,R if σR < x

t .

This usual structure is displayed on Figure 1. Denoting by upper indices
L∗, R∗ the associated values, the intermediate states U r,L∗ and U r,R∗ are
obtained from the following relations,

πL? = πR? ≡ π? =
bRπL + bLπR + bLbR(vL − vR)

bL + bR
,

vL? = vR? ≡ v? =
bLvL + bRvR + πL − πR

bL + bR
,

1

ρL?
=

1

ρL
+
bR(vR − vL) + πL − πR

aL(bL + bR)
,

1

ρR?
=

1

ρR
+
bL(vR − vL) + πR − πL

aR(bL + bR)
,

uL? = uL +
bL

aL(bL + bR)

(
bR(vR − vL) + πL − πR

)
,

uR? = uR +
bR

aR(bL + bR)

(
bL(vL − vR) + πL − πR

)
, (2.31)

aL? = aL, aR? = aR, bL? = bL, bR? = bR.

These formulas are obtained by writing that the Riemann invariants associ-
ated with each characteristic field are constant across the associated discon-
tinuity. The Rieman invariants for the λr0 wave are v, π (setting ∂t+v∂x = 0
in (2.8)-(2.12), it remains only ∂xπ = 0 and ∂xv = 0). According to (2.12)
and (2.19)-(2.22), the Riemann invariants for the λr± wave are a, b, π ∓ bv,
1/ρ+π/(ab), u− (b/a)v. These formulas are completed by the values of the
speeds

σL = vL − aL

ρL
, σ∗ = v?, σR = vR +

aR

ρR
. (2.32)

Writing σ∗−σL = λr0(U r,L∗)−λr−(U r,L∗) = aL/ρL? and σR−σ∗ = λr+(U r,R∗)−
λr0(U r,R∗) = aR/ρR?, we get that the right ordering (2.30) is equivalent to
the positivity of the intermediate densities ρL? > 0, ρR? > 0.

2.5 The relaxation scheme

Hereafter and using very classical notations, space and time will be dis-
cretized using constant spacestep ∆x and timestep ∆t. We will consider a
set of cells κi = (xi−1/2, xi+1/2) and instants tn = n∆t, with xi+1/2−xi−1/2 =

8



σL σRσ?

t

x

U r,RU r,L

U r,R∗U r,L∗

Figure 1: Structure of the solution to the relaxation Riemann problem

∆x and xi = (xi−1/2 + xi+1/2)/2 for i ∈ Z and n ∈ N.
Considering the finite volume framework, we aim at computing a piecewise
constant approximation on each cell of the exact solution U(tn, x) to (2.1)
and we denote it Uni for all i ∈ Z and n ∈ N, so that

Uni ≈
1

∆x

∫ xi+1/2

xi−1/2

U(tn, x)dx.

Assuming (Uni )i∈Z we update it to the next time level tn+1 using the above
two-speed relaxation system. The procedure is very classical and amounts to
first define piecewise constant approximations U r,ni of the relaxation system
that we take at equilibrium, that is to say such that

πni = p(ρni ), vni = uni for all i. (2.33)

A choice of aL, aR, bL, bR has to be done also, in order to satisfy the
positivity of density and an entropy inequality. this will be discussed in
Subsection 2.6. Then we use the standard Godunov-relaxation approach
[4] which means that we solve (2.8)-(2.12) without right-hand side for t ∈
(tn, tn+1), and we finally retain only the components ρ, ρu in the solution,
that we average over a cell to get Un+1

i . Using the notations of the previous
section, we end up with the following conservative numerical scheme

Un+1
i = Uni −

∆t

∆x
(Fni+1/2 − Fni−1/2),

Fni+1/2 = F (Uni , U
n
i+1),

(2.34)
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where the numerical flux is given by

F (UL, UR) =


F (UL) if σL ≥ 0,

FL? if σL ≤ 0 ≤ σ∗,
FR? if σ∗ ≤ 0 ≤ σR,
F (UR) if σR ≤ 0.

(2.35)

Because of the conservative equations (2.8), (2.9), the intermediate fluxes
can be written as

FL? = (ρL?v?, ρL?uL?v? + π?),

FR? = (ρR?v?, ρR?uR?v? + π?).
(2.36)

The natural CFL condition is given by

∆t

∆x
σmax ≤ 1

2
, (2.37)

where σmax = max(|σL|, |σ∗|, |σR|).

2.6 Properties of the scheme

In this subsection we prove that our relaxation scheme is positive and satis-
fies a fully discrete entropy inequality, under some subcharacteristic condi-
tions on the numerical relaxation parameters aL, aR, bL, bR. We begin with
the entropy inequality, which is the strongest property. Let us recall that
since our Godunov-type scheme is associated with an approximate Riemann
solver of the original system (given by the exact Riemann solver of the re-
laxation system, restricted to the variables ρ, ρu), one can use the Harten,
Lax and van Leer formalism [31] and focus on this approximate Riemann
solution, for which there is characterization of the entropy inequality, see
also [4].

2.6.1 Discrete entropy inequality

Proposition 1. Let us assume that the intermediate densities ρL, ρR, ρL?

and ρR? are positive. Then the approximate Riemann solver satisfies a dis-
crete entropy inequality, i.e.

G(UR)−G(UL) ≤ σL(η(UL?)− η(UL)) + σ?(η(UR?)− η(UL?))

+σR(η(UR)− η(UR?)),
(2.38)

provided that aα, bα with α = L,R satisfy

bα ≤ aα, (2.39)

and
(ρ2p′)α∗ ≤ aαbα, (2.40)

10



where (ρ2p′)α? is defined as

(ρ2p′)α∗ = sup
ρ∈[ρα,ρα?]

ρ2p′(ρ). (2.41)

Observe that the entropy inequality is given under the assumption that the
intermediate densities ρL? and ρR? are positive, which will be proved in the
next paragraph. Notice also that (2.39), (2.40) are discrete versions of the
subcharacteristic conditions (2.29) associated with the diffusive asymptotics.

Proof. Let us recall that the positivity of the intermediate densities ρL? and
ρR? is equivalent to σL < σ? < σR (see the last lines of Subsection 2.4). Let
us introduce a transported quantity T ,

∂tT + v∂xT = 0, initialized as T ni = 1/ρni . (2.42)

It completes the relaxation system (2.8)-(2.12) (without right-hand side).
Since by (2.21) and (2.12) one has (∂t + v∂x)(π + ab/ρ) = 0, the definition
(2.42) implies that

p(
1

T ) + abT = π +
ab

ρ
. (2.43)

Let us now define the relaxation entropy Σ by

Σ(ρ, u, v, π, a, b, T ) =
ρu2

2
+ ρê+ ρ

(v − u)2

2(a/b− 1)
, (2.44)

with

ê = e(
1

T ) +
π2 − p(1/T )2

2ab
. (2.45)

In (2.44) we use (2.39) with the convention that the last term vanishes if
b = a (in this case one has v = u). The definition (2.45) of ê is equivalent to

∂t

(
ê− π2

2ab

)
+ v∂x

(
ê− π2

2ab

)
= 0, initialized as êni = e(ρni ). (2.46)

The relaxation entropy flux Gr is defined by

Gr = (Σ + π)v. (2.47)

Notice that Σ and Gr and such that they coincide with the energy η(U)
and the energy flux G(U) when U r is taken at equilibrium π = p(ρ), v = u,
T = 1/ρ. Let us now prove that ∂tΣ + ∂xG

r = 0. From (2.16), (2.18) one
gets

∂t
u2

2
+ v∂x

u2

2
+
u

ρ
∂xπ = 0, ∂t

π2

2
+ v∂x

π2

2
+
ab

ρ
π∂xv = 0. (2.48)
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Using (2.17) and (2.16) we have

∂t(v − u) + v∂x(v − u) + (
a

b
− 1)

1

ρ
∂xπ = 0, (2.49)

hence

∂t
(v − u)2

2
+ v∂x

(v − u)2

2
+ (v − u)(

a

b
− 1)

1

ρ
∂xπ = 0. (2.50)

Summing (2.48) and (2.50) we get

∂t

(u2

2
+

π2

2ab
+

1

a/b− 1

(v − u)2

2

)
+v∂x

(u2

2
+

π2

2ab
+

1

a/b− 1

(v − u)2

2

)
+

1

ρ
∂x(πv) = 0.

(2.51)

Adding also (2.46) and multiplying the result by ρ using (2.8), we obtain

∂t

(ρu2

2
+ρê+

ρ

a/b− 1

(v − u)2

2

)
+∂x

((ρu2

2
+ρê+

ρ

a/b− 1

(v − u)2

2
+π
)
v

)
= 0,

(2.52)
which is the claim ∂tΣ + ∂xG

r = 0. Using then that in a system with
all linearly degenerate eigenvalues, any formally conservative equation is
indeed satisfied in the sense of distributions, the conservative equation (2.52)
implies the Rankine-Hugoniot relations

G(UR)−Gr(U r,R?) = σR(η(UR)− Σ(U r,R?)),

Gr(U r,R?)−Gr(U r,L?) = σ?(Σ(U r,R?)− Σ(U r,L?)),

Gr(U r,L?)−G(UL) = σL(Σ(U r,L?)− η(UL)).

(2.53)

These relations can also be checked directly with the explicit values of the
intermediate states given by (2.31). We are now going to prove the inequal-
ities

η(UR?) ≤ Σ(U r,R?),

η(UL?) ≤ Σ(U r,L?).
(2.54)

Indeed, summing up the three lines of (2.53) and using (2.54) (and the
property that σR − σ? ≥ 0, σ? − σL ≥ 0) resumes to the claimed inequality
(2.38). Now, to prove (2.54), observe that these inequalities express that the
entropy of the original system, which coincides with the relaxation entropy
taken at equilibrium, is smaller than the relaxation entropy. By definition
of Σ, (2.54) also writes

e(ρR?)− e(1/T R?) ≤ (πR?)2 − p(1/T R?)2

2aRbR
+

(vR? − uR?)2

2(aR/bR − 1)
,

e(ρL?)− e(1/T L?) ≤ (πL?)2 − p(1/T L?)2

2aLbL
+

(vL? − uL?)2

2(aL/bL − 1)
.

(2.55)
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Since by (2.43) π = p(1/T ) + ab(T − 1/ρ), neglecting the last term with
(2.39), it is sufficient to prove that

e(ρR?)− e(1/T R?) ≤ aRbR

2
(T R? − 1/ρR?)2 + p(1/T R?)(T R? − 1/ρR?),

e(ρL?)− e(1/T L?) ≤ aLbL

2
(T L? − 1/ρL?)2 + p(1/T L?)(T L? − 1/ρL?).

(2.56)
For given ρ∗, a, b consider now the function

ϕ(ρ) = e(ρ)− e(ρ∗) +
ab

2
(1/ρ− 1/ρ∗)2 + p(ρ)(1/ρ− 1/ρ∗). (2.57)

Then using (2.6),

ϕ′(ρ) =
(
p′(ρ)− ab

ρ2

)
(1/ρ− 1/ρ∗). (2.58)

We deduce that if there is an interval I 3 ρ∗ such that

sup
ρ∈I

ρ2p′(ρ) ≤ ab, (2.59)

then ϕ′(ρ) has the same sign as ρ−ρ∗ over I, and thus ϕ(ρ) ≥ 0 for all ρ ∈ I.
We deduce that the first inequality in (2.56) holds provided that (2.59)
holds with a = aR, b = bR, I = [ρR∗, 1/T R?] (take ρ∗ = ρR∗, ρ = 1/T R?).
Similarly the second inequality in (2.56) holds provided that (2.59) holds
with a = aL, b = bL, I = [ρL∗, 1/T L?]. But according to (2.42),

T L = T L? = 1/ρL, T R = T R? = 1/ρR, (2.60)

and the two conditions reduce to (2.40), (2.41). This finishes the proof of
(2.54).

2.6.2 Entropy inequality and steady solutions

In this subsection we show how the validity of a discrete entropy inequality
can be used to show that steady periodic solutions of the underlying scheme
are also constant in space. This property is of specific interest in the context
of the next section devoted to the low Mach number flows, when evoking
the so-called checkerboard modes.
Let us first recall that thanks to the Harten, Lax and Van Leer formalism
[31] and the validity of Proposition 1, the fully discrete entropy inequality
also writes

η(Un+1
i )− η(Uni ) +

∆t

∆x
(Gni+1/2 −Gni−1/2)

= η(Un+1
i )− 1

∆x

∫ xi+1/2

xi−1/2

Σ(U r(tn+1, x))dx ≤ 0,
(2.61)
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with
Gni+1/2 = G(Uni , U

n
i+1) (2.62)

and the notations of the previous paragraph,

G(UL, UR) =


G(UL) if σL ≥ 0,

Gr(U r,L?) = (ΣL? + π?)v? if σL ≤ 0 ≤ σ∗,
Gr(U r,R?) = (ΣR? + π?)v? if σ∗ ≤ 0 ≤ σR,
G(UR) if σR ≤ 0.

(2.63)

Indeed, the equality in (2.61) comes from integrating (2.52) in time and
space, while the inequality follows from

η(Un+1
i ) ≤ 1

∆x

∫ xi+1/2

xi−1/2

η(U(tn+1, x))dx ≤ 1

∆x

∫ xi+1/2

xi−1/2

Σ(U r(tn+1, x))dx,

(2.64)
where U(t, x) stands for the approximate Riemann solution, i.e. the con-
servative part of U r(t, x), the first inequality is Jensen’s whereas the second
one is indeed (2.54). Let us set

Dn
i = η(Un+1

i )− η(Uni ) +
∆t

∆x
(Gni+1/2 −Gni−1/2).

Considering a steady and space periodic solution, it comes∑
i

Dn
i = 0.

Since Dn
i ≤ 0 for all i, we get that Dn

i = 0 for all i, or equivalently equal-
ity in both inequalities of (2.64). In particular we have η(U(tn+1, x)) =
Σ(U r(tn+1, x)) for all x in the cell κi and for all i. According to the anal-
ysis of the inequalities (2.54) provided in the proof of Proposition 1, this
implies that v = u and T = 1/ρ. Then (2.43) yields π = p(ρ). This
means that we are at equilibrium for all x in all cells κi. Focusing ourselves
on a local Riemann problem, it means that T L? = 1/ρL?, T R? = 1/ρR?,
vL? = uL?, vR? = uR?, πL? = p(ρL?), πR? = p(ρR?). But since πL? = πR?

and using (2.60) we get that ρL? = ρR? = ρL = ρR. We have hence
π? = p(ρL) = p(ρR), thus with the explicit value of π? given in (2.31) we
get vL = vR i.e. uL = uR. Thus UL = UR for all local Riemann problems,
which means that the solution is constant in space.

2.6.3 Practical definitions of a and b

The stability conditions (2.39), (2.40), (2.41) do not provide us with an
explicit definition of aα and bα, α = L,R because the intermediate states
ρα? actually depend on aα and bα, α = L,R, as seen on (2.31). In this
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subsection we give explicit sufficient inequalities on aα and bα following the
ideas introduced in [8].
Let us first recall that by assumption the pressure law verifies (2.2) and
(2.3) for some constant β > 1. We summarize our results in the following
theorem.

Theorem 1. Under the assumptions (2.2), (2.3) on the pressure law, con-
sider the two-speed approximate Riemann solver with intermediate values
and speeds defined by (2.31), (2.32) with the initial data at equilibrium
πL = p(ρL), πR = p(ρR), vL = uL, vR = uR. Its numerical flux is given
by (2.35), (2.36). Assume that aL, aR, bL, bR are defined in some way,
depending on the left/right states UL, UR, so that they satisfy

aL ≥ bL, aR ≥ bR, (2.65)

bL

ρL
≥ aLq ,

bR

ρR
≥ aRq , (2.66)

√
aLbL

ρL
≥
√
p′L(1 + βXL),

√
aRbR

ρR
≥
√
p′R(1 + βXR), (2.67)

for some aLq , aRq (depending also on UL, UR), with p′L = p′(ρL), p′R =

p′(ρR), and XL, XR defined by (2.71), (2.72). Then the solver satisfies the
following properties.
(i) It is conservative, and consistent with (2.1),
(ii) It is positive in density ρ, and the ordering of the speeds (2.30) is valid,
(iii) It satisfies a discrete entropy inequality with numerical entropy flux
given by (2.63).
Therefore, the scheme (2.34) inherits these properties under the CFL con-
dition (2.37).

Proof. Let us first remark that (2.65) implies that
√
aLbL ≤ aL,

√
aRbR ≤

aR, thus with (2.67) we obtain

aL

ρL
≥
√
p′L(1 + βXL),

aR

ρR
≥
√
p′R(1 + βXR). (2.68)

The fact that we have an approximate Riemann solver is obvious by con-
struction and according to the general theory of relaxation solvers [4]. The
property (i) also follows from this general theory, as well as the conclusion
on the scheme under the CFL condition (2.37). Thus it remains to prove
(ii) and (iii). The equivalence between the positivity of density and the or-
dering of the speeds has already been established (last lines of Subsection
2.4). Thus it remains to prove the positivity of the intermediate densities,
and the entropy condition. The latter is obtained via Proposition 1. We
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begin by estimating the intermediate densities from (2.31),

1

ρL∗
=

1

ρL
+
bR(vR − vL) + πL − πR

aL(bL + bR)

≥ 1

ρL
− bR(vL − vR)+

aL(bL + bR)
− (πR − πL)+

aL(bL + bR)

≥ 1

ρL
− (vL − vR)+

aL
− (πR − πL)+

aL(ρLaLq + ρRaRq )
, (2.69)

and similarly

1

ρR∗
=

1

ρR
+
bL(vR − vL) + πR − πL

aR(bL + bR)

≥ 1

ρR
− bL(vL − vR)+

aR(bL + bR)
− (πL − πR)+

aR(bL + bR)

≥ 1

ρR
− (vL − vR)+

aR
− (πL − πR)+

aR(ρLaLq + ρRaRq )
, (2.70)

where we have used (2.66). Let us now define

XL =
1√
p′L

(
(vL − vR)+ +

(πR − πL)+

ρLaLq + ρRaRq

)
, (2.71)

XR =
1√
p′R

(
(vL − vR)+ +

(πL − πR)+

ρLaLq + ρRaRq

)
, (2.72)

so that (2.69) and (2.70) write

1

ρL∗
≥ 1

ρL

(
1− ρL

√
p′L

aL
XL
)
,

1

ρR∗
≥ 1

ρR

(
1− ρR

√
p′R

aR
XR
)
. (2.73)

With (2.68) we thus obtain

1

ρL∗
≥ 1

ρL

(
1− XL

1 + βXL

)
,

1

ρR∗
≥ 1

ρR

(
1− XR

1 + βXR

)
. (2.74)

We deduce that ρL∗ > 0, ρR∗ > 0 and

0 < ρL∗ ≤ ρL/xL, 0 < ρR∗ ≤ ρR/xR, (2.75)

with (recall that we assume that β > 1)

xL = 1− XL

1 + βXL
and xR = 1− XR

1 + βXR
∈
(
β − 1

β
, 1

]
. (2.76)
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Since we have the assumptions (2.2), (2.3) on the pressure law, we can apply
Lemma 3.1 in [8]. It gives that

ρL

xL

√
p′(
ρL

xL
) ≤ ρL

√
p′(ρL)(1+βXL),

ρR

xR

√
p′(
ρR

xR
) ≤ ρR

√
p′(ρR)(1+βXR).

According to the monotonicity of ρ
√
p′ stated in (2.2), this estimate together

with (2.75) allow then to estimate the supremum, namely

sup
ρ∈[ρL,ρL∗]

ρ
√
p′(ρ) ≤ ρL

√
p′L(1 + βXL), (2.77)

sup
ρ∈[ρR,ρR∗]

ρ
√
p′(ρ) ≤ ρR

√
p′R(1 + βXR). (2.78)

To conclude we apply Proposition 1. The condition (2.39) is just (2.65), and
the conditions (2.40), (2.41) follow from (2.77), (2.78), (2.67).

Some comments on the stability conditions (2.65), (2.66), (2.67) are in
order. They are of great practical usefulness because one can satisfy them
easily while imposing some particular scales in the solver. The most simple
example is the “classical one” a = b for which one chooses

aLq =
√
p′L, aRq =

√
p′R, (2.79)

and

aL

ρL
=
bL

ρL
=
√
p′L(1 + βXL),

aR

ρR
=
bR

ρR
=
√
p′R(1 + βXR), (2.80)

with XL, XR defined by (2.71), (2.72). In these formulas we see the advan-
tage of taking different values for aL, aR: they are adapted to the magnitude
of the density on each side. In particular, we see that if for example ρL → 0
while ρR > 0 (Riemann problem with vacuum on one side), the ratios aL/ρL

and aR/ρR do not blow up, and the CFL condition (2.37) remains finite
knowing (2.32) (what would not be the case with a choice aL = aR).
When making a “non classical choice”, as in low Mach situations, one has
to see that a has to be large enough according to (2.65), (2.67) to ensure
stability, but b can remain bounded (for example b/ρ = aq). Looking at
the viscosity matrix (2.28) associated to the scheme, it means that the nu-
merical viscosity on the density variable ρ becomes large, but the numerical
viscosity on the velocity u remains bounded.

2.7 A numerical illustration

At this stage, our two-speed numerical scheme is just another finite volume
scheme which satisfies positivity and entropy inequality properties. In this
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part, our objective is not to consider many test cases and to report on the
behaviour of this new scheme. Indeed and as clearly expected, it actually
provides us with numerical solutions with standard accuracy. On the con-
trary, we show only one numerical test in order to give an insight into the
influence of choosing the wave speeds a and b. This test case is taken from
[22, 27]. The pressure law is p(ρ) = ρ2, and the initial condition writes

ρ(0, x) =



1 if x ∈ (0, 0.2),

1 +M2 if x ∈ (0.2, 0.3),

1 if x ∈ (0.3, 0.7),

1−M2 if x ∈ (0.7, 0.8),

1 if x ∈ (0.8, 1),

ρu(0, x) =



1−M2/2 if x ∈ (0, 0.2),

1 if x ∈ (0.2, 0.3),

1 +M2/2 if x ∈ (0.3, 0.7),

1 if x ∈ (0.7, 0.8),

1−M2/2 if x ∈ (0.8, 1).

The spatial domain is (0, 1), periodic boundary conditions are applied and we
set M2 = 0.99. In Figures (2), (3), the density profile (left) and momentum
profile (right) are displayed at initial time and at time t = 0.051, with a
spacestep of ∆x = 1/300 for our two-speed relaxation scheme. We have set
aq =

√
p′, b/ρ =

√
p′(1 + βX), and a = b (i.e. the classical choice (2.79),

(2.80), in blue), a = 2b (in yellow) and a = 4b (in red). The reference
solution (black) is computed using a very fine mesh given by ∆x = 1/3000.
The numerical test case shows that the choice a = b gives the best result
and seems optimal. Indeed it gives the “smallest” viscosity matrix (2.28).
However, it will be seen that the opportunity of choosing different a and b
is relevant for the study of low Mach number regimes. This is the aim of
the next section.

3 Application to low Mach number flows

In this section we apply our two-speed relaxation solver to low Mach flows.
When the Mach number is small a well-known difficulty is to design asymptotic-
preserving schemes, which means schemes that are uniformly accurate with
respect to the Mach number. It has been pointed out in [7] that until
now there was no asymptotic-preserving scheme which satisfies a fully dis-
crete entropy inequality and which is first-order accurate in the low Mach
number regime. Indeed a scheme proposed in [7] is entropy-satisfying and
asymptotic-preserving but the order of accuracy is only 2/3 in the incom-
pressible asymptotics. On the contrary, the Lagrange-Projection scheme
proposed in [14] (see also [15]) is first-order accurate (uniformly with respect
to the Mach number) but the underlying entropy inequality is no longer
valid when we are too close to the asymptotic limit. We show here that
the two-speed relaxation solver with adequate choice of the speeds yields a
scheme satisfying all the above properties: asymptotic-preserving with uni-
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Figure 2: Density (left) and momentum (right) at time t = 0.051 in the case
a = b (blue), a = 2b (yellow) and a = 4b (red).
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Figure 3: Zoom on the density (left) and momentum (right) curves.

form first-order accuracy, and entropy inequality. The entropy inequality
ensures strong stability properties, and prevents any unphysical growth of
the numerical approximation.

Let us consider the dimensionless Euler equations in several space di-
mensions which write with classical notations

∂t

(
ρ
ρu

)
+ divx

 ρu

ρu⊗ u+
p(ρ)

M2
Id

 = 0, (3.1)

where M denotes the so-called Mach number. It means that the pressure
law is now

p(ρ) =
p(ρ)

M2
, (3.2)

where M is an eventually small parameter. In several space dimensions we
can apply our 1d solver at each interface between two cells, in a classical
finite volume fashion. The transverse velocity is solved as usual by a passive
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transport scheme. We can observe that then there is no special 2d treatment
in this algorithm, it is only the very standard approach. Moreover it is fully
explicit, although a time implicit algorithm like in [12] could be considered.

3.1 The low Mach number regime

Let us briefly recall the incompressible asymptotics of (3.1) when the Mach
number M goes to zero. We consider the following expansions in powers of
M ,

ρ = ρ0 +Mρ1 +M2ρ2 +O(M3),

u = u0 +Mu1 +M2u2 +O(M3),
(3.3)

where ρi, ui, i = 0, . . . , 2 are functions of time and space. It gives in partic-
ular

p = p0 +Mp1 +M2p2 +O(M3) = p(ρ0) +Mp′(ρ0)ρ1 +O(M2).

The second equation of (3.1) gives that ∇x(p(ρ)/M2) is bounded indepen-
dently of M . Therefore, ∇xρ0 = 0 and ∇xρ1 = 0. It follows that

ρ0(t, x) = ρ0(t) and ρ1(t, x) = ρ1(t).

In particular we get the limit of (3.1) as M → 0,{
∂tρ

0 + divx(ρ0u0) = 0,

∂t(ρ
0u0) + divx(ρ0u0 ⊗ u0 + p2Id) = 0.

(3.4)

Assuming the velocity boundary conditions∫
Ω

divx(u) dx = 0 i.e.

∫
∂Ω
u.n dσ = 0 (3.5)

and integrating in space the first equation of (3.4) yields ∂tρ
0 = 0, so that

ρ0 is constant in both space and time. Therefore we recover the incompress-
ibility conditions

ρ0 = cst, divx u
0 = 0, (3.6)

and the evolution of u0 is given by

∂tu
0 + divx

(
u0 ⊗ u0 +

p2

ρ0
Id
)

= 0. (3.7)

The system (3.6), (3.7), where the value of ρ0 can be eliminated, is the
well-known Euler system for incompressible fluids. Doing again the above
argument with the boundary condition (3.5) using the expansion (3.3) of
ρ gives also that ρ1 = cst. To simplify we shall assume that there is no
constant fluctuation in ρ, that is

ρ1 = 0 (3.8)
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(this depending on initial conditions). It implies that

ρ = ρ0 +O(M2), (3.9)

and thus that (3.1) can be written (for smooth solutions)

divx u = O(M2),

∂tu+ divx u⊗ u+∇x
( p(ρ)

ρ0M2

)
= O(M2),

(3.10)

which means that the limit is achieved up to errors of the order of M2.
When considering a numerical method for (3.1), the consistency of the

scheme with the limit model when the Mach number M goes to zero is
an important property. A stronger property is the asymptotic-preserving
property, which means uniform accuracy with respect to M .

3.2 Definition of the relaxation speeds for the low Mach
regime

We propose now practical definitions of the wave speeds aL, aR, bL, bR, in
agreement with the analysis proposed in Subsection 2.6.3. In order to fulfill
the stability conditions (2.65), (2.66), (2.67), we take for α = L,R (recall
that the pressure p is related to p by (3.2))

aαq = min(1,M)

√
p′α

M2
,

bα

ρα
= min(1,M)

√
p′α

M2
(1 + βXα),

aα

ρα
=

1

min(1,M)

√
p′α

M2
(1 + βXα),

(3.11)

where the Xα are defined by (2.71), (2.72). Observe that in the case M ≥ 1,
we recover the classical choice a = b, i.e. (2.79), (2.80). In the general case,
(3.11) differs from the classical choice only by the factor min(1,M) in the
three formulas. When M → 0, we observe that aq and b remain bounded,
whereas a ∼ 1/M2.

Consider the two-speed relaxation scheme with the choice (3.11) of the
wave speeds, where the pressure law takes the form (3.2), with still the
assumptions (2.2), (2.3). Then the conclusions of Theorem 1 are valid at
fixed M , but without limitation on the size of M (in particular the density
remains positive and the discrete entropy inequality holds), with the mod-
ification that in several space dimensions we apply the 1d solver at each
cell interface in the finite volume fashion, and the CFL condition is mod-
ified by a factor depending on the geometry of the mesh. We highlight
the importance of this result and point out that it also holds working with
unstructured meshes. In addition we have the following properties.
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Theorem 2. The two-speed relaxation scheme with the choice (3.11) of the
wave speeds is asymptotic-preserving in the low Mach number regime. More
precisely, assuming that we are in the low Mach regime in the sense that for
the considered initial data the space continuous limit explained in Subsection
3.1 is valid with ρ = ρ0 + O(M2) and ∇xp = O(1) and the solution to the
incompressible system (3.6), (3.7) is smooth, one has that
a) the scheme is first-order uniformly with respect to the Mach number M ,
b) for M <

√
k∆x (with k a constant), the scheme is consistent at first

order with the incompressible limit model (3.6), (3.7). Moreover the scheme
is consistent with the incompressibility equation (3.6) uniformly in time.

The properties a), b) do not follow from Theorem 1, they are proved
in Subsection 3.3. Technically, we prove that in 1d the scheme satisfies an
expansion in terms of M and ∆x both going to zero at arbitrary respective
speeds,

F (UL, UR)− F (UL) + F (UR)

2

= −∆x

2

√
p′∂x

(ρ− ρ0

M2

)
(1, u)− ∆x

2
(ρ|u|+ ρ

√
p′)
(

0, ∂xu
)

+O(∆x2) +O(M∆x),

(3.12)

where F (UL, UR) is the numerical flux, UL, UR are the left and right values
of U , the nonlinearity F (U) comes from (2.1), and on the right-hand side
of (3.12) the local values of ρ, u are related to the exact solution to the
compressible model (3.1).

Before going into the proof of Theorem 2, some comments are in order.
First, our scheme is not defined for M = 0, it would give infinite propagation
speeds. Nevertheless, M > 0 can be arbitrary small. The same remark is
valid for ∆x: the scheme is defined only for ∆x > 0. Second, the consistency
of a scheme is a property relative to ∆x tending to 0, it is thus meaningless to
speak of consistency “at fixed ∆x”. Therefore, when talking of consistency
“as M → 0” it means necessarily that both M → 0 and ∆x → 0. The
real issue is what are the assumptions on the respective speeds of these two
parameters going to 0.

Property a) implies that if M is arbitrary small the scheme is uniformly
consistent with the barotropic system (3.1) (that involves the parameter M),
which itself is close to the incompressible limit if M is small enough. This
implies that for M → 0 (which has to be understood in the sense that M
and ∆x both tend to 0, but M is arbitrary smaller than ∆x), the scheme
becomes consistent with the incompressible limit. Next, property b) states
that for M <

√
k∆x (with k a constant), the scheme is consistent at first

order with the incompressible limit model. This condition M <
√
k∆x is

in particular satisfied when M → 0, thus we get again that as M → 0 the

22



scheme becomes consistent with the incompressible model (limit-consistency
of the scheme). Indeed this property b) slightly extends the limit-consistency
property, for example it is possible to choose ∆x ∼ M2 and still keep the
consistency.

An interpretation of (3.12) is that in 1d the scheme has an equivalent
equation of the form (2.27) with a numerical viscosity matrix given by (2.28)
in which we set formally

ε
(a
b
− 1
)
p′ =

∆x

2

√
p′

M2
, ε

(ab
ρ2
− p′

)
=

∆x

2

(
|u|+

√
p′
)
. (3.13)

However these relations that formally identify the viscosity matrix (2.28)
of the relaxation system and the numerical viscosity should in principle be
corrected by the numerical viscosity of the exact Godunov scheme, that is
not taken into account in (2.28) whereas it is included in the formulas (3.12).
Notice also that according to [3, Proposition 3.1], the relevant value of ε is
ε = ∆t/2.

To compare with, if one considers the classical one-speed relaxation
scheme, i.e. the choice (2.80) for which b = a = O(1/M), then the nu-
merical diffusion coefficients (excluding the factor ∆x) behave as O(1/M)
for ρ and O(1/M) for u. In other words, the numerical diffusion on the
mass equation is small (knowing (3.15)), while it is extremely large on the
momentum equation. As a matter of fact, our two-speed relaxation solver
with the choice (3.11) of a and b increases (respectively decreases) the nu-
merical diffusion on the mass (resp. momentum) equations. This transfer of
numerical diffusion between the mass and momentum equations was present
in [24] and is crucial here for the validity of the entropy inequality in the
low Mach regime. It is related to the idea of preconditioning [44].

3.3 Asymptotic properties of the low Mach scheme

In this subsection we prove the asymptotic-preserving property a) stated
in Theorem 2. We then prove the statement b), and finally discuss the
behaviour of the CFL condition (2.37) and the existence of checkerboard
modes.

Proof of property a) of Theorem 2. Let us assume that the solution is in the
low Mach regime. Then ∇xp = O(1), which implies that at each interface

πR − πL = pR − pL = O(1), (3.14)

or equivalently (taking into account (3.2))

ρR − ρL = O(M2). (3.15)
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The consistency error can be evaluated by expanding the numerical flux
minus the centered flux, i.e. the difference F (UL, UR)−(F (UL)+F (UR))/2.
The numerical flux is defined by (2.35). According to the values of σL, σR

in (2.32) and the fact that aL, aR → ∞ as M → 0, one has σL → −∞,
σR →∞. It implies that the value of the numerical flux in (2.35) is FL? or
FR?, that are defined by (2.36) in terms of the intermediate values. Let us
rewrite the intermediate states (2.31) in terms of M , by using the definitions
(3.2), (3.11), (2.71), (2.72). Easy expansions show that when the Mach
number goes to zero, we have

Xα = O(M), bα = b
α

+O(M), aα =
b
α

M2
(1 +O(M)), (3.16)

with
b
α

ρα
=
√
p′α. (3.17)

Moreover according to (3.15), (3.17) one has

b
R − bL = O(M2), (3.18)

thus we can write just b instead of b
R

or b
L

(up to O(M2) errors). The
intermediate states (2.31) can then be expanded as

π? =
πL + πR

2
+ b

uL − uR
2

+O(M(πL − πR)) +O(M(uL − uR)),

v? =
uL + uR

2
+
πL − πR

2b
+O(M(πL − πR)) +O(M(uL − uR)),

1

ρL?
=

1

ρL
+O(M2(πL − πR)) +O(M2(uL − uR)), (3.19)

1

ρR?
=

1

ρR
+O(M2(πL − πR)) +O(M2(uL − uR)),

uL? = uL +O(M2(πL − πR)) +O(M2(uL − uR)),

uR? = uR +O(M2(πL − πR)) +O(M2(uL − uR)).

We observe then that because of (3.2) and since p′ is bounded and non-zero,
we have ρL − ρR = O(M2(πL − πR)). Therefore ρL?, ρR? are both close to
ρL (or ρR) up to an error O(M2(πL−πR)) +O(M2(uL−uR)). With (2.36)
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we thus get

FL? − F (UL) + F (UR)

2

= ρL
(
v? − uL + uR

2
, uL?v? − (uL)2 + (uR)2

2

)
+
(

0, π? − πL + πR

2

)
+O(M2(πL − πR)) +O(M2(uL − uR))

= ρL
(πL − πR

2b
, uL

πL − πR
2b

)
+
(

0, (ρLuR + b)
uL − uR

2

)
+O(M(πL − πR)) +O(M(uL − uR)).

(3.20)
Similarly we have

FR? − F (UL) + F (UR)

2

= ρR
(πL − πR

2b
, uR

πL − πR
2b

)
+
(

0, (−ρRuL + b)
uL − uR

2

)
+O(M(πL − πR)) +O(M(uL − uR)).

(3.21)

Now since we are close to a smooth solution satisfying (3.9), we have that
(ρ − ρ0)/M2 is smooth and bounded (in the sense that ∇x(ρ − ρ0)/M2 is
bounded also). We can thus write with (3.2)

πL − πR =
p(ρL)− p(ρR)

M2
= −∆x p′∂x

(ρ− ρ0

M2

)
+O(∆x2), (3.22)

and uL−uR = −∆x ∂xu+O(∆x2). Indeed this is valid in 1d, but in multi-d
a similar expansion is possible in terms of the size of the cell. The previous
expansions of FL?, FR? and the value b = ρ

√
p′ lead to (3.12). The term

|u| indeed comes from the fact that the value of the numerical flux is either
FL? if σ? ≥ 0 or FR? if σ? ≤ 0, noticing that σ? = u+O(∆x).

The expansion (3.12) means that the scheme is first-order uniformly
in M . Moreover, excluding the factor ∆x, the numerical viscosity in u is
bounded independently of M , and the numerical viscosity in ρ is in 1/M2.
This large value is indeed affordable in the low Mach regime because of
(3.15). Thus a) of Theorem 2 is proved, as well as (3.12).

Proof of property b) of Theorem 2. We have to prove that for M <
√
k∆x

(with k a constant), the scheme is consistent at first order with the incom-
pressible limit model (3.6), (3.7). In other words we have to prove that
for M and ∆x satisfying the previous inequality, the approximate solution
uM,∆x is close to the exact solution u to the incompressible system (3.6),
(3.7), up to an error of order ∆x. Consider the exact solution (ρM , uM ) to
the compressible system (3.1). According to property a) of Theorem 2 one
has that uM,∆x − uM is of order ∆x. But since uM − u is of order M2 ac-
cording to (3.10) and M2 = O(∆x), we conclude that uM,∆x − u = O(∆x),
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which is the claim. To finish the proof of b) of Theorem 2, it remains to
prove the uniformity with respect to time. In order to do that we use the
relative entropy. Recall that the entropy η(U) is defined by (2.5). We define
the entropy relative to the constant state U cst = (ρ0, 0) by

ηrel(U) = η(U)− η(U cst)− η′(U cst)(U − U cst)
= ρ

u2

2
+ ρe(ρ)− ρ0e(ρ0)−

(
e(ρ0) + p(ρ0)/ρ0

)
(ρ− ρ0)

= ρ
u2

2
+

1

M2

(
ρe(ρ)− ρ0e(ρ0)−

(
e(ρ0) + p(ρ0)/ρ0

)
(ρ− ρ0)

)
.

(3.23)
Since η is convex, ηrel is nonnegative. Since our scheme satisfies a discrete
entropy inequality for η, it satisfies also a discrete entropy inequality for
ηrel. Discretely integrating it in space (under suitable boundary conditions)
and in time we get that∑

i

|Ci|ηrel(Uni ) ≤
∑
i

|Ci|ηrel(U0
i ), (3.24)

where |Ci| is the volume of the cell Ci associated with the finite volume
method, and U0

i is the initial data. Using that for ρ close to ρ0, ηrel(U) '
ρu2/2 + p′(ρ0)(ρ − ρ0)2/2ρ0M2, we deduce that ρ − ρ0 = O(M) (in the
L2 sense) and that the integral of ρu2 is bounded, both uniformly in time,
because this is true initially by assumption. Remark that this holds true for
all weak solutions, whereas the stronger approximation (3.9) is valid only
for smooth solutions. With the discrete form the the mass conservation
we conclude that div u = O(M) + O(∆x) + O(∆t) in the weak discrete
sense, uniformly in time. This proves that the scheme is consistent with the
incompressibility equation (3.6) uniformly in time, and finishes the proof of
b) of Theorem 2.

Behaviour of the CFL condition. Let us examine the CFL condition (2.37)
with the choice of the speeds (3.11). With the value (2.32) of σL and σR

(σ? is in between, and thus it can be ignored) i.e. σL = uL − aL/ρL,
σR = uR + aR/ρR, in the low Mach regime the CFL condition is mainly
driven by aL/ρL and aR/ρR. According to (3.11) these numbers behave as
a/ρ ∼

√
p′/M2. We thus get the order of magnitude

∆t/∆x ∼M2/
√
p′, (3.25)

which is very restrictive in the low Mach number regime (but implicit ver-
sions can be developed).

Let us show however that a parabolic-type CFL condition can be ob-
tained. We proceed following an idea introduced in [7]. First of all, we recall
that when solving the compressible barotropic Euler equations with small
Mach number M , we are close to an incompressible flow within a distance
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of the order of M2, see (3.10). On the other hand, we aim at considering a
first-order scheme, for which the consistency error is expected to be of the
order of ∆x. As a consequence, when M2 < k∆x (with k a normalizing con-
stant), the compressible system and the incompressible limit differ no more
than by an error of ∆x. Both are therefore also close to the compressible
system for which M =

√
k∆x since the solution to the compressible system

with this value of the Mach number is also close to the incompressible limit
within a distance of the order of ∆x. We conclude that in general we can

replace in the scheme M by Mused = max(M,
√
k∆x), (3.26)

without making an error of more than ∆x, which means that we maintain
the first-order accuracy of the scheme. Numerically we end up by replacing
the parameter M (everywhere in the numerical scheme) by max(M,

√
k∆x),

while keeping unchanged the normalized pressure p. In this way the stiffness
can be reduced to its minimal. With this modification, the CFL condition
now behaves as

∆t ∼ ∆xmax(M2, k∆x)√
p′

. (3.27)

When M <
√
k∆x it is now a parabolic-type CFL condition. On the con-

trary in the case M >
√
k∆x, the case of a Mach number of order unity or

of a fine mesh, this CFL condition (3.27) is a classical hyperbolic-type CFL
condition.

However, we have to mention that doing this trick of replacing M by
max(M,

√
k∆x) in the scheme, which is based on an error analysis for

smooth solutions, can give quite poor results for discontinuous solutions,
see subsection 3.5. A related delicate issue is the choice of the constant k,
which is homogeneous to the inverse of a length. Nevertheless the trick works
very well for computing incompressible flows, as done in [7]. Indeed this is
the basis of the so-called artificial compressibility schemes, see for example
[38], and this proves that for M <

√
k∆x the scheme (with or without the

replacement (3.26)) is consistent at first order with the incompressible limit
model.

Checkerboard modes. It is well-known that most of the asymptotic-preserving
schemes exhibit nonphysical steady checkerboard modes in low Mach regimes,
see for instance [23], [40], [25]. In our case, such nonphysical steady modes
do not exist since we proved in section (2.6.2) that thanks to the validity
of the entropy inequality, steady solutions are necessarily constant in space.
This result holds true uniformly with respect to the Mach number. In other
words, the validity of a discrete entropy inequality can be understood as a
strong stability result which is enough to prevent the development of non-
physical checkerboard modes. Note that the appearence of checkerboard
modes in some asymptotic-preserving schemes maybe related to the fact
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that these schemes reduce the numerical viscosity in the velocity, but do not
strengthen the viscosity on the density.

3.4 Numerical test cases

In this section, the asymptotic-preserving property of the scheme is investi-
gated numerically. We compare the results given by a Rusanov scheme, a
standard (one-speed) relaxation scheme i.e. the choice (2.80) of the speeds,
and our (two-speed) asymptotic-preserving scheme with the choice (3.11) of
the speeds. We consider four test cases, that are all in the fully developed
low Mach regime, contrarily to the test cases considered in [22, 27] that are
transient tests corresponding to small final time of the order of M . The
tests are two-dimensional and use cartesian meshes.

3.4.1 Travelling vortex

The first test case consists in the propagation of a vortex. It is taken from
[34]. For this test case, an exact solution is available which makes it partic-
ularly useful in order to check the accuracy of the scheme in the low Mach
number regime. The pressure law is p(ρ) = ρ2/2, and the initial conditions
are 

ρ(t = 0, x, y) = 110 +M2
(1.5

4π

)2
δ(r)(k(r)− k(π)),

u1(t = 0, x, y) = 0.6 + 1.5(1 + cos(r))δ(r)(0.5− y),

u2(t = 0, x, y) = 0 + 1.5(1 + cos(r))δ(r)(x− 0.5),

with

k(r) = 2 cos(r) + 2r sin(r) +
cos(2r)

8
+
r sin(2r)

4
+

3r2

4
,

and

r = 4π
√

(x− 0.5)2 + (y − 0.5)2, δ(r) =

{
1 r < π,

0 otherwise.

The initial density profile is displayed on Figure 4. The exact solution writes

ρ(t, x, y) = ρ(0, x− 0.6t, y),
u1(t, x, y) = u1(0, x− 0.6t, y), u2(t, x, y) = u2(0, x− 0.6t, y),

it satisfies div u = 0 for all times. The spatial domain is [0, 1] × [0, 1] and
periodic boundary conditions are considered. On Figures 5, 6, 7, the density
profiles are displayed at time t = 0.1 for the Rusanov scheme (left), the
relaxation scheme (middle) and the AP scheme (right) in the case M = 1
for different meshes. On Figures 8, 9, 10, the density and velocity magnitude
errors are displayed in terms of M considering several mesh refinements. It is
observed that as the Mach number goes to zero the velocity magnitude errors
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computed by the Rusanov and the one-speed relaxation schemes increase
incorrectly while the error obtained with the two-speed relaxation scheme
remains constant (and correctly decays as the mesh is refined). On Figures
13, 14, 15, 16, the density and velocity magnitude errors are displayed in
terms of ∆x considering several Mach numbers. It is observed that for
M = 1 the three schemes behave correctly. However, considering a fixed
small Mach number, it is observed that the Rusanov and the relaxation
scheme do not converge (or converge very slowly for even smaller mesh sizes
not reported here) when refining the mesh. On the contrary the AP scheme
correctly converges when refining the mesh and a first-order convergence is
obtained even at small Mach numbers. This is one of the main properties
we are looking for. On Figure 11, the temporal evolution of the L2 norm of
the velocity is shown and on Figure 12 the temporal evolution of the relative
L1 error on the velocity divergence is displayed. This quantity is defined by

RelErrDivn =
ErrDivn

Gradn
,

with

ErrDivn = ∆x∆y
∑
ij

∣∣∣(ρu1)ni+1j − (ρu1)ni−1j

2∆x
+

(ρu2)nij+1 − (ρu2)nij−1

2∆y

∣∣∣,
Gradn = ∆x∆y

∑
ij

(((ρu1)ni+1j − (ρu1)ni−1j

2∆x

)2
+
((ρu2)ni+1j − (ρu2)ni−1j

2∆x

)2

+
((ρu1)nij+1 − (ρu1)nij−1

2∆y

)2
+
((ρu2)nij+1 − (ρu2)nij−1

2∆y

)2
) 1

2

.

It is observed that the relaxation scheme strongly damps the solution at
small Mach number, whereas it is not the case with our AP scheme.

3.4.2 Taylor-Green vortex

Our second test is the well-known Taylor-Green vortex [7]. The initial con-
ditions are displayed on Figure 17 and given by

ρ(t = 0, x, y) = 1,

u1(t = 0, x, y) = − cos(w1x) sin(w2y),

u2(t = 0, x, y) =
w1

w2
sin(w1x) cos(w2y),

with w1 = 3 and w2 = 2. The spatial domain is [−π, π] × [−π, π] and
periodic boundary conditions are considered. In the incompressible limit,
this is an exact steady solution. The pressure law is taken p(ρ) = ρ2/2.
On Figures 18, 19, the density and velocity magnitude errors are displayed
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with respect to the Mach number M and for several mesh refinements. As
in the previous test case, it is observed that when the Mach number goes
to zero the velocity magnitude errors computed for the relaxation scheme
increase incorrectly while the ones obtained with the AP scheme remain
constant, and decays when refining the mesh. The temporal evolutions of
the L2 norm of the velocity and of the relative L1 errors of the velocity
divergence are displayed on Figures 20, 21, 22. Again, we observe that the
relaxation scheme strongly damps the solution when the Mach number is
small, whereas it is not the case with the AP scheme.

3.4.3 Backward facing step flow

In this test case, a viscosity term is added. The barotropic dimensionless
Navier-Stokes equations under consideration then read

∂t

(
ρ
ρu

)
+ divx

 ρu

ρu⊗ u+
p(ρ)

M2
Id

 =

(
0

1

Re
∆u

)
, (3.28)

where Re is the so-called Reynolds number. A standard finite-difference
scheme is used for the viscous term. Our test case is taken from [30] and
the initial conditions are ρ = 1, u = 0. The space domain is given by [0, L =
8]× [−0.5, 0.5] and no flow boundary conditions are set ie u = 0 for the top
and bottom walls and for the left step in (x = 0,−0.5 < y < 0). The inflow
boundary conditions in (x = 0, 0 < y < 0.5) is (u1, u2) = (12y(1 − 2y), 0)
and the outflow boundary condition in (x = L,−0.5 < y < 0.5) is (u1, u2) =
(−3y2 +3/4, 0). In addition, these boundary conditions are ramped up from
time 0 to time 1 by the function (1 − cos(πt))/2 and Neumann boundary
conditions are set for the density.
For this test case, we set M = 0.01, Re = 100, ∆x = 1/16 and ∆y =
1/32. The contour plots of the velocity and the velocity stream functions are
displayed on Figures 23, 24, 25 for the Rusanov scheme (top), the relaxation
scheme (middle) and our asymptotic-preserving scheme (bottom) at time t =
20. It is observed that the Rusanov scheme does not capure the recirculation
unlike the relaxation and the AP schemes. However, the relaxation scheme
does not obtain the correct reattachment point position and underestimates
it while the AP scheme gives very close results to the ones obtained in
[30]. Again, this clearly shows the gain of the method proposed in the
present work compared to standard numerical schemes for low Mach regime
applications.

3.4.4 Lid cavity

This test case is with viscosity, as the previous one. It concerns a cubic cavity
full of fluid where all the walls but one are fixed (in the present case the top
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wall of the cavity). The moving wall drags the fluid and initiates a global
circulation of the fluid. A central main recirculation must be observed with
smaller recirculations at the bottom corners. The initial conditions are ρ =
1, u = 0 and the space domain is [0, 1]× [0, 1]. No flow boundary conditions
are set i.e. u = 0 at the walls. Neumann boundary conditions are considered
for the density and the velocity boundary condition at the moving wall is
(u1, u2) = (1, 0). For this test case, we set M = 0.2, Re = 400, ∆x = ∆y =
1/200. The contour plots and the velocity and velocity stream functions are
displayed on Figures 26, 27, 28 for the Rusanov scheme (top), the relaxation
scheme (middle) and the asymptotic-preserving scheme (bottom) at time
t = 30. It is observed that the Rusanov scheme does not capture correctly
the recirculations unlike the relaxation and AP schemes. The relaxation
scheme and the AP scheme give close results, which is expected since the
Mach number considered here is not very small. This also shows the good
behaviour of the AP scheme in intermediate regimes.

3.5 Limit of the approach and perspectives: toward an im-
plicit two-speed relaxation scheme

We would like here to point out some limits of the current approach for
transitory regimes, and perspectives to go beyond.
Let us consider a basic test case in one space dimension, taken from [27].
It consists in a Riemann problem giving rise to a double rarefaction in a
low Mach number regime. We are interested in the transitory regime when
the final time is so short (of the order of M) that the acoustic waves are
still present in the domain. The spatial domain is [0, 1], Dirichlet boundary
conditions are considered and we take M2 = 10−3, p(ρ) = ρ2. The initial
conditions are

ρ(0, x) =

{
1 +M2 if x ∈ (0, 0.5),

1 if x ∈ (0.5, 1),
u(0, x) =

{
1−M if x ∈ (0, 0.5),

1 +M if x ∈ (0.5, 1).

On Figure 29 the density profile (left) and momentum profile (right) are
displayed at initial time and at time t = 7 × 10−3. The initial condition is
in green and the exact solution is in black. A spacestep of ∆x = 1/800 is
used. Figure 29 shows the results obtained with the AP scheme in the con-
text of the replacement (3.26), which means that in the pressure law (3.2)
and in the algorithm (but not in the above initial data!), M is replaced by
Mused, with Mused = max(M,

√
k∆x). The choice Mused =

√
∆x (k = 1) is

shown in blue and the choice Mused = M is shown in red. It is observed
that the modification Mused =

√
∆x leads to inaccurate results in this tran-

sitory regime (especially on the intermediate states), although
√

∆x ' 0.035
is only slighly greater than M ' 0.031. On the contrary, the AP scheme
with Mused = M captures the correct solution, but the CFL condition in-
volves the factor M2 according to (3.25). We recall that the modification
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Mused = max(M,
√
k∆x) was introduced to avoid such a restrictive CFL

condition and switch to the parabolic CFL condition (3.27).

Perspectives and work in progress. In order to avoid both the replacement
(3.26) and the stringent CFL restriction (3.25) in low Mach number regimes,
an implicit scheme can be considered. This can be done following for in-
stance the ideas introduced in [12, 14, 15]. More precisely, a Lagrange-
Projection like decomposition is performed such that the Lagrange system
contains the stiff acoustic part. This Lagrange part is solved implicitly,
whereas the projection step is kept explicit. Using our two-speed relaxation
system to approximate the solution to the Lagrange system will make the
implicit resolution very cheap in terms of computational cost since it is asso-
ciated with a quasilinear system. At last, this implicitation of the acoustic
part would enable to avoid both the introduction of the parameter Mused and
the CFL condition, and lead to accurate results also in transitory regimes.
A standard hyperbolic CFL condition associated with the explicit projection
step would ensure the stability of the overall scheme. A rigorous study of
this implicit-explicit approach in the framework of the AP scheme presented
here is beyond the scope of this paper and is currently investigated.

4 Summary and conclusion

We have introduced a new relaxation model of Suliciu type for the barotropic
Euler equations. Contrarily to the clasical one, our relaxation system has
two speeds as parameters. Under subcharacteristic conditions on these
speeds, the associated solver satisfies a discrete entropy inequality, and keeps
the positivity of the density. The advantage of having two speeds is that we
can monitor independently the numerical viscosity in the density and veloc-
ity variables. We have applied our solver to the barotropic Euler equations in
the low Mach number regime. In this context it is well-known that standard
schemes put too much numerical viscosity on the velocity (proportionally to
1/M , where M is the Mach number). Schemes that are modified to handle
correctly the low Mach regime are classically called asymptotic preserving,
which means that they are uniformly accurate. However for all such schemes
in the literature, the applied modifications prevent the scheme from satis-
fying a discrete entropy inequality. For our two-speed relaxation solver we
have proved that some particular explicit choices of the relaxation speeds en-
able to establish for the first time both the asymptotic-preserving property
and a discrete entropy inequality. This strong property is related to the pos-
sibility of monitoring correctly the numerical viscosity coefficients. Indeed
one has to keep a finite numerical viscosity in the velocity variable, whereas
the numerical viscosity in the density variable has to grow like 1/M2. This
large value is possible because the density is close to a constant in the low
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Mach regime. Recall that in a classical Godunov solver the viscosities on
the density and velocity are of the same order 1/M . The discrete entropy
inequality satisfied by our scheme is a strong stability property that allows
us to prove that for small Mach number M our scheme is consistent with
the incompressible Euler equations, that the incompressibility condition is
approximated uniformly in time, and that checkerboard modes do not exist.

Two-dimensional test cases have been presented to confirm our theoret-
ical properties. A limit of our approach is that our scheme is explicit, and
the CFL condition blows up like 1/M2 in the low Mach regime. We have
proposed a modification (3.26) of our scheme in order to avoir this blow up
and to reduce to a parabolic-type CFL condition in the low Mach regime.
However this modification gives inaccurate results in transitory regime when
the time is of the order of the Mach number. Therefore, in order to avoid
both the use of our modification and the restrictive CFL condition, an im-
plicit two-speed relaxation model will be considered in a forthcoming work,
using the approach of [14].
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Figure 4: Initial density
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Figure 5: Density profile obtained with a Rusanov scheme (left), the relax-
ation scheme (middle) and the AP scheme (right) at t = 0.1 for M = 1 in
the case 50× 50.
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Figure 6: Density profile obtained with a Rusanov scheme (left), the relax-
ation scheme (middle) and AP scheme (right) at t = 0.1 for M = 1 in the
case 100× 100.
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Figure 7: Density profile obtained with a Rusanov scheme (left), the relax-
ation scheme (middle) and AP scheme (right) at t = 0.1 for M = 1 in the
case 200× 200.
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Figure 8: Density error (left) and velocity magnitude error (right) in terms
of M for the Rusanov scheme at time t = 0.1 for different meshes (Travelling
vortex).
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Figure 9: Density error (left) and velocity magnitude error (right) in terms
of M for the one-speed relaxation scheme at time t = 0.1 for different meshes
(Travelling vortex).
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Figure 10: Density error (left) and velocity magnitude error (right) in terms
of M for the AP scheme at time t = 0.1 for different meshes (Travelling
vortex).
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Figure 11: Temporal evolution of the L2 norm of the velocity for the re-
laxation scheme (left) and the AP scheme (right) in the case 50 × 50 for
different M (Travelling vortex).
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Figure 12: Temporal evolution of the relative L1 error of the velocity diver-
gence for the relaxation scheme (left) and the AP scheme (right) in the case
50× 50 (Travelling vortex).
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Figure 13: Density error (left) and velocity magnitude error (right) in terms
of ∆x for M = 1 (Travelling vortex).
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Figure 14: Density error (left) and velocity magnitude error (right) in terms
of ∆x for M = 0.1 (Travelling vortex).
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Figure 15: Density error (left) and velocity magnitude error (right) in terms
of ∆x for M = 0.01 (Travelling vortex).40



10−3 10−2 10−1

∆x

10−11

10−10

10−9

10−8

10−7

10−6

10−5

L
1

er
ro

r

AP

Relaxation

Rusanov

order 1

10−3 10−2 10−1

∆x

10−3

10−2

10−1

L
1

er
ro

r

AP

relax

Rusanov

order 1

Figure 16: Density error (left) and velocity magnitude error (right) in terms
of ∆x for M = 0.001 (Travelling vortex).
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Figure 18: Density error (left) and velocity magnitude error (right) in terms
of M for the one-speed relaxation scheme at time t = 1 for different meshes
(Taylor-Green vortex).
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Figure 19: Density error (left) and velocity magnitude error (right) in terms
of M for the AP scheme at time t = 1 for different meshes (Taylor-Green
vortex).
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Figure 20: Temporal evolution of the relative L1 error of the velocity diver-
gence for the relaxation scheme (left) and the AP scheme (right) in the case
50× 50 (Taylor-Green vortex).
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Figure 21: Temporal evolution of the L2 norm of the velocity for the re-
laxation scheme (left) and the AP scheme (right) in the case 50 × 50 for
different M (Taylor-Green vortex).
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Figure 22: Temporal evolution of the L1 error of the velocity divergence for
the relaxation scheme (left) and the AP scheme (right) in the case M = 0.1
for different meshes (Taylor-Green vortex).
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Figure 23: Contour plots of the velocity modulus (left) and velocity stream
functions (right) for the Rusanov scheme in the case ∆x = 1/16 and ∆y =
1/32 for M = 0.01 and Re = 100 at time t = 20.
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Figure 24: Contour plots of the velocity modulus (left) and velocity stream
functions (right) for the relaxation scheme in the case ∆x = 1/16 and ∆y =
1/32 for M = 0.01 and Re = 100 at time t = 20.
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Figure 25: Contour plots of the velocity modulus (left) and velocity stream
functions (right) for the AP scheme in the case ∆x = 1/16 and ∆y = 1/32
for M = 0.01 and Re = 100 at time t = 20.
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Figure 26: Contour plots of the velocity modulus (left) and velocity stream
functions (right) for the Rusanov scheme in the case ∆x = ∆y = 1/200 for
M = 0.2 and Re = 400 at time t = 30.
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Figure 27: Contour plots of the velocity modulus (left) and velocity stream
functions (right) for the relaxation scheme in the case ∆x = ∆y = 1/200 for
M = 0.2 and Re = 400 at time t = 30.
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Figure 28: Contour plots of the velocity modulus (left) and velocity stream
functions (right) for the AP scheme in the case ∆x = ∆y = 1/200 for
M = 0.2 and Re = 400 at time t = 30.
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Figure 29: Limit of the approach: representation of the density (left) and
momentum (right) at time t = 7× 10−3 in the case M2 = 10−3 for Mused =√

∆x (blue) and Mused = M (red).
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