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Abstract

We pursue here the development of models for complex (viscoelastic)
fluids in shallow free-surface gravity flows which was initiated by [Bouchut-
Boyaval, M3AS (23) 2013] for 1D (translation invariant) cases.

The models we propose are hyperbolic quasilinear systems that gen-
eralize Saint-Venant shallow-water equations to incompressible Maxwell
fluids. The models are compatible with a formulation of the thermo-
dynamics second principle. In comparison with Saint-Venant standard
shallow-water model, the momentum balance includes extra-stresses asso-
ciated with an elastic potential energy in addition to a hydrostatic pres-
sure. The extra-stresses are determined by an additional tensor variable
solution to a differential equation with various possible time rates.

For the numerical evaluation of solutions to Cauchy problems, we also
propose explicit schemes discretizing our generalized Saint-Venant systems
with Finite-Volume approximations that are entropy-consistent (under a
CFL constraint) in addition to satisfy exact (discrete) mass and momen-
tum conservation laws. In comparison with most standard viscoelastic
numerical models, our discrete models can be used for any retardation-
time values (i.e. in the vanishing “solvent-viscosity” limit).

We finally illustrate our hyperbolic viscoelastic flow models numeri-
cally using computer simulations in benchmark test cases. On extending
to Maxwell fluids some free-shear flow testcases that are standard bench-
marks for Newtonian fluids, we first show that our (numerical) models
reproduce well the viscoelastic physics, phenomenologically at least, with
zero retardation-time. Moreover, with a view to quantitative evaluations,
numerical results in the lid-driven cavity testcase show that, in fact,
our models can be compared with standard viscoelastic flow models in
sheared-flow benchmarks on adequately choosing the physical parameters
of our models. Analyzing our models asymptotics should therefore shed
new light on the famous High-Weissenberg Number Problem (HWNP),
which is a limit for all the existing viscoelastic numerical models.
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1 Introduction

Modelling the viscoelastic large deformation of a flowing continuum material is
still a challenge, despite more than a century of attempts after Maxwell [32].
Precisely, to numerically predict the evolution in time of realistic non-Newtonian
fluid continuum materials, one does not know yet a good mathematical model
for Eulerian fields characterizing a multidimensional flow that would properly
generalize Maxwell’s one-dimensional (1D) model.

In addition to respect the fundamental physical principles (Galilean invari-
ance, mass conservation etc.), a good viscoelastic model should account i) for
the stresses generated within the fluid by a loss of elastic (potential) energy in
deformations – shear and extension –, and ii) for the (viscous) energy dissipation
leading the fluid to a flow equilibirium.

Many constitutive equations have been proposed to relate the stresses with
the symmetrized velocity gradient as a measure of strain, which are formally
satisfying from the loose viewpoint above, but research is still going on [8].
Indeed, there seems to be no general model yet that allows one to correctly
match the experimentally-observed behaviour of complex fluids in steady flows,
like shear-thinning and strain-hardenning, see e.g. [7, 39].

Moreover, in any case, a good model should also allow one to predict the
evolution in time of a piece of fluid, at least for small times, knowing initial
conditions (a Cauchy initial-value problem). Now, most numerical viscoelastic
flow model use similar sets of PDEs for a mass density ρ, a solenoidal velocity u,
and a 2-tensor Σ with various possible physical interpretations with the Eulerian
viewpoint. Typically, differential models of rate-type have been proposed for
Maxwell fluids when the tensor field Σ is either Cauchy’s stress tensor or a
strain tensor like Cauchy-Green, see e.g. [33, 7, 39]. But despite some recent
mathematical progress showing that Cauchy problems for physically-interesting
models like FENE-P and Giesekus have global solutions [31], the numerical
computation of solutions remains unsatisfying too.

There has been continuing progress in the numerical discretization of Cauchy
problems for viscoelastic models [35, 19, 36, 1, 28, 41] and its analysis [13, 2,
37, 4]. However, numerical computations remain impossible in some physically-
meaningful configurations at moderately high Weissenberg number in particular,
which is quite frustrating for applications.

We note that all the discrete viscoelastic models mentioned above consider
the solenoidal flows of incompressible Maxwell fluids, with a non-zero retarda-
tion time (i.e. they have a “background” viscous stress term justified by the
solvent viscosity in the context of polymer flows). Then, they rely on the as-
sumption that velocity gradients remain bounded, and numerical steady-state
flows are usually computed using iterative algorithms to approximate the non-
linear terms (of the constitutive equations at least). Now, numerical instabilities
typically occur when the nonlinear terms prevail in the (discrete) equations and
iterative algorithms fail to converge (to an implicit time-discretization e.g.).

In this work, we would like to study discrete viscoelastic models that are
explicitly computable (no iterative algorithm is required for the approximation
of nonlinearities as fixed points) and that do not assume a non-zero retardation
time (velocity gradients are possibly undounded). Hence, we consider quasilin-
ear systems of first-order with possibly non-solenoidal velocities, that express
mass and energy conservation for elastic fluids with one single relaxation time
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(so-called Maxwell fluids). Moreover, for the sake of stability, we consider hy-
perbolic systems endowed with an additional conservation law (in smooth evo-
lutions) as a formulation of the second thermodynamics principle. Even if one
single additional conservation law may not suffice to define unique admissible
solutions to multidimensional hyperbolic systems, see e.g. [15], it can be useful
for numerical stability purposes at least, see e.g. [13, 2, 37, 4].

A quasilinear system of PDEs has been considered as a model for viscoelastic
2D flows of a slightly compressible Maxwell fluid in [38, 18, 25, 24]. It uses
the Upper-Convected Maxwell equation for the stress tensor Σ (like Oldroyd-B
model) and it is hyperbolic under a simple physically-natural condition that is
independent of the system parameters when rewritten in terms of a deformation
tensor (the left Cauchy-Green deformation tensor, see below in Section 2.1).
Numerical computations show the interest of the approach. However, the model
does not conserve mass and is not obviously compatible with thermodynamics
principles. Moreover, it does not seem easily generalized to 3D flows, and its
stress-strain relationship is physically unclear.

In this work, we use the simplified Saint-Venant framework for hydrostatic
2D (shallow) free-surface flows to propose and study quasilinear systems such
that: (i) they model incompressible viscoelastic flows of Maxwell fluids with a
deformation tensor as dependent variable, (ii) they conserve mass and satisfy
a formulation of the thermodynamics principles, (iii) they remain hyperbolic
under simple physically-natural admissibility conditions. Two possible models
are identified in Section 2.

One model uses the Upper-Convected Maxwell equation for a deformation
tensor of Cauchy-Green left type. It is very similar to that in [38, 18, 25, 24]
except that it is rewritten in terms of a deformation tensor (which then allows
us to show why it is hyperbolic under a condition independent of the system
parameters). In comparison, our version additionally conserves mass (to that
aim, we introduce a free-surface and decompose the pressure in two terms) and
it is endowed with a formulation of the thermodynamics principles. This is one
of the 2D models for viscoelastic incompressible shallow free-surface flows under
gravity that generalize Saint-Venant’s approach (initially for shallow water) to
non-Newtonian fluids, which we previously derived in [11] after depth-averageing
Oldroyd-B model for fast thin-layer flows with small viscosity.

Another model is proposed that uses Finger deformation tensor (the in-
verse of Cauchy-Green left one), with a clear stress-strain relationship (using
Euler-Almansi strain) and with Cotter-Rivlin natural frame-invariant time-rate-
of-change. The model is hyperbolic under the same simple physically-natural
conditions as the previous one, it conserves mass, and it is endowed with a
similar formulation of the thermodynamics principles. We also note that the
model is similar to Reynolds-averaged models that have been proposed for the
Reynolds stresses in weakly-sheared turbulent flows [45, 44], see also [26].

In Section 3, we propose entropy-consistent Finite-Volume discretizations of
the two models. The numerical scheme is a 2D extension of the Suliciu-type
relaxation approach developped in [10] for a closed subsystem fully describing
the 1D (translation-invariant) motions (see also [12] for the exact solutions to
the 1D Riemann problems).

In Section 4, we perform numerical simulations. The numerical results show
that our model are physically meaningful, and a viable approach to the computer
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simulation of physically-realistic viscoelastic flows.

2 Hyperbolic viscoelastic Saint-Venant systems

2.1 Saint-Venant models for shallow free-surface flows

Given a constant gravity field g = −gez, let us equip space with a Cartesian
frame (ex, ey, ez) and consider the flow, i.e. the evolution in time and space, of a
viscoelastic fluid material with a non-folded free-surface z = H(t, x, y) ≥ 0 above
a flat impermeable plane z = 0. We assume the fluid material incompressible
with constant mass density. Then, the dynamics of the flow is governed by
a kinematic condition for the free-surface (in virtue of the mass conservation
principle) coupled to a momentum-balance equation for the velocity (u, v, w)
following physical principles.

Assuming the flow stratified (i.e. with the acceleration small in vertical direc-
tion, and with the horizontal components (u, v) of the velocity mostly uniform
in vertical direction) such that

H

∫ H

0

dz u2 ≈

(∫ H

0

dz u

)2

H

∫ H

0

dz v2 ≈

(∫ H

0

dz v

)2

one standardly obtains an interesting system of quasilinear equations for H > 0

and the depth-averaged velocity U = (U, V ) with components U ≈ 1
H

∫H
0
dzu,

V ≈ 1
H

∫H
0
dzv in the form of conservation laws:

∂tH + div(HU) = 0 (1)

∂t(HU) + div(HU ⊗U +H(P + Σzz)I −HΣh) = −kHU (2)

equivalently:

∂tH + ∂x(HU) + ∂y(HV ) = 0

∂t(HU) + ∂x(HUU +HP +HΣzz −HΣxx) + ∂y(HUV −HΣxy) = −kHU
∂t(HV ) + ∂x(HUV −HΣyx) + ∂y(HV V +HP +HΣzz −HΣyy) = −kHV

which is reminiscent of the 2D gas-dynamics equations of Euler with mass den-
sity proportional to H, with specific pressure P + Σzz and with specific stress-
deviator Σh. (P and Σij have the dimension of energy per unit mass rather than
per unit volume, unlike standard Cauchy stresses and pressures typically mea-
sured in Pa, that is why we term them specific. But for the sake of simplicity,
we omit the label “specific” below, insofar as this is not ambiguous here.)

With P = gH/2 the depth-averaged hydrostatic pressure, one retrieves the
inviscid shallow-water model of Saint-Venant [17] when Σij = 0, which coincides
with Euler isentropic 2D flow model of perfect gases with γ = 2. Euler 2D
model is (symmetric) hyperbolic and solutions to Cauchy problems allow one
to numerically predict small-time evolutions of some compressible gases [14].
The shallow-water model of Saint-Venant is widely used e.g. in environmental
hydraulics for nonlinear irrotational water waves in flat open channels with
rugosity k ≥ 0 [43], at least to predict the dynamics of long surface waves.
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Moreover, the system (1–2) can also sustain shear motions. Formally, it
approximates the depth-averaged free-surface Navier-Stokes equations for a vis-
cous fluid with (small) viscosity ν ≥ 0 provided Σzz = −(Σxx + Σyy) and

Σxx = 2ν∂xU Σyy = 2ν∂yV Σxy = ν(∂xV + ∂yU) = Σyx (3)

see [22, 30, 11] and references therein. An additional conservation law is satis-
fied:

∂t(HE) + div(HEU +H(P + Σzz)U −HΣh ·U) = −kH|U |2 −HD , (4)

with viscous dissipation D = 2ν
(
|D(U)|2 + 2|divu|2

)
≥ 0 in shear, for

E =
1

2

(
|U |2 + gH

)
(5)

the so-called mechanical energy, convex in (H−1,U). This is a formulation of
the thermodynamics first principle when k = 0 = ν which implies, by Godunov-
Mock theorem see e.g. [23], that the homogeneous system of conservation laws
is (symmetric) hyperbolic. It also motivates the computation of small-time evo-
lutions as L2 solutions to Cauchy problems, see e.g. [40]. In particular, entropy
solutions to Cauchy problems exist that satisfy the inequality (4)

∂t(HE) + div(HEU +H(P + Σzz)U −HΣh ·U) ≤ −kH|U |2 −HD (6)

as a formulation of the thermodynamics second principle. Moreover, the 1D
(translation-invariant) bounded measurable entropy solutions are unique since
the system is also strictly hyperbolic when H > 0.

As soon as ν > 0 however (e.g. to account for shear motions – 2D horizontal
ones –), variations in the strain D(U) = (∇U + ∇UT )/2 have an infinite
propagation speed, and energy is dissipated everywhere in the strained fluid
microstructure. This is not realistic for a number of flows, which may be better
modelled as viscoelastic fluid continua of Maxwell type (i.e. fluids endowed
with an energy storage capacity of elastic modulus G per unit mass and with a
relaxation time λ that define a viscosity ν = Gλ together).

2.2 Generalized Saint-Venant models for Maxwell fluids

In addition to a viscosity ν, viscoelastic fluids of Maxwell type are characterized
by a time scale λ for the relaxation of the stress to a viscous state proportional
to strain (it defines a Weissenberg number when compared with a time scale of
the flow like |∇U |−1). Moreover, an evolution equation is also needed for Σzz
and the horizontal stress tensor

Σh = Σxxex ⊗ ex + Σyyey ⊗ ey + Σxyex ⊗ ey + Σyxey ⊗ ex

to define a generalized Saint-Venant model for viscoelastic Maxwell fluids with
P = gH/2. Various rate-type differential equations exist for the components of
the tensor field Σh that are compatible with Galilean invariance.

Following the same depth-averaged analysis as in [22, 30] for viscous fluids,

one can derive equations of the form λ
4
Σ +Σ = 2νD(u, v, w) for the depth-

averaged extra-stress variable Σ = Σh + Σzzez ⊗ ez in a 3D Maxwell-fluid
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model, using some admissible time-rate
4
Σ (like the upper-convective derivative

of Oldroyd-B model) and a steady equilibrium Σ ≈ 2νD(u, v, w) (typically
compatible with (3)). Depending on scaling assumptions, various equations
arise in [11], like (see [11, section 6.1.3.])

DtΣh −LhΣh −ΣhL
T
h + ζ(DhΣh + ΣhD

T
h ) = (2νDh −Σh)/λ (7)

where Dt := ∂t + U∂x + V ∂y ≡ ∂t + U ·∇, Lh := ∇U , Dh := (Lh + LTh )/2,

W h := (Lh −LTh )/2 for ζ = 0, along with

DtΣzz + 2(1− ζ) divUΣzz = (−2ν divU − Σzz)/λ. (8)

Equivalently, with Σxy = Σyx, (7–8) reads

DtΣxx − (2(1− ζ)Σxx∂xU + Σxy ((2− ζ)∂yU − ζ∂xV )) = (2ν∂xU − Σxx)/λ

DtΣyy − (2(1− ζ)Σyy∂yV + Σxy (−ζ∂yU + (2− ζ)∂xV )) = (2ν∂yV − Σyy)/λ

DtΣxy −
(

(1− ζ/2)(Σxx∂xV + Σyy∂yU) + (−ζ/2)(Σyy∂xV + Σxx∂yU)

+ (1− ζ)Σxy(∂xU + ∂yV )
)

= (ν(∂xV + ∂yU)− Σxy)/λ

DtΣzz + 2(1− ζ)Σzz(∂xU + ∂yV ) = (−2ν(∂xU + ∂yV )− Σzz)/λ

which is Johnson-Segalman’s 3D model1 [27] with slip parameter ζ ∈ [0, 2] for
some particular incompressible velocity fields (those without vertical shear).

The quasilinear system (1–2–7–8) for H, U and C := λΣ/ν + I is rotation-
invariant. Then, it is easily computed that:

Proposition 2.1. Only the slip-parameter value ζ = 0 (i.e. the Upper-Convected
case) ensures hyperbolicity of (1–2–7–8) under the strain-free constraints: H >
0, Czz > 0 and Ch be a symmetric positive definite tensor (thus also C).

The proof follows after computing the eigenvalues of the jacobian in a 1D
projection of the system (1–2–7–8) like

∂th+ ∂x(hu) = 0

∂tu+ u∂xu+ g∂xh−G ((cxx − czz)/h∂xh+ ∂x(cxx − czz)) = 0

∂tv + u∂xv −G (cxy/h∂xh+ ∂xcxy) = 0

∂tcxx + u∂xcxx − (2(1− ζ)cxx∂xu− ζ∂xv) = 0

∂tcyy + u∂xcyy − cxy(2− ζ)∂xv = 0

∂tcxy + u∂xcxy − ((1− ζ/2)cxx − ζ/2)cyy) ∂xv − (1− ζ)cxy∂xu = 0

∂tczz + u∂xczz + 2(1− ζ)czz∂xu = 0

(9)

similarly to the proof in [18] for a similar system written in stress variables Σ
when ζ = 0 (though without vertical stress and strain components, which allow

1Recall that Johnson-Segalman’s model uses the family of Gordon-Schowalter objective
derivatives (ζ = 0 is the upper-convected derivative, ζ = 1 is Jauman derivative, ζ = 2 is the
lower-convected derivative) to cover a number of standard multidimensional generalizations
of the Maxwell-fluid model: ζ = 0 in Oldroyd-B model, ζ = 1 in the co-rotational model
and ζ = 2 in Oldroyd-A model (with an additional purely-viscous stress characterized by a
retardation-time).
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here mass preservation). Denoting ∆ = 2gh+G (2(3− 2ζ)czz + ζcyy − 3ζcxx),
four eigenvalues read

u± 1

2

√
∆ +G ((4− 2ζ)cxx − 2ζcyy)±

√
∆2 +G2(4ζcxy)2

and are real if, and only if, the following strain-parametrized inequality holds:

G2(4ζcxy)2 ≤ 2G∆ ((4− 2ζ)cxx − 2ζcyy) +G2 ((4− 2ζ)cxx − 2ζcyy)
2

where, however, the strain values cxx, cyy, cxy, czz vanish when ζ = 0. We
therefore consider only (1–2–7–8) when ζ = 0, where hyperbolicity is ensured
with eigenvalues u±

√
gh+ 3Gczz +Gcxx, u±

√
Gcxx and u (with multiplicity

3) under the physcially-natural constraints h ≥ 0, czz ≥ 0, cxx ≥ 0.
Indeed, at each point of the flow, C can be interpreted as the expectation

of RRT i.e. a covariance matrix for a stochastic material vector field R that
elastically deforms following the overdamped Langevin equation

dR =

(
−(u ·∇)R + (L− ζD)R− 1

λ
R

)
dt+

1

2
√
λ
dBt

under a Brownian field (Bt) [34]. Alternatively, the stress Σ = G(C − I)
is also reminiscent of a linear elastic (Hookean) material with elastic modulus
G = ν/λ, where the time-rate of C would be that of a left Cauchy-Green
deformation tensor FF T associated with a deformation gradient F of time-rate
DtF −∇uF . This is easily seen on rewriting Saint-Venant-Upper-Convected-
Maxwell (SVUCM) model with constitutive equations:

DtCh −LhCh −ChL
T
h = (I −Ch)/λ , (10)

DtCzz + 2Czz divU = (1− Czz)/λ . (11)

As expected, the SVUCM model defined by the hyperbolic quasilinear sys-
tem (1–2–10–11) on the domain H,Czz,Ch = CT

h > 0 preserves mass. More-
over, it formally satisfies the additional conservation law (4) with dissipation
D := G(trC + trC−1 − 2 tr I)/(2λ) > 0 for the Helmholtz free-energy

E =
(
|U |2 + gH +G tr(C − lnC − I)

)
/2 , (12)

which suggests the following second thermodynamics principle formulation

∂t(HE) + ∂x (HEU +H(P + Σzz − Σxx)U −HΣxyV )

+ ∂y (HEV −HΣyxU +H(P + Σzz − Σyy)V ) ≤ −kH|U |2 −HD (13)

on the admissibility domain H,Czz, trCh,detCh > 0 (where we use tr lnCh =
ln detCh). Note that the free energy reads E = (U2 + V 2)/2 + EH + EΣ with
Saint-Venant’s potential energy EH = gH/2 plus a Hookean contribution

EΣ(C) ≡ EΣh + EΣzz = G (tr(E(Ch)) + E(Czz)) /2

where the function E(x) := x − lnx − 1 is convex in x > 0, but the system
(1–2–7–8) is not in purely conservative form so one cannot straightforwardly
apply Godunov-Mock theorem to show (symmetric) hyperbolicity of the sys-
tem. However, E is useful to hyperbolicity: formally, the physically-admissible
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solutions to Cauchy problems that satisfy (13) (and have admissible initial value
in the hyperbolicity domain) preserve Czz, trCh,detCh > 0.

However, note that there is a discrepancy in between the strain measure
(I − F−TF−1)/2 naturally associated with the left Cauchy-Green (specific)
deformation tensor FF T (usually termed Euler-Almansi) and the definition of
the elastic stress Σ. That is why, we also propose another model where (1–2)
is coupled through Σh = G(I −Ch), Σzz = G(1− Czz) to

DtCh + LhCh + ChL
T
h = (I −Ch)/λ , (14)

DtCzz − 2Czz divU = (1− Czz)/λ . (15)

Indeed, using for the time-rate of C that of the inverse left Cauchy-Green
deformation tensor (sometimes termed Finger deformation tensor) seems more
consistent with the definition of (linear) elastic stresses Σ as a function of a
(Euler-Almansi) strain measure. Note that the time-rate tensor in (14–15) is
Galilean-invariant and induces an objective Maxwell-fluid law. It has been used
previously in another context where 2D weakly-sheared flows also appear [45,
44, 21] and this is why we call this a Saint-Venant-Teshukov-Maxwell (SVTM)
model. The SVTM model is rotation-invariant. Then, a 1D projection like

∂th+ ∂x(hu) = 0

∂tu+ u∂xu+ g∂xh+G ((cxx − czz)/h∂xh+ ∂x(cxx − czz)) = 0

∂tv + u∂xv +G (cxy/h∂xh+ ∂xcxy) = 0

∂tcxx + u∂xcxx + 2cxx∂xu = 0

∂tcyy + u∂xcyy + 2cxy∂xv = 0

∂tcxy + u∂xcxy + cxy∂xu+ cxx∂xv = 0

∂tczz + u∂xczz − 2czz∂xu = 0

(16)

again suffices (using lower-case notations for 1D systems) to see that the system
is hyperbolic (strictly) on the same admissibility domain as SVUCM:

{h, cxx, cyy, czz > 0 ; (u, v) ∈ R2 ; cxxcyy > c2xy} .

In system (16) for Q = (h, u, v, cxx, cxy, cyy, czz), the jacobian has eigenvalues:

λ0 = u (with multiplicity 3), λ1± = u±
√
Gcxx , λ2± = u±

√
gh+G(3cxx + czz) .

The SVTM model satisfies the same mass and energy conservation laws as
SVUCM, but the laws (and the interpretations) of the dependent variable C
are not the same, as we shall observe in numerical illustrations of Section 4.

Finally, to sum up, we can now propose two hyperbolic quasilinear systems
with zero retardation time as models for viscoelastic incompressible shallow free-
surface 3D flows under gravity, which generalizes Saint-Venant’s approach from
a Newtonian fluid to Maxwell-type fluids.

The first 2D model is one particular case of the depth-averaged model
formally derived in [11]. It bears similarities with the hyperbolic model of
[38, 18, 25, 24] for compressible viscoelastic flows. In comparison, note that our
model applies to incompressible flows and conserves mass, although it remains
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mostly 2D. The improvement is obtained thanks to the introduction of a free-
surface and assuming a stratified flow (i.e. vertical acceleration is neglected and
a vertical velocity can be reconstructed from mass conservation), with a total
(specific) pressure P + Σzz decomposing into a hydrostatic component P plus
an elastic component Σzz hence it holds

Dt(P + Σzz) +

(
P +

2

G
Σzz + 2

)
divU = 0

to be compared with Dt(P + Σzz) + γ (P + Σzz) divU = 0 in [38, 18, 25, 24].
The second 2D model is an alternative to the first one which also conserves

mass and is compatible with a formulation of thermodynamics principles. It has
a more clear stress-strain relationship than the first model. It has been used
previously to model eddies-microstructures in (weakly-sheared) turbulent flows.

Note that the two models contain similar closed subsystems that fully de-
scribe the 1D motions, for q1 = (h, u, czz, cxx) in solutions invariant e.g. by
translation along ey. In SVUCM case, this is the 1D model that we proposed
in [10], and whose Riemann initial-value problem has been completely solved
in [12]. In SVTM case, the 1D system reads similarly except that cxx and czz
exchange their roles. This is natural insofar as their interpretation as strain
components has been inverted ! One should keep in mind the inverted interpre-
tations of the variable C as deformations (in SVUCM) or as inverse deformations
(in SVTM), in particular to read numerical results in Section 4.

3 Computational schemes for Cauchy problems

3.1 A framework for Riemann-based Finite-Volume schemes

With a view to numerically simulating time evolutions of flows governed by our
models SVUCM and SVTM, we consider now computable approximations of
solutions to Cauchy problems for the hyperbolic quasilinear systems.

We study carefully the SVTM case (1–2–14–15) with P = gH/2 and Σh =
G(I −Ch), Σzz = G(1− Czz)

∂tH + div(HU) = 0

∂t(HU) + div(HU ⊗U + gH2/2−GHCzz +GHCh) = −kHU

∂tCh + U ·∇Ch + +LhCh + ChL
T
h = (I −Ch)/λ

∂tCzz + U ·∇Czz +−2Czz divU = (1− Czz)/λ

first, then a similar numerical scheme will follow for SVUCM (1–2–10–11)

∂tH + div(HU) = 0

∂t(HU) + div(HU ⊗U + gH2/2 +GHCzz −GHCh) = −kHU

∂tCh + U ·∇Ch +−LhCh −ChL
T
h = (I −Ch)/λ

∂tCzz + U ·∇Czz + 2Czz divU = (1− Czz)/λ

with Σh = G(Ch− I), Σzz = G(Czz − 1) as explained in Section 3.4, on noting
that both models have the same admissibility domain for the variable C, the
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same equilibrium, and that smooth solutions satisfy the same additional conser-
vation law (4) in both cases (though we recall that the physical interpretations
of the variable C are inversed one another in between the two models).

We are not aware of a general theory that ensures the existence of a unique
solution to Cauchy initial-value problems for multidimensional nonlinear hy-
perbolic systems like SVTM (or SVUCM) model. For instance, the 2D Saint-
Venant system of conservation laws (formally reached in the limit G→ 0), which
is symmetric and strictly hyperbolic, may have multiple entropy solutions [15].

Yet, full-2D admissible solutions can be approximated stably with a Riemann-
based Finite-Volume (FV) method, using a piecewise-constant discretization of
the unknown fields H,U ,C on the cells Vi (i ∈ N) of a mesh [29].

In Riemann-based FV methods, one only needs numerical fluxes built from
1D Riemann problems (formula (17) below). Riemann problems have simple
(self-similar) solutions in 1D, and they can typically be shown well-posed (with
entropy solutions) for strictly hyperbolic systems of genuinely-nonlinear conser-
vation laws, either by the vanishing-viscosity method or (equivalently) by the
front-tracking method [6].

Recall however that our models are not full sets of conservation laws here.
Defining univoque solutions to Riemann problems for the 1D SVTM system (16)
may then be an issue because of non-conservative products, see e.g. [5] for a
discussion of the problem and solutions. One solution has been used in [10, 12]
to univoquely define (approximate) 1D Riemann solutions for the closed 4 × 4
subsystem in (h, ucxx, czz), because the non-conservative variables correspond to
linearly degenerate fields and the mathematical entropy HE remains convex on
the Hugoniot loci. But that solution method does not straightforwardly apply
anymore here insofar as a non-conservative variable is not linearly degenerate.

Pragmatically though (i.e. for numerical purposes), we only need univoque
numerical fluxes. That is the reason why we are naturally led to using only
approximate (simple) 1D Riemann solvers which use only simple solutions (with
only a few degrees of freedom) that are explicitly constrained to satisfy only the
few consistency conditions identified so far, see e.g. [9].

We will construct in Section 3.2 univoque physically-admissible simple (ap-
proximate) solutions to 1D Riemann problems (without source term), thanks to
a frame-invariant Riemann solver ensuring a discrete version of our formulation
of thermodynamics principles (for the homogeneous systems with k = 0).

Now, a framework exists such that a “good” simple Riemann solver ensures
the consistency of Riemann-based FV approximations with solutions to the
homogeneous system. Moreover we also have to handle a source term. So,
before defining precisely solutions to 1D Riemann homogeneous problems, let
us first recall that FV framework from [9] and how to deal with the source term.

Given a tesselation of R2 using polygonal cells Vi, i ∈ N, we write qh =∑
i qi(t)1Vi the FV discretization of a 7-dimensional state vector q for SVTM

model. (See below why we do not choose Q ≡ (h, u, v, cxx, cyy, cxy, czz) as
discretization variable q for (16).) We would like to solve a Cauchy problem for
qh(t), t ≥ 0 given some admissible q0

h at t = 0 ≡ t0.

3.1.1 Splitting the time integration of FV approximations

We use a splitting method to divide time-integration at time tn =
∑n−1
k=0 τ

k, n =
1 . . . N (τk > 0) into two sub-steps: first, the differential terms are integrated

10



forward in time; second, the source terms are integrated backward in time.
For time step [tn, tn+1), we start with qnh ≈ q(tn) and first have to compute

the solution qn+1,−
h =

∑
i q
n+1,−
i 1Vi at tn+1,− of the Cauchy problem for the

homogeneous SVTM model on [tn, tn+1) with a forward-Euler time scheme.
Denoting ni→j the unit normal at a face Γij ≡ Vi ∩ Vj oriented from Vi to

Vj , we compute qn+1,−
h with a FV approximation on each control volume Vi

qn+1,−
i = qni − τn

∑
Γij≡Vi∩Vj 6=∅

|Γij |
|Vi|

F i→j(q
n
i , q

n
j ;ni→j) (17)

that is consistent with a time-integration of our frame-invariant model without
source term. In particular, discrete conservation laws hold for Hi and HiU i with
consistent numerical fluxes FH,HU

i→j (qi, qj ;ni→j) for the H and HU components

of q: the latter should equal the normal flux components FH,HU (q) ·ni→j when

q = qi = qj , and satisfy FH,HU
i→j (qi, qj ;ni→j)+FH,HU

j→i (qj , qi;nj→i) = 0. For the
other components, they are a priori solutions to non-conservative equations and
it is still not clear which consistency conditions should be satisfied for them at
this stage. . . except i) the additional conservation law for HE, which we require
here as the (Clausius-Duhem) inequality (6), and ii) the frame-invariance, which
is preserved if we use a frame-invariant 1D Riemann solver.

We will define only in the next Section 3.2 such a numerical flux of the form

F i→j(qi, qj ;ni→j) = Oi,jF̃ (O−1
i,j qi,O

−1
i,j qj) (18)

that preserves the frame invariance and uses a flux F̃ consistent for 1D Riemann
problems, where O−1

i,j q denotes a vector state variable with components in the

local basis (ni→j ,n
⊥
i→j) computed from the FV vector state q defined in a fixed

reference frame (ex, ey) and Oi,j denotes the inverse operation.
Still, at this point, we can already recall standard stability properties that

shall be transfered to the FV approximation if the numerical flux is well chosen.
If the 1D Riemann solver F̃ satisfies some stability constraints, then one

can ensure stability properties for the FV approximation qn+1,−
h of the homoge-

neous hyperbolic system like the preservation of admissible domains, or discrete
second-principle formulations (under conditions, like CFL: see below).

3.1.2 Sub-step 1: requiring CFL and entropy-consistency conditions

Let us consider numerical fluxes in (17–18) of the form

F̃ i→j(O
−1
i,j qi,O

−1
i,j qj)

= O−1
i,j F (qi)ni→j −

∫ 0

−∞

(
R(ξ,O−1

i,j qi,O
−1
i,j qj)−O−1

i,j qi
)
dξ (19)

using a simple 1D Riemann solver R with finite maximal wavespeed s(ql, qr) >
0, which is consistent with conservation laws (when relevant: recall here only
components H and HU in q would satisfy conservation laws, a priori). If the
Riemann solver preserves some physically-meaningful domain like (invariant)

11



sets convex in the discretization variable q, so will (17–18–19) do on noting

qn+1,−
i = qni

1− τn
∑
j

|Γij |s(O−1
i,j q

n
i ,O

−1
i,j q

n
j )

|Vi|


+
∑
j

|Γij |
|Vi|

∫ 0

−s(O−1
i,j q

n
i ,O

−1
i,j q

n
j )τn

Oi,jR(x/τn,O−1
i,j q

n
i ,O

−1
i,j q

n
j )dx (20)

is a convex combination, under the CFL condition

∀i τn
∑
j

|Γij |s(O−1
i,j q

n
i ,O

−1
i,j q

n
j )

|Vi|
≤ 1 . (21)

Proposition 3.1. Under CFL condition (21), the FV time-integration formula
(17) with flux (18) based on the 1D Riemann solver (19) preserves state sets
that are convex in the discretization variable q.

Moreover, a more stringent CFL condition with sni := maxj s(O
−1
i,j q

n
i ,O

−1
i,j q

n
j )

∆tnsni ≤

∑
j

|Γij |
|Vi|

−1

(22)

may allow one to use Jensen inequality with the convex combination

qn+1,−
i =

∑
j

|Γij |
|Vi|

∫ 0

−
(∑

j

|Γij |
|Vi|

)−1
Oi,jR(x/τn,O−1

i,j q
n
i ,O

−1
i,j q

n
j )dx , (23)

so as to ensure not only the decay of functionals S(q) convex in q (already
ensured by (20) when the Riemann solver preserves convex invariant sets) but
also a consistent discrete version of a second-principle formulation like

∂tS(q) + divG(q) ≤ 0 (24)

whenever (24) holds for some “mathematical entropy” S(q) that is a convex
function of the Galilean invariants of the state q with “entropy-flux” G(q),
under additional entropy-consistency conditions on the solver (see (27) below).
The consistency of numerical approximations with second-principle inequalities
is essential to possibly converge to physically admissible entropy solutions [16].

Now, recall the SVTM model (1–2–14–15) is complemented by (13) i.e.

∂t(HE) + ∂x (HEU +H(P + Cxx − Czz)U +HCxyV )

+ ∂y (HEV +HCyxU +H(P + Cyy − Czz)V ) ≤ −kH|U |2 −HD (25)

with D = −G(4−trCh−trC−1
h +2−Czz−C−1

zz )/(2λ) ≥ 0 for E = (U2+V 2)/2+
EH +EΣ where EH = gH/2, EΣ(C) = G (tr(E(Ch)) + E(Czz)) /2 , and E(x) :=
x − lnx − 1. Then, we consider S = HE as a mathematical entropy for the
SVTM system without source term k = 0 = D (in the first sub-step of our time-
splitting scheme). The inequality (25) shows that a second-principle formulation
(24) holds with an entropy flux G = HEU +H(P + Σzz)U −HΣh ·U .

12



So first, with a view to using Jensen inequality with (23), we can already
choose a FV discretization variable q with a convex admissible set such that
S ≡ HE is convex in q at this stage. We propose

q :=
(
H,HU,HV,HCxx, HCyy, HCxy/

√
CxxCyy, HCzz

)
(26)

which has a convex admissible domain q1, q4, q5, q7 > 0, |q6| < q1 and such
that S/H ≡ E is convex in (H−1, U, V, Cxx, Cyy, Cxy/

√
CxxCyy, Czz), recall [9,

Lemma 1.4].
Note however that the Riemann problems at interfaces Γij will be solved for

another variable q̃, see Section 3.2. So, let us stress again that the operators
O−1
i,j are nonlinear2 (functions of the vector representation q of the state in a

fixed Cartesian reference frame ex, ey), as well as the inverse operators Oi,j

(functions of the vector representation q̃ of the state in a local Cartesian basis
ni→j ,n

⊥
i→j).

Next, to complete the first sub-step of our time-splitting scheme (a homoge-
neous Riemann problem), we propose to build a 1D Riemann solver that satisfies
the following entropy-consistency condition: there exists a conservative discrete
entropy-flux G̃(ql, qr) = −G̃(qr, ql), consistent in FV sense with (24)

G̃(O−1
i,j q,O

−1
i,j q) = G(O−1

i,j q) · ex = G(q) · ni→j

for all admissible states q, such that for any admissible states ql, qr there holds

G(qr) · ex +

+∞∫
0

(S (R(ξ, ql, qr))− S(qr)) dξ

≤ G̃(ql, qr) ≤ G(ql) · ex −
0∫

−∞

(S (R(ξ, ql, qr))− S(ql)) dξ . (27)

Indeed, using
∫ +∞

0
S (R(ξ, ql, qr)) = −

∫ 0

−∞ S (R(ξ, qr, ql)) and (27) we obtain

0∫
−sni τn

S
(
Oi,jR(x/τn,O−1

i,j q
n
i ,O

−1
i,j q

n
j )
)
dx =

0∫
−sni τn

S
(
R(x/τn,O−1

i,j q
n
i ,O

−1
i,j q

n
j )
)
dx

≤ (τnsni ) S(qni )− τn
(
G̃(O−1

i,j q
n
i ,O

−1
i,j q

n
j )−G(qni ) · ni→j

)
(28)

2The operators would degenerate as linear functions of the vector state only if we used the
same representation at each step of the algorithm. Then, the operations would simply consist
in a – linear – change of frame with coefficients quadratic in the components of the rotation
matrix

Ωij =

(
ni→j · ex n⊥i→j · ex
ni→j · ey n⊥i→j · ey

)
here, because Ch are components of a (2-contravariant) 2-tensor variable.
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and finally, with (23), a consistent discrete second-principle formulation:

S(qn+1,−
i )− S(qni ) + τn

∑
j

|Γij |
|Vi|

G̃(O−1
i,j q

n
i ,O

−1
i,j q

n
j )

≤ τn
∑
j

|Γij |
|Vi|

G(qni ) · ni→j ≡ 0 . (29)

Proposition 3.2. Under CFL condition (22), the FV time-integration formula
(17) with flux (18) based on a 1D Riemann solver (19)

• preserves convex state sets in the FV discretization variable q and

• satisfies the discrete version (29) of the second-principle formulation (25)
(with k = 0 = D) provided

1. S = HE is a convex function of q, and

2. the entropy-consistency condition (27) is satisfied for some G̃.

We propose in next Section 3.2 a solver R satisfying (27) for some G̃.

3.1.3 Sub-step 2: integrating source terms with Backward-Euler

To complete the time-integration of our SVTM model, we standardly propose
a second sub-step using the backward-Euler time-scheme for the source terms

U(qn+1
i )−U(qn+1,−

i ) = −τnkU(qn+1
i ) (30)

Ch(qn+1
i )−Ch(qn+1,−

i ) =
τn

λ

(
I −Ch(qn+1

i )
)

(31)

Czz(q
n+1
i )− Czz(qn+1,−

i ) =
τn

λ

(
1− Czz(qn+1

i )
)

(32)

with Hn+1
i = Hn+1,−

i (mass is conserved), the time step τn being given by the
CFL condition (22) of sub-step 1. An admissible state U(qn+1

i ),Ch(qn+1
i ), Czz(q

n+1
i )

can be computed explicitly here as a convex combination of admissible states,
insofar as the source terms RHS in (30), (31), (32) are all linear in U ,Ch, Czz,
of relaxation type. (We only need explicit nonlinear mappings for the variable
change (H,U ,Ch, Czz)↔ q cellwise.)

A discrete version of (25) is satisfied (with D 6= 0 like in (25))

S(qn+1
i )− S(qni ) + τn

∑
j

|Γij |
|Vi|

G̃(O−1
i,j q

n
i ,O

−1
i,j q

n
j )

≤ −τnk|Un+1
i |2 − τnD(qn+1

i ) (33)

which can be shown from (29) and the convexity of S = HE hence, for instance,

EΣ(Ch(qn+1
i ))− EΣ(Ch(qn+1,−

i ))

≤ (I −Ch(qn+1
i )−1) :

(
Ch(qn+1

i )−Ch(qn+1,−
i )

)
(34)

where (I − Ch(qn+1
i )−1) :

(
I −Ch(qn+1

i )
)
≤ 0 is one term of the dissipation

D(qn+1
i ) (for a detailed proof of (34), see e.g. [3, (2.7e) in Lemma 2.1]).
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3.2 A 5-wave relaxation solver

To follow the general framework presented in Section 3.1 for Riemann-based FV
discretizations, let us start here the construction of an entropy-consistent simple
Riemann solver R(ζ,O−1

i,j qi,O
−1
i,j qj). Precisely, we explicitly define approximate

solutions to 1D Riemann problems for the quasilinear (non-conservative) SVTM
1D system (16) that are piecewise-constant functions of the self-similarity vari-
able ζ with finitely-many values. We next show that the entropy-consistency
condition (27) can be satisfied, so the Riemann solver confomrs with the general
framework presented in Section 3.1. We recall that the SVUCM system will be
treated afterwards in Section 3.4, with an approach similar to that for SVTM.

To start with, let us consider the system (16) for the variable

q̃ :=
(
h, hu, h−2cxx, h

2czz, h(cyy − c2xy/cxx), hcxy/
√
cxx, hv

)
with left/right initial values O−1

i,j qi,O
−1
i,j qj computed in the local frame by

cxx = Ch(q)ni→j · ni→j
cxy = Ch(q)n⊥i→j · ni→j = Chn

⊥
i→j · ni→j

cxy = Ch(q)n⊥i→j · n⊥i→j
as nonlinear functions of the left/right values qi, qj .

For consistency, we require that Riemann solutions preserve h, cxx, czz, cyy−
c2xy/cxx > 0 i.e. admissibility, and mimick the second-principle formulation

∂t
(
h(E‖ + E⊥)

)
+ ∂x

(
hu(E‖ + hE⊥ + uP‖ + vP⊥)

)
≤ 0 (35)

for the free-energy h(E‖ + E⊥) as mathematical entropy, with two terms

E‖ =
u2

2
+ e‖ ; e‖ =

gh

2
+
G(cxx + czz)

2
− G ln(cxxczz)

2

E⊥ =
v2

2
+ e⊥ ; e⊥ =

Gc2xy/cxx

2
+
G(cyy − c2xy/cxx)

2
−
G ln(cyy − c2xy/cxx)

2
that satisfy independent conservation laws with two pressure terms

∂t
(
hE‖

)
+ ∂x

(
hu‖ + uP‖

)
= 0 ∂t (hE⊥) + ∂x (v(hvE⊥ + vP⊥) = 0

P‖ = −∂h−1 |
hc
−1/2
xx ,hc

+1/2
zz

e‖ =
gh2

2
+Gh(cxx − czz) P⊥ = Ghcxy

in smooth evolutions (without discontinuities) so as to define a consistent nu-
merical entropy-flux G̃ (our condition (27) for admissible discretizations). One
issue is first give a meaning to the non-conservative nonlinear terms. Here, we
straightforwardly devise a simple Riemann solver that univoquely approximates
admissible 1D solutions. Rewriting the 1D SVTM model in q̃:

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2) + ∂x(gh2/2) + ∂x (Gh(cxx − czz)) = 0

∂t(h
−2cxx) + u∂x(h−2cxx) = 0

∂t(h
2czz) + u∂x(h2czz) = 0

∂t(cyy − c2xy/cxx) + u∂x(cyy − c2xy/cxx) = 0

∂t(hv) + ∂x(huv) + ∂x (Ghcxy) = 0

∂t(h
−1cxy) + u∂x(h−1cxy) + (h−2cxx)h∂xv = 0

(36)
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with a view to constructing a Riemann solver, our variable choice q̃ for the 1D
Riemann problems obviously justifies: there is actually only one non-conservative
product (for the evolution of cxyh

−1).
We next consider a 5-wave simple solver for the system (36) in Euler coor-

dinates (i.e. which uses a Eulerian flow description), after the standard trans-
formation of a simple solver for (36) rewritten in Lagrange coordinates [20] i.e.

∂th
−1 − ∂xu = 0

∂tu+ ∂x
(
gh2/2 +Gh(cxx − czz)

)
= 0

∂t(h
−2cxx) = 0

∂t(h
2czz) = 0

∂t(cyy − c2xy/cxx) = 0

∂tv + ∂x (Ghcxy) = 0

∂t(cxy/h) + cxx∂xv = 0

(37)

which suggests a 5-wave (Lagrangian) solver inspired by Suliciu’s relaxation
strategy of pressures (a “general” strategy for fluids described in [9]). The
additional conservations laws for (37) write

∂tE‖ + ∂x
(
uP‖

)
= 0 = ∂tE⊥ + ∂x (vP⊥)

for smooth solutions. Then, on noting smooth P‖ = gh2

2 +Gh(cxx− czz) satisfy

∂tP‖ + c2‖∂xu = 0

with c2‖ = h2(gh+G(3cxx + czz)), smooth P⊥ = Ghcxy satisfy

∂tP⊥ + b∂xu+ c2⊥∂xv = 0

with b = 2Gh2cxy and c2⊥ = Gh2cxx, and smooth cxy/h satisfy

∂t(cxy/h) + a2∂xv = 0

with a2 = cxx, we propose the following relaxed approximation of (37)

∂th
−1 − ∂xu = 0

∂tu+ ∂xπ‖ = 0

∂tπ‖ + c2‖∂xu = 0

∂t(cxy/h) + a2∂xv = 0

∂tv + ∂xπ⊥ = 0

∂tπ⊥ + b∂xu+ c2⊥∂xv = 0

∂t(h
−2cxx) = 0

∂t(h
2czz) = 0

∂t(cyy − c2xy/cxx) = 0

(38)

which is a hyperbolic system with all fields linearly degenerate and thus allows
one to compute easily approximate Riemann solutions in Lagrange coordinates.
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The general Riemann solution to (38) has 5 waves with speeds −c‖ < −c⊥ <
0 < c⊥ < c‖ that can be ordered consistently with the definition of the relaxation
parameters in smooth evolution cases. Note the following relations

∂t(π‖ + c‖u) + c‖∂x(π‖ + c‖u) = 0

∂t(π‖ − c‖u)− c‖∂x(π‖ − c‖u) = 0

∂t(π‖/c
2
‖ + h−1) = 0

∂t(h
−2cxx) = 0

∂t(h
2czz) = 0

(39)

hold for the q1-subsystem, already treated in [10] with same relaxation approach.
So, the Riemann solution has the following structure (in any variable q)

ql x < −c‖t
q?l −c‖t < x < −c⊥t
q]l −c⊥t < x < 0

q]r 0 < x < c⊥t

q?r c⊥t < x < c‖t

qr x > c‖t

(40)

and q̃1 can be explicited through the following analytical expressions

u?l = u?r = u]l = u]r = u∗ ≡ c‖ul+π‖,l+c‖ur−π‖,r
2c‖

π?‖,l = π?‖,r = π]‖,l = π]‖,r = π∗ ≡ π‖,l+c‖ul+π‖,r−c‖ur
2

1
h∗l

= 1

h]l
= 1

hl

(
1 +

c‖(ur−ul)+π‖,l−π‖,r
2c2‖/hl

)
1
h∗r

= 1

h]r
= 1

hr

(
1 +

c‖(ur−ul)+π‖,r−π‖,l
2c2‖/hr

)
(h−2cxx)?l = (h−2cxx)]l = h−2cxx (h−2cxx)?r = (h−2cxx)]r = h−2cxx

(h2czz)
?
l = (h2czz)

]
l = h2czz (h2czz)

?
r = (h2czz)

]
r = h2czz

(41)

(i.e. u, π‖ are weak Riemann invariants for c−1, c0, c1 waves, π‖/c
2
‖+h

−1, h−2cxx, h
2czz

are weak Riemann invariants for c−2, c−1, c1, c2 waves, π‖−c‖u for c2 and π‖+c‖u
for c−2) on recalling [10]. Note also

∂t(π⊥ + c‖v) + c‖∂x(π⊥ + c‖v) + ∂x

(
bu+ (c2⊥ − c2‖)v

)
= 0

∂t(π⊥ − c‖v)− c‖∂x(π⊥ − c‖v) + ∂x

(
bu+ (c2⊥ − c2‖)v

)
= 0

(42)

where bu+(c2⊥−c2‖)v is a weak Riemann invariant for c−2, c2 waves like a2π⊥/c
2
‖−

cxy/h. Moreover, π⊥ − c‖v is a weak c2 invariant and π⊥ + c‖v a weak c−2

17



invariant. The following analytical expressions then also hold

v?l = vl + b
c2⊥−c

2
‖
(ul − u?) = vl + b

c2⊥−c
2
‖

c‖ul−π‖,l−c‖ur+π‖,r
2c‖

v?r = vr + b
c2⊥−c

2
‖
(ur − u?) = vr + b

c2⊥−c
2
‖

c‖ur+π‖,r−c‖ul−π‖,l
2c‖

π?⊥,l = c‖(vl − v?l ) + π⊥,l = π⊥,l +
bc‖

c2⊥−c
2
‖

c‖ur−π‖,r−c‖ul+π‖,l
2c‖

π?⊥,r = c‖(v
?
r − vr) + π⊥,r = π⊥,r +

bc‖
c2⊥−c

2
‖

c‖ur+π‖,r−c‖ul−π‖,l
2c‖

(cxy/h)
?
l = (cxy/h)l + a2

c2‖
(π?⊥,l − π⊥,l) = (cxy/h)l +

a2b/c‖
c2⊥−c

2
‖

c‖ur−π‖,r−c‖ul+π‖,l
2c‖

(cxy/h)
?
r = (cxy/h)r + a2

c2‖
(π?⊥,r − π⊥,r) = (cxy/h)r +

a2b/c‖
c2⊥−c

2
‖

c‖ur+π‖,r−c‖ul−π‖,l
2c‖

(43)
and, on noting

∂t(π⊥ + c⊥v) + c⊥∂x(π⊥ + c⊥v) + b∂xu = 0

∂t(π⊥ − c⊥v)− c⊥∂x(π⊥ − c⊥v) + b∂xu = 0

∂t(a
2π⊥ − c2⊥cxy/h) + a2b∂xu = 0

(44)

where u is a weak invariant for c−1, c0, c1, we get

v]l = v]r = v] ≡ c⊥v
?
l +π?⊥,l+c⊥v

?
r−π

?
⊥,r

2c⊥

π]⊥,l = π]⊥,r = π]⊥ =
π?⊥,l+c⊥v

?
l +π?⊥,r−c⊥v

?
r

2

(cxy/h)
]
r = (cxy/h)

?
r + a2

c2⊥
(π]⊥ − π?⊥,r) = (cxy/h)

?
r + a2

c2⊥

π?⊥,l+c⊥v
?
l −π

?
⊥,r−c⊥v

?
r

2

(cxy/h)
]
l = (cxy/h)

?
l + a2

c2⊥
(π]⊥ − π?⊥,l) = (cxy/h)

?
l + a2

c2⊥

π?⊥,r−c⊥v
?
r−π

?
⊥,l+c⊥v

?
l

2

(45)
which completes the expression of the Riemann solution of (38) with, for o = l/r(

cyy − c2xy/cxx
)
o

=
(
cyy − c2xy/cxx

)?
o

=
(
cyy − c2xy/cxx

)]
o
.

Now, we can propose a “pseudo-relaxed” Riemann solver for SVTM system

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2 + π‖) = 0

∂t(hπ‖) + ∂x(huπ‖) + c2‖∂xu = 0

∂tcxy + ∂x(ucxy) + a2hv) = 0

∂t(hv) + ∂x(huv + π⊥) = 0

∂t(hπ⊥) + ∂x(huπ⊥ + bu) + c2⊥∂xv = 0

∂t(h
−1cxx) + ∂x(h−1cxxu) = 0

∂t(h
3czz) + ∂t(h

3czzu) = 0

∂t
(
h(cyy − c2xy/cxx)

)
+ ∂x

(
h(cyy − c2xy/cxx)u

)
= 0

(46)

in Euler coordinates, recalling the transformation of a simple Riemann solver
from Lagrange to Euler coordinates [20]. Note that it has the same intermediate
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states as the solver in Lagrange coordinates, but different wave-speeds, namely:

ξ−2 = ul − c‖/hl ≡ u∗ − c‖/h∗l
ξ−1 = u∗l − c⊥/h?l ≡ u

]
l − c⊥/h

]
l

ξ0 = u∗ ≡ ξ0
ξ+1 = u∗r + c⊥/h

∗
r ≡ u]r + c⊥/h

]
r

ξ+2 = ur + c‖/hr ≡ u∗ + c‖/h
∗
r

which are obviously compatible with the weak Riemann invariants of each wave.

It remains to be seen whether the Riemann solver is actually “entropy-
consistent”, i.e. condition (27) is satisfied. To that aim, let us add two unknowns
ê‖, ê⊥ to (46) such that

∂t
(
h(u2/2 + ê‖)

)
+ ∂x

(
hu(u2/2 + ê2

‖) + π‖u
)

= 0 (47)

∂t
(
h(v2/2 + ê⊥)

)
+ ∂x

(
hu(v2/2 + ê⊥) + π⊥v

)
= 0 (48)

hold. On recalling the structure (40) of solutions to Riemann problems, if we
use (ê‖)o = e‖(qo) and (ê⊥)o = e⊥(qo) for o = l/r as left/right initial conditions,
then the following holds:

Proposition 3.3. If the six following inequalities hold, for o = l/r,

e‖ (q∗o) ≤
(
ê‖
)∗
o

(49)

e⊥ (q∗o) ≤ (ê⊥)
∗
o (50)

e⊥
(
q]o
)
≤ (ê⊥)

]
o (51)

then the entropy-consistency condition (27) is satisfied3 with flux G̃ = [hu(u2/2+
ê2
‖ + v2/2 + ê⊥) + π‖u+ π⊥v]x/t=0 (a c0 Riemann invariant).

3.3 Choosing entropy-consistent relaxation parameters

We now explain how to satisfy the entropy-consistency conditions of Prop. 3.3
for the relaxation parameters c2‖, c

2
⊥, a

2.

Condition (49) is classically satisfied provided the following condition

h2∂h|hc−1/2
xx ,hc

+1/2
zz

P‖ = h2 (gh+Gh(3cxx + czz)) ≤ c2‖ (53)

is satisfied for all h in between ho and h∗o, o = l/r, see [9, 10]. The first step
to show (53) is to compute (ê‖)

∗
o = (ê‖)

]
o from the equation (47), which can be

done from the system in Lagrange coordinates augmented by the equation

∂t(u
2/2 + ê‖) + ∂x(uπ‖) = 0

3Note that it is of course not strictly necessary that (49) and (50) hold independently from
one another, in fact it is sufficient that(

e‖ + e⊥
)

(q∗o) ≤
(
ê‖ + ê⊥

)∗
o

(52)

holds but it is easier to check (49) and (50) separately.
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on noting that the following equation (in Lagrange coordinates) holds

∂t(u
2/2 + π2

‖/2c
2
‖) + ∂x(uπ‖) = 0

so (ê‖)
∗
o = (ê‖)

]
o can be obtained from the solution of

∂t(ê‖ − π2
‖/2c

2
‖) = 0 .

The second step subtracts (P‖ (q∗o)−π∗‖)
2/(2c2‖) ≥ 0 in the RHS of (49) rewritten(

e‖ −
P 2
‖

2c2‖

)
(q∗o) ≤

(
e‖ −

P 2
‖

2c2‖

)
(qo) +

(π∗‖)
2 − P‖ (q∗o)

2

2c2‖
(54)

and uses the Riemann invariant h−1 + π‖/c
2
‖ to show that, in fact,(

e‖ −
P 2
‖

2c2‖

)
(h∗o) ≤

(
e‖ −

P 2
‖

2c2‖

)
(ho)− P‖(h∗o)

(
1

h∗o
− 1

ho
+
P‖(h

∗
o)− P‖(ho)
c2‖

)

is enough, and therefore (53) after looking at variations in h∗o.

Similarly, the Riemann invariants ê⊥ − π2
⊥/2c

2
‖ and ê⊥ − π2

⊥/2c
2
⊥ give (ê⊥)∗o

and (ê⊥)]o. Then, on noting (42), a sufficient condition for (50) to hold reads(
e⊥ −

P 2
⊥

2c2‖

)
(q?o) ≤

(
e⊥ −

P 2
⊥

2c2‖

)
(qo)

− P⊥(q∗o)

(
P⊥(q∗o)− P⊥(qo)

c2‖
−
( cxy
a2h

)?
o

+
( cxy
a2h

)
o

)
(55)

which rewrites with G̃o :=

(
Gcxx
h2c2‖

)
o

=

(
Gcxx
h2c2‖

)∗
o

and α̃o :=
(
cxx
h2a2

)
o

=
(
cxx
h2a2

)∗
o

(
1− G̃o(h?o)4

)((cxy
h

)?
o

)2

≤
(

1− G̃oh4
o

)((cxy
h

)
o

)2

− 2(h?o)
2
(cxy
h

)∗
o

(
(G̃o(h

?
o)

2 − α̃o)
(cxy
h

)∗
o
− (G̃oh

2
o − α̃o)

(cxy
h

)
o

)
(56)

for o = l/r. Now, the case b = 0 is trivially satisfied since (cxy/h)∗o = (cxy/h)o.
Otherwise, when b 6= 0, for c‖ given the closed q1 subsystem can be solved so
that h?o is also fixed, and (56) amounts to controlling the sign of a quadratic
polynomial function of (cxy/h)∗o through a and c⊥. So, if we ensure

1 + G̃o(h
?
o)

4 − 2α̃o(h
?
o)

2 < 0⇔ 1

(h?o)
2

+ G̃o(h
?
o)

2 < 2α̃o ≡ 2
(cxx
h2

)
o

1

a2

with a small enough and if we next choose (cxy/h)∗o large enough (in magnitude)
simply by controlling c⊥ (it suffices to choose c2‖ − c

2
⊥ > 0 small enough, given

c‖, b and a) then (56) holds, thus (50).
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Condition (51) can also be analyzed similarly to (49) and (50) on noting (44).
Recalling the Riemann invariants for c−1 and c1, it suffices that for o = l/r(

e⊥ −
P 2
⊥

2c2⊥

)(
q]o
)
−
(
ê⊥ −

π2
⊥

2c2⊥

)?
o

+ P⊥(q]o)

(
P⊥(q]o)− (π⊥)∗o

c2⊥
−
( cxy
a2h

)]
o

+
( cxy
a2h

)?
o

)
≤ 0 (57)

holds. With e⊥(cxy/h) = G(h2/cxx)(cxy/h)2/2 and P⊥(cxy/h) = Gh2(cxy/h),
note that the LHS in (57) is a quadratic polynomial in (

cxy
h )]

(
1 + Ĝo − 2cxx/a

2
)((cxy

h

)]
o

)2

−
(

2cxx
Gh2

)?
o

(
ê⊥ −

π2
⊥

2c2⊥

)?
o

+ 2cxx

(
1

a2

cxy
h
− π⊥
c2⊥

)∗
o

(cxy
h

)]
o
≤ 0 (58)

where Ĝo :=
(
Gh2cxx
c2⊥

)∗
o
. Now, to ensure condition (57) similarly to (55) i.e.

(
1 + Ĝo − 2cxx/a

2
)∗
o
< 0⇔ c2⊥ +G(cxxh

2)∗o ≤
2(cxx)∗oc

2
⊥

a2

one cannot anymore choose a and c2‖ − c
2
⊥ > 0 independently small. But (57)

can still be satisfied under the more stringent condition

a2

c2⊥
≤ 2(cxx)∗o
c2‖ +G(h2cxx)∗o

≤ 2(cxx)∗o
c2⊥ +G(h2cxx)∗o

plus simultaneously a large enough (cxy/h)]o (in magnitude).
If b(u∗ − uo) 6= 0 then one can again ensure a large enough (cxy/h)]o with

c2‖ − c2⊥ > 0 small, which is obviously compatible with our requirements for

condition (55).
If b(u∗ − uo) = 0, then (51) simplifies and reads

G

2

(
h2

cxx

)∗
o

(∣∣∣cxy
h

∣∣∣2
],o
−
∣∣∣cxy
h

∣∣∣2
o

)
≤ G(h∗o)

2

a2

(cxy
h

)
],o

((cxy
h

)
],o
−
(cxy
h

)
o

)

−

(
G(h∗o)

2
( cxy
h

)
],o
−Gh2

o

( cxy
h

)
o

)2

2c2⊥
(59)

which is satisfied if c2⊥ is large enough. Now, recalling the constraint above on
c2⊥/c

2
‖ < 1, this requires one to increase c‖. So an entropy-consistent choice

for the relaxation parameters can always be identified by a simple algorithm
explained in the next Section 3.4 with the whole computational scheme.

In the end, we note that the parameter b = 2Gh2cxy, which has no sign a
priori, can be choosen “freely”. To minimize numerical diffusion, we compute
it as the solution to ∂tb+ u∂xb = 0 initialized consistently with its definition.
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3.4 Numerical schemes for SVTM and SVUCM

Finally, let us summarize our numerical scheme to simulate SVTM, which turns
out to be useful for SVUCM at the cost of very few modifications.

But first, for each Riemann problem, we propose to also “relax” a, c‖ and
c⊥ as independent variables solutions to pure transport equations, similarly to
b, for the sake of more precision. Then, the exact values of the intermediate
states change, and become a function of left and right parameter values. For
SVTM 1D Riemann problems, they become:

u∗ =
c‖,lul+π‖,l+c‖,rur−π‖,r

c‖,l+c‖,r
, π∗‖ =

c‖,r(π‖,l+c‖,lul)+c‖,l(π‖,r−c‖,rur)

c‖,l+c‖,r
,

1
h∗‖,l

= 1
h‖,l

+
c‖,r(ur−ul)+π‖,l−π‖,r

c‖,l(c‖,l+c‖,r)
, 1

h∗‖,r
= 1
h‖,r

+
c‖,l(ur−ul)+π‖,r−π‖,l

c‖,r(c‖,l+c‖,r)
,

v?l = vl +
bl

c2⊥,l−c
2
‖,l

c‖,r(ul−ur)+π‖,r−π‖,l
c‖,l+c‖,r

, v?r = vr +
br

c2⊥,r−c
2
‖,r

c‖,l(ur−ul)+π‖,r−π‖,l
c‖,l+c‖,r

,

π?⊥,l = π⊥,l −
blc‖,l

c2⊥,l−c
2
‖,l

c‖,r(ul−ur)+π‖,r−π‖,l
c‖,l+c‖,r

, π?⊥,r = π⊥,r +
brc‖,r

c2⊥,r−c
2
‖,r

c‖,l(ur−ul)+π‖,r−π‖,l
c‖,l+c‖,r

,

( cxy
h

)?
l

=
( cxy
h

)
l
−
a2
l bl/c‖,l

c2⊥,l−c
2
‖,l

c‖,r(ul−ur)+π‖,r−π‖,l
c‖,l+c‖,r

,
( cxy
h

)?
r

=
( cxy
h

)
r

+
a2
rbr/c‖,r

c2⊥,r−c
2
‖,r

c‖,l(ur−ul)+π‖,r−π‖,l
c‖,l+c‖,r

,

v] =
c⊥,lv

∗
l +π∗⊥,l+c⊥,rv

∗
r−π

∗
⊥,r

c⊥,l+c⊥,r
π
]
⊥ =

c⊥,r(π∗⊥,l+c⊥,lv
∗
l )+c⊥,l(π

∗
⊥,r−c⊥,rv

∗
r )

c⊥,l+c⊥,r( cxy
h

)]
r

=
( cxy
h

)?
r

+
a2
r

c2⊥,r

c⊥,rc⊥,l(v
∗
l −v
∗
r )+c⊥,l(π

∗
⊥,r−π

∗
⊥,l)

c⊥,l+c⊥,r

( cxy
h

)]
l

=
( cxy
h

)?
l

+
a2
l

c2⊥,l

c⊥,rc⊥,l(v
∗
l −v
∗
r )+c⊥,r(π∗⊥,l−π

∗
⊥,r)

c⊥,l+c⊥,r

(h−2cxx)?l = (h−2cxx)
]
l

= h−2cxx (h−2cxx)?r = (h−2cxx)
]
r = h−2cxx

(h2czz)?l = (h2czz)
]
l

= h2czz (h2czz)?r = (h2czz)
]
r = h2czz

(60)
however the conditions (49–50–51) do not change, and our discussion in Sec-
tion 3.3 to achieve discrete entropy dissipation by well-chosen a, c‖ and c⊥ is
still valid (although the identification of numerical values for the right and left
relaxation parameters may become more difficult).

Second, to use a similar approach for SVUCM, note also that (36) becomes

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2) + ∂x(gh2/2) + ∂x (Gh(czz − cxx)) = 0

∂t(h
2cxx) + u∂x(h2cxx) = 0

∂t(h
−2czz) + u∂x(h−2czz) = 0

∂t(cyy − c2xy/cxx) + u∂x(cyy − c2xy/cxx) = 0

∂t(hv) + ∂x(huv)− ∂x (Ghcxy) = 0

∂t(hcxy) + u∂x(hcxy)− hcxx∂xv = 0

(61)

while the pressures associated with the energy contributions E‖ and E⊥, which

are exactly the same as in SVTM, then respectively read P‖ = gh2

2 +Gh(czz−cxx)
and P⊥ = −Ghcxy. Now, the pressures follow similar evolution equations for
smooth solutions with parameters c2‖ = h2 (gh+G(3czz + cxx)), c2⊥ = Gh2cxx,

b ≡ 0, and this is why we can use the same (pseudo-)relaxation approach.
For SVUCM, we define as Riemann solver the (exact) solution to the following
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linearly degenerate system

∂th− ∂x(hu) = 0

∂t(hu) + ∂x(hu2 + π‖) = 0

∂t(hπ‖) + ∂x(huπ‖) + c2‖∂xu = 0

∂t(−h2cxy) + ∂x(−h2ucxy) + a2∂xv = 0

∂t(hv) + ∂x(huv + π⊥) = 0

∂t(hπ⊥) + ∂x(huπ⊥) + c2⊥∂xv = 0

∂t(h
−1czz) + ∂x(h−1czzu) = 0

∂t(h
3cxx) + ∂t(h

3cxxu) = 0

∂t
(
h(cyy − c2xy/cxx)

)
+ ∂x

(
h(cyy − c2xy/cxx)u

)
= 0

(62)

which is easily deduced from (62) on noting the new value of a2 = cxxh
2 that is

consistent with its definition in smooth cases.
As opposed to SVTM, it always holds b = 0 in the SVUCM case. This

is consistent with the fact that there is no non-conservative product between
nonlinear fields in (61) as opposed to (36) (observe indeed that the subsystem
for q1 is closed in SVUCM, like ine SVTM, and that for q2 = (cxy, v, cyy) is
also closed – unlike SVTM). Then, as a consequence, entropy-consistency can
be ensured for SVUCM following the same approach as for SVTM !

In fact, since b = 0, only the two conditions (49) and (51) have to be checked.
The first one is still satisfied with the choice in [10]. The second reads

G

2

(
1

h2cxx

)∗
o

(
|hcxy|2],o − |hcxy|

2
o

)
≤ G

a2
(hcxy)],o

(
(hcxy)],o − (hcxy)o

)
− G

2c2⊥

(
(hcxy)],o − (hcxy)o

)2

(63)

since b = 0 and is always satisfied when a2 ≤ cxxh2 (unlike (59) in SVTM).

Now, given a polygonal mesh of R2, with cells Vi and interfaces Γij , time
evolutions of viscoelastic flows can be numerically simulated using a piecewise-
constant state vector

q := (H,HU,HV,HCxx, HCyy, HCxy/
√
CxxCyy, HCzz)

with convex admissible domain

{H,HCxx, HCyy, HCzz > 0 ; −H < HCxy/
√
CxxCyy < H} ,

that is a Finite-Volume (FV) approximation either for SVTM or for SVUCM.
Time-discrete sequences can be computed in two sub-steps. First, define

qn+1,−
i in (17) with a numerical flux of the form (18–19) using the 1D Rie-

mann solver R defined by (60) for SVTM, and the straightforward modification
proposed above for SVUCM. Second, compute (30), (31) and (32).

Proposition 3.4. At each time step, there exist left and right initial states of
the relaxation parameters c‖, c⊥ and b for all Riemann problems at interfaces
Γij such that the convex admissible domain for q is preserved, and the second-
principle formulation (33) is satisfied under the stringent CFL condition (22).
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In practice, we need numerical values of relaxation parameters such that
conditions (49) and (51) hold, plus (50) for SVTM: they are useful in (60). An
adequate choice of the relaxation parameters can be computed in each Riemann
problem as follows, for instance.

First, initialize c‖ to ensure (49) like [10] for 1D cases

c‖,l = h‖,l

(√
∂hP‖(ql) + 2

(
(ul − ur)+ +

(π‖,r − π‖,l)+

h‖,l
√
∂hP‖(ql) + h‖,r

√
∂hP‖(qr)

))
,

(64)

c‖,r = h‖,r

(√
∂hP‖(qr) + 2

(
(ul − ur)+ +

(π‖,l − π‖,r)+

h‖,l
√
∂hP‖(ql) + h‖,r

√
∂hP‖(qr)

))
.

(65)

where we denoted ∂hP‖(qo) = ∂h|hc−1/2
xx ,hc

+1/2
zz

P‖(qo) = gho +G(3cxx + czz)o .

Given c‖,o, only a2
o = cxx,oh

2
o remains to compute for SVUCM, while

a2
o = cxx,o ∧ r0

o

2c∗xx,o
1 +Gh2

ocxx,o/c
2
‖,o

for SVTM is not enough.
For SVTM, one still needs to compute c2⊥,o = rno c

2
‖,o after n iterations of

a strictly increasing sequence rno < rn+1
o ≤ 1 with limit 1 starting from r0

o =
Gh2

ocxx,o/c
2
‖,o > 0 until (50) (or the weaker conditions (49)+(50)) are satisfied

for some n both for o = l/r simultaneously. Moreover, given c2‖,o, a
2
o, bo =

2Gh2
ocxy,o and c2⊥,o/c

2
‖,o = rno ≤ 1, one still has to inspect (51) in SVTM case. If

bo(uo − u∗) 6= 0 we iterate further on the sequence rno < rn+1
o ≤ 1 defining c2⊥,o

until (51) are satisfied for some n both for o = l/r simultaneously. Otherwise, if
bo(uo − u∗) = 0 for any o = l/r, then c‖,o has to be increased where (51) is not
satisfied: one can use some unbounded increasing sequence r̃n and iterate on n
to define c‖,o starting with (64–65).

Finally, using the analytical Riemann solution of section 3.2 one has

1

τn

∫ 0

−
(∑

j

|Γij |
|Vi|

)−1
R(x/τn, ql, qr)dx = (ξ−2,− + s̄ni ) ql + (ξ−1,− − ξ−2,−) q∗l

+ (ξ0,− − ξ−1,−) q]l + (ξ1,− − ξ0,−) q]r + (ξ2,− − ξ1,−) q∗r + (−ξ2,−) qr

= s̄ni ql + (ξ−1,− − ξ−2,−) (q∗l − ql) + (ξ0,− − ξ−1,−) (q]l − ql)
+ (ξ1,− − ξ0,−) (q]r − ql) + (ξ2,− − ξ1,−) (q∗r − ql) + (−ξ2,−) (qr − ql) (66)

where we have denoted x− = min(x, 0) the non-positive part of a real number

x and s̄ni := 1
τn

(∑
j
|Γij |
|Vi|

)−1

≥ sni > 0. Note that (66) is consistent with

conservation laws for “conservative” components of variable q like U i.e.

FU
i→j(qi, qj ;ni→j) + FU

j→i(qj , qi;nj→i) = 0 .
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Therefore, under our stringent CFL condition (22), (23) rewrites

qn+1,−
i =

∑
j

|Γij |
|Vi|

Oi,j

∫ 0

−
(∑

j

|Γij |
|Vi|

)−1
R(x/τn,O−1

i,j q
n
i ,O

−1
i,j q

n
j )dx

= qni + τn
∑
j

|Γij |
|Vi|

(
(ξ−1,− − ξ−2,−) (Oi,jq

∗
l − qni )

+ (ξ0,− − ξ−1,−) (Oi,jq
]
l − q

n
i ) + (ξ1,− − ξ0,−) (Oi,jq

]
r − qni )

+ (ξ2,− − ξ1,−) (Oi,jq
∗
r − qni ) + (−ξ2,−) (qnj − qni )

)
(67)

where q
(∗,])
o are the intermediate states of the Riemann solverR(ξ,O−1

i,j q
n
i ,O

−1
i,j q

n
j ),

ξ−2 < ξ−1 < ξ0 < ξ+1 < ξ+2 its wave speeds, and where τn can be computed
at each time step after all Riemann problems at all faces to satisfy (22).

4 Numerical illustration and discussion

We now illustrate the SVTM and SVUCM models using numerical solutions
computed with our FV schemes in benchmark test cases.

4.1 Stoker test case

This is a well-known benchmark test case for the (time-dependent, inviscid)
Saint-Venant shallow-water equations, which models an idealized dam-break (i.e.
the propagation under gravity of a shock wave in a finite-depth fluid initially
at rest) [42]. A solution for t ∈ (0, .2) is computed in a square (x, y) ∈ [0, 1]2

starting from the initial condition

(H,U, V, Cxx, Cyy, Cxy, Czz) =

{
(3, 0, 0, 1, 1, 0, 1) x+ y < 1

(1, 0, 0, 1, 1, 0, 1) x+ y > 1

that consists in two equilibrium rest states on each side of the line x + y = 1.
For the boundary conditions, we use the “ghost cell” method (see e.g. [29])
assuming translation invariance along x+ y isolines.

The main point of Stoker test case is usually to compare the speed of the
shock front with observations (the solution expected – numerically at least – is
indeed a free-shear flow). Alternatively, assuming translation invariance along
x+y isolines, this is a 1D Riemann problem that uniquely determines q1 (as well
as q2 for SVUCM). So the test case can be used to accurately understand the
new variable C in out-of-equilibirium dynamics, phenomenologically at least, as
a function of the viscoelastic parameters G,λ.

Moreover, for benchmarking purposes, we also aim at comparing the new 2D
scheme with former 1D numerical results obtained along x = y in our previous
work [10] for the subsystem q1 of SVUCM model, at Froude number g−1/2 = .3
(g = 10), elasticiy number G = 10 and Weissenberg number λ = 1. This of
course assumes that our 2D scheme converges to a translation-invariant solution.

In Fig. 2, this is exactly what we observe, see e.g. the variable H in Fig.1
(note that translation-invariance is used to define the values of “ghost cells” in
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Riemann problems at boundary faces). We compare results obtained with 2D
Cartesian meshes of (25 + 1) = 1089, (26 + 1) = 4225 cells and 1D regular grids
with 28 + 1 = 257 and 29 + 1 = 513 cells. The 2D solutions seem to preserve
the initial translation invariance and converge to the (unique) 1D translation-
invariant solution. (The positions of the fronts seem already quite well resolved
with our coarse mesh, at least, although the 2D state values are only 10%
accurate relatively to 1D.)

For benchmarking purposes, the test case also allows one to compare SVTM
and SVUCM in a simple configuration. We do not observe significant differences
for H,U at such short times, however the non-zero stress components Σnn,Σzz
are not the same (although they have similar tendencies) see Fig. 3 for the
various 1D (converged) values.

Figure 1: Stoker test case: flow depth H(x, y at final time T = .2

Last, variations in the parameters G and λ can also be well understood
phenomenologically (from teh viscoelastic physics viewpoint) in the present 1D
testcase. Since analyzing variations in the parameters G and λ was already done
in [10] for SVUCM, we concentrate here on SVTM.

In Fig. 4 we show H,Cxx, Czz for SVTM at T = .2 when G = .1, 1, 10 and
λ = .01, .1, 1. Increasing G at fixed λ only slightly increases the speeds of the
genuinely nonlinear waves, while it more essentially increases the jump in H at
the linearly degenerate wave (a contact discontinuity) and decreases the jumps in
Cxx, Czz. This is physically coherent with the fact that the elasticity G controls
how difficult it is to locally deform the fluid materials of depthH, and connecting
two equilibria at H = 3 and H = 1 through deformations becomes harder as
G increases. However, if λ simultaneously decreases, then variations in space of
the strain Cxx, Czz are fast smoothed back to equilibrium and a viscous profil
arises (see G = 10, λ = 10−2 in Fig. 4). We recall that both models SVUCM and
SVTM formally converge to the viscous Saint-Venant equations in asymptotics
λ,G−1 → 0 where 1/Gλ remains bounded and defines a Reynolds number. Of
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Figure 2: Stoker test case: H,U ·n, Cnn, Czz computed by SVUCM 2D (cross-
section x = y) and 1D (along n normal to the initial discontinuity at x+ y = 1)

Figure 3: Stoker test case: Σnn,Σzz (left/right) for SVTM and SVUCM (T/UC)
along the normal n to the initial discontinuity at x+ y = 1 (in G units).
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course, at fixed parameter values, it is not so clear to define how close solutions
are from a viscous approximation, all the less when the Froude number g−1/2

also varies. This may be an interesting direction for future research directions,
insofar as g−1/2 should be quite low in real viscoelastic fluids.

Figure 4: Stoker test case: H (top), Cxx (middle), Czz (bottom) at T = .2 for
λ = .01, .1, 1 when G = .1, 1, 10 (left, center and right) with 257 cells.

4.2 Collapse of a column

To emphasize the 2D character of the SVTM and SVUCM models, we now
consider a cylindrical version of Stoker test case, which models the idealized
collapse of a fluid column. A solution for t ∈ (0, .2) is computed in a square
(x, y) ∈ [0, 1]2 starting from the initial condition

(H,U, V, Cxx, Cyy, Cxy, Czz) =

{
(3, 0, 0, 1, 1, 0, 1) (x− .5)2 + (y − .5)2 < .2

(1, 0, 0, 1, 1, 0, 1) (x− .5)2 + (y − .5)2 > .2

see Fig.6. Note that, a priori, no boundary condition is needed here if we
assume our computational domain is a fictitious truncation of the plane R2

with fictitious boundaries far enough from the initial (circular) discontinuity.
The main goal of that testcase is usually to see the impact of diverging

gravity currents on axisymmetric initial conditions.
Here, we keep the Froude number moderately small g−1/2 = .3 as before, and

we study the influence of the elasticity modulus G for SVTM and SCUVM at a
final time T = .2. Note that we can choose the Weissenberg number arbitrarily
large, and the influence of the relaxation-to-equilibrium term is negligible with
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Figure 5: Stoker test case: H at T = .2 for g = 1, 10, 100 when λ = .01, 1
(top/bottom) and G = 1, 10 (left/right) with 257 cells.

Figure 6: Column test case: H,Σzz at final time T = .2 with a large Weissenberg
number λ = 1
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λ = 1 � T for instance. Comparing the usual hydrodynamical quantities
H,U ·n along cross-section x = y, there is little difference between SVTM and
SCUVM for the same values G. At large G = 1, the additional wave clearly
shows up in H both for SVTM and SVUCM, as opposed to the small G = .001
case, close to the usual Saint-Venant shallow-water model as expected, see Fig. 7.

Now, we can also compare C−I in SVUCM with I−C in SVTM. It is then
quite striking that the strain deviation from equilibrium (hence the stress) is
more important for horizontal components in SVUCM, see the – most important
– radial component Cn ·n− 1 = 1

GΣn ·n in Fig. 7, and for vertical component
Czz − 1 = 1

GΣzz in SVTM. The strain discrepancies in between SVTM and
SVUCM should be investigated in the future, in particular to compare with
more standard viscoelastic flow settings with a low Froude number and shear
forcing that generates some numerical instabilities in the stress variable (see
HWNP below in Section 4.3).

Figure 7: Column test case: H,U ·n,Σn ·n,Σzz along diagonal y = x with unit
normal n, for SVTM and SVUCM with elasticity G = 1 and G = .01, at final
time T = .2 with a large Weissenberg number λ = 1 (stresses are in G units)

4.3 Lid-driven cavity

We finally consider a well-known test case for viscous (and viscoelastic) fluid
models that involves stationary solutions. It aims at computing, in a closed
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square box (x, y) ∈ [0, 1]2 with impermeable walls, a steady flow satisfying no-
slip boundary conditions (i.e. u = 0 = v) at x = 0, x = 1, y = 0 and at y = 1
typically u = 1, v = 0 (or a regularized version, see e.g. [41]).

When benchmarking time-dependent (evolutionary) models, stationary so-
lutions are usually computed for large times in the hope it becomes close to a
limit fixed by the data.

For viscoelastic fluids however, numerous computer simulations of incom-
pressible creeping flows of Maxwell fluids encounter numerical instabilities when
elastic stresses increase, see the review about the lid-driven cavity case in [41].

Precisely, discretizations do not converge to a stationary solution at large
Weissenberg number values. This is one manifestation of the so-called High-
Weissenberg-Number-Problem (HWNP).

Various reasons have been invoked to explain the HWNP. For instance, nu-
merical instabilities may appear when the models do not have unique solutions
anymore. Now, non-uniqueness may in fact be natural. Instabilities, i.e. persis-
tent large fluctuations in experimental measures, are also sometimes observed
physically in settings with (apparently) steady conditions, see e.g. the refer-
ences in [41] as concerns cavity experiments. But it is not completely clear why
the sensitivity of a mathematical model that idealizes the physics should exactly
correspond to the sensitivity of an experimental set-up (unless the model is very
good at describing all the physics, and its numerical approximation is very ac-
curate). Indeed, numerical instabilities could also be of a purely mathematical
nature, and then possibly indicate some imperfection of the (numerical) model
at describing the physics, in fact.

That is why, although our aim in the present work is not to “solve” the
HWNP, we nevertheless think it is interesting to simulate our new numerical
models in more usual conditions for viscoelastic flows such as the lid-driven
cavity, where a HWNP occurs for most existing models. Indeed, our models
somehow enlarge the physical regimes that are usually accessible to (numeri-
cal) viscoelastic flows, with a vanishing retardation-time and a non-zero Froude
number.

First, to obtain conditions that are more usual for viscoelastic flows in a
lid-driven cavity, we choose a low Froude number g−1/2 = 10−3/2 (g = 103),
to get closer to the incompressible limit. Next, we add a viscous component to
the stress, with a so-called “solvent viscosity” νs = 10−1. Although this does
not exactly produce creeping flows like in most viscoelastic testcases (our model
is evolutionary), the Reynolds number remains quite small ν−1

s = 10 so the
boundary influence is not negligible.

We compute solutions at large times for various values of G and λ.
In Fig. 8, we compare at T = 1 standard quantities of interest (U along

x = .5, V along y = .5. . . ) computed with a relatively coarse Cartesian mesh of
33× 33 = 1089 cells. First, whereas H, U and V are hardly different for SVTM
and SVUCM, the viscoelastic stress are different: G(I − C) in SVUCM does
not exactly match G(C − I) in SVTM, and the components of the two stress
tensors can be quite larger for SVUCM than SVTM (although they both have
similar variations around zero), see Cxx along x = .5 in Fig. 8. Second, the
stationary solution seems determined by G only, and not by our Weissenberg
number λ unlike the usual “creeping flow” solutions typically computed at fixed
β := νs/(νs + νp) = .5 with a “polymer viscosity” νp := Gλ.

Note however that the time-dependent numerical solutions of Fig. 8 are
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Figure 8: Lid-driven cavity at g = 103 with νs = .1: cut x = .5 (left) and
y = .5 (right). First line: U along x = .5 (left) and V along y = .5 (right),
then cxx,cyy,czz (from second to fourth): for G = .1, 1, λ = .1, 1, SVTM (T)
and SVUCM (UC).
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quickly stationary in time for the smallest value G = .1, and seem limited in
accuracy due to the presence of viscosity. In Fig. 10, we refine the mesh to
65 × 65 = 4225 cells: the `1 norm of the differences between two successive
solutions as a function of time (our stationarity criterium) stagnates at a higher
level, a plateau which is the same for all values of G smaller than .1 (see Fig. 9
for the converged solutions when G = 10−1 and G = 10−10). So our numerical
experiment seems actually interesting only for large enough values of G, when
shearing becomes more difficult and when strain is not so large (see the variations
of U and V with G in Fig. 8).

Now, for larger G, we do observe convergence in time to stationary states
without reaching a plateau both for SVTM and SVUCM. However, SVTM and
SVUCM solutions now strongly differ. Solutions to SVT and SVUCM almost
coincide at νs = .1 and G = 1 and this is easily seen from the velocity vector
fields U = (U, V ) (see e.g. Fig. 11). Then, if we increase G to 10, large-time
SVTM simulations seem to converge (in time and space) to solutions with only
one main vortex, which is only slightly deformed and influenced by νs, λ (see
in Fig. 11). On the contrary, SVUCM converge to a different type of solution
which is also captured when νs is smaller, see Fig. 12.

5 Conclusion

In this work, motivated by the need for better numerical models of viscoelastic
flows, we first have derived new hyperbolic models in the framework of shallow
free-surface flows proposed by Saint-Venant. This extends Saint-Venant 2D
shallow-water model to Maxwell fluid and is a continuation of our 1D work [10].

One model coincides with the zero-retardation Oldroyd-B case which had
been obtained somewhat differently in [11] (without a precise study of solutions
like here). The other suggests one to use a viscoelastic equation for a conforma-
tion tensor with a time-rate different than what is usually done in the literature
(i.e. the Gordon-Schowalter derivatives).

Next, we have also proposed Finite-Volume (FV) discretizations that pre-
serve the essential properties of the new models: mass and momentum conserva-
tion, plus a free-energy dissipation. Numerical simulations have been performed
with the FV schemes that phenomenologically prove the physical soundness of
the model in simple free-shear flows.

Quantitative evaluations in the lid-driven cavity testcase also show the in-
terest of the approach to investigate more realistic strongly-sheared viscoelastic
flows. Our numerical scheme should however still be improved to better under-
stand standard benchmarks with large strains (and then with a HWNP, quite
often), where differences between the two models (SVTM and SVUCM) with
two different time-rates may be important. In particular, accuracy should be
improved in the low Froude regime. This will be the object of future work.
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leur lit, C. R. Acad. Sc. Paris 73 (1871), 147–154.

[18] Brian J. Edwards and Antony N. Beris, Remarks concerning compressible
viscoelastic fluid models, Journal of Non-Newtonian Fluid Mechanics 36
(1990), 411 – 417.

[19] R. Fattal and R. Kupferman, Time-dependent simulation of visco-elastic
flows at high weissenberg number using the log-conformation representation,
J. Non-Newtonian Fluid Mech. 126 (2005), 23–27.
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les discontinuités de contact, Comptes Rendus de l’Académie des Sciences
- Series I - Mathematics 331 (2000), no. 2, 149–152.

[21] Sergey L. Gavrilyuk, Kseniya A. Ivanova, and Nicolas Favrie, Multi–
dimensional shear shallow water flows : problems and solutions, (2017),
working paper or preprint.
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