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An Auxiliary Variable Method for MCMC Algorithms in High

Dimension

Yosra Marnissi1, Emilie Chouzenoux2,3, Amel Benazza-Benyahia4,

and Jean-Christophe Pesquet3 ∗

Abstract

When the parameter space is high dimensional, the performance of stochastic sampling

algorithms is very sensitive to existing dependencies between parameters. For instance, this

problem arises when one aims to sample from a high dimensional Gaussian distribution whose

covariance matrix does not present a simple structure. Then, one often resorts to sampling

algorithms based on a perturbation-optimization technique that requires to minimize a cost

function using an iterative algorithm. This makes the sampling process time consuming,

especially when used within a Gibbs sampler. Another challenge is the design of Metropolis-

Hastings proposals that make use of information about the local geometry of the target

density in order to speed up the convergence and improve mixing properties in the parameter

space, while being not too computationally expensive. These two contexts are mainly related

to the presence of two heterogeneous sources of dependencies stemming either from the prior

or the likelihood in the sense that the related covariances matrices cannot be diagonalized

in the same basis. In this paper, we are interested in inverse problems where either the data

fidelity term or the prior distribution is Gaussian or driven from a hierarchical Gaussian

model. We propose to add auxiliary variables to the model in order to dissociate the two

sources of dependencies. In the new augmented space, only one source of correlation remains

directly related to the target parameters, the other sources of correlations being captured

by the auxiliary variables. Experiments conducted on two image restoration problems show

the good performance of the proposed strategy.

1 Introduction

In a wide range of applicative areas, we do not have access to the signal of interest x ∈ R
Q but

only to some observations z ∈ R
N related to x through the following model:

z = D(Hx), (1)

where H ∈ R
N×Q is the observation matrix that may express a blur or a projection and D is the

noise model representing measurement errors. Our objective is to find an estimator x̂ of x from
the observations z. Such inverse problem arises in several signal processing applications such as
denoising, deblurring, and tomography reconstruction [1, 2].

The common Bayesian procedure for signal estimation consists in deriving estimators from
the posterior distribution that captures all information inferred about the target signal from the
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2collected data. Given the observation model (1), the minus logarithm of the density posterior
distribution reads:

(∀x ∈ R
Q) J (x) = − log p(x|z) = Φ(Hx; z) + Ψ(Vx). (2)

Hereabove, Φ is the neg-log likelihood that may take various forms depending on the noise
statistical model D. In particular, if D models an additive Gaussian noise with covariance Λ−1,
it reduces (up to an additive constant) to the least squares function Φ(Hx; z) = 1

2‖Hx − z‖2
Λ

.
Other common choices can be found for instance in [3, 4]. Moreover, Ψ(V·) is related to some
prior knowledge one can have about x, and V ∈ R

M×N is a linear transform that can describe, for
example, a frame analysis [5] or a discrete gradient operator [6]. Within a Bayesian framework, it
is related to a prior distribution of density p(x) whose logarithm is given by log p(x) = −Ψ(Vx).

Monte Carlo inference approaches allow us to have a good description of the target space from
a set of samples drawn from a distribution [7, 8, 9, 10, 11, 12]. In particular, these samples can
be used to infer useful statistics such as the mean and the variance. In the context of Bayesian
estimation, these techniques appear useful to compute, for example, the Minimum Mean Square
Error (MMSE) estimator which is equivalent to the posterior mean. In this case, the MMSE
estimator is approximated using the empirical average over the generated samples from the
posterior distribution. When the exact expression of the posterior density is intractable, Markov
Chain Monte Carlo (MCMC) have been widely used to approximate it [13]. These techniques
are random variable generators that allow us to draw samples from complicated distributions.
Perhaps, the most commonly used MCMC algorithm is the Metropolis-Hastings (MH) one which
operates as follows [14]: from a given proposal distribution, we construct an irreducible Markov
chain whose stationary distribution is the sought posterior law i.e., after a sufficient number of
iterations, the samples generated by the algorithm follow the desired posterior distribution. At
each iteration t, a decision rule is applied to accept or to reject the proposed sample given by
the following acceptance probability

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)g(x(t)|x̃(t))

p(x(t)|z)g(x̃(t)|x(t))

)
, (3)

where x̃(t) is the proposed sample at iteration t, generated from a proposal distribution with
density g(.|x(t)) that may depend on the current state x(t). Note that, when more than one
unknown variable has to be estimated (e.g., acquisition parameters or prior hyperparameters),
one can draw iteratively samples from the conditional posterior distribution for each variable
given the remaining ones using an MH iteration. This is known as the hybrid Gibbs sampler [15].
High dimensional models, often encountered in inverse problems, (e.g., in multispectral remote
sensing applications [16]) constitute a challenging task for Bayesian inference problems. While
many popular sampling algorithms have been widely used to fit complex multivariable models
in small dimensional spaces [17, 18, 19, 20, 21, 22], they generally fail to explore the target
distribution efficiently when applied to large scale problems, especially when the variables are
highly correlated. This may be due to the poor mixing properties of the Markov chain or to the
high computational cost of each iteration [17].

In this work, we propose a novel approach based on a data augmentation strategy [23] which
aims at overcoming the limitations of standard Bayesian sampling algorithms when facing large
scale problems. The remainder of this paper is organized as follows. In Section 2, we discuss
the main difficulties encountered in standard sampling methods for large scale problems. We
show how the addition of auxiliary variables to the model can improve their robustness with
respect to these issues. The core of our contribution is detailed in Section 3. We first give a
complete description of the proposed approach in the case of Gaussian noise and we study its



3extension to scale mixtures of Gaussian models. Furthermore, we demonstrate how the proposed
approach can facilitate sampling from Gaussian distributions in Gibbs algorithms. Then, some
computational issues, arising in the proposed Bayesian approach, are discussed. Sections 4 and 5
are devoted to the experimental validation of our method. In Section 4, we show the advantages
of the proposed approach in dealing with high dimensional models involving highly correlated
variables over a dataset of multispectral images affected by blur and additive Gaussian noise.
In Section 5, we test the performance of our method in sampling from large scale Gaussian
distributions through an application to image recovery under two-term mixed Gaussian noise.
Finally, we give some conclusions and perspectives in Section 6.

2 Motivation

2.1 Sampling issues in high dimensional space

MCMC sampling methods may face two main difficulties when applied to large scale inverse
problems. First, except for particular cases (e.g. circulant observation matrix), the structure
of the observation model that links the unknown signal to the observations usually makes the
estimation of the parameters of the posterior distribution quite involved. Second, even with
simple models, the posterior distribution may still be difficult to sample from directly or to
explore efficiently using standard sampling algorithms. As a specific case, this problem arises
for Gaussian distributions, if the problem dimension is too high [24]. It can also arise in MH
algorithms when sophisticated proposal rules are employed with the aim to cope with both the
high dimensionality and the strong correlation existing between the target parameters [22]. In
what follows, we will give more details about these two contexts.

2.1.1 Sampling from high dimensional Gaussian distribution:

Let us focus on the problem of sampling from a multivariate Gaussian distribution with a given
precision matrix G ∈ R

Q×Q. This problem emerges in many applications such as linear inverse
problems involving Gaussian or hierarchical Gaussian models. More precisely, let us consider
the following linear model:

z = Hx+w, (4)

where w is R
N -valued and let us assume that conditionally to some latent variables, w and x

are drawn from Gaussian distributions N (0N ,Λ
−1) and N (mx,G

−1
x ) respectively where mx ∈

R
Q, Λ ∈ R

N×N and Gx ∈ R
Q×Q are positive semi-definite matrices.1 The parameters of

these Gaussian distributions may be either fixed or unknown (i.e., involving some unknown
hyperparameters such as regularization or acquisition parameters). It follows that the posterior
distribution of x is Gaussian with mean m ∈ R

Q and precision matrix G ∈ R
N×N defined as

follows:
G = H⊤ΛH+Gx (5)

m = G−1
(
H⊤Λz+Gxmx

)
. (6)

A common solution to sample from N (m,G−1) is to use the Cholesky factorization of the
covariance or the precision matrix G [25]. However, when implemented through a Gibbs sampler,
this method is of limited interest. First, the precision matrix G may depend on the unknown
parameters of the model and may thus take different values along the algorithm. Thereby,

1In the following, when not mentioned, the Gaussian law can be degenerated that is, the precision matrix is
semi-definite positive but not with full rank. In this case, (···)−1 denotes the generalized inverse.



4spending such high computational time at each iteration of the Gibbs sampler to compute the
Cholesky decomposition of the updated matrix may be detrimental to the convergence speed of
the Gibbs sampler. Another concern is that, when dealing with high dimensional problems, we
have generally to face not only computational complexity issues but also memory limitations.
Such problems can be alleviated when the matrix presents some specific structures (e.g., circulant
[26, 27] or sparse [28]). However, for more complicated structures, the problem remains critical
especially when H⊤ΛH and Gx cannot be diagonalized in the same basis. Other recently
proposed algorithms for sampling Gaussian distributions in high dimension follow a two-step
perturbation-optimization approach [29, 30, 31, 32, 33, 34], which can be summarized as follows

• Perturbation: Draw a Gaussian random vector n1 ∼ N (0Q,G).

• Optimization: Solve the linear system Gn2 = n1 +H⊤Λz+Gxmx.

The solution to the above linear system can be approximated using iterative methods such as
conjugate gradient algorithms, so leading to an approximate sample of the sought distribution
[30, 31]. This issue has been considered in [32] by adding a Metropolis step in the sampling
algorithm. In [33, 34], the authors propose to reduce the computational cost by sampling along
mutually conjugate directions instead of the initial high dimensional space.

2.1.2 Designing efficient proposals in MH algorithms:

Non-Gaussian models arise in numerous applications in inverse problems [35, 36, 37, 38]. In
this context, the posterior distribution is non-Gaussian and does not generally follow a standard
probability model. In this respect, MH algorithms are good tools for exploring such posteriors
and hence for drawing inferences about models and parameters. However, the challenge for MH
algorithms is to construct a proposal density that provides a good approximation of the target
density while being inexpensive to manipulate. Typically, in large scale problems, the proposal
distribution takes the form of a random walk (RW), that is, in each iteration, the proposal density
g(.|x(t)) in (3) is a Gaussian law centered at the current state x(t) and with covariance matrix
ε2Q(x(t)). Moreover, ε is a positive constant whose value is adjusted so that the acceptance
probability in (3) is bounded away from zero at convergence [17]. Other sampling algorithms
incorporate information about the derivative of the logarithm of the target distribution to guide
the Markov chain toward the target space where samples should be mostly concentrated. For
instance, when the target density is differentiable, one can use Langevin-based algorithms where
the mean of the Gaussian proposal density is replaced with one iteration of a preconditioned
gradient descent algorithm as follows [39, 40, 41, 20, 22, 42]:

x̃(t) ∼ N
(
x(t) − ε2

2
Q(x(t))−1∇J (x(t)), ε2Q(x(t))−1

)
. (7)

In (7), ∇J is the gradient of J , ε is a positive constant and Q is a symmetric definite positive
matrix that captures possible correlations between the coefficients of the signal. Note that some
advanced versions of Langevin based algorithms have been proposed to address problems with
non smooth laws [43, 44]. It is worth noting that the choice of the scale matrices

(
Q(x(t))

)
t

may deeply affect the efficiency of the aforementioned algorithms [22]. In fact, an inappropri-
ate choice of Q may alter the quality of the Markov chain leading to very correlated samples
and thereby biased estimates. Moreover, computationally cheap matrices are also preferable
especially in high dimensional spaces. In the case of low dimensional problems and when the
coefficients of the signal are not highly correlated, the standard RW and Metropolis adapted
Langevin algorithm (MALA) obtained for Q ≡ IQ achieve overall good results. For instance,



5in the context of denoising problems with uncorrelated Gaussian noise, when the coefficients of
the signal are assumed to be statistically independent in the prior, they can be either sampled
independently using RW or jointly by resorting to MALA. However, these algorithms may be
inaccurate for large scale problems especially when the coefficients of the signal exhibit high
correlations [22]. In this case, the design of a good proposal often requires considering the cur-
vature of the target distribution. More sophisticated (and thus more computationally expensive)
scale matrices should be chosen to drive the chain in the directions that reflect the dependence
structure. Optimally, the curvature matrix should be chosen such that it adequately captures
two kinds of dependencies: correlation over the observations specified by the observation model
and, correlation between different coefficients of the target signal specified by the prior law. For
instance, Q can be set to the Hessian matrix of the minus logarithm of the posterior density in
the current state [20, 21], or to the Fisher matrix especially when the Hessian matrix is not def-
inite positive [22, 42] or to the empirical covariance matrix computed according to the previous
states of the Markov chain [45]. When the minus-log of the target density can be expressed as
in (2), good candidates of the curvature matrix take the following form:

Q = H⊤ΛH+V⊤ΩV (8)

where Λ and Ω are semi-definite positive matrices. Feasible numerical factorization of Q can
be ensured if H⊤ΛH and V⊤ΩV are diagonalizable in the same basis. Otherwise, the use
of the full matrix (8) in the scheme (7) remains generally of limited interest especially for
large scale problems where the manipulation of the resulting proposal generally induces a high
computational complexity altering the convergence speed. Alternatively, under mild conditions
on the posterior density, the Majorize-Minimize strategy offers a high flexibility for building
curvatures matrices with a lower computational cost (e.g., diagonal matrices, bloc-diagonal
matrices, circulant...) [41]. It should however be pointed out that MH algorithms with too
simple preconditioning matrices resulting from rough approximations of the posterior density
may fail to explore the target space efficiently. Therefore, the scale matrix Q should be adjusted
to achieve a good tradeoff between the computational complexity induced in the algorithm and
the accuracy/closeness of the proposal to the the true distribution.

2.2 Auxiliary variables and data augmentation strategies

It can be noted that the main difficulty arising in the aforementioned sampling problems is
related to the presence of heterogeneous types of dependencies between the coefficients of the
signal. These dependencies may come either from the likelihood or from the prior information. In
fact, the operator H in the likelihood may cause high dependencies between coefficients in a wide
neighborhood even if the coefficients of the signal are assumed to be statistically dependent in
the prior law. The problem can be treated in another domain where H can be easily diagonalized
i.e., the coefficients of the signal become uncorrelated in the likelihood. However, when we take
into account the prior dependencies, this strategy becomes inefficient especially when the prior
covariance matrix cannot be diagonalized in the same basis as H, which is the case of most real
problems. One should therefore process these two sources of correlations separately.

To improve the mixing of sampling algorithms, many works have proposed to eliminate
one of these sources of correlation directly related to x by adding some auxiliary variables to
the initial model, associated with a given conditional distribution such that simulation can
be performed in a simpler way in the new larger space. Instead of simulating directly from
the initial distribution, a Markov chain is constructed by alternately drawing samples from
the conditional distribution of each variable, which reduces to a Gibbs sampler in the new
space. This technique has been used in two different statistical literatures: data augmentation



6[46] and, auxiliary variables strategies [47]. It is worthwhile noting that the two methods are
equivalent in their general formulation and the main difference is often related to the statistical
interpretation of the auxiliary variable (unobserved data or latent variable) [23]. In the following,
we will use the term Data Augmentation (DA) to refer to any method that constructs sampling
algorithms by introducing auxiliary variables. Some DA algorithms have been proposed in
[48, 49, 50, 51, 52, 53, 54]. A specific attention has been turned towards the Hamiltonian
MCMC (HMC) approach [55, 22], that defines auxiliary variables based on physically inspired
dynamics.

In the following, we propose to alleviate the problem of heterogeneous dependencies by
resorting to a DA strategy. More specifically, we propose to add some auxiliary variables u ∈
R
J with predefined conditional distribution of density p(u|x, z) = p(u|x) so that the minus

logarithm of the joint distribution density p(x,u|z) can be written as follows:

J (x,u) = J (u|x) + J (x) (9)

where J (u|x) = − log p(u|x) up to an additive constant. Two conditions should be satisfied by
p(x,u|z) for the DA strategy to be valid:

(C1)
∫
RJ p(x,u|z) du = p(x|z);

(C2)
∫
RQ p(x,u|z) dx = p(u|z),

where p(u|z) should define a valid probability density function (i.e., nonnegative and with in-
tegral with respect to u equal to 1). In fact, the importance of Condition (C1) is obvious
because the latent variable is only introduced for computational purposes and should not alter
the considered initial model. The need for the second requirement (C2) stems from the fact that
p(x,u|z) should define the density of a proper distribution. Note that

• the first condition is satisfied thanks to the definition of the joint distribution in (9)
provided that p(u|x, z) is a density of a proper distribution;

• for the second condition, it can be noticed that if the first condition is met, Fubini-Tonelli’s
theorem allows us to claim that
∫

RJ

(∫

RQ

p(x,u|z) dx
)

du =

∫

RQ

(∫

RJ

p(x,u|z) du
)

dx =

∫

RQ

p(x|z) dx = 1. (10)

This shows that p(u|z) as defined in (C2) is a valid probability density function.

Instead of simulating directly from Px|z, we now draw alternatively (in an arbitrary order)
samples from the conditional distributions of the two variables x and u of respective densities
Px|u,z and Pu|x,z. This simply reduces to a special case of a hybrid Gibbs sampler algorithm with
two variables where each iteration t is composed of two sampling steps which can be expressed
as follows:

• Sample u(t+1) from P
u|x(t),z;

• Sample x(t+1) from P
x|u(t+1),z.

Under mild technical assumptions [56, 9], the constructed chain
(
x(t),u(t)

)
t>0

can be proved to
have a stationary distribution Px,u|z. The usefulness of the DA strategy is mainly related to
the fact that, with an appropriate choice of p(u|x, z), drawing samples from the new conditional
distributions Px|u,z and Pu|x,z is much easier than sampling directly from the initial distribution
Px|z. Let us emphasize that, for the sake of efficiency, the manipulation of p(u|x, z) must not



7induce a high computation cost in the algorithm. In this work, we propose to add auxiliary
variables u to the model such that the dependencies resulting from the likelihood and the prior
are separated, that is, J (u|x) is chosen in such a way that only one source of correlations
remains related directly to x in p(x,u|z), the other sources of correlations only intervening
through the auxiliary variables u and z. Note that the advantage of introducing auxiliary
variables in optimization or sampling algorithms has also been illustrated in several works in the
image processing literature, related to half quadratic approaches [57, 26, 58, 59, 60, 61]. This
technique has also been adopted to facilitate sampling in classical MH algorithm and Gibbs
sampler in the maximum likelihood estimation approach proposed in [62]. Finally, in [63], a
half-quadratic formulation was used to replace the prior distribution, leading to a new posterior
distribution from which inference results are deduced.

The contribution of our work is to propose an extended formulation of the data augmenta-
tion method, that was introduced in [61] in the context of variational image restoration under
uncorrelated Gaussian noise. Our proposal leads to a novel acceleration strategy for sampling
algorithms in large scale problems.

3 Proposed approach

In this section, we discuss various scenarios typically arising in inverse problems and we explain
how our approach applies in these contexts.

3.1 Correlated Gaussian noise

Let us consider the linear observation model (4) when the noise term w is assumed to be
Gaussian, additive and independent from the signal that is w ∼ N (0N ,Λ

−1) with Λ ∈ R
N×N a

symmetric semi-definite positive precision matrix that is assumed to be known. In this context,
the minus logarithm of the posterior density takes the following form:

(∀x ∈ R
Q) J (x) =

1

2
(Hx− z)⊤Λ (Hx− z) + Ψ(Vx). (11)

Simulating directly from this distribution is generally not possible and standard MCMC
methods may fail to explore it efficiently due to the dependencies between signal coefficients [22].
In particular, the coupling induced by the matrix H⊤ΛH may hinder the construction of suitable
proposals when using MH algorithms. For example, when V = IQ and Ψ(x) =

∑Q
i=1 ψi(xi),

RW and standard MALA algorithms may behave poorly as they do not take into account data
fidelity dependencies, while a preconditioned MALA approach with full curvature matrices may
exhibit high computational load due the presence of heterogeneous dependencies [40].

In the following, we propose to eliminate the coupling induced by the linear operators (H,Λ)
by adding auxiliary variables. Since the data fidelity term is Gaussian, a natural choice is to
define p(u|x, z) as a Gaussian distribution with mean Ax and covariance matrix C:

p(u|x, z) = det(C)−1/2

(2π)J/2
exp

(
−1

2
‖C−1/2 (u−Ax) ‖2

)
(12)

where C ∈ R
J×J is a symmetric positive definite covariance matrix and A ∈ R

J×Q. Then, the
joint distribution satisfies the two conditions (C1) and (C2) defined in Section 2 and its minus
logarithm has the following expression:

(∀x ∈ R
Q)(∀u ∈ R

J) J (x,u) =
1

2

(
x⊤Yx+ z⊤Λz+ u⊤C−1u− 2x⊤

(
H⊤Λz+A⊤C−1u

))

+Ψ(Vx), (13)



8with
Y = H⊤ΛH+A⊤C−1A. (14)

The expression in (12) yields the sampling scheme:

(∀t ∈ N) u(t+1) = Ax(t) +C1/2n(t), (15)

with n(t) ∼ N (0J , IJ). The efficiency of the DA strategy is thus highly related to the choice of
the matrices A and C. Under the requirement that C is positive definite, the choice of (A,C)
is subjective and is related to specifying the source of heterogeneous dependencies that one
wants to eliminate in the target distribution based on the properties of H, Λ, V, and Ψ. More
specifically, one should identify if the main difficulty stems from the structure of matrix H⊤ΛH

or only from the non trivial form of the precision matrix Λ. In what follows, we will elaborate
different solutions according to the type of encountered difficulty.

Alternative I: Eliminate the coupling induced by Λ

Let us first consider the problem of eliminating the coupling induced by matrix Λ. This
problem is encountered for example for Model (5) with circulant matrices H and Gx and with
Λ 6= IN , which induces further correlation when passing to the Fourier domain. In this context,
we propose to eliminate the correlations induced by Λ by setting

Y =
1

µ
H⊤H (16)

where µ > 0 is such that µ‖Λ‖S < 1, where ‖ · ‖S denotes the spectral norm. This is equivalent
to choosing A and C such that

A⊤C−1A = H⊤

(
1

µ
IN −Λ

)
H. (17)

Note that the condition over µ allows to guarantee that C is positive definite. Under (16), the
minus logarithm of the conditional distribution of x given z and u reads, up to an additive
constant:

(∀x ∈ R
Q)(∀u ∈ R

J) J (x|u) = 1

2µ
‖Hx‖2 − x⊤

(
H⊤Λz+A⊤C−1u

)
+Ψ(Vx). (18)

Let us discuss the application of the hybrid Gibbs sampling algorithm from Section 2 to this
particular decomposition. The sampling scheme (15) yields:

(∀t ∈ N) A⊤C−1u(t+1) = A⊤C−1Ax(t) +A⊤C−1/2n(t) (19)

where n(t) ∼ N (0J , IJ). Since A and C satisfy (17), this leads to:

(∀t ∈ N) A⊤C−1u(t+1) = H⊤

(
1

µ
IN −Λ

)
Hx(t) +A⊤C−1/2n(t). (20)

We can remark that, for every t ∈ N, A⊤C−1/2n(t) follows the centered Gaussian distribution

with covariance matrix H⊤

(
1

µ
IN −Λ

)
H. It follows that

(∀t ∈ N
∗) A⊤C−1u(t) = H⊤v(t) (21)

where
(∀t ∈ N) v(t+1) ∼ N

(
ΓHx(t),Γ

)
, (22)



9
and Γ =

1

µ
IN − Λ is definite positive by construction. Then, the resulting algorithm can

be viewed as a hybrid Gibbs sampler, associated to the minus logarithm of the conditional
distribution of x given z and a new auxiliary variable v ∼ N (ΓHx,Γ):

(∀x ∈ R
Q) J (x|v) = 1

2µ
‖Hx− µ (Λz+ v) ‖2 +Ψ(Vx). (23)

The main steps of the proposed Gibbs sampling algorithm are given in Algorithm 1. The
appealing advantage of this algorithm with respect to a Gibbs sampler which would be applied
directly to Model (5) when H and Gx are diagonalizable in the same domain, is that it allows
to easily handle the case when Λ is not equal to a diagonal matrix having identical diagonal
elements.

Algorithm 1 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by Λ.

Initialize: x(0) ∈ R
Q, v(0) ∈ R

N , µ > 0 such that µ‖Λ‖S < 1

1: for t = 0, 1, . . . do

2: Generate v(t+1) ∼ N
(
ΓHx(t),Γ

)
where

Γ =
1

µ
IN −Λ

3: Generate x(t+1) ∼ P
x|v(t+1),z

4: end for

Note that, minimizing (23) can be seen as a restoration problem with an uncorrelated noise
of variance µ. It can be expected that Step 3 in Algorithm 1 can be more easily implemented
in the transform domain where H and V are diagonalized, when this is possible (see Section 5
for an example)

Alternative II: Eliminate the coupling induced by H⊤ΛH

In a large class of regularized models, H and V have different properties. While H almost
reflects a blur, a projection, or a decimation matrix, V may model a wavelet transform or a
discrete gradient operator. Such difference in their properties induces a complicated structure
of the posterior covariance matrix. To address such cases, we propose to eliminate the source of

correlations related to x through H⊤ΛH +A⊤C−1A, by setting Y =
1

µ
IQ, so that A and C

satisfy

A⊤C−1A =
1

µ
IQ −H⊤ΛH, (24)

where µ > 0 is such that µ‖H⊤ΛH‖S < 1, so that C is positive definite. It follows that the
minus logarithm of the conditional distribution of x given z and u is defined up to an additive
constant as

(∀x ∈ R
Q)(∀u ∈ R

J) J (x|u) = 1

2µ
‖x‖2 − x⊤

(
H⊤Λz+A⊤C−1u

)
+Ψ(Vx). (25)

Let us make the following change of variables within the Gibbs sampling method:

(∀t ∈ N
∗) v(t) = A⊤C−1u(t).



10According to (15) and (24), we obtain

(∀t ∈ N) v(t+1) =

(
1

µ
IQ −H⊤ΛH

)
x(t) +A⊤C−1/2n(t) (26)

where n(t) ∼ N (0J , IJ). Let us define Γ =
1

µ
IQ − H⊤ΛH, which is positive definite. Since

A⊤C−1/2n(t) follows a zero-mean Gaussian distribution with covariance matrix Γ, then

(∀t ∈ N) v(t+1) ∼ N
(
Γx(t),Γ

)
(27)

and the new target conditional distribution reads

(∀x ∈ R
Q) J (x|v) = 1

2µ
‖x− µ(v +H⊤Λz)‖2 +Ψ(Vx). (28)

The proposed Gibbs sampling algorithm is then summarized by Algorithm 2.

Algorithm 2 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by H⊤ΛH.

Initialize: x(0) ∈ R
Q, v(0) ∈ R

Q, µ > 0 such that µ‖H⊤ΛH‖ < 1

1: for t = 0, 1, . . . do

2: Generate v(t+1) ∼ N
(
Γx(t),Γ

)
where

Γ =
1

µ
IQ −H⊤ΛH

3: Generate x(t+1) ∼ P
x|v(t+1),z

4: end for

Note that in (28), the two operators reflecting the correlation between the coefficients of the
target signal induced from the likelihood and the prior are now dissociated. Correlations from
the likelihood are no longer related directly to the target signal but to the auxiliary variable
v and the observation z. In other words, the original problem reduces to solving a denoising
problem where the variance of the Gaussian noise is µ. Thereby, the new target distribution (28)
is generally simpler to sample from compared to the initial one. In particular, one can sample
them independently when the coefficients of the signal are independent in the prior. Otherwise,
if Ψ is a smooth function, one can use a Langevin-based MCMC algorithm. For instance, it
may be possible to construct an efficient curvature matrix that takes into account the prior
correlation and that can be easily manipulated.

Table 1 summarizes the two different cases we have presented here. We would like to em-
phasize that the approach we propose for adding auxiliary variables according to the structure
of the matrix H and Λ is sufficiently generic so that it covers a wide diversity of applications.

It is worth noting that the auxiliary variable could be introduced in the data fidelity term
as well as in the prior information. The derivation of the proposed method in (13) allows
us to identify classes of models for which our approach can be extended. Obviously, the key



11Table 1: Different alternatives for adding auxiliary variables

Problem Proposed auxiliary variable Resulting conditional density
source p(x|z,v) ∝ exp(−J (x|v))
Λ v ∼ N

((
1

µ
IN −Λ

)
Hx,

1

µ
IN −Λ

)
J (x|v) = 1

2µ
‖Hx− µ (Λz+ v) ‖2 +Ψ(Vx)

H⊤ΛH v ∼ N
((

1

µ
IQ −H⊤ΛH

)
x,

1

µ
IQ −H⊤ΛH

)
J (x|v) = 1

2µ
‖x− µ(v +H⊤Λz)‖2 +Ψ(Vx)

requirement is that the term which should be simplified can be written as a quadratic function
with respect to some variables. Hence, without completely relaxing the Gaussian requirement, we
can extend the proposed method to Gaussian models in which some hidden variables control the
mean and/or the variance. This includes for example scale mixture of Gaussian models [64, 65]
such as the alpha-stable family (including the Cauchy distribution), the Bernoulli Gaussian
model and the generalized Gaussian distributions, and also Gaussian Markov random fields [56].
In Section 3.2, we will investigate the case of scale mixture of Gaussian models. When both
the likelihood and the prior distribution are Gaussian conditionally to some parameters, the
proposed method can be applied to each term as explained in Section 3.3.

Another point to pay attention to is the sampling of the auxiliary variable v. In particular,
in Algorithm 2, we should be able to sample from the Gaussian distribution whose covariance

matrix is of the form
(
1

µ
IQ −H⊤ΛH

)
, which is possible for a large class of observation models

as discussed in Section 3.4.

3.2 Scale mixture of Gaussian noise

3.2.1 Problem formulation

Let us consider the following observation model:

(∀i ∈ {1, . . . , N}) zi = [Hx]i + wi (29)

such that, for every i ∈ {1, . . . , N},
{

wi = 0 if σi = 0
wi ∼ N (0, σ2i ) if σi > 0

(30)

where (σ1, . . . , σN ) are independent random variables distributed on R
+ according to Pσ. Dif-

ferent forms of the mixing distribution Pσ lead to different noise statistics. In particular, the
Cauchy noise is obtained when σ21, . . . , σ

2
N are random variable following an inverse Gamma

distribution. Let σ = [σ1, . . . , σN ]⊤. By assuming that x and σ are independent, the joint
posterior distribution of x and σ is given by:

p(x,σ | z) = p(x | z)p(σ | z). (31)

In such a Bayesian estimation context, a Gibbs sampling algorithm is generally adopted to
sample alternatively from the distributions Px|σ,z and P

σ|x,z.
In the following, we assume that the set S0 = {σ1 = σ2 = . . . = σN = 0} has a zero proba-

bility given the vector of observations z. Note that by imposing such rule, we ensure that, at
each iteration t of the Gibbs algorithm, σ(t) 6= 0N almost surely.

Since sampling from Px|σ,z is supposed to be intractable, we propose to add auxiliary vari-
ables v ∈ R

J that may depend on the variables of interest x and σ according to a given
conditional distribution density p(v|x,σ, z) = p(v|x,σ) which satisfies the following conditions:
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∫
RJ p(x,σ,v|z)dv = p(x,σ|z).

2-
∫
RQ

∫
RN p(x,σ,v|z) dxdσ = p(v|z),

where p(v|z) should be a valid probability density function.
Using the same arguments as in Section 2.2, these two properties are satisfied provided

that p(v|x,σ, z) defines a proper probability density function. It follows that the initial two
step-Gibbs iteration is replaced by the following three sampling steps. First, sample v(t+1) from
P
v|x(t),σ(t),z then sample x(t+1) from P

x|σ(t),v(t+1),z and finally sample σ(t+1) from P
σ|x(t+1),v(t+1),z.

3.2.2 Proposed algorithms

Let D(σ) be the diagonal matrix whose diagonal elements are given by

(∀i ∈ {1, . . . , N}) D(σ)i,i =

{
0 if σi = 0

(σi)
−2 if σi > 0.

(32)

Note that, since S0 has zero probability, we have almost surely

‖D(σ)‖S > 0. (33)

• Suppose first that there exists a constant ν > 0 such that

(∀t > 0) (∀i ∈ {1, . . . , N}) ν 6 σ
(t)
i . (34)

Then, results in Section 3.1 with a Gaussian noise can be extended to scale mixture of Gaus-
sian noise by substituting, at each iteration t, D(t) for Λ, and by choosing µ < ν2 in Algorithm
1 and µ‖H‖2S < ν2 in Algorithm 2. The only difference is that an additional step must be
added to the Gibbs algorithm to draw samples of the mixing variables σ1, . . . , σN from their
conditional distributions given x, v and z.

• Otherwise, when ν > 0 satisfying (34) does not exist, results in Section 3.1 remain also valid
when, at each iteration t, for a given value of σ(t), we replace Λ by D(σ(t)). There is however
a main difference with respect to the case when ν > 0 which is that µ depends on the value of
the mixing variable σ(t) and hence can take different values along the iterations. Subsequently,
µ(σ) will denote the chosen value of µ for a given value of σ. Here again, two strategies can be
distinguished for setting

(
µ(σ(t))

)
t∈N

, depending on the dependencies one want to eliminate
through the DA strategy.

Alternative I: Eliminate the coupling induced by D(σ(t))
A first option is to choose, at each iteration t, µ(σ(t)) positive such that

µ(σ(t)) =
ǫ

‖D(σ(t))‖S
= ǫ

(
min(σ

(t)
i )i∈I(t)

)2
(35)

with ǫ ∈]0, 1[ and
I
(t) =

{
i ∈ {1, . . . , N} | σ(t)i > 0

}
. (36)

The auxiliary variable is then drawn as follows:

v(t+1) ∼ N
(
Γ(σ(t))Hx(t),Γ(σ(t))

)
(37)

where Γ(σ(t)) =
1

µ(σ(t))
IN −D(σ(t)) is positive definite by construction. The minus logarithm

of the posterior density p(x|σ,v, z) is given by

(∀x ∈ R
Q) J (x|σ,v) = 1

2µ(σ)
‖Hx− µ(σ)

(
v +D(σ)z

)
‖2 +Ψ(Vx). (38)



13Alternative II: Eliminate the coupling induced by H⊤D(σ(t))H
Similarly, in order to eliminate the coupling induced by the full matrix H⊤D(σ(t))H, µ(σ(t))

can be chosen at each iteration t ∈ N so as to satisfy

µ(σ) =
ǫ

‖H‖2S‖D(σ)‖S
=

ǫ

‖H‖2S

(
min(σ

(t)
i )i∈I(t)

)2
(39)

with ǫ ∈]0, 1[ and I
(t) is given by (36). Then, the auxiliary variable is drawn as

v(t+1) ∼ N
(
Γ(σ(t))x(t),Γ(σ(t))

)
, (40)

where Γ(σ(t)) =
1

µ(σ(t))
IQ − H⊤D(σ(t))H is positive definite. The minus logarithm of the

posterior density p(x|σ,v, z) then reads

(∀x ∈ R
Q) J (x|σ,v) = 1

2µ(σ)
‖x− µ(σ)

(
v +H⊤D(σ)z

)
‖2 +Ψ(Vx). (41)

It is worth noting that σ and v are two dependent random variables conditionally to both x

and z. The resulting Gibbs samplers, corresponding to Alternatives I and II, respectively, are
summarized in Algorithms 3 and 4.

Algorithm 3 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by D(σ) in the case of a scale mixture of Gaussian noise.

Initialize: x(0) ∈ R
Q, v(0) ∈ R

N , σ(0) ∈ R
N
+ , 0 < ǫ < 1, µ(σ(0)) = ǫ

(
min(σ

(0)
i )i∈I(0)

)2

1: for t = 0, 1, . . . do

2: Generate

v(t+1) ∼ N
(
Γ(σ(t))Hx(t),Γ(σ(t))

)
where Γ(σ(t)) =

1

µ(σ(t))
IN −D(σ(t))

3: Generate x(t+1) ∼ P
x|v(t+1),σ(t),z

4: Generate σ
(t+1) ∼ P

σ|x(t+1),v(t+1),z

5: Set µ(σ(t+1)) = ǫ
(
min(σ

(t+1)
i )i∈I(t+1)

)2

6: end for

3.2.3 Partially collapsed Gibbs sampling

It can be noted that it is generally complicated to sample from P
σ|x,v,z due to the presence of

µ(σ) and D(σ) in the conditional distribution of v. One can replace this step by sampling from
P
σ|x,z, that is directly sampling σ from its marginal posterior distribution with respect to v and

conditionally to x and z. In this case, we say that we are partially collapsing v in the Gibbs sam-
pler. One of the main benefits of doing so is that, conditionally to x and z, σ has independent
components. However, as σ is sampled independently from v, the constructed Markov chain(
x(t),σ(t),v(t)

)
t>0

may have a transition kernel with an unknown stationary distribution [66].
This problem can also be encountered when the auxiliary variable v depends on other unknown
hyperparameters changing along the algorithm such as prior covariance matrix or regularization



14Algorithm 4 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by H⊤D(σ)H in the case of a scale mixture of Gaussian noise.

Initialize: x(0) ∈ R
Q, v(0) ∈ R

Q, σ(0) ∈ R
N
+ , 0 < ǫ < 1, µ(σ(0)) = ǫ ‖H‖−2

S

(
min(σ

(0)
i )i∈I(0)

)2

1: for t = 0, 1, . . . do

2: Generate

v(t+1) ∼ N
(
Γ(σ(t))x(t),Γ(σ(t))

)
where Γ(σ(t)) =

1

µ(σ(t))
IQ −H⊤D(σ(t))H

3: Generate x(t+1) ∼ P
x|v(t+1),σ(t),z

4: Generate σ
(t+1) ∼ P

σ|x(t+1),v(t+1),z

5: Set µ(σ(t+1)) = ǫ‖H‖−2
S

(
min(σ

(t+1)
i )i∈I(t+1)

)2

6: end for

parameter when the auxiliary variable is added to the prior instead of the likelihood. However,
there exist some rules based on marginalization, permutation and trimming, that allow to re-
place the conditional distributions in the standard Gibbs sampler with conditional distributions
marginalized according to some variables while ensuring that the target stationary distribution
of the Markov chain is maintained. The resulting algorithm is known as the Partially Collapsed
Gibbs Sampler (PCGS) [66]. Although this strategy can significantly decrease the complexity of
the sampling process, it must be implemented with care to guarantee that the desired stationary
distribution is preserved. Applications of PCGS algorithms can be found in [67, 68, 69].

Assume that, in addition to x, σ, v, we have a vector Θ ∈ R
P of unknown parameters to

be sampled. Note that, p(x,σ,Θ,v|z) should be integrable with respect to all the variables.
Following [66], we propose to use a PCGS algorithm that allows us to replace the full conditional
distribution P

σ|x,v,Θ,z with its conditional distribution P
σ|x,Θ,z without affecting the conver-

gence of the algorithm to the target stationary law. Algorithm 5 shows the main steps of the
proposed sampler. It should be noted that, unlike the standard Gibbs algorithm, permuting the
steps of this sampler may result in a Markov chain with an unknown stationary distribution.

Algorithm 5 PCGS in the case of a scale mixture of Gaussian noise

Initialize: x(0) ∈ R
Q, v(0) ∈ R

Q, σ(0) ∈ R
N
+ , Θ(0) ∈ R

P

1: for t = 0, 1, . . . do

2: For all i ∈ {1, . . . , N}, generate σ(t+1)
i ∼ Pσi|x(t),Θ(t),z

3: Generate Θ(t+1) ∼ P
Θ|x(t),σ(t+1),z

4: Set µ(σ(t)) and Γ(σ(t))

5: Generate v(t+1) ∼ P
v|x(t),σ(t+1),Θ(t+1),z

6: Generate x(t+1) ∼ P
x|v(t+1),σ(t+1),Θ(t+1),z

7: end for



153.3 High dimensional Gaussian distribution

The proposed DA approach can also be applied to the problem of drawing random variables from
a high dimensional Gaussian distribution with parameters m and G as defined in (5) and (6).
The introduction of auxiliary variables can be especially useful to facilitate the sampling process
in a number of problems that we discuss below. In order to make our presentation clearer, an
additional index will be added to the variables v and µ introduced in Section 2.

• If the prior precision matrix Gx and the observation matrix H can be diagonalized in the
same basis, it can be of interest of adding the auxiliary variable v1 in the data fidelity
term. Following Algorithm 1, let µ1 > 0 such that µ1‖Λ‖S < 1 and

v1 ∼ N
((

1

µ1
IN −Λ

)
Hx,

1

µ1
IN −Λ

)
. (42)

The resulting conditional distribution of the target signal x given the auxiliary variable v1

and the vector of observation z is a Gaussian distribution with the following parameters:

G̃ =
1

µ1
H⊤H+Gx. (43)

m̃ = G̃−1
(
H⊤Λz+Gxmx +H⊤v1

)
. (44)

Then, sampling from the target signal can be performed by passing to the transform
domain where H and Gx are diagonalizable (e.g., Fourier domain when H and Gx are
circulant) .

Similarly, if it is possible to write Gx = V⊤ΩV, so as H and V can be diagonalized in the
same basis, we suggest to introduce an extra auxiliary variable v2 independent of v1 in
the prior term to eliminate the coupling introduced by Ω when passing to the transform
domain. Let µ2 > 0 be such that µ2‖Ω‖S < 1 and let the distribution of v2 conditionally
to x be given by

v2 ∼ N
((

1

µ2
IN −Ω

)
Vx,

1

µ2
IN −Ω

)
. (45)

The joint distribution of the unknown parameters is given by

p(x,v1,v2|z) = p(x|z)p(v1|x, z)p(v2|x, z). (46)

It follows that the minus logarithm of the conditional distribution of x given z, v1 and v2

is Gaussian with parameters:

G̃ =
1

µ1
H⊤H+

1

µ2
V⊤V (47)

and
m̃ = G̃−1

(
H⊤Λz+Gxmx +H⊤v1 +V⊤v2

)
. (48)

• If Gx and H are not diagonalizable in the same basis, the introduction of an auxiliary
variable either in the data fidelity term or the prior allows us to eliminate the coupling
between these two heterogeneous operators. Let µ1 > 0 such that µ1‖H⊤ΛH‖S < 1 and

v1 ∼ N
((

1

µ1
IQ −H⊤ΛH

)
x,

1

µ1
IQ −H⊤ΛH

)
. (49)



16Then, the parameters of the Gaussian posterior distribution of x given v1 read:

G̃ =
1

µ1
IQ +Gx (50)

m̃ = G̃−1
(
H⊤Λz+Gxmx + v1

)
. (51)

Note that if Gx has some simple structure (e.g,. diagonal, block diagonal, sparse, circu-
lant,...), the precision matrix (50) will inherit this simple structure.

Otherwise, if Gx does not present any specific structure, one could apply the proposed DA
method to both data fidelity and prior terms. It suffices to introduce an extra auxiliary
variable v2 in the prior law, additionally to the auxiliary variable v1 in (49). Let µ2 > 0
be such that µ2‖Gx‖S < 1 and

v2 ∼ N
((

1

µ2
IQ −Gx

)
x,

1

µ2
IQ −Gx

)
. (52)

Then, the posterior distribution of x given v1 and v2 is Gaussian with the following
parameters:

G̃ =
1

µ
IQ (53)

and
m̃ = µ

(
v1 + v2 +H⊤Λz+Gxmx

)
(54)

where
µ =

µ1µ2
µ1 + µ2

. (55)

3.4 Sampling the auxiliary variable

It is clear that the main issue in the implementation of all the proposed Gibbs algorithms arises
in the sampling of the auxiliary variable v. The aim of this section is to propose efficient
strategies for implementing this step at a limited computational cost, in the context of large
scale problems.

For the sake of generality, we will consider that v follows a multivariate Gaussian distribution

with covariance matrix of the form Γ =
1

µ
IQ −H⊤ΛH where µ > 0 satisfies µ‖H⊤ΛH‖S < 1.

Our first suggestion is to set µ such that

µ‖H‖2S < β <
1

‖Λ‖S
, (56)

with β > 0. For example, one can set µ 6
ǫ

‖H‖2S‖Λ‖S
and β =

√
ǫ

‖Λ‖S
where 0 < ǫ < 1. This

allows to verify the requirement µ‖H⊤ΛH‖S < 1. Moreover, it leads to

1

µ
IQ −H⊤ΛH =

1

β

(
β

µ
IQ −H⊤H

)
+H⊤

(
1

β
IN −Λ

)
H. (57)

Thus, the sampling step of the auxiliary variable at iteration t ∈ N can be replaced by the three
following steps:

1) Generate n(t+1) ∼ N
(
0N ,

1

β
IN −Λ

)
.
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2) Generate y(t+1) ∼ N

(
0Q,

1

λ
IQ −H⊤H

)
with λ =

µ

β
6

√
ǫ

‖H‖2S
.

3) Compute

v(t+1) =

(
1

µ
IQ −H⊤ΛH

)
x(t+1) +

1√
β
y(t+1) +H⊤n(t+1).

Hereabove, y(t+1) and n(t+1) are independent random variables. One can notice that the sam-
pling problem of the auxiliary variables is now separated into two independent subproblems of
sampling from large scale Gaussian distributions. The first sampling step can usually be per-
formed efficiently. For instance, if Λ is diagonal (e.g., when the model is a scale mixture of
Gaussian variables), coefficients n(t+1)

i , i ∈ {1, . . . , N}, can be drawn separately. Let us now
discuss the implementation of the second sampling step, requiring to sample from the zero mean

Gaussian distribution with covariance matrix
1

λ
IQ −H⊤H.

• In the particular case when H is circulant, sampling can be performed in the Fourier do-
main. More generally, since H⊤H is symmetric, there exists an orthogonal matrix N such
that NH⊤HN⊤ is diagonal with positive diagonal entries. It follows that sampling from the

Gaussian distribution with covariance matrix
1

λ
IQ − H⊤H can be fulfilled easily within the

basis defined by the matrix N.

• Suppose that H satisfies HH⊤ = νIN with ν > 0, which is the case for example of tight frame
synthesis operators or decimation matrices. Note that νλ 6

√
ǫ < 1. We have then:

1

λ
IQ −H⊤H =

(
1√
λ
IQ −

√
λH⊤H

)2

+ (1− λν)H⊤H. (58)

It follows that a sample from the Gaussian distribution with covariance matrix
1

λ
IQ −H⊤H

can be obtained as follows:

y(t+1) =

(
1√
λ
IQ −

√
λH⊤H

)
y
(t+1)
1 +

√
1− λνH⊤y

(t+1)
2 (59)

where y(t+1)
1 ∈ R

Q and y
(t+1)
2 ∈ R

N are independent Gaussian random vectors with covariance
matrices equal to IQ and IN respectively.

• Suppose that H = MP with M ∈ R
N×K and P ∈ R

K×Q. Hence, one can set λ > 0 and
λ̃ > 0 such that

λ‖P‖2 < λ̃ <
1

‖M‖2 . (60)

For example, for µ =
ǫ

‖P‖2S‖M‖2S‖Λ‖S
, we have λ =

√
ǫ

‖P‖2S‖M‖2S
. Then, we can set λ̃ =

ǫ1/4

‖M‖2S
. It follows that

1

λ
IQ −H⊤H =

1

λ̃

(
λ̃

λ
IQ −P⊤P

)
+P⊤

(
1

λ̃
IK −M⊤M

)
P. (61)



18It appears that, if it is possible to draw merely random vectors y
(t+1)
1 and y

(t+1)
2 from the

Gaussian distributions with covariance matrices
λ̃

λ
IQ − P⊤P and

1

λ̃
IK −M⊤M respectively

(for example when P is a tight frame analysis operator and M is a convolution matrix with
periodic boundary condition), a sample from the Gaussian distribution with a covariance

matrix
1

λ
IQ −H⊤H can be obtained as follows:

y(t+1) =
1√
λ̃
y
(t+1)
1 +P⊤y

(t+1)
2 . (62)

4 Application to multichannel image recovery in the presence of

Gaussian noise

We now discuss the performance of the proposed DA strategies in the context of restoration
of multichannel images (MCI). Such images are widely used in many application areas such as
medical imaging and remote sensing [70, 71, 72]. Multiple channel components typically result
from imaging a single scene by sensors operating in different spectral ranges. For instance,
about a dozen of radiometers may be on-board remote sensing satellites. Most of the time, MCI
are corrupted with noise and blur arising from the acquisition process and transmission steps.
Therefore, restoring MCI is of primary importance as a preliminary step before addressing
analysis tasks such as classification, segmentation or object recognition [73]. Several works
dedicated to MCI processing rely on wavelet-based approaches [71, 74]. In this section, we
propose to adopt a Bayesian framework for recovering the wavelet coefficients of deteriorated
MCI, with the aim to analyze the performance of the aforementioned hybrid Gibbs samplers.

4.1 Problem formulation

Let us consider the problem of recovering a multicomponent image with B components ȳ1, . . . , ȳB

in R
R (the images being columnwise reshaped) from some observations z1, . . . , zB which have

been degraded by spatially invariant blurring operators B1, . . . ,BB and corrupted by indepen-
dent zero-mean additive white Gaussian noises having the same known variance σ2. As already
stated, we propose here to address the restoration problem in a transform domain where the
target images are assumed to have a sparse representation. Let us introduce a set of tight frame
synthesis operators F∗

1, . . . ,F
∗
B [75] such that

(∀b ∈ {1, . . . , B}) ȳb = F∗
b x̄b (63)

where, for every b ∈ {1, . . . , B}, F∗
b is a linear operator from R

K to R
R with K > R and x̄b is

the vector of frame coefficients of the image ȳb. Each frame transform operator decomposes the
image into M oriented subbands at multiple scales with sizes Km, m ∈ {1, . . . ,M}, such that∑M

m=1Km = K:
(∀b ∈ {1, . . . , B}) x̄b = (x̄b,1,1, . . . , x̄b,1,K1 , . . . ,

x̄b,m,1, . . . , x̄b,m,Km
, . . . ,

x̄b,M,1, . . . , x̄b,M,KM
)⊤.

(64)

Then, the problem can be formulated as (4), that is:

z = Hx+w (65)



19where w ∼ N (0N , σ
2IN ), x = [x⊤

1 , . . . ,x
⊤
B]

⊤ ∈ R
Q, z = [z⊤1 , . . . , z

⊤
B]

⊤ ∈ R
N , H = BF∗ ∈ R

N×Q

with N = BR, Q = KB,

F∗ =




F∗
1 0 . . . 0

0 F∗
2 0 0

. . . . . . . . . . . .
0 0 0 F∗

B


 (66)

and

B =




B1 0 . . . 0

0 B2 0 0
. . . . . . . . . . . .
0 0 0 BB


 . (67)

We propose to exploit the cross-component similarities by estimating jointly the frame co-
efficients at a specific orientation and scale through all the B components. In this respect,
for every m ∈ {1, . . . ,M}, for every k ∈ {1, . . . ,Km}, let xm,k = (xb,m,k)16b6B ∈ R

B be
the vector of frame coefficients for a given wavelet subband m at a spatial position k through
all the B components. Note that such vector can be easily obtained through xm,k = Pm,kx

where Pm,k ∈ R
B×Q is a sparse matrix containing B lines of a suitable permutation matrix. To

promote the sparsity of the wavelet coefficients and the inter-component dependency, following
[71], we assume that for every m ∈ {1, . . . ,M}, the vectors xm,1, . . ., xm,Km are realizations of
a random vector following a generalized multivariate exponential power (GMEP) distribution
with scale matrix Σm, shape parameter βm and smoothing parameter δm. Thus, the minus-log
of the prior likelihood is given up to an additive constant by

− log p(x|Σ1, . . . ,ΣM ) =
M∑

m=1

Km∑

k=1

ψm(‖Σ−1/2
m (Pm,kx− am)‖) (68)

where, for every m ∈ {1, . . . ,M}, am ∈ R
B and for all t ∈ R, ψm(t) = 1

2 (t2 + δm)βm .
Our goal is to compute the posterior mean estimate of the target image as well as the

unknown regularization parameters using MCMC sampling algorithms accelerated thanks to
our proposed DA strategies. In the following, we will denote by Θ the vector of unknown
regularization parameters to be estimated jointly with x in the Gibbs sampling algorithm.

4.2 Sampling from the posterior distribution of the wavelet coefficients

One can expect that the standard sampling algorithms fail to explore efficiently the target
posterior not only because of the high dimensionality of the problem but also because of the
anisotropic nature of the wavelet coefficients. In fact, the coefficients belonging to different scales
are assumed to follow GMEP priors with different shapes βm, m ∈ {1, . . . ,M}. For instance,
coefficients belonging to the low resolution subband are generally assumed to be driven from a
Gaussian distribution (i.e., βm = 1) while GMEP priors with very small shape parameter (i.e.,

βm 6
1

2
) are generally assigned to high resolution subbands at the first level of decomposition in

order to promote sparsity. Therein, one can better explore the directions of interest separately by
using different amplitudes than sampling them jointly. However, the observation matrix causes
high spatial dependencies between the coefficients and thus hinders processing the different
wavelet subbands independently.

The DA approaches we introduced in Section 3 allow to tackle this preconditioning problem
by adding auxiliary variables to the data fidelity term. More specifically, following Algorithm 2,



20we propose to introduce an auxiliary variable v ∈ R
Q such that:

v ∼ N
(

1

σ2

(
1

µ
IQ −H⊤H

)
x,

1

σ2

(
1

µ
IQ −H⊤H

))
(69)

where µ‖B‖2S‖F‖2S < 1.
Since the set of hyperparameters Θ is independent of the auxiliary variable v when condi-

tioned to x, each iteration t ∈ N of the proposed Gibbs sampling algorithm contains the following
steps:

1) Sample v(t+1) from P
v|x(t),z.

2) Sample x(t+1) from P
x|v(t+1),Θ(t),z.

3) Sample Θ(t+1) from P
Θ|x(t+1),z.

If B is circulant (by assuming periodic boundary conditions of the blur kernel), the first
sampling step can be easily done by passing to the Fourier domain. In particular, if F is
orthonormal that is FF∗ = F∗F = IQ, samples of the auxiliary variables can be obtained by
first drawing Gaussian random variables in the Fourier domain and then passing to the wavelet
domain. Otherwise, if F is a non orthonormal transform, sampling can be performed using our
results stated in (59) and (62).

Note that, in the new augmented space, the restoration problem reduces to a denoising
problem with zero-mean Gaussian noise of variance µ and the posterior density reads:

p(x|z,v,Θ) ∝
M∏

m=1

Km∏

k=1

exp (−Jm,k(Pm,kx|v)) (70)

where

(∀c ∈ R
B) Jm,k(c|v) =

1

2µσ2
‖c− µPm,kv − µ

σ2
Pm,kH

⊤z‖2 + ψm(‖Σ−1/2
m (c− am)‖). (71)

It follows that we can draw samples of vectors xm,k, m ∈ {1, . . . ,M}, k ∈ {1, . . . ,Km}, in
an independent manner. Thus, the resolution of the initial high dimensional problem of size
Q = KB reduces to the resolution of K parallel subproblems of size B. This is particularly
interesting in the case of MCI where we have generally K ≫ B.

Instead of processing all the different wavelet coefficients at the same time, the proposed
method allows to deal independently with each subproblem. This avoids sampling problems
related to the heterogeneous prior distribution. Different sampling algorithms may be chosen
according to the properties of the target distribution in each subproblem. Specifically, for each
sampling subproblem, we propose to use either RW or MALA algorithms [17, 76].

In the following, we will discuss the practical implementation of the third step of the Gibbs
algorithm namely sampling from the posterior distribution of Θ.

4.3 Hyperparameters estimation

Separation strategy: For every m ∈ {1, . . . ,M}, βm controls the shape of the GMEP distri-
bution allowing for heavier tails than the Laplace distribution (βm < 0.5) and approaching the
normal distribution when βm tends to 1. In this work, we assume that, for everym ∈ {1, . . . ,M},



21βm and δm are fixed. Actually, the shape parameter is set to different values with respect to the
resolution level, spanning from very small values (βm < 0.5) in order to enforce sparsity in the
detail subbands at the first levels of decomposition to relatively higher values (0.5 < βm < 1) for
detail subband at higher resolution levels, whereas a Gaussian distribution is generally assigned
to the low frequency subband. Furthermore, we set δm to a positive small value ensuring that (78)
is differentiable [71]. As already mentioned, the scale matrices (Σm)1≤m≤M will be estimated.
Let us define PΣm the prior distribution of the scale matrix for each subband m ∈ {1, . . . ,M}
and p(Σm) its related density. The associated posterior density reads

p(Σm|x) ∝ p(Σm)det(Σm)−Km/2 exp

(
−

Km∑

k=1

ψm(‖Σ−1/2
m (Pm,kx− am)‖)

)
. (72)

When βm = 1, the GMEP prior reduces to a Gaussian distribution. In such case, a common
choice of PΣm is an inverse Wishart distribution and (72) is also an inverse Wishart distribution
[77]. However, when 0 < βm < 1, (72) does not belong to classical families of matrix distribu-
tions. In that respect, rather than estimating the scale matrices directly, we resort to a separation
strategy. More specifically, we propose to estimate the standard deviations and the correlation
terms independently. Let us decompose the scale matrix for each subband m ∈ {1, . . . ,M} as
follows [78]:

Σm = Cβm,δmDiag(sm)−1RmDiag(sm)−1 (73)

where Rm ∈ R
B×B is the correlation matrix (whose diagonal elements are equal to 1 and the

remaining ones define the correlation between the coefficients and have absolute value smaller
than 1), sm ∈ R

B is a vector formed by the square root of the precision parameters (the inverse
of standard deviations) and Cβm,δm is a multiplicative constant that depends on βm and δm
[71]. The advantage of such factorization can be explained by the fact that the estimation of
the correlation matrix will not alter the estimation of the variances. For every m ∈ {1, . . . ,M},
we decompose the precision vector as follows:

sm = (Cβm,δm)
1/2γ1/(2βm)

m nm (74)

where γm is positive and nm ∈ R
B is a vector of positive coefficients whose sum is equal to

1. Then, nm can be seen as the vector containing positive normalized weights of all the B
components in the subband m.

For simplificity, let us assume that the different components of the image have the same
correlation and weights in all subbands i.e., R = Rm and nm = n for every m ∈ {1, . . . ,M}.
Furthermore, let us suppose that n is known. We have then

Θ = {R, γ1, . . . , γM}. (75)

Prior and posterior distribution for the hyperparameters: One can construct the corre-
lation matrix R by sampling from an inverse Wishart distribution. Specifically, let C ∼ IW(A, c)
where A is an appropriate positive definite matrix of R

B×B and c > 0. Then, we can write
R = ∆C∆ where ∆ is the diagonal matrix whose elements are given by ∆i,i = C

−1/2
i,i , for every

i ∈ {1, . . . , B}. Following [78], we can show that the prior density of R reads:

p(R) ∝ det(R)−
B+1+c

2

B∏

i=1

(R−1A)
− ν

2
i,i . (76)

In the following, we will use the notation R ∼ SS(A, c) to denote this prior. In particular, when
A = IB, individual correlations have the marginal density p(ρi,j) = (1 − ρ2i,j)

c−B−1
2 for every



22(i, j) ∈ {1, . . . , B}2 such that i 6= j, which can be seen as a rectangular Beta distribution on the
interval [−1, 1] with both parameters equal to (c−B+1)/2. For c = B+1, we obtain marginally
uniformly distributed correlations, whereas, by setting B 6 c < B + 1 (or B + 1 < c), we get
marginal priors with heavier (or lighter) tails than the uniform distribution that is, distributions
that promote high correlation values around the extremity of the intervals (or near zero values),
respectively [78]. Thus, the posterior distribution of R is given by

p(R|x, γ1, . . . , γM ) ∝ det(R)−
B+1+c+Q

2 exp (−Ψ(x))
B∏

i=1

(R−1A)
− c

2
i,i (77)

where

Ψ(x) =
M∑

m=1

Km∑

k=1

ψm

(
γ1/(2βm)
m ‖R− 1

2 Diag(n)(Pm,kx− am
)
‖). (78)

We propose here to sample from (77) at each iteration t ∈ N using a MH algorithm with
proposal SS(Ã, c̃) where Ã is set to the current value of R at iteration t and c̃ is chosen to
achieve reasonable acceptance probabilities.

For every m ∈ {1, . . . ,M}, we assume a Gamma prior for γm that is γm ∼ G(aγm , bγm)
where aγm > 0 and bγm > 0 [79]. Then, the posterior distribution of γm is given by:

p(γm|x,R) ∝ γ
aγm+ Km

2βm
−1

m exp (−bγmγm) exp

(
−1

2

Km∑

k=1

(
γ

1
βm
m ‖R− 1

2 Diag(n)(Pm,kx− am)‖2 + δm

)βm

)
.

(79)
Note that, if δm = 0, then (79) reduces to a Gamma distribution with parameters:

ãγm = aγm +
Km

2βm
, (80)

ãγm = bγm +

Km∑

k

‖R− 1
2N(Pm,kx− am)‖2βm . (81)

When δm > 0, sampling from (79) will be performed using an independent MH algorithm
with a Gamma proposal of parameters (80) and (81).

Initialization: We propose to set the prior distributions of R, γ1, . . . , γM , using empirical es-
timators from the degraded image. In particular, a rough estimator of R can be computed from
the subband containing the low resolution wavelet coefficients at the highest level of decompo-
sition. In the case when F is orthonormal, the variance of wavelet coefficients of the original
image are approximately related to those of the degraded image through:

(∀b ∈ {1, . . . , B})(∀m ∈ {1, . . . ,M}) var([Fbzb]m) = αmvar([xb]m) + σ2, (82)

where [.]m designates the wavelet coefficients belonging to the subband m and αm is a positive
constant which depends on the subband index m and on the blur matrix. Expression (82) is
derived from the considered observation model (65) by assuming a constant approximation of
the impulse response of the blur filter in each wavelet subband. Note that αm can be calculated
beforehand as follows. Given noisy-free data, we compute the original empirical variance for each
wavelet subband. Then, we calculate again the new variances of the subbands when the data is
blurred using matrix B. The coefficients αm are finally estimated for each wavelet subband by
computing the ratio of the two variances by a linear regression. When αm is not too small with



23respect to 1, estimators of var([xb]m) can be reliably computed from αm and var([Fbzb]m) using
(82). We propose to use this method to compute estimators of the variances in subbands at the
highest levels of decomposition and then to deduce the variances of the remaining subbands by
using some properties of multiresolution wavelet decompositions. Note that each detail subband
m, corresponds to a given orientation l (horizontal, vertical, diagonal) and a given scale j (related
resolution level). Actually, the variances of the detail subbands can be assumed to follow a power
law with respect to the scale of the subband which can be expressed as follows [80]:

log var([xb]m) = ̺lj +̟l (83)

where ̺l and ̟l are constants depending on the orientation l of the subband m. Once the
variances of subbands in the two highest levels of decomposition have been computed using
(82), we can calculate ̺l and ̟l for each orientation l using the slope and the intercept of these
variances from a log plot with respect to the scale j. The remaining variances are then estimated
by using (83). We then deduce from these variances an empirical estimator of n, and set the
parameters of the prior distributions of γ1, . . . , γM .

4.4 Experimental results

In these experiments, we consider the Hydice hyperspectral2 data composed of 191 components
in the 0.4 to 2.4 µm region of the visible and infrared spectrum. The test image is constructed
by taking only a portion of size 256× 256 and B = 6 components of Hydice using the channels
52, 67, 82, 97, 112 and 127. Hence, the problem dimension is N = 393, 216. The original
image is artificially degraded by a uniform blur of size 5 × 5 and an additive zero-mean white
Gaussian noise with variance σ2 = 9 so that the initial signal-to-noise ratio (SNR) is 11.16 dB.
We perform an orthonormal wavelet decomposition using the Symlet wavelet of order 3, carried
out over three resolution levels, hence M = 10 and Q = N . For the subband corresponding to
the approximation coefficients (m = 10), we choose a Gaussian prior (i.e., βm = 2, δm = 0). For
the remaining subbands (m ∈ {1, . . . ,M − 1}), we set δm = 10−4. Moreover, we set βm = 0.2
for the detail subbands corresponding to the lowest level of decomposition, βm = 0.4 for the
second level of decomposition, and βm = 0.5 for the third level of decomposition.

We run the Gibbs sampling Algorithm 2 with a sufficient number of iterations to reach
stability. The obtained samples of the wavelet coefficients after the burn-in period are then used
to compute the empirical MMSE estimator for the original image. Table 2 reports the results
obtained for the different components in terms of SNR, PSNR (Peak Signal to Noise Ratio),
BSNR (Blurred Signal to Noise Ratio) and SSIM (Structural SIMilarity). It can be noted that
the MMSE estimator yields good numerical results. This can also be observed in Figure 1
showing the visual improvements for the different components of the multichannel image.

We propose to compare the performance of the Gibbs sampler with auxiliary variables when
the posterior law of the wavelet coefficients is explored using either RW or MALA [17, 76]
algorithms. We also compare the speed of our proposed approaches with standard RW and
MALA without use of auxiliary variables. Figures 2 shows the evolution, with respect to the
computational time, of the scale parameter γm in the horizontal subband for the first level of
decomposition using the various algorithms. The results associated with the proposed algorithms
appear in solid lines while those associated with standard algorithms without use of auxiliary
variables are in dashed lines. It can be observed that the proposed algorithms reach stability
much faster than the standard methods. Indeed, since the problem dimension is large, the
stepsize ε in standard algorithms is constrained to take very small values to allow appropriate
acceptance probabilities whereas in the new augmented space, the subproblems dimension is

2https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html



24Table 2: Restoration results.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 Average

In
it

ia
l BSNR 24.27 30.28 31.73 28.92 26.93 22.97 27.52

PSNR 25.47 21.18 19.79 22.36 23.01 26.93 23.12

SNR 11.65 13.23 13.32 13.06 11.81 11.77 12.47

SSIM 0.6203 0.5697 0.5692 0.5844 0.5558 0.6256 0.5875

M
M

S
E BSNR 32.04 38.33 39.21 38.33 35.15 34.28 36.22

PSNR 28.63 25.39 23.98 26.90 27.25 31.47 27.27

SNR 14.82 17.50 17.60 17.66 16.12 16.38 16.68

SSIM 0.7756 0.8226 0.8156 0.8367 0.8210 0.8632 0.8225

(a) (b = 2). (b) (b = 4). (c) (b = 6).

(d) (b = 2). (e) (b = 4). (f) (b = 6).

(g) (b = 2). (h) (b = 4). (i) (b = 6).

Figure 1: From top to bottom: Original images-Degraded images-Restored images.

smaller allowing large moves to be accepted with high probability values. Note that MALA
algorithm with auxiliary variables exhibits the best performance in terms of convergence speed.
We summarize the obtained samples using the proposed algorithms by showing the marginal
means and standard deviations of the hyperparameters in Table 3. It can be noted that the two
proposed algorithms provide similar estimation results.

It is worth noting that for larger dimensional problems (i.e., larger values of B), one could
further improve the efficiency of the proposed algorithm by exploiting the parallel structure of
the sampling tasks.
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Figure 2: Trace plot of the scale parameter in subband m = 1 as time (horizontal subband
in the first level of decomposition) with (dashed lines) and without (continuous line) auxiliary
variables.

Table 3: Mean and variance estimates of hyperparameters.

RW MALA
γ̂1

(γ1=0.71)
Mean 0.67 0.67
Std. (1.63 e-3) (1.29 e-3)

γ̂2
(γ2=0.99)

Mean 0.83 0.83
Std. (1.92 e-3) (2.39 e-3)

γ̂3
(γ3=0.72)

Mean 0.62 0.61
Std. (1.33 e-3) (1.23 e-3)

γ̂4
(γ4=0.0.24)

Mean 0.24 0.24
Std. (1.30 e-3) (1.39 e-3)

γ̂5
(γ5=0.40)

Mean 0.37 0.37
Std. (2.10 e-3) (2.42 e-3)

γ̂6
(γ6=0.22)

Mean 0.21 0.21
Std. (1.19 e-3) (1.25 e-3)

γ̂7
(γ7=0.0.07)

Mean 0.08 0.08
Std. (0.91 e-3) (1.08 e-3)

γ̂8
(γ8=0.13)

Mean 0.13 0.13
Std. (1.60 e-3) (1.64 e-3)

γ̂9
(γ9=0.07)

Mean 0.07 0.07
Std. (0.83 e-3) (1 e-3)

ˆγ10
(γ10=7.44 e-4)

Mean 7.80 e-4 7.87 e-4
Std. (1.34 e-5) (2.12 e-5)

det(R̂)

det(R)= 5.79 e-8
Mean 1.89 e-8 2.10 e-8
Std. (9.96 e-10) ( 2.24 e-9)

5 Application to image recovery in the presence of two terms

mixed Gaussian noise

5.1 Problem formulation

In this second experiment, we consider the observation problem defined in (29) where H cor-
responds to a spatially invariant blur with periodic boundary conditions and the noise is a



26two-terms mixed Gaussian variable i.e., for every i ∈ {1, . . . , N}, wi ∼ N (0, σ2i ) such that

σi ∼ (1− β)δκ1 + βδκ2 (84)

where κ1, κ2 are positive, 0 < β < 1 is the probability that the variance of the noise σi equals κ2,
and δκ1 and δκ2 denote the discrete measures concentrated at the values κ1 and κ2 respectively.
Model (84) can approximate for example mixed impulse Gaussian noise arising in radar, acoustic,
and mobile radio applications [81, 82]. In this case, the impulse noise is approximated with a
Gaussian one with a large variance κ2 ≫ κ1 and β represents the probability of occurrence of
the impulse noise. In the following, we assume without loss of generality that κ2 > κ1. We
address the problem of estimating x, σ, β, κ1 and κ2 from the observations z.

Prior distributions: We propose to use conjugate priors for the unknown variances namely
inverse Gamma distributions i.e., κ2i ∼ IG(ai, bi), i ∈ {1, 2} where ai and bi are positive con-
stants. Here, a1, a2, b1, and b2 are set in practice to small values to ensure weakly informative
priors. For the occurrence probability β, we choose a uniform prior distribution i.e., β ∼ U(0, 1).
Furthermore, the target image is assumed to follow a zero-mean Gaussian prior with a covariance
matrix G−1

x = γ−1
(
L⊤L

)−1
known up to a precision parameter γ > 0, i.e.,

p(x|γ) ∝ γ−Q/2 exp
(
−γ
2
‖Lx‖2

)
. (85)

Different covariance matrices may be chosen depending on which properties one wants to impose
on the estimated image. In this example, we propose to enforce smoothness by setting L =
δIQ − ∇2 where ∇2 is the circulant convolution matrix associated with a Laplacian filter and
δ > 0 is a small constant that aims at ensuring the positive definiteness of the prior covariance
matrix. We further assume that the regularization parameter γ follows an inverse Gamma prior
with parameters aγ > 0 and bγ > 0. The resulting hierarchical model is displayed in Figure
3.

z

x σ

γ κ1 κ2 β

Figure 3: Hierarchical model for image deblurring under two term mixed Gaussian noise.

Posterior distributions: Given the observation model and the prior distribution, we can
deduce that the posterior distribution of the target signal given σ, β, κ21, κ

2
2, γ and z is also

Gaussian with mean m and precision matrix G given by:

G = H⊤DH+ γL⊤L, (86)

m = G−1H⊤Dy, (87)

where D is the diagonal matrix with diagonal elements Di,i = σ−2
i , i ∈ {1, . . . , N}.

The posterior distribution of the remaining unknown parameters are given by:



27• (∀i ∈ {1, . . . , N}) σi|x, β, κ21, κ22, z ∼ (1− pi)δκ1 + piδκ2 where pi =
ηi

1 + ηi
such that

ηi =
β

1− β
exp

(
−1

2

(
κ−2
2 − κ−2

1

)
([Hx]i − zi)

2

)
κ1
κ2
, (88)

• β|x, z,σ, κ21, κ22 ∼ B (n2 + 1, n1 + 1), where B is the Beta distribution and n1 and n2 are
the cardinals of the sets {i ∈ {1, . . . , N}, | σi = κ1} and {i ∈ {1, . . . , N}, | σi = κ2},
respectively, so that n1 + n2 = N ,

• κ21|x,σ, β, z ∼ IG
(
a1 +

n1
2 , b1 +

∑
i|σi=κ1

([Hx]i − zi)
2

2

)
,

• κ22|x,σ, β, z ∼ IG
(
a2 +

n2
2 , b2 +

∑
i|σi=κ2

([Hx]i − zi)
2

2

)
,

• γ|x ∼ G
(
Q

2
+ aγ ,

1

2
‖Lx‖2 + bγ

)
.

5.2 Sampling from the posterior distribution of x

In the Gibbs algorithm, we need to draw samples from the multivariate Gaussian distribution
of parameters (86) and (87) changing along the sampling iterations. In particular, even if H

and L are circulant matrices, sampling cannot be done in the Fourier domain because of the
presence of D. In the sequel, we will use the method proposed in Section 3.3 to sample from this
multivariate Gaussian distribution. More specifically, we exploit the flexibility of the proposed
approach by resorting to two variants. In the first variant, we take advantage of the fact that
L and H are diagonalizable in the Fourier domain and we propose to add the auxiliary variable
to the data fidelity term in order to get rid of the coupling caused by D when passing to the
Fourier domain. In the second variant, we introduce auxiliary variables for both the data fidelity
and the prior terms in order to eliminate the coupling effects induced by all linear operators in
the posterior distribution of the target image.

First variant: We introduce the variable v whose conditional distribution, given the set of

main parameters of the problem, is the Gaussian distribution of mean
(
1

µ
IN −D

)
Hx and

covariance matrix
(
1

µ
IN −D

)
where µ = ǫ‖D‖−1

S with 0 < ǫ < 1. In practice, we set ǫ = 0.99.

It follows that the new conditional distribution of the target signal is

x|σ, β, κ21, κ22, γ,v, z ∼ N (m̃, G̃−1) (89)

where m̃ and G̃ are defined as follows:

G̃ =
1

µ
H⊤H+ γL⊤L, (90)

m̃ = G̃−1H⊤
(
H⊤Dz+ v

)
. (91)

It is worth noting that the auxiliary variable v depends on x, and also on σ through µ and
D, but does not depend on β, κ1, κ2, γ when conditioned to x, σ and z. Thus, we propose to
use the partially collapsed Gibbs sampling algorithm in order to collapse the auxiliary variables



28in the sampling step of σ. At each iteration t ∈ N, the proposed algorithm goes through the
following steps in an ordered manner:

AuxV1

1) Sample (κ21)
(t+1) from Pκ2

1|x
(t),σ(t),β(t),z.

2) Sample (κ22)
(t+1) from Pκ2

2|x
(t),σ(t),β(t),z.

3) Sample β(t+1) from Pβ|x(t),σ(t),(κ2
1)

(t+1),(κ2
2)

(t+1) .

4) Sample γ(t+1) from Pγ|x(t) .

5) Sample σ
(t+1) from P

σ|x(t),β(t+1),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

6) Set µ(t+1) = ǫmin
(
σ
(t+1)
i

)−2

16i6N
and sample v(t+1) from P

v|x(t),σ(t+1) .

7) Sample x(t+1) from P
x|σ(t+1),γ(t+1),v(t+1),z.

Second variant: Another strategy is to introduce two independent auxiliary variables v1 and
v2 in R

Q following Gaussian distributions of means Γ1x and Γ2x and covariance matrices Γ1

and Γ2, respectively, where

Γ1 =
1

µ1
−H⊤DH (92)

and
Γ2 =

1

µ2
− L⊤L. (93)

In practice, we set µ1 = ǫ‖H‖−2
S ‖D‖−1

S and µ2 = ǫ‖L‖−2
S where ǫ = 0.99. Then, the posterior

distribution of x conditioned to σ, β, κ21, κ
2
2, γ, v1, v2 and z is Gaussian with mean m̃ and

precision matrix G̃ defined as

G̃ =

(
1

µ1
+

γ

µ2

)
IQ (94)

and
m̃ = µ1µ2 (γµ1 + µ2)

−1
(
H⊤Dy + v1 +

√
γv2

)
. (95)

The auxiliary variable v1 depends implicitly on σ through D and µ but does not depend on
the remaining parameters when conditioned to x, σ and z. Similarly, v2 does not depend on
σ, β, κ21, κ

2
2, v1, γ when conditioned to x and z. We propose a PCGS algorithm that allows to

collapse v1 in the sampling step of σ. Each iteration t ∈ N of the proposed PCGS algorithm is
composed of the following arranged sampling steps.
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AuxV2

1) Sample (κ21)
(t+1) from Pκ2

1|x
(t),σ(t),β(t),z.

2) Sample (κ22)
(t+1) from Pκ2

2|x
(t),σ(t),β(t),z.

3) Sample β(t+1) from Pβ|x(t),σ(t),(κ2
1)

(t+1),(κ2
2)

(t+1) .

4) Sample γ(t+1) from Pγ|x(t) .

5) Sample σ
(t+1) from P

σ|x(t),β(t+1),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

6) Sample v
(t+1)
2 from P

v2|x(t) .

7) Set µ(t+1)
1 = ǫ‖H‖−2

S min
(
σ
(t+1)
i

)−2

16i6N
and sample v

(t+1)
1 from P

v1|x(t),σ(t+1) .

8) Sample x(t+1) from P
x|σ(t+1),γ(t+1),v

(t+1)
1 ,v

(t+1)
2 ,z

.

Note that, since H and L are circulant matrices and D is diagonal, sampling the auxiliary
variables in the proposed methods can be easily performed following Section 3.4.

5.3 Experimental results

We consider a set of three test images denoted by x̄1, x̄2 and x̄3, of size 512×512. These images
are artificially degraded by a spatially invariant blur with point spread function h and further
corrupted with mixed Gaussian noise. The Gibbs algorithms are run for 6,000 iterations and
a burn-in period of 4,000 iterations is considered. Estimators of the unknown parameters are
then computed using the empirical mean over the 2,000 obtained samples. Visual results are
displayed in Figure 4 as well as estimates of hyper-parameters using AuxV1.

We focus now on image x̄1 in order to compare the two variants of our proposed method with
the Reversible Jump Perturbation Optimization (RJPO) algorithm [32]. For this method, we
use the conjugate gradient algorithm as a linear solver at each iteration whose maximal number
of iterations and tolerance are adjusted to correspond to an acceptance probability close to
0.9. We use the same initialization for all compared algorithms. Figures 5-8 display samples of
hyperparameters as a function of iteration or time. Table 4 shows the marginal posterior mean
and standard deviation of β, κ1, κ2, γ and the value of one randomly chosen pixel xi in the
reconstructed images. Figures 5-8 show that all the tested algorithms reach the same stationary
distribution. In particular, it can be noted from Table 4 that β, κ1 and κ2 are correctly estimated
by all the algorithms and the remaining parameters have similar estimators. While RJPO and
AuxV1 have similar iterative behavior, AuxV2 needs more iterations to reach stability. However,
the proposed two algorithms need less time to converge compared to RJPO algorithm since the
computational cost of each iteration is highly reduced.

We also report comparisons in terms of mixing properties in convergence. Table 5 shows
comparisons results in terms of time per iteration after the burn-in period (time needed to
produce one sample), mean square jump in stationarity, and efficiency with respect to RJPO.
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(a) x̄1 (512 × 512) (b) x̄2 (512 × 512) (c) x̄3 (512 × 512)

(d) z1: SNR=13.46 dB

κ1 = 13, κ2 = 40, β = 0.35
h: Gaussian 39 × 39 std. 4

(e) z2: SNR=8.50 dB

κ1 = 5, κ2 = 100, β = 0.25, h:

Uniform 5 × 5
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(f) z3: SNR=7.37 dB

κ1 = 12, κ2 = 70, β = 0.4
h: Gaussian 15 × 15 std. 1.8

(g) x̂1: SNR=19.35 dB

κ̂1 = 12.98, κ̂2 = 39.80
β̂ = 0.35, γ̂ = 4.8e-3

(h) x̂2: SNR=22 dB

κ̂1 = 5.10, κ̂2 = 100.13
β̂ = 0.25, γ̂ = 1.8e-3

(i) x̂3: SNR=18.74 dB

κ̂1 = 12.08, κ̂2 = 69.89
β̂ = 0.39, γ̂ = 4.7e-3

Figure 4: Visual results. From top to bottom: Original images. Degraded images. Restored
images.

Table 4: Mean and variance estimates.

RJPO AuxV1 AuxV2
γ̂

(γ =5.30 e-3)
Mean 4.78 e-3 4.84 e-3 4.90 e-3
Std. (1.39 e-4) (1.25 e-4) (9.01 e-5)

κ̂1
(κ1=13)

Mean 12.97 12.98 12.98
Std. ( 4.49 e-2) (4.82 e-2) (4.91 e-2)

κ̂2
(κ1=40)

Mean 39.78 39.77 39.80
Std. (0.13) (0.14) (0.13)

β̂
(β=0.35)

Mean 0.35 0.35 0.35
Std. (2.40 e-3) (2.71 e-3) ( 2.72 e-3)

x̂i
(xi=140)

Mean 143.44 143.19 145.91
Std. (10.72) (11.29) (9.92)

The speed improvement of the proposed algorithms comes with a deterioration of the quality
of the generated samples due to the correlation existing between successive samples. For instance,
RJPO algorithm gives the best results in terms of mean square jump in stationary. However,
the generation of every sample is costly, which deteriorates the efficiency of the algorithm for
large scale problems compared with AuxV2. The best trade-off between convergence speed and
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Figure 5: Chains of γ versus iteration/time.
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Figure 6: Chains of β versus iteration/time.
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Figure 7: Chains of κ1 versus iteration/time.
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Figure 8: Chains of κ2 versus iteration/time.

mixing properties of the chain is achieved by the proposed AuxV1 algorithm.

6 Conclusion

In this paper, we have proposed an approach for sampling from probability distributions in large
scale problems. By adding some auxiliary variables to the model, we succeeded in addressing
separately the different sources of correlations in the target posterior density. We have illustrated
the usefulness of the proposed Gibbs sampling algorithms in two application examples. In the
first application, we have proposed a wavelet-based Bayesian method to restore multichannel



32Table 5: Mixing results for the different proposed algorithms. First row: Time per iteration.
Second row: Estimates of the mean square jump in stationarity. Third row: Estimates of the
mean square jump per second in stationarity. Fourth row: Relative efficiency to RJPO.

RJPO AuxV1 AuxV2

T (s.) 5.27 0.13 0.12
MSJ 15.41 14.83 4.84
MSJ/T 2.92 114.07 40.33
Efficiency 1 39 13.79

images degraded by blur and Gaussian noise. We have adopted a multivariate prior model that
takes advantage of the cross-component correlation. Moreover, a separation strategy has been
applied to construct prior models of the related prior hyperparameters. We have then employed
the proposed Gibbs algorithm with auxiliary variables to derive optimal estimators for both the
image and the unknown hyperparameters. In the new augmented space, the resulting model
makes sampling much easier since the coefficients of the target image are no longer updated
jointly but in a parallel manner. Experiments carried out on a set of multispectral satellite
images have shown the good performance of the proposed approach with respect to standard
algorithms. Several issues could be investigated as future work such as the ability of the proposed
algorithm to deal with inter-scale dependencies in addition to the cross-channel ones. In the
second application, we have applied the proposed method to the recovery of signals corrupted
with mixed Gaussian noise. When compared to a state-of-the-art method for sampling from
high dimensional scale Gaussian distributions, the proposed algorithms achieve a good tradeoff
between the convergence speed and the mixing properties of the Markov chain even if the
generated samples are not independent. Note that the proposed method can be applied to a
wide class of applications in inverse problems, in particular, those including conditional Gaussian
models either for the noise or the target signal.
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